FIRST-DIFFERENCING IN PANEL DATA MODELS WITH INCIDENTAL FUNCTIONS

KOEN JOCHMANS* CORE AND BROWN UNIVERSITY

This version: October, 20 2010

ABSTRACT

I discuss the fixed-effect estimation of panel data models with time-varying excess heterogeneity across cross-sectional units. These latent components are not given a parametric form. A modification to traditional first-differencing is motivated which, asymptotically, removes the permanent unobserved heterogeneity from the differenced model. Conventional estimation techniques can then be readily applied. Distribution theory for a kernel-weighted GMM estimator under large-n and fixed-T asymptotics is developed. The estimator is put to work in a series of numerical experiments to static and dynamic models.

JEL CLASSIFICATION: C13, C14, C33

KEYWORDS: dynamic panel data, GMM, incidental functions, local first-differencing, time-varying fixed effects, nonparametric heterogeneity.

^{*}Address: Center for Operations Research and Econometrics, U.C. Louvain, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve, Belgium. Tel. +32 10 474 329; E-mail: koen.jochmans@uclouvain.be. Or: Department of Economics, Brown University, Box B, Providence, RI 02912, U.S.A. Tel. +1 401 863 2970; E-mail: koen_jochmans@brown.edu. This note was inspired by the *Journal of Applied Econometrics* annual lecture of Manuel Arellano at the 16th International Conference on Panel Data in Amsterdam [July 2010], entitled 'Nonparametric random coefficients in panel data models'. The first version of this document dates from July 2010.

I INTRODUCTION

The use of longitudinal data in microeconometric studies is commonly motivated by the potential to capture excess heterogeneity between units. The first major rationale for this is to obtain parameter estimates that are free from bias induced by unobserved cross-sectional heterogeneity. A second reason for their employment is the desire to decompose the variance of latent components into structural and transitory contributions. The former incentive is typically related to taking a fixed-effect view on the processes that drive the outcome of interest in the sense of leaving the distribution of unobserved unit-specific factors unspecified. The error-component formulation or random-effect approach is commonly associated with stronger restrictions on the distribution of the permanent latent component.

So far, in the spirit of the seminal work of Mundlack (1961, 1978), the most common specification adds unit-specific intercept terms to a model that is otherwise homogeneous in the effect of covariates on outcomes. This captures time-constant and non-interactive unobserved components. Nevertheless, there may be good reason to assume that the heterogeneity among processes is wider spread. Browning, Ejrnæs, and Alvarez (2009) and Arellano and Bonhomme (2010), for example, provide ellaborate discussions on this and report empirical results that support their claims. In light of this, there has been renewed attention toward identifying the distribution of random coefficients in linear panel data models.

In this paper, I complement such a strategy by considering what can be learned about common parameters in, possibly dynamic, panel data models with nonparametrically-specified excess heterogeneity. Here, the fixed-effect paradigm—that is, circumventing the estimation of the model's idiosyncratic components—allows for a very rich pattern of unobserved heterogeneity in a manner that leaves its distribution essentially unrestricted. The heterogeneous effects may enter non-additively and can be time-varying. This leads to a framework in which the conventional incidental parameters are replaced by incidental functions, and traditional first-differencing has to make way for local first-differencing.

The estimator I describe below relates to theory on semi- and nonparametric cross-sectional estimation derived by Gozalo and Linton (2000) and Lewbel (2007), and to kernel-weighted pairwise-differencing estimation as first introduced by Powell (1987). However, observing multiple time-series realizations for the same units allows tackling heterogeneity in a manner that pairwise-differencing cannot. In a panel data context, the reference most closely related to what follows below is Honoré and Kyriazidou (2000),

who proposed a kernel-weighted conditional-likelihood estimator for a dynamic logit model with time-varying covariates. In fact, this connection immediately suggests that the proposed approach to dealing with incidental functions can be generalized to all existing fixed-effect estimators, such as conditional maximum-likelihood and maximum score, for example. This is easy to see, but working out the details for the general case would come at the cost of reduced transparency.

This paper has four more sections. The first of these provides details on the model of interest and the local-differencing strategy, and states the GMM estimator that will be the focus of the analysis. The next section contains large-sample theory. The last section before concluding gives results from a series of Monte Carlo exercises.

II THE MODEL, LOCAL FIRST DIFFERENCING, AND A GMM ESTIMATOR

Suppose we are in possession of n independent sequences of T observations on the variables (y, x, z, v). Denote the tth observation for unit i = 1, ..., n by $(y_{it}, x_{it}, z_{it}, v_{it})$ and let $\ell(a)$ be the dimension of the vector a. Assume that the observations on the scalar random variable y were generated through a model of the form

$$y_{it} = x'_{it}\theta_0 + \xi_{it}, \qquad \xi_{it} = \vartheta_i(v_{it}) + \varepsilon_{it}.$$
 (2.1)

Here, ε_{it} is a zero mean random disturbance, θ_0 is the true value of the parameter vector of interest, and the unit-specific functions $\vartheta_i : \mathcal{R}^{\ell(v)} \to \mathcal{R}$ capture the, potentially heterogeneous, impact of the covariates v on y. These functions are assumed to be smooth in their arguments, but are otherwise unmodelled and allowed to be random across i. Remaining loyal to the fixed-effect modelling approach, they are draws from an unknown probability distribution that may depend on the realization of the covariates and, possibly, initial conditions, but not on ε . Feedback from y_t to future x_t is allowed for, accommodating dynamic models with predetermined regressors. More generally, x is allowed to be endogenous in the cross-sectional sense of being contemporaneously correlated with ε . When strict exogeneity is lacking, z serves as instrumental variables. No restriction is put on the statistical relationship between v and (x, ε) over time.

The fact that $\vartheta_i(v)$ may be random after conditioning on a realization of its argument distinguishes (2.1) from a panel data version of a nonparametric functional-coefficient model as considered by Hastie and Tibshirani (1993). It is also different from the random-coefficient model of Chamberlain (1992) and Arellano and Bonhomme (2010), where $\vartheta_i(v)$ is a linear combination of exogenous v and unit-specific coefficients. Here, the ϑ_i are unspecified incidental functions of covariates, which may be predetermined or

endogenous. Thus, (2.1) generalizes the standard linear fixed-effect model by allowing for a much richer pattern of unobserved unit-specific factors; notice that this benchmark model is obtained on assuming $\vartheta_i(v)$ to be constant in v.

