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PRELIMINARY AND INCOMPLETE

Abstract: Maximum-likelihood estimates of nonlinear panel data models with fixed effects are gener-
ally not consistent as the number of units, N , grows large while the number of time periods, T , stays
fixed. The inconsistency can be viewed as a consequence of the bias of the score function, where the
unit-specific parameters have been profiled out. We investigate ways of adjusting the profile score so
as to make it unbiased or approximately unbiased. This leads to estimators, solving an adjusted profile
score equation, that are fixed-T consistent or have less asymptotic bias, as T → ∞, than maximum
likelihood. One approach to adjusting the profile score is to subtract its bias, evaluated at maximum-
likelihood estimates of the fixed effects. When this bias does not depend on the incidental parameters,
the adjustment is exact. Otherwise, it does not eliminate the bias entirely but reduces its order (in T ),
and it can be iterated, reducing the bias order further. We examine a range of nonlinear models with
additive fixed effects. In many of these, an exact bias adjustment of the profile score is possible. In
others, suitably adjusted profile scores exhibit much less bias than without the adjustment, even for
very small T .

JEL classification: C13, C15, C23, C25
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Introduction

Consider the problem of inferring the value of a finite-dimensional parameter θ in a parametric

model from a panel data set consisting of T observations on N units. In microeconometric

models, unit-specific parameters, called fixed effects or incidental parameters, are often included

to account for unobserved heterogeneity. For example, in the agricultural production-function

application of Mundlak (1961), firm-specific intercepts serve to control for the impact of manage-

rial ability and soil quality on firm output. Alternatively, Hausman, Hall, and Griliches (1984)

and Hospido (2010) introduced fixed effects to allow for heterogeneity in dispersion parameters

in applications to the patents–R&D relationship and the volatility of wages, respectively. Un-

fortunately, including fixed effects generally renders the maximum-likelihood estimator (MLE)
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of θ inconsistent if T remains fixed while N → ∞ (Neyman and Scott, 1948). The problem is

known as the incidental-parameter problem.

The profile score function replaces the fixed effects with their maximum-likelihood estimates

for a given θ and, therefore, is a feasible version of the score function that would be used if the

fixed effects were known. This replacement generally induces a bias of order O(T−1). The MLE,

θ̂, sets the profile score to zero and therefore inherits this bias. There are important situations

where alternative estimating equations are available that are free of fixed effects (see, e.g.,

Arellano and Honoré, 2001, for an overview). However, there is no general method for deriving

such estimating equations and they may not exist simply because θ may not be fixed-T point-

identified (see Chamberlain, 2010). In this paper we seek to adjust the profile score, following

McCullagh and Tibshirani (1990). The key element is a calculation of the bias of the profile score,

either analytically or via simulation, which is then evaluated at maximum-likelihood estimates of

the fixed effects. If the bias is free of fixed effects, this leads to an unbiased estimating equation.

Otherwise, it results in an estimating equation whose bias is O(T−2). We show that it is possible

to iterate the adjustment, yielding adjusted profile scores with bias of successively smaller order,

O(T−2), O(T−3), ... Depending on the situation at hand, the adjustments give rise to estimators

that are either fixed-T consistent or have a smaller order of bias than the MLE. Our approach

fits into the literature on bias-corrected fixed-effect estimation recently surveyed by Arellano

and Hahn (2007) and inference from integrated likelihoods (Lancaster, 2002, and Arellano and

Bonhomme, 2009), and the parallel developments in the statistics literature (e.g., Li, Lindsay,

and Waterman, 2003, and Sartori, 2003).

Focusing on the profile score rather than on θ̂ directly has some advantages. First, it offers

a direct way of verifying whether the presence of incidental parameters effectively leads to the

inconsistency of the MLE. For example, in the fixed-effect Poisson and exponential-regression

models a short calculation suffices to show that the MLE is consistent. On the other hand,

verifying whether θ and the incidental parameters are likelihood orthogonal, which is sufficient

for the consistency of the MLE, may be a cumbersome task, especially because that may be

true in one parametrization but not in another (see Lancaster, 2000). For the Poisson model,

for instance, the equivalence between maximum likelihood and the conditional-likelihood esti-

mator introduced in Hausman, Hall, and Griliches (1984) was not known until Lancaster (2002)

and Blundell, Griffith, and Windmeijer (2002). Second, there are several models of practical

interest where the bias of the profile score, although non-zero, is free of incidental parameters

while the magnitude of plimN→∞θ̂ depends on the distribution of incidental parameters and

covariates. One important model where this is the case is the linear dynamic fixed-effect model