To construct an estimator of θ_0 , start by stacking observations over time to obtain $y_i \equiv (y_{i1}, \ldots, y_{iT})'$, $X_i \equiv (x_{i1}, \ldots, x_{iT})'$, $V_i \equiv (v_{i1}, \ldots, v_{iT})'$, $\varepsilon_i \equiv (\varepsilon_{i1}, \ldots, \varepsilon_{iT})'$, and $\xi_i \equiv (\xi_{i1}, \ldots, \xi_{iT})'$; let $\vartheta_i(V_i) \equiv (\vartheta_i(v_{i1}), \ldots, \vartheta_i(v_{iT}))'$. Write D for the $(T-1) \times T$ matrix that performs first-differencing on the above arrays. For example, $Dy_i = (\Delta y_{i2}, \ldots, \Delta y_{iT})'$, where $\Delta \equiv 1 - L$ and L denotes the lag operator. Then,

$$y_i = X_i \theta_0 + \xi_i, \qquad \xi_i = \vartheta_i(V_i) + \varepsilon_i,$$
 (2.2)

and $Dy_i = DX_i\theta_0 + D\xi_i$ for $D\xi_i = D\vartheta_i(V_i) + D\varepsilon_i$. Recall that, when $\vartheta_i(v)$ is constant, $D\vartheta_i(V_i) = 0$, and an efficient GMM estimator of θ_0 that is based on data in first-differences minimizes the quadratic form

$$\left[\frac{1}{n}\sum_{i=1}^{n} Z_{i}' D(y_{i} - X_{i}\theta)\right]' G\left[\frac{1}{n}\sum_{i=1}^{n} Z_{i}' D(y_{i} - X_{i}\theta)\right]$$
(2.3)

for a well-chosen weight matrix G; see Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991). Throughout, Z_i is an instrument matrix of conformable dimension that contains z_{i2}, \ldots, z_{iT} . The latter can be lagged levels of predetermined regressors, all time-series realizations of exogenous covariates, and, possibly, external instrumental variables. Of course, simple differencing does not remove $\vartheta_i(V_i)$ from (2.2) more generally, and $\mathscr{E}[Z'D(y-X\theta_0)] \neq 0$ unless z_t and $\Delta\vartheta(v_t)$ are uncorrelated. However, by smoothness of ϑ_i , $\Delta y_{it} = \Delta x'_{it}\theta_0 + \Delta\vartheta_i(v_{it}) + \Delta\varepsilon_{it} \rightarrow \Delta x'_{it}\theta_0 + \Delta\varepsilon_{it}$ as $\Delta v_{it} \rightarrow 0$. Let $\omega_v(v) \equiv \delta(v-v)$ for $\delta : \mathcal{R}^{\ell(v)} \rightarrow \mathcal{R}$ a multivariate version of Dirac's delta. Then, the conditional moment condition $\mathscr{E}[z_t \ \omega_0(\Delta v_t)(\Delta y_t - \Delta x'_t\theta_0)] = 0$, which is free of incidental functions, holds for $t = 2, \ldots, T$. This suggest constructing an estimator based on an empirical counterpart of these conditional moment conditions. A fruitful way to proceed is to replace $\omega_0(\Delta v_t)$ by a smoother such as a kernel weight, and to make the appropriate changes to (2.3).

 $^{^{1}}$ As interest here lies in micropanels, throughout, the maintained asymptotic scheme will be that of large n and fixed T. Accordingly, expectations are taken with respect to the cross-sectional distribution of the data.

²Dirac's delta is defined as follows: if $a \neq 0$, then $\delta(a) = 0$; if a = 0, then $\delta(a) = \infty$. As a measure it has the property that $\int g(a) \, \delta(a) \, \mathrm{d}a = g(0)$ for a continuous function g. I prefer its use here over the usual notation for conditional expectations because explicitly conditioning on all time-series realizations of covariates and instruments on top of period-specific first differences would impose a heavy notational burden.

To do so, partition the vector v as $(v^{(c)}, v^{(d)})$, where $v^{(c)}$ and $v^{(d)}$ refer to the continuously-distributed components and the discrete components of v, respectively. Let $\ell \equiv \ell(v^{(c)})$, let $k : \mathcal{R}^{\ell} \to \mathcal{R}$ be a kernel with associated bandwidth σ_n , and write 1(a) for the indicator function for the event a. A kernel weight takes the form

$$w_{it} \equiv \frac{1}{\sigma_n^{\ell}} \mathbf{k} \left(\frac{\Delta v_{it}^{(c)}}{\sigma_n} \right) 1(\Delta v_{it}^{(d)} = 0).$$

Form the diagonal matrices $W_i \equiv \operatorname{diag}(w_{i2}, \dots, w_{iT})$ and $\Omega_{\mathbf{v}} \equiv \operatorname{diag}(\omega_{\mathbf{v}}(v_2), \dots, \omega_{\mathbf{v}}(v_T))$. A local GMM estimator based on the moment conditions

$$\mathscr{E}\left[Z'\Omega_0 D(y - X\theta_0)\right] = \mathscr{E}\left[Z'\Omega_0 D\varepsilon\right] = 0 \tag{2.4}$$

is obtained by introducing W_i in (2.3). Because the weights do not distort the linearity of this objective function, the local estimator is available in closed form. Moreover, it is given by

$$\theta_n \equiv \left[S_{ZX}' G S_{ZX} \right]^{-1} \left[S_{ZX}' G S_{Zy} \right] \tag{2.5}$$

for the matrices

$$S_{ZX} \equiv \frac{1}{n} \sum_{i=1}^{n} Z_i' W_i DX_i$$
 and $S_{Zy} \equiv \frac{1}{n} \sum_{i=1}^{n} Z_i' W_i Dy_i$.

Thus, computing θ_n from the data boils down to first assigning a weight to each first-differenced observation and then proceeding as one would do with the conventional GMM estimator of choice. Under the regularity conditions provided below, this approach is asymptotically equivalent to using only first-differenced observations for which Δv_{it} lies in a shrinking neighborhood of zero. Observe that (2.5) reduces to a weighted least-squares estimator on setting $Z_i = DX_i$.