(Nickell, 1981; Dhaene and Jochmans, 2010b). Weibull and gamma duration models are other

examples; details are provided below. In such cases, unbiased estimating equations and fixed-T

consistent estimators can be formed by centering of the profile score, a point already made by
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Neyman and Scott (1948). Consequently, adjusting the profile score can be much simpler than

approaches targeted at adjusting the MLE directly; see the approaches described in MacKinnon

and Smith (1998), for example. In addition, there is an asymptotic justification, complementing

the discussion and motivations offered in McCullagh and Tibshirani (1990), for using an ad-

justed profile score also in situations where the expected profile score does depend on the fixed

effects. Fourth, the adjustments, including the iterated adjustment, are easy to carry out. They

do not require explicit knowledge of the dependence of the bias on the fixed effects. This is in

contrast to the bias correction methods in Arellano and Hahn (2006), Carro (2007), and Bester

and Hansen (2009). Fifth, the iterative procedure leads to higher-order bias adjustments, as

does the jackknife (Dhaene and Jochmans, 2010a).

Section 2 presents the profile score adjustment and how it can be iterated. We discuss exam-

ples in Section 3, mostly to nonlinear models. Section 3 illustrates the gains of the adjustments

by simulations in the context of static and dynamic binary-choice models.

1 Adjusting the profile score

We are given a panel data set (yit, xit) where i = 1, . . . , N and t = 1, . . . , T . Assume independence

across i. The conditional density of yit given xit, f(yit|xit; θ, ηi), is known up to the common

parameter θ and the unit-specific parameters ηi. Both θ and ηi may be vectors. We are interested

in estimating θ. Since Neyman and Scott (1948), it is known that the maximum-likelihood

estimate (MLE) of θ need not be consistent as N → ∞ with T fixed. One may view the

inconsistency as resulting from a biased profile score function. The (normalized) profile log-

likelihood and score functions, and their ith contributions, are

l =
1

N

∑
i

li, li = li(θ) =
1

T

∑
t

log f(yit|xit; θ, η̂i),

s =
1

N

∑
i

si, si = si(θ) =
1

T

∑
t

∇θ log f(yit|xit; θ, η̂i),

where η̂i is the MLE of ηi for a given θ,

η̂i = η̂i (θ) = arg max
ηi

1

T

∑
t

log f(yit|xit; θ, ηi).

Assuming that f is sufficiently regular, the MLE solves s = 0 for θ. Let E = Eθ,ηi denote the

expectation operator at true parameter values, with exogenous variates (and, possibly, initial

observations) held fixed at observed values. As is well known, the expected score vanishes at

the true value, i.e. E 1
T

∑
t∇θ log f(yit|xit; θ, ηi) = 0. However, the profile score replaces ηi with

η̂i. Except in special cases, this makes Esi and its aggregate Es nonzero, causing s = 0 to

be a biased estimating equation and the MLE to be inconsistent. Under regularity conditions,
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Esi = O(T−1) = Es as T → ∞ and the O(T−1) bias of the profile score carries over to the

MLE, that is, the asymptotic bias of the MLE, as N →∞ and T →∞ sequentially, is O(T−1)

and can be large.

Our approach centers on a calculation of Esi, either analytically or numerically, and on the

estimation of Esi for given θ. Three mutually exclusive cases arise:

(i) Esi = 0;

(ii) Esi 6= 0 but Esi is free of ηi;

(iii) Esi 6= 0 and Esi depends on ηi.

In case (i), s is unbiased and the MLE is consistent. The interesting point here is that a simple

calculation, that of Esi, will reveal so.

In case (ii), the MLE is inconsistent but the adjusted profile score s − Es is unbiased and

free of fixed effects. This paves the way for fixed-T consistent estimation. As it turns out, this is

the case, surprisingly, in a number of static nonlinear models and in the linear dynamic model.

In case (iii), McCullagh and Tibshirani (1990) proposed using the adjusted profile score

s − Ês instead of s, where Ê = Êθ,η̂i is E but with η̂i replacing ηi.
1 The proposal was made

in a more general context than the one considered here. McCullagh and Tibshirani discussed

many examples, including several with incidental parameters, where the adjusted profile score

improves on the profile score. In search of a general justification, they wrote (p. 342) “the

centring of the profile log-likelihood function should improve the consistency of the maximizer

of the likelihood” and yet, a few lines down, “We have no strong argument for this claim”. We

provide a large T asymptotic justification.

Let T → ∞. Consider Esi as a function of ηi. Under regularity conditions, replacing ηi

with η̂i introduces a relative bias of O(T−1), i.e. EÊsi = (1 +O(T−1))Esi and, on averaging

over i, EÊs = (1 +O(T−1))Es. Therefore, moving from the profile score s to McCullagh and

Tibshirani’s adjusted profile score s− Ês reduces the bias from Es = O(T−1) to

E(s− Ês) = O(T−2).

That is, the adjustment removes the first-order bias from s, leaving only bias of order O(T−2).

The adjustment can be iterated. The bias E(s − Ês) of the adjusted profile score can be

appoximated by Ê(s− Ês), again with relative bias O(T−1), and subtracted from s− Ês to give

the second-order adjusted profile score

s− 2Ês+ ÊÊs

1In addition to the centering step, McCullagh and Tibshirani also considered a rescaling of the adjusted
profile score at to restore the information identity. We omit this step as our focus is on getting the estimating
equation correctly centered. Similarly, an alternative adjustment would be to scale Esi by the fisher information
matrix, as in Firth (1993).
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with bias

E(s− 2Ês+ ÊÊs) = O(T−3).

Note that, unlike EEs = Es (since Es is a constant), ÊÊs 6= Ês because ÊÊs is EÊs (a

constant) but with E evaluated at η̂i instead of ηi for all i. The structure of the iterated

adjustments is now apparent. Letting Ê(k) denote the kfold iteration of Ê, the jth order adjusted

profile score is
j∑

k=0

(
j

k

)
(−1)kÊ(k)s,

with bias O(T−j−1), given regularity conditions.

In general, the profile score adjustments, first and higher-order alike, have only an asymptotic

justification. Note, however, that in case (ii) they all coincide with s−Es and the adjustment is

“exact”. Whether there are interesting cases where some jth order adjustment is exact only as

of some j ≥ 2 is not known to us. In nonlinear models, the adjustments are generally not exact

(though with important exceptions, as we shall see) but only approximations in the sense that

they yield approximately unbiased estimating equations, to varying degrees of approximation.

Nevertheless, it is hoped that, even when T is small, they yield improvements over the profile

score. Whether that is true has to be examined on a case by case base. At the time of writing,

our experience with the high-order adjustments is still limited, although we report on some

simulations in Section 3.

Implementing the adjustments and solving the adjusted score equations requires evaluating

Esi for given θ and ηi. Often Esi is not available in closed form, but it can be approximated

by the average of R simulations of si. For large enough R, this average approximates Esi

to any desired accuracy, but for the sake of adjusting bias any R suffices, even R = 1. We

do not recommend setting R = 1, however, except perhaps in models where evaluating si is

computationally costly. A small R will only inflate the variance of the estimator somewhat.

For the higher-order adjustments, which require evaluating terms like ÊÊsi, we suggest using

small values of R in all inner expectations, and possibly a larger R in the outermost expectation.

Finally, when approximating expectations by simulations, we suggest to keep the basic stream

of random numbers used to generate R data sets, which is essentially of dimension R×N ×T ×
dim yit, constant for all values of θ and fixed effects, and for all levels of depth in Ê(k).

The adjustments discussed above seek to alter the estimating equation s = 0 to make it un-

biased or approximately unbiased. Extensions are possible, perhaps even outside the parametric

setting. One variation, in case (iii), is to slightly modify s = 0 so as make it, in essence, a case

(ii) problem, where an exact adjustment is feasible. This possibility arises in the two-period logit

model, as we discuss in Section 2. More generally, when q = 0 is some other estimating equation

that is free of fixed effects and has bias Eq = O(T−1), the type of adjustments discussed is
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possible provided that the expectation E can be evaluated. Another extension is to quantities

other than θ, for example

µ =
1

N

∑
i

µi, µi = µi(θ, ηi),

where µi(·, ·) is a known function, such as a marginal effect. Replacing ηi with η̂i gives

m =
1

N

∑
i

mi, mi = mi(θ) = µi(θ, η̂i),

with bias O(T−1), given regularity conditions. The bias ofmi is Emi−µi and can be appoximated

as Êmi −mi to give 2m− Êm as a first-order adjustment of m, and
∑j

k=0

(
j+1
k+1

)
(−1)kÊ(k)m as

a jth order adjustment.

2 Examples

Our examples are models in which the distribution of a scalar yit depends on a vector xit through

ηi + β′xit or ηi exp(β′xit). The common parameter consists of β and possibly an additional scale

or shape parameter. Details about calculations of Esi are given in the Appendix.

2.1 Models where Esi = 0

There are several models with fixed effects but where there is no incidental-parameter problem.

Example 1 (Poisson counts) Consider Poisson counts yit with mean λit = ηi exp(β′xit)

and independence across t given xi1, ..., xiT . Here f(yit|xit; β, ηi) = exp(−λit)λyitit /yit! and θ = β.