One attractive consequence of working with data in first differences is that it is straightforward to deal with unbalanced panel data. Nevertheless, estimation based on weighted versions of orthogonal deviations (Arellano and Bover, 1995) or deviations from within-group means is also possible. To illustrate, let

$$\dot{w}_{it}^{s} \equiv \frac{1}{\sigma_{n}^{\ell}} k \left(\frac{v_{it}^{(c)} - v_{is}^{(c)}}{\sigma_{n}} \right) 1(v_{it}^{(d)} = v_{is}^{(d)}),$$

choose k to be symmetric, and collect the \dot{w}_{it}^s in the symmetric $T \times T$ matrix \dot{W}_i , the (t,s)th element of this matrix being \dot{w}_{it}^s . A local GMM estimator that is based on forward orthogonal deviations follows on replacing S_{XZ} and S_{Xy} above by the matrices

 $n^{-1}\sum_{i=1}^{n}Z'_{i}(\mathrm{DD'})^{-1/2}\mathrm{D}\dot{W}_{i}X_{i}$ and $n^{-1}\sum_{i=1}^{n}Z'_{i}(\mathrm{DD'})^{-1/2}\mathrm{D}\dot{W}_{i}y_{i}$, respectively. A weighted within-group estimator, on the other hand, would take the form $\arg\min_{\theta}n^{-1}\sum_{i=1}^{n}(y_{i}-X_{i}\theta)'\dot{W}_{i}\mathrm{D'}(\mathrm{DD'})^{-1}\mathrm{D}\dot{W}_{i}(y_{i}-X_{i}\theta)$. The matrix $\mathrm{D'}(\mathrm{DD'})^{-1}\mathrm{D}$ may be recalled to be the traditional within-group operator.³ Distribution theory for both these estimators can be derived in an analogous fashion as for θ_{n} . However, simulation results suggest that neither outperforms its first-differenced counterpart in small samples. The reason for this is the additional noise induced by taking linear combinations of kernel-weighted quantities.

III LARGE-SAMPLE BEHAVIOR OF THE GMM ESTIMATOR

Let us now consider the behavior of θ_n as n grows large. For vectors a and b for which $\ell(a) = \ell(b)$, let ||a|| denote the Euclidean norm, let $|a| \equiv \sum_{j=1}^{\ell(a)} a^{(j)}$, and let $b^a \equiv \sum_{j=1}^{\ell(a)} (b^{(j)})^{a^{(j)}}$ throughout. The notation $||\cdot||$ will also be used to indicate the matrix norm.

Start by imposing the following conditions.

Assumption 1 (Regularities). The data array $\{y_i, x_i, z_i, v_i\}_{i=1}^n$ is a random sample. For t = 2, ..., T, $\mathscr{E}[\omega_0(\Delta v_t) \| z_t \Delta \varepsilon_t \|]$ is finite. For v in a neighborhood of zero, $\mathscr{E}[Z'\Omega_v DX]$ has full column rank. The moment condition $\mathscr{E}[Z'\Omega_0 D\varepsilon] = 0$ holds.

Assumption 1 states the sampling scheme and contains conventional requirements for linear GMM estimators. Moreover, it provides a mild dominance condition on the vector of population moments and ensures identification of θ_0 by imposing a rank condition and postulating instrument validity.

The next assumption demands smoothness from the conditional moments that are being approximated by the kernel weighting and from the conditional densities of $\Delta v_t^{(c)}$ given realizations of $\Delta v_t^{(d)}$; refer to these densities by f_t and to their respective supports by \mathcal{V}_t .

Assumption 2 (Smoothness). For t = 2, ..., T, $f_t(\mathbf{v}^{(c)}|\mathbf{v}^{(d)})$ is bounded from above for all \mathbf{v} in \mathcal{V}_t and is strictly positive for \mathbf{v} in a neighborhood of zero. In addition, $f_t(\mathbf{v}^{(c)}|\mathbf{v}^{(d)})$ and $\mathscr{E}[\omega_{\mathbf{v}}(\Delta v_t)z_t\Delta \xi_t]$ are k-times continuously differentiable in $\mathbf{v}^{(c)}$ for all \mathbf{v} in a neighborhood of zero, where $k \geq 2$ is an integer.

 $^{^{3}}$ Of course, the usual caveat in this interpretation applies when k is a higher-order kernel, as then some of the weights will have to be negative.

When combined with a well-behaved kernel and bandwidth, Assumption 2 implies that the bias induced by weighting observations by w_{it} disappears asymptotically. It could be relaxed slightly, for example by requiring the bounded away from zero condition on f_t to hold only for some but not all t = 2, ..., T, but this would needlessly cloud the exposition.

What is meant exactly by a well-behaved kernel and bandwidth is the topic of the third assumption.

Assumption 3 (Kernel weights). The kernel, k, is bounded on its support and of kth-order. Moreover, $\int k(\eta) d\eta = 1$, $\int \eta^j k(\eta) d\eta = 0$ for $|j| = 1, \ldots, k-1$, and $\int ||\eta^j|| ||k(\eta)|| d\eta < \infty$ for |j| in $\{0, k\}$. The bandwidth, σ_n , is both non-negative and $\sigma(1)$ as $n \to \infty$, while $\sqrt{n\sigma_n^{\ell}} \to \infty$ and $\sqrt{n\sigma_n^{\ell}} \sigma_n^k \to 0$.

The required degree of smoothness is increasing in the number of continuous components of v_{it} , ℓ . It is well known that, although they generally increase finite-sample bias, discrete covariates do not retard the speed of convergence of Nadaraya-Watson type kernel estimator of conditional mean functions, and the same conclusion may be drawn here.

It can be noted that an alternative to working with empirical cell probabilities for the discrete components of Δv_t would be to smooth over these variables as well. Such an approach may well be beneficial in small samples when the support of $\Delta v_t^{(d)}$ is large. Another refinement would be to work with regressor-specific bandwidths, that is, a vector-valued σ_n . I abstract away from both of these possibilities for fine tuning here as they do not affect the asymptotic behavior of θ_n , nor will it be possible at this stage to provide particular guidelines on how to get the most out of these additional degrees of freedom.