Lancaster (2002) and Blundell, Griffith, and Windmeijer (2002) have shown that β and the ηi are

likelihood orthogonal after a parameter transformation. Alternatively, a calculation shows that

Esi = 0. For given β, the MLE of ηi is η̂i =
∑

t yit /
∑

t exp(β′xit) . Letting λ̂it = η̂i exp(β′xit),

the profile log-likelihood and score for unit i are

li = T−1
∑
t

(−λ̂it + yit log λ̂it) + c

= T−1
∑
t

yit

(
− log

∑
t

exp (β′xit) + β′xit

)
+ c,

si = T−1
∑
t

yit

(
−
∑

t λitxit∑
t λit

+ xit

)
,

where (here and later) c is an inessential constant. From Eyit = λit, it follows that Esi = 0. One

may view Esi = 0 as one implication of the conditional moment conditions given in Chamberlain

(1993). The solution to s = 0, that is, the MLE, achieves the semiparametric efficiency bound

(Hahn, 1997).
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Example 2 (Exponential durations) Let yit be exponentially distributed with mean

λ−1it , where λit = ηi exp (β′xit), and independent across t given xi1, ..., xiT . The density is

f(yit|xit; β, ηi) = λit exp(−λityit) and θ = β. Here, η̂i = [T−1
∑

t yit exp(β′xit)]
−1. Again let-

ting λ̂it = η̂i exp(β′xit), we have

li = T−1
∑
t

(log λ̂it − λ̂ityit)

= T−1
∑
t

(
− log

∑
t

(yit exp (β′xit)) + β′xit

)
+ c,

si = T−1
∑
t

(
−
∑

t λityitxit∑
t λityit

+ xit

)
.

Conditionally on the xit, the λityit are i.i.d. unit-exponential variates. Therefore

E

∑
t λityitxit∑
t λityit

=
∑
t

(
E

λityit∑
t λityit

)
xit =

∑
t

(
T−1E

∑
t λityit∑
t λityit

)
xit

= T−1
∑
t

xit

and it follows that Esi = 0. The MLE in the exponential regression model with fixed effects

and exogenous regressors is fixed-T consistent. Greene’s (2001) simulations support this, but a

proof seems to be new.

2.2 Models where Esi 6= 0 but Esi is free of ηi

Example 3 (Many normal means) This is Neyman and Scott’s (1948) classic example of

the incidental-parameter problem. The problem is to infer θ = σ2 from independent observations

yit ∼ N (ηi, σ
2). For any given σ2, the MLE of ηi is yi = T−1

∑
t yit, so

li = −(2T )−1
∑
t

(log σ2 + σ−2(yit − yi)2),

si = −(2T )−1
∑
t

(σ−2 − σ−4(yit − yi)2),

and Esi = −(2Tσ2)−1. The MLE of σ2 is (NT )−1
∑

i,t(yit − yi)2 and converges to σ2(1− T−1).
But since Esi is free of ηi, a feasible unbiased estimating equation is s − Es = 0. Its root,

(NT − T )−1
∑

i,t(yit − yi)
2, coincides with the outcome of many other approaches; see, e.g.,

McCullagh and Tibshirani (1990). A regression version of the model is yit|xi1, ..., xiT ∼ N (ηi +

βxit, σ
2), where θ now is β and σ2. Here, the bias of the profile score for β is zero and for σ2

it is −(2Tσ2)−1, as before. Again, solving s − Es = 0 yields the standard solution: (i) the

MLE of β (which is least-squares with unit-specific de-meaned data) is left unchanged; (ii) a
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one degree-of-freedom correction is applied to the MLE of σ2. Even though the MLE of σ2 is

inconsistent and σ2 and β are not profile likelihood orthogonal, the inconsistency does not carry

over to the MLE of β. This is because the maximizer of l(β, σ2) with respect to β does not

depend on σ2 (though not vice versa).

Example 4 (Dynamic linear regression) Since Nickell (1981), dynamic linear models have

become another classic instance of the incidental-parameter problem. Consider the model yit =

ηi+βyit−1+εit with εit ∼ N (0, σ2) and unrestricted initial observations yi0. Let yi = (yi1, ..., yiT )′,

yi− = (yi0, ..., yiT−1)
′, and define the T × T matrix M = I − T−1ιι′ where ι is a vector of ones.

For given β and σ2, the MLE of ηi is η̂i = T−1ι′(yi − βyi−). The profile log-likelihood and the

elements of the profile score for unit i are

li = −1

2

(
log σ2 + T−1σ−2(yi − βyi−)′M(yi − βyi−)

)
+ c,

siβ = −T−1σ−2(yi − βyi−)′Myi−,

siσ2 = −1

2

(
σ−2 − T−1σ−4(yi − βyi−)′M(yi − βyi−)

)
.

Using backward substitution it is easy to show that

Esiβ = −T−1
T∑
t=1

(T − t)βt−1, Esiσ2 = −(2Tσ2)−1;

see, e.g., Alvarez and Arellano (2004). Cox and Reid’s (1987) orthogonalization approach leads

to essentially the same result; see Lancaster (2002). While the adjusted score equation s−Es = 0

is unbiased it typically has more than one root, so the appropriate root has to be selected; see

Dhaene and Jochmans (2010b). When the model is extended with exogenous covariates and p

lags of yit, Esi is still available in closed form and remains free of ηi (Dhaene and Jochmans,

2010b). Finally, note that si depends only on the first two moments of the data, so the calculation

of Esi is robust to non-normality.

Example 5 (Weibull durations) In this model, yκit is exponentially distributed with mean

λ−1it , where λit = ηi exp (β′xit), and independent across t given xi1, ..., xiT . The density of yit is

f(yit|xit; β, κ, ηi) = κyκ−1it λit exp (−λityκit) and θ = (β′, κ)′. For given β and κ, the MLE of ηi is

η̂i = [T−1
∑

t y
κ
it exp (β′xit)]

−1. With λ̂it = η̂i exp(β′xit), the profile log-likelihood and score for
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unit i are

li = T−1
∑
t

(
log κ+ (κ− 1) log yit + log λ̂it − λ̂ityit

)
= T−1

∑
t

(
log κ+ (κ− 1) log yit − log

∑
t

(yκit exp (β′xit)) + β′xit

)
+ c,

siβ = T−1
∑
t

(
−
∑

t y
κ
itλitxit∑
t y

κ
itλit

+ xit

)
,

siκ = T−1
∑
t

(
κ−1 + log yit −

∑
t (log yit) y

κ
itλit∑

t y
κ
itλit

)
.

Given the xit, the λity
κ
it are i.i.d., and so Esiβ = 0 by the same argument as in the exponential

regression model. A calculation gives Esiκ = (κT )−1, free of ηi, so the adjusted score s −
Es is feasible and unbiased. Although the profile score for β is unbiased, the MLE of β is

inconsistent because the profile score for κ is biased and β and κ are not information orthogonal.

Lancaster (2000) showed that an information-orthogonal transformation of ηi exists. Integrating

the transformed effects from the likelihood using a uniform prior leads to Chamberlain’s (1985)

marginal-likelihood estimator.

Example 6 (Gamma durations) Here, yit is gamma distributed with shape paramater κ

and scale λ−1it , where λit = ηi exp (β′xit), and independent across t given xi1, ..., xiT . The density

function is f(yit|xit; β, κ, ηi) = yκ−1it λκit exp (−λityit) /Γ(κ) and θ consists of β and κ. The MLE

of ηi for given β and κ is η̂i = κ[T−1
∑

t yit exp (β′xit)]
−1. Letting λ̂it = η̂i exp(β′xit) as before,

the profile log-likelihood for unit i is

li = T−1
∑
t

(
− log Γ(κ) + (κ− 1) log yit + κ log λ̂it − yitλ̂it

)
or, equivalently,

T−1
∑
t

(
− log Γ(κ) + (κ− 1) log yit + κ log (κT )− κ− κ log

∑
t

(yit exp (β′xit)) + κβ′xit

)
,

with partial derivatives

siβ = T−1
∑
t

κ

(
−
∑

t yitλitxit∑
t yitλit

+ xit

)
,

siκ = T−1
∑
t

(
−ψ(κ) + log (κT ) + log yit − log

∑
t

(yit exp (β′xit)) + β′xit

)
,

where ψ(κ) is the derivative of log Γ(κ). Again, Esiβ = 0, because the yitλit are independently

gamma distributed with scale one and shape κ, given the xit. A calculation shows that Esiκ =
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log (κT )− ψ(κT ), again free of ηi. In this model, as in the linear model, there is an incidental-

parameter problem only for κ. The solutions of s = 0 and s − Es = 0 differ for κ but coincide

for β because, similar to the linear model, the maximizer of l (β, κ) with respect to β does

not depend on κ (though not vice versa). Using a similar argument as in the Weibull model,

Chamberlain (1985) derived a fixed-T consistent estimator.

2.3 Models where Esi 6= 0 and Esi depends on ηi

Example 7 (Two-period negbin2 counts) In this model, yit is a negbin2 count with mean

λit = ηi exp(β′xit), variance λit + γ−1λ2it, and there is independence across t given xi1, ..., xiT .