Assumptions 1–3 are more than enough to guarantee the consistency of θ_n for θ_0 as $n \to \infty$. To facilitate the exposition, let F_1 be a matrix consisting of T-1 vertically-stacked blocks. The (t-1)th such block is given by $\iota_{\ell(z_t)}\iota'_{\ell(\Delta x_t)}f_t(0|0)$ for ι_a a vector of ones of length a. On letting \odot denote the Schur product,

$$S_{ZX} \xrightarrow{p} \Sigma_{ZX} \equiv \mathscr{E}[Z'\Omega_0 DX] \odot F_1, \qquad S_{Zy} \xrightarrow{p} \Sigma_{Xy} \equiv \mathscr{E}[Z'\Omega_0 Dy] \odot F_1,$$

and $S_{Z\xi}(\theta) \equiv S_{Zy} - S_{ZX}\theta \xrightarrow{p} \Sigma_{Z\xi}(\theta) \equiv \Sigma_{Zy} - \Sigma_{ZX}\theta$. Write $S_{Z\xi}$ and $\Sigma_{Z\xi}$ for $S_{Z\xi}(\theta_0)$ and $\Sigma_{Z\xi}(\theta_0)$, respectively. The consistency result then reads as follows.

Theorem 1 (Consistency). Let Assumptions 1–3 hold. If G and Γ are positive-definite matrices so that $G \stackrel{p}{\to} \Gamma$ as $n \to \infty$ and Γ is non-stochastic, then $\theta_n \stackrel{p}{\to} \theta_0$ as $n \to \infty$.

Proof. Recall that $S_{Z\xi} = n^{-1} \sum_{i=1}^{n} Z_i' W_i D\xi_i$, so $\theta_n - \theta_0 = \left[S_{ZX}' G S_{ZX} \right]^{-1} \left[S_{ZX}' G S_{Z\xi} \right]$. Given that G converges to a positive-definite and non-stochastic matrix, it suffices to show that, as $n \to \infty$, (i) $S_{ZX} \xrightarrow{p} \Sigma_{ZX}$; and (ii) $S_{Z\xi} \xrightarrow{p} 0$.

To see that (i) holds, observe that standard kernel-smoothing arguments yield

$$\left\| \frac{1}{\sigma_n^{\ell}} \mathscr{E} \left[z_t \Delta x_t' \mathbf{k} \left(\frac{\Delta v_t^{(c)}}{\sigma_n} \right) \mathbf{1} (\Delta v_t^{(d)} = 0) \right] \right\| = \left\| \mathscr{E} \left[\omega_0(\Delta v_t) z_t \Delta x_t' \right] f_t(0|0) \right\| + \mathcal{O}(\sigma_n^{\ell})$$

for $t=2,\ldots,T$. As $\mathscr{E}[S_{ZX}]$ is obtained on stacking such terms over t, it follows that $\|\mathscr{E}[S_{XZ}] - \Sigma_{XZ}\| = \mathcal{O}(\sigma_n^{\ell})$. This bias goes to zero because $\lim_{n\to\infty} \sigma_n^{\ell} = 0$, that is, $\overline{\mathscr{E}}[S_{ZX}] \equiv \lim_{n\to\infty} \mathscr{E}[S_{ZX}] = \Sigma_{ZX}$. Furthermore, by a standard law of large numbers, $\|S_{XZ} - \mathscr{E}[S_{XZ}]\| = \mathcal{O}_p(1)$. Statement (i) follows.

By the same reasoning, $||S_{Z\xi} - \Sigma_{Z\xi}|| = o_p(1)$. Instrument validity implies that $\Sigma_{Z\xi} = 0$. The proof is complete.

Establishing asymptotic normality of θ_n around θ_0 requires the bias induced by kernel weighting to go to zero at a sufficiently fast rate, and the existence of higher-order conditional moments. For the former requirement to be satisfied, the current assumptions suffice. The latter is dealt with now. Let f_{ts} denote the joint density of $(\Delta v_t^{(c)}, \Delta v_s^{(c)})$ given realizations of $(\Delta v_t^{(d)}, \Delta v_s^{(d)})$.

Assumption 4 (Higher-order moments). For t, s in 2, ..., T, $f_{ts}(\mathbf{v}_1^{(c)}, \mathbf{v}_2^{(c)} | \mathbf{v}_1^{(d)}, \mathbf{v}_2^{(d)})$ is bounded from above for all $(\mathbf{v}_1, \mathbf{v}_2)$ in $\mathcal{V}_t \otimes \mathcal{V}_s$ and is strictly positive for $(\mathbf{v}_1, \mathbf{v}_2)$ in a neighborhood of zero. For all such (t, s), $\mathscr{E}[z_t\omega_{\mathbf{v}_1}(\Delta v_t)\Delta \xi_t\Delta \xi_s\omega_{\mathbf{v}_2}(\Delta v_s)z_s']$ and $f_{ts}(\mathbf{v}_1^{(c)}, \mathbf{v}_2^{(c)} | \mathbf{v}_1^{(d)}, \mathbf{v}_2^{(d)})$ are k-times continuously differentiable in $(\mathbf{v}_1^{(c)}, \mathbf{v}_2^{(c)})$, and the absolute moments $\mathscr{E}[\omega_{\mathbf{v}}(\Delta v_t) || z_t\Delta x_t'||^3]$ and $\mathscr{E}[\omega_{\mathbf{v}}(\Delta v_t) || z_t\Delta y_t||^3]$ are finite. The matrix $\mathscr{E}[Z'\Omega_0 D\varepsilon\varepsilon'D'\Omega_0 Z]$ is positive definite and nonsingular.

This condition will ensure that, when properly scaled, $S_{Z\xi}$ converges to a zero-mean Gaussian process.

In line with previously introduced notation, let F_2 be an $\sum_{t=2}^T \ell(z_t) \times \sum_{t=2}^T \ell(z_t)$ matrix consisting of $(T-1)^2$ blocks, with the (t-1,s-1)th block given by $\iota_{\ell(z_t)}\iota'_{\ell(z_s)}f_{ts}(0|0)$. Define

$$\Upsilon \equiv \mathscr{E} \left[Z' \Omega_0 D \varepsilon \varepsilon' D' \Omega_0 Z \right] \odot F_2 \int k(\eta)^2 d\eta.$$
 (3.6)

Then, under Assumptions 1–4, $\sqrt{n\sigma_n^{\ell}}S_{Z\xi} \xrightarrow{d} \mathcal{N}(0,\Upsilon)$. From this, the next theorem can be derived.

Theorem 2 (Normality). Let Assumptions 1–4 hold. If G and Γ are positive-definite matrices so that $G \xrightarrow{p} \Gamma$ as $n \to \infty$ and Γ is non-stochastic, then

$$\sqrt{n\sigma_n^{\ell}}(\theta_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, \mathscr{V}(\Gamma))$$

for
$$\mathscr{V}(\Gamma) \equiv \left[\Sigma'_{ZX}\Gamma\Sigma_{ZX}\right]^{-1} \left[\Sigma'_{ZX}\Gamma'\Upsilon\Gamma\Sigma_{ZX}\right] \left[\Sigma'_{ZX}\Gamma\Sigma_{ZX}\right]^{-1} \text{ as } n \to \infty.$$

Proof. Given that $S_{ZX} \stackrel{p}{\to} \Sigma_{ZX}$ and $G \stackrel{p}{\to} \Gamma$ as $n \to \infty$, it remains to show that (i) $\sqrt{n\sigma_n^{\ell}} \mathscr{E}[S_{Z\xi}] = \mathcal{O}(1)$; and (ii) $\sqrt{n\sigma_n^{\ell}} (S_{Z\xi} - \mathscr{E}[S_{Z\xi}]) \stackrel{d}{\to} \mathcal{N}(0,\Upsilon)$. Slutzsky's theorem will take us the rest of the way.

Commence with (i). By a kth-order expansion of a typical block of $\mathscr{E}[S_{Z\xi}]$ around $\Delta v_t^{(c)} = 0$,

$$\left\| \frac{1}{\sigma_n^{\ell}} \mathscr{E} \left[z_t \Delta \xi_t \mathbf{k} \left(\frac{\Delta v_t^{(c)}}{\sigma_n} \right) \mathbf{1} (\Delta v_t^{(d)} = 0) \right] \right\| = \left\| \mathscr{E} \left[\omega_0(\Delta v_t) z_t \Delta \varepsilon_t \right] f_t(0|0) \right\| + \mathcal{O}(\sigma_n^{\ell}).$$

The first right-hand side term above is zero by instrument validity. The order of magnitude of the remainder term follows by virtue of the higher-order kernel and the associated smoothness conditions. Consequently, $\sqrt{n\sigma_n^{\ell}}\mathscr{E}[S_{Z\xi}] = \sqrt{n\sigma_n^{\ell}}\mathcal{O}(\sigma_n^k) = o(1)$.

To verify (ii) we can follow Honoré and Kyriazidou (2000) in checking that the regularity conditions of Lyapunov's central limit theorem for double arrays hold. Write

$$\sqrt{n\sigma_n^{\ell}}c'\left(S_{Z\xi} - \mathscr{E}[S_{Z\xi}]\right) = \frac{1}{\sqrt{n\sigma_n^{\ell}}} \sum_{i=1}^n c'\left(q_i - \mathscr{E}[q]\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^N r_i$$

for any vector of constants c for which c'c=1. Clearly, $\mathscr{E}[r]=0$ while $\mathscr{E}[rr']=\sigma_n^{-\ell}c'\mathscr{E}[qq']c-\sigma_n^{-\ell}c'\mathscr{E}[q]\mathscr{E}[q']c$. The two expectations in this variance are finite. Moreover, the second term is $\mathcal{O}(\sigma_n^{\ell})=\mathcal{O}(1)$ from above. For the first term, $\mathscr{E}[qq']$ has typical block

$$\frac{1}{\sigma_n^{\ell}} c' \mathcal{E} \left[z_t \mathbf{k} \left(\frac{\Delta v_t^{(c)}}{\sigma_n} \right) \mathbf{1} (\Delta v_t^{(d)} = 0) \Delta \xi_t \Delta \xi_s \mathbf{1} (\Delta v_s^{(d)} = 0) \mathbf{k} \left(\frac{\Delta v_s^{(c)}}{\sigma_n} \right) z_s' \right] c.$$

Smoothness and dominated convergence again imply that, as $n \to \infty$, such blocks converge to

$$c'\mathscr{E}\left[z_t\omega_0(\Delta v_t)\Delta\varepsilon_t\Delta\varepsilon_s\omega_0(\Delta v_s)z_s\right]c\ f_{ts}(0|0)\int k(\eta)^2\mathrm{d}\eta.$$

Thus, $\overline{\mathscr{E}}[rr'] = \sigma_n^\ell c' \overline{\mathscr{E}}[qq']c = c' \Upsilon c$. Lastly, it is easy to show that the boundedness of the kernel and of the absolute moments in Assumption 4 imply that, for any α in (0,1),

$$\sum_{i=1}^{n} \mathscr{E}\left[\left\|\frac{r}{\sqrt{n}}\right\|^{2+\alpha}\right] = \mathcal{O}\left(\frac{1}{\sqrt{n\sigma_n^{\ell}}}\right)^{\alpha} = \mathcal{O}(1).$$

Lyapunov's theorem may then be applied to obtain statement (ii) and to complete the proof. \Box

By standard optimality theory for GMM estimators (Hansen, 1982), the efficient weighting scheme for the moment conditions is obtained on setting G proportional to the inverse of a consistent estimate of Υ . Doing so leads to the following derivative-result to Theorem 2.

Corollary 1 (Optimally-weighted GMM). Let the conditions for Theorem 2 hold for estimators θ_n^* and θ_n^{**} that use a weight matrices G^* and G^{**} that satisfy $G^* \stackrel{p}{\to} \Gamma$ and $G^{**} \stackrel{p}{\to} \Upsilon^{-1}$ as $n \to \infty$, respectively Then,

$$\sqrt{n\sigma_n^{\ell}} \left(\theta_n^{**} - \theta_0 \right) \xrightarrow{d} \mathcal{N} \left(0, \mathcal{V} \right), \quad \mathcal{V} \equiv \mathcal{V}(\Upsilon^{-1}) = \left[\Sigma_{ZX}' \Upsilon^{-1} \Sigma_{ZX} \right]^{-1}$$

Furthermore, $\mathscr{V}(\Gamma) \geq \mathscr{V}$ in the matrix sense.

Proof. The expression for \mathcal{V} follows from Theorem 2 and a small calculation. The efficiency result is readily verified on noting that

$$\mathscr{V}(\Gamma) - \mathscr{V} = B'[I - A(A'A)^{-1}A']B$$

for $A \equiv \Upsilon^{-1/2}\Sigma_{ZX}$ and $B \equiv [\Sigma'_{ZX}\Gamma\Sigma_{ZX}]^{-1}[\Sigma'_{ZX}\Gamma\Upsilon^{1/2}]$, and that $[I - A(A'A)^{-1}A']$ is an idempotent matrix.