The probability mass function for yit is

f(yit|xit; β, γ, ηi) =
Γ (γ + yit)

Γ (γ) Γ (yit + 1)

(
λit

λit + γ

)yit ( γ

λit + γ

)γ
,

where γ > 0 is an overdispersion parameter (γ → ∞ yields Poisson counts). Unlike the fixed

effects in the negbin1 model of Hausman, Hall, and Griliches (1984), the fixed effects enter the

negbin2 model in the standard way, as a means to control for omitted time-invariant covariates;

see, e.g., Allison and Waterman (2002) and Winkelmann (2008, p. 227–228). The common

parameter is θ = (β′, γ)′. For T = 2, the simulation results in Allison and Waterman (2002)

suggest that the MLE of β is free of incidental-parameter bias. The analysis below shows that

there is incidental-parameter bias for β when T = 2, but that it is very small and can be ignored

for practical purposes. For γ the incidental-parameter bias is much larger. For general T , the

MLE of ηi for given β and γ satisfies∑
t

yit − η̂i exp (β′xit)

γ + η̂i exp (β′xit)
= 0.

This equation is equivalent to a T th order polynomial equation with a unique positive root. The

uniqueness follows on rewriting the equation as

T−1
∑
t

yit + γ

γ + η̂i exp (β′xit)
= 1.

With λ̂it = η̂i exp(β′xit), the profile log-likelihood and score for unit i are

li = T−1
∑
t

(
log Γ (γ + yit)− log Γ (γ) + γ log γ + yit log λ̂it − (γ + yit) log(γ + λ̂it)

)
,

siβ = T−1
∑
t

γ

(
yit − η̂i exp (β′xit)

γ + η̂i exp (β′xit)

)
xit,

siγ = T−1
∑
t

(ψ (γ + yit)− ψ (γ) + log γ − log(γ + η̂i exp (β′xit))) .
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The expectations of siβ and siγ are

Esiβ =
∞∑

yi1=0

...
∞∑

yiT=0

siβ
∏
t

f(yit|xit; β, γ, ηi),

Esiγ =
∞∑

yi1=0

...
∞∑

yiT=0

siγ
∏
t

f(yit|xit; β, γ, ηi),

but they are difficult to write in a more accessible form. We computed Esiβ and Esiγ for T = 2

and one-dimensional xit. In this case, η̂i is the largest root of a quadratic equation and the

expectations involve only double sums, so they can be evaluated fast and accurately. In general,

Esiβ and Esiγ are non-zero and depend on ηi. While Esiγ is large, Esiβ is very small. We also

computed − (Ehi)
−1Esi, where hi = ∇θs

′
i, as an approximation to the bias of the (β̂, γ̂)′, the

MLE. When Esiβ is small and, as turns out to be the case, Ehiββ is not too large and Ehiβγ is

very small, this approximation to the bias of β̂ is accurate. We computed the approximate bias

of β̂ over a range of values of γ and xi1 < xi2, with ηi and β held fixed at one. For each γ, we

found that the maximum (approximate) bias occurs as xi1 ↑ 0 and xi2 ↓ 0. Table 1 gives this

maximum bias for γ corresponding to moderate to very high levels of overdispersion. Except for

very small γ (very large overdispersion), the maximum bias is small. For other values of (b1, b2),

the bias is typically much smaller than the maximum bias.

Table 1: Maximum approximate bias of β̂

γ .5 1 2 5 10 20

maxbias(β̂) .1108 .0532 .0211 .0046 .0012 .0003

Table 2 shows Es and E(s − Ês) when ηi = β = γ = 1 and xi1 = 0, xi1 = log 2, so that the

means of yi1, yi2 are 1, 2 and the variances 2, 6. For β the bias of the profile score is reduced by

a factor 4, for γ by a factor 5.

Table 2: Bias before and after adjustment

β γ
Es .0021 .133

E(s− Ês) .0005 .025

Example 8 (Two-period logit) Consider a pair yi = (yi1, yi2) of independent variables

yit with mean F (ηi + βxit), where F (z) = (1 + e−z)−1 is the logistic distribution at z and

(xi1, xi2) = (0, 1) (see, e.g., Chamberlain, 1980). Here, θ = β, the log-odds ratio, is the parameter

[11]



of interest. When yi is (0, 0) or (1, 1) the MLE of ηi for any given β is infinite in absolute value

and li = si = 0. For the movers, i.e., those units that have yi equal to (0, 1) or (1, 0), the MLE

is η̂i = −β/2. Therefore, the profile loglikelihood and score for unit i are

li = −di01 log(1 + e−β/2)− di01 log(1 + eβ/2),

si =
1

2

(
di01

1 + eβ/2
− di10

1 + e−β/2

)
,

where di01 is a binary indicator for yi = (0, 1) and similarly for di10. Using

πi01 = Edi01 =
1

(1 + eηi) (1 + e−ηi−β)
,

πi10 = Edi10 =
1

(1 + e−ηi) (1 + eηi+β)
= πi01e

−β,

it follows that

Esi =
1

2

(
πi01

1 + eβ/2
− πi01e

−β

1 + e−β/2

)
=

1

2

(
1− e−β/2

1 + eβ/2

)
πi01.