The last ingredient needed for inference procedures on the basis of θ_n to become operational is a consistent estimate of Υ in (3.6), say U. Then, for any properly formed G, and for $G = U^{-1}$ in particular, the consistency of a plug-in estimate for $\mathscr{V}(\Gamma)$ follows immediately. An estimate of \mathscr{V} , for example, is the inverse of $S'_{ZX}U^{-1}S_{ZX}$. In the special case of just-identification, such as for the weighted least-squares estimator obtained on setting $Z_i = \mathrm{D}X_i$, the matrix S_{ZX} is square and symmetric, and we obtain the familiar 'sandwich-form' estimator $S^{-1}_{ZX}US^{-1}_{ZX}$. It suffices to show that the general estimator of Υ defined as

$$\frac{\sigma_n^{\ell}}{n} \sum_{i=1}^n Z_i' W_i De_i e_i' D' W_i Z_i$$
(3.7)

for given residuals e_i is consistent as $n \to \infty$. Given the efforts made so far, showing this result poses no additional difficulty.

Theorem 3. Let Assumptions 1-4 hold, let θ_n^* be an initial estimator to which Theorem 1 applies, and define $\xi_i^* \equiv y_i - X_i \theta_n^*$. Then, $U \stackrel{p}{\to} \Upsilon$ as $n \to \infty$ for U as defined in (3.7) and formed with $e_i = \xi_i^*$.

Proof. The proof uses the same arguments as those used to prove Theorem 2. \Box

Under conditional homoskedasticity of ε_i , and in the absence of serial correlation, setting $U = n^{-1} \sum_{i=1}^{n} Z_i' W_i \text{DD}' W_i Z_i$ will give rise to the optimally-weighted GMM estimator. Alternatively, a two-step estimator would use the residuals, ξ_i^* , to form U as in (3.7). More generally, an iterated GMM procedure—as discussed in Hall (2005, pp. 90) and also elsewhere—repeats the two-step procedure until convergence. The estimate so formed is independent of the initial choice for G. Of course, the same comments about the effect of the variability of G on the small-sample performance of GMM estimators apply to the local GMM estimator introduced here. In light of this, it might be of interest to work out a correction term analogous to the one derived by Windmeijer (2005) for linear GMM estimators.

An alternative to an argument based on such an exercise in higher-order asymptotics is to consider a continuously-updated (CU) GMM routine as initially introduced by Hansen, Heaton, and Yaron (1996). Here, such an estimator takes the form

$$\arg\min_{\theta} S_{Z\xi}(\theta)' U(\theta)^{-1} S_{Z\xi}(\theta)$$

where $U(\theta)$ is U for a given θ . Such a modification makes the minimization problem nonlinear in θ but does not distort the limiting distribution of the point estimates, so that both Theorem 1 and Theorem 2 continue to apply. The CU estimator is a device originally suggested to mitigate the finite-sample bias of efficient GMM estimators that utilize overidentifying restrictions. Although it is not known whether this estimator has any finite moments, it is generally found to perform better in simulations in terms of bias than the corresponding two-step estimator. However, it also tends to exhibit a higher dispersion. Another useful feature of the CU estimator that explains its improved centering property is its interpretation as a jackknife estimator; see Donald and Newey (2000) for this. A final potentially benevolent effect of the CU approach is its invariance with respect to how the moment conditions are scaled. For an illustration and discussion of the CU estimator in the conventional panel data context, see Arellano (2003, pp. 73 and pp. 171–172).

Like in the standard setting, the efficiently-weighted local GMM minimand, when evaluated at θ_n^{**} , can be used to test overidentifying restrictions. The limiting result for the corresponding J-statistic is that

$$n\sigma_n^{\ell} S_{Z\xi}(\theta_n^{**})'U^{-1}S_{Z\xi}(\theta_n^{**}) \xrightarrow{d} \chi^2(m-\ell(x))$$

under Assumptions 1-4, where m denotes the number of columns of Z. The proof is immediate from Corollary 1. The result also extends straighforwardly to the CU estimator.

IV A MONTE CARLO STUDY

The performance of the local-GMM estimator was assessed through simulation exercises. This section reports results for static models estimated through kernel-weighted least squares and for dynamic models estimated through a local version of the first-differenced GMM procedure as originally introduced by Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991).

I use different design variations to be able to accentuate different findings in the static and the dynamic cases. The statistics used to evaluate the estimator's performance are the mean- and the median bias as measures of centrality, the standard deviation (STD) and the interquartile range (IQR) as indicators of dispersion, the root mean-squared error (RMSE) as a criterion for estimator risk, and coverage rates of two-sided 95% confidence intervals for inference evaluation. In the tables below CI(A) refers to coverage rates obtained through the use of plug-in estimates of the asymptotic variance. The entries for CI(B) are bootstrap-based acceptance frequencies using the percentile method over 39 bootstrap replications. All descriptive statistics for each design point were obtained over 10,000 simulation runs, with all variables and incidental parameters redrawn in each iteration.

Below, θ_n^* refers to the one-step local-GMM estimator while θ_n^{**} denotes the two-step version. I experimented with iterating the two-step procedure but found no significant gain from doing so. I also ran simulation experiments with the CU estimator. While I found it to have reasonably small bias, its standard deviation was often very high, which is in line with results found in the cross-sectional literature. Here, I prefer to report results on jackknifed versions of the local-GMM estimator, which is an alternative route to constructing bias-corrected estimators. The jackknifed estimators take the usual delete-one form

$$\theta_n^{\dagger} \equiv n\theta_n^* - \frac{n-1}{n} \sum_{i=1}^n \theta_{n,-i}^*$$
 and $\theta_n^{\dagger\dagger} \equiv n\theta_n^{**} - \frac{n-1}{n} \sum_{i=1}^n \theta_{n,-i}^{**}$

where $\theta_{n,-i}^*$ and $\theta_{n,-i}^{**}$ are the one-step and two-step estimators obtained from estimating θ_0 from the subpanel obtained on deleting the *i*th time series from the full panel. In the conventional setting, it is known that the bias of the first-differenced GMM is $\mathcal{O}(n^{-1})$; see Arellano (2004). It is therefore reasonable to expect that, for k chosen sufficiently large, the bias of the local-GMM estimator has a leading term that is $\mathcal{O}(n^{-1})$. The jackknifed estimators θ_n^{\dagger} and $\theta_n^{\dagger\dagger}$ subtract a nonparametric estimate of the leading bias term from θ_n^* and θ_n^{**} , respectively.

Table 1: Monte Carlo results for model (4.8)–(4.9) under independence ($\rho_0 = 0$).

	WEIGHT	LI	MEAN	MEAN BIAS	MEDIAN	N BIAS) D	IOR		RMSE	SE	CIC	A)	CIC	B)
L	k	σ_n	θ_n^*	$ heta_n^\dagger$	θ_n^*	θ_n^\dagger	θ_n^*	θ_n^\dagger	θ_n^*	θ_n^\dagger	θ_n^*	$ heta_n^\dagger$	θ_n^*	θ_n^\dagger	θ_n^*	θ_n^\dagger
က	Normal	small	9000'-	0009	.0004	0009	.1609	.1627	.2093	.2114	.1609	.1627	6606	8206.	.9193	.9129
က	Normal	medium	0025	0026	0025	0024	.1006	.1008	.1343	.1338	.1007	.1008	.9323	.9318	9299	9279
33	Normal	large	0038	0039	0043	0047	0960	.0964	.1262	.1266	0963	.0965	.9337	.9339	.9326	.9304
3	Epanech.	small	.0021	.0014	0002	0000.	.2435	.2507	.3106	.3178	.2435	.2507	.8851	8705	.9184	.9137
33	Epanech.	medium	0018	0021	0022	0024	.1369	.1378	.1790	.1797	.1369	.1378	.9246	.9208	.9284	.9274
33	Epanech.	large	0029	0030	0030	0034	.0947	0953	.1266	.1269	.0948	.0953	.9373	.9342	.9361	.9357
က	Quartic	small	.0017	9000.	0025	0013	.2671	.2777	.3392	.3515	.2671	.2777	.8754	.8557	.9161	.9073
က	Quartic	medium	0013	0015	0008	9000.—	.1485	.1494	.1954	.1955	.1485	.1494	.9185	.9149	.9254	9206
33	Quartic	large	0026	0028	0024	0023	6960.	.0971	.1279	.1280	6960.	.0971	.9353	.9345	.9340	.9337
33	Cosine	small	.0020	.0013	0007	0012	.2468	.2544	.3151	.3246	.2468	.2544	.8831	.8675	.9194	.9121
3	Cosine	medium	0017	0020	0019	0021	.1386	.1394	.1812	.1817	.1386	.1394	.9245	.9212	.9282	.9263
3	Cosine	large	0029	0030	0025	0025	.0947	.0952	.1265	.1266	.0948	.0952	9366	9345	.9362	.9354
9	Normal	small	0020	0019	0021	0019	.1050	.1054	.1396	.1404	.1050	.1054	.9377	.9364	.9342	.9320
9	Normal	medium	0013	0012	0000.	0001	0290.	.0671	0880	.0885	0290.	.0671	.9414	.9412	.9372	.9365
9	Normal	large	0011	0012	0005	9000.—	.0704	9020.	0950	.0954	0705	90200	.9439	.9430	.9390	9389
9	Epanech.	small	0027	0025	0024	0025	.1538	.1552	.2028	.2028	.1538	.1552	.9263	.9222	.9329	.9285
9	Epanech.	medium	0017	0017	0005	0003	.0901	.0905	.1185	.1189	.0901	.0905	.9391	.9375	.9344	.9333
9	Epanech.	large	0012	0013	.0004	.0002	.0646	.0651	.0861	0865	.0646	.0651	.9429	.9411	.9385	.9400
9	Quartic	small	0030	0028	0021	0020	.1672	.1689	.2221	.2241	.1672	.1689	.9215	.9171	9309	.9245
9	Quartic	medium	0018	0018	0015	0015	.0973	.0975	.1288	.1290	.0973	.0975	.9391	.9377	.9335	.9321
9	Quartic	large	0012	0012	.0004	.0001	0650	.0652	.0858	.0859	0650	.0652	.9416	.9417	.9377	.9365
9	Cosine	small	0028	0025	0024	0025	.1557	.1571	.2053	.2061	.1557	.1571	.9256	.9212	.9328	.9280
9	Cosine	medium	0018	0017	9000.—	0007	.0912	.0915	.1199	.1206	.0912	.0915	.9390	.9370	.9342	.9326
9	Cosine	large	0012	0013	.0003	.0002	.0644	.0648	.0857	.0864	.0644	.0648	.9420	.9409	.9380	.9382
6	Normal	small	8000.	8000.	.0015	.0014	.0837	.0838	.1103	.1107	.0837	.0838	.9382	.9375	.9325	.9321
6	Normal	medium	.0002	.0002	.0001	.0003	.0543	.0544	.0736	.0736	.0543	.0544	.9441	.9441	.9393	6386
6	Normal	$_{ m large}$	0008	0008	0018	0019	.0623	.0624	.0831	.0832	.0623	.0624	.9391	.9388	.9361	.9355
6	Epanech.	small	.0004	.0002	.0013	.0011	.1223	.1230	.1596	.1604	.1223	.1229	.9317	.9305	.9329	.9329
6	Epanech.	medium	6000.	.0010	.0010	.0012	.0717	.0719	.0948	0960.	.0717	.0719	.9431	.9429	.9393	9396
6	Epanech.	large	0002	0002	9000.—	0004	.0541	.0544	.0720	.0721	.0541	.0544	.9442	.9410	.9395	.9395
6	Quartic	small	.0003	.0002	8000.	.0012	.1334	.1340	.1746	.1755	.1334	.1340	.9273	9245	8626.	.9262
6	Quartic	medium	6000.	6000.	.0014	.0016	.0775	0775	.1025	.1028	.0775	.0775	.9403	.9402	.9338	.9337
6	Quartic	large	0000.	0000.	.0004	.0002	.0534	0536	.0708	.0712	.0534	0536	.9443	.9432	.9402	.9404
6	Cosine	small	.0004	.0002	.0014	8000.	.1240	.1246	.1614	.1626	.1240	.1245	.9311	.9292	.9325	.9315
6	Cosine	medium	6000.	.0010	.0014	.0015	.0726	.0727	.0961	2960.	.0726	.0727	.9431	.9429	.9378	.9384
6	Cosine	large	0002	0002	0005	0005	.0537	.0540	.0713	.0713	.0537	.0540	.9442	.9416	.9387	.9394
	n - 100	A	5 10 000 Monto Con	nto Corlo	oiteoilaar	1 1 V	mo lou	montar	1000 0401	ad down	har thoi	20000011	time et ar	derd de	wistion	

n = 100, $\theta_0 = .5$, 10, 000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