Hence Esi depends on ηi because πi01 does. Therefore, s−Ês is not unbiased (see also McCullagh

and Tibshirani, 1990). However, a slight modification to s before addressing its bias essentially

leads to case (ii), and to the conditional maximum-likelihood estimator (Andersen, 1970). Write

s as

s =
1

2N

(
N01

1 + eβ/2
− N10

1 + e−β/2

)
,

where N01 =
∑

i di01 and N10 is defined similarly. Now consider

q =
1

2(N01 +N10)

(
N01

1 + eβ/2
− N10

1 + e−β/2

)
instead of s. Clearly, s = 0 and q = 0 have the same root—the MLE of β. If π01 =

limN→∞N
−1∑

i πi01 exists, then π10 = limN→∞N
−1∑

i πi10 = π01e
−β and

plimN→∞q =
1

2(π01 + π10)

(
π01

1 + eβ/2
− π10

1 + e−β/2

)
=

1− e−β/2

2(1 + e−β) (1 + eβ/2)
= q∞ (say),

where q∞ is free of the sequence of ηi’s. Therefore, q − q∞ = 0 is a fixed-T unbiased estimating

equation. Its solution coincides with the conditional maximum-likelihood estimator, which is

known to be efficient (Hahn, 1997). While in this model there is nothing new in using q−q∞ = 0,

the illustration shows that normalizing the score function by the number of movers (or, more

generally, by the number of informative units) can be helpful in models where conditioning is

not possible.
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3 Monte Carlo experiments

The upper panel in Figure 1 plots the profile score and various adjustments to it for the two-

period logit model from Example 8. The plot was generated with N = 1, 000, 000, θ = 1, and

ηi ∼ N (0, 1). The adjusted profile scores, shown up to third order, were obtained by means of

one draw at each level of depth. The plot verifies the well-known results that, for this design,

plimN→∞θ̂ = 2θ. The root of the first-order adjusted profile score is already much closer to

the true parameter value. The higher-order corrections further reduce the inconsistency and the

adjusted profile scores can be observed to converge to the score of the conditional-likelihood

estimator as the order of correction increases. Also plotted is the (first-order) adjusted profile

score using only units for which yi1 + yi2 = 1, that is, units that contribute to the profile

likelihood. Its root is the true parameter value. As higher-order corrections would leave the

location of this curve unchanged, these are not plotted.

The bottom panel in Figure 1 contains the scores for the probit variant of the two-period

model. It may again be observed that a first-order adjustment greatly reduces the inconsistency

of the MLE, and that iterating the corrections further centers the profile score. While, again,

using only movers improves the situation, it does not lead to an adjusted profile score whose

root is at the correct parameter value, although the inconsistency is small.

Figure 2 provides the profile score and the various adjustments for dynamic binary-choice

models. They were obtained in an analogous fashion to before, only now with T = 3, which

is the shortest panel length for which the MLE is finite. The start-up values for the N time

series were drawn from their respective stationary distributions. The plots verify that dynamics

tend to increase the magnitude of the inconsistency of the MLE. The re-centering effect of the

score corrections is similar to before. The analogy of movers in the static model are units that

alternate. More precisly, only units that switch status in each time period contribute to the

profile likelihood. Here, using only such sequences does not lead to consistency of the root of

the adjusted profile score in the logit model.

A small Monte Carlo experiment was performed to evaluate how much bias can be eliminated

in small samples. The models considered are logit and probit variants of the binary-choice model

yit = 1(ηi + xitθ ≥ εit),

with both ηi and xit scalar i.i.d. standard-normal variates. N was set to 100 and θ was fixed

at unity throughout. Tables 3–4 contain the mean and median bias of the MLE (θ̂) and the

root of the first- and second-order corrected profile scores (θ̂1 and θ̂2), along with their standard

deviation (STD) and interquartile range (IQR). The bias of the profile score was computed

through simulation, with 10 runs for the outermost iteration step, and a single run in the inner

iteration. For logit a useful benchmark is the conditional-likelihood estimator (θ̃), and so results

for this estimator are also included. For probit, no fixed-T estimator is available.
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Figure 1: Plots for static two-period binary-choice models
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Score and adjusted score functions for the two-period logit (upper panel) and probit (lower panel)
model with a time trend. N = 1, 000, 000; ηi ∼ N (0, 1). In both panels, s(θ) (solid) is plotted
along with its first- (dashed), second- (dashed; marked +), and third-order (dashed; marked ∗)
adjustments, together with their scaled counterparts (dashed–dotted). For the logit model, the
score of the conditional likelihood (dotted) is also plotted.
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Figure 2: Plots for dynamic three-period binary-choice models

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

!

Logit

-1.5 -1 -0.5 0 0.5 1 1.5 2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

!

Probit
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panel) model. In both panels, s(θ) (solid) is plotted along with its first- (dashed), second- (dashed;
marked +), and third-order (dashed; marked ∗) adjustments, together with their scaled counterparts
(dashed–dotted).

[15]



Table 3: Results for the static logit model.

MEAN BIAS MEDIAN BIAS

T θ̂ θ̂1 θ̂2 θ̃ θ̂ θ̂1 θ̂2 θ̃
2 1.2080 .4275 .2294 .1040 1.0473 .3282 .1457 .0237
4 .4349 .0813 .0266 .0177 .4091 .0667 .0172 .0013
6 .2467 .0333 .0088 .0061 .2381 .0279 .0006 .0010

12 .1080 .0086 .0041 .0033 .1030 .0052 .0025 .0004
STD IQR

T θ̂ θ̂1 θ̂2 θ̃ θ̂ θ̂1 θ̂2 θ̃
2 .8198 .5231 .4879 .4099 .9205 .5723 .5393 .4603
4 .2687 .1870 .2005 .1754 .3532 .2435 .2638 .2353
6 .1740 .1380 .1556 .1331 .2370 .1884 .2144 .1821

12 .0964 .0869 .1019 .0853 .1324 .1226 .1406 .1189

Design: N = 100, θ = 1, ηi ∼ N (0, 1), xit ∼ N (0, 1), 250 replications.

Table 4: Results for the static probit model.

MEAN BIAS MEDIAN BIAS

T θ̂ θ̂1 θ̂2 θ̂ θ̂1 θ̂2
2 1.0738 .3787 .1738 .9837 .3225 .1090
4 .5639 .1097 .0510 .5459 .0864 .0271
6 .3402 .0509 .0135 .3231 .04117 .0094

12 .1471 .0145 .0005 .1496 .0189 .0028
STD IQR

T θ̂ θ̂1 θ̂2 θ̂ θ̂1 θ̂2
2 .5750 .3942 .3960 .6792 .4865 .4442
4 .2583 .1592 .1729 .3220 .2043 .2382
6 .1857 .1303 .1395 .2386 .1716 .1807

12 .0888 .0764 .0894 .1186 .0928 .1126

Design: N = 100, θ = 1, ηi ∼ N (0, 1), xit ∼ N (0, 1), 250 replications.
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The tables show that the MLE suffers from a substantial upward bias. The results also suggest

that our large-sample arguments to bias correction tend to give a reasonable approximation.

Moreover, solving adjusted profile scores yields estimates with much smaller bias than the MLE.

Iterating the correction further reduces the bias. It is apparent from the results that the bias

is virtually fully eliminated when T > 2. Interestingly, the bias-corrected estimators are also

less variable than is the MLE. It is known from Neyman and Scott (1948) that, with incidental

parameters, the MLE need not be asymptotically efficient, even if it is fixed-T consistent. Notice,

finally, that bias-corrected estimation of the logit model does not perform better than conditional-

likelihood estimation.

Appendix

Weibull durations Write log yit as

log yit = κ−1
(
log(ykitλit)− log λit

)
= κ−1 (log et − log λit) ,

where the et are i.i.d. unit exponentials given the xit. Then we have

siκ = T−1
∑
t

(
κ−1 + κ−1 (log et − log λit)− κ−1

∑
t (log et − log λit) et∑

t et

)
,

with expectation

Esiκ = κ−1
(

1 + E log et − TE
et log et∑

t et

)
.

The sum in the denominator is et+A where A is independent of et and has the Erlang distribution

with density AT−2 exp(−A)/ (T − 2)!. Therefore,

E
et log et∑

t et
=

∫ ∞
0

∫ ∞
0

e log e

e+ A
exp(−e)A

T−2 exp(−A)

(T − 2)!
de dA

=
T − 1− Tγ

T 2

where γ is Euler’s gamma. We used Mathematica to calculate the integral. Setting T = 1 gives

E log et = −γ. On collecting results, Esiκ = (κT )−1.

Gamma durations Here, write log yit as

log yit = log (yitλit)− log ηi − β′xit = log gt − log ηi − β′xit

where, given the xit, the gt are i.i.d. gamma variates with shape κ and scale one. Then, write

siκ as

siκ = T−1
∑
t

(
−ψ(κ) + log (κT ) + log gt − log

∑
t

gt

)
.

Using E log gt = ψ(κ) and the property that
∑

t gt is gamma distributed with shape κT and

scale one, it follows that Esiκ = log (κT )− ψ(κT ).
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