Static models. The first model considered has scalar x and v influencing the outcome variable through

$$y_{it} = x_{it}\theta_0 + \vartheta_i(v_{it}) + \varepsilon_{it}, \quad \vartheta_i(v_{it}) = \gamma_i^{(1)} + \gamma_i^{(2)}v_{it} - \gamma_i^{(3)}v_{it}^2.$$
 (4.8)

Here, $\gamma_i^{(1)} \sim \mathcal{N}(0,1)$ are traditional fixed effects while $\gamma_i^{(2)} \sim \mathcal{N}(0,2)$ and $\gamma_i^{(3)} \sim \mathcal{N}(0,.75)$ appear in an interactive fashion. The form of ϑ_i allows for both concave and convex response functions. The dynamics of the covariates x and v were set to be

$$x_{it} = -.3\gamma_i^{(1)} + .5x_{it-1} + \beta_i^{(1)}v_{it} + \mathcal{N}(0,1)$$
 and $v_{it} = .3\gamma_i^{(1)} + \beta_i^{(2)}v_{it-1} + \zeta_{it}$, (4.9)

respectively. In (4.9), $\beta_i^{(1)} \sim \mathcal{N}(0,1)$ and $\beta_i^{(2)} \sim \mathcal{U}[.20,.99]$, so that both strongly-and weakly-persistent data sequences occur. Because differencing is executed over time the within-group variation in ϑ_i is much more important for the performance of the weighting than is the between-group variation. The start-up values for the covariate time series were generated as $x_{i0} \sim -.3\gamma_i^{(1)} + \mathcal{N}(0,1)$ and $v_{i0} \sim .3\gamma_i^{(1)} + \mathcal{N}(0,1)$. The disturbances are bivariate-normal variates, each with unit variance and a correlation coefficient ρ_0 which was 0 in the first design and .4 in the second. The latter case leads to x, v, and ε being contemporaneously correlated, making x endogenous in the cross-sectional sense. Observe also that x and v are dependent, so that a naive fixed-effect estimator will be inconsistent for θ_0 .

Tables 1 and 2 contain the results for the kernel-weighted first-differenced least-squares estimator for $\rho_0 = 0$ and $\rho_0 = .4$, respectively. Because, here, there are no overidentifying restrictions, both θ_n^* and θ_n^{**} , and θ_n^{\dagger} and $\theta_n^{\dagger\dagger}$ coincide. Throughout, θ_0 was fixed at .5.⁴ The dimensions of the panels generated were n = 100 and $T \in \{3,6,9\}$. Results are reported for the standard-normal kernel (Normal), the second-order Epanechnikov kernel (Epanechnikov), the quartic kernel (Quartic), and the cosine kernel (Cosine). Three different bandwidth choices are reported on; $5n^{-3/4}$ (small), $15n^{-3/4}$ (medium), and $45n^{-3/4}$ (large).

Overal, Table 1 reports good performance of θ_n^* . Both the mean- and the median bias are virtually zero throughout. The jackknifed estimator has a bias of the same magnitude. Not surprisingly, θ_n^{\dagger} is more volatile. The difference in the STD and IQR is, however, very small. As a consequence, the RMSE of both estimators is identical to their STD up to the first few decimal digits. Both CI(A) and CI(B) report solid coverage rates, with neither dominating the other. The actual size is generally somewhat larger

⁴Experiments with different values for θ_0 gave qualitatively similar results.

 $^{^5}$ Here, CI(A) was obtained by means of the heterosked asticity-robust variance-covariance estimator, as displayed in the text.

than the nominal size of .05, which is in line with the usual behavior found in Monte Carlo work elsewhere. The impact of the choice of the kernel and the bandwidth is strongest on the measures of spread. But no design constellation uniformly dominates another.

When turning to the design with contemporaneous dependence between x and ε in Table 2 the overal picture changes little. Both estimators continue to have an empirical distribution that is roughly correctly centered; their variance changes little, too. Thus, confidence intervals still provide approximately correct coverage rates. No consistent pattern emerges when comparing the numbers across the tables.

Dynamic models. This subsection deals with the following variation on (4.8)–(4.9).

$$y_{it} = y_{it-1}\theta_0 + \vartheta_i(v_{it}) + \varepsilon_{it}, \quad \vartheta_i(v_{it}) = \gamma_i^{(1)} + \gamma_i^{(2)}v_{it} - \gamma_i^{(3)}v_{it}^2, \tag{4.10}$$

with

$$v_{it} = .3\gamma_i^{(1)} + \beta_i^{(2)} \left(\rho_0 v_{it-1} + (1 - \rho_0) \mathcal{U}[-1, 1] \right) + \zeta_{it}$$
(4.11)

for $\rho_0 \in \{0, 1\}$ and i.i.d. errors $(\varepsilon_{it}, \zeta_{it}) \sim \mathcal{N}(0, I)$. The processes were generated with a burn in of 500 time periods, using

$$v_{i(-501)} \sim .3\gamma_i^{(1)} + \mathcal{N}(0,1)$$
 and $y_{i(-501)} \sim -.3\gamma_i^{(1)} + \vartheta_i(v_{i(-501)}) + \mathcal{N}(0,1)$

as startup values. The local-GMM estimator of θ_0 à la Arellano and Bond (1991) uses all lagged levels of y_{it-1} as instruments for Δy_{it-1} in the equations in first differences.

Like with the conventional estimator, the small-sample bias of θ_n^* and θ_n^{**} will be a function of the number of moments used as well as the instrument strength. The former relates directly to the size of the panel (see, e.g., Alvarez and Arellano, 2003), the latter is partly driven by the closeness of the autoregressive parameter θ_0 to unity, with the instruments becoming irrelevant when $\theta_0 = 1$. In addition, coverage intervals based on the two-step estimator that are set up by means of analytical standard errors would be expected to be too small, leading to nominal rejection frequencies that are too high compared to a chosen significance level. Table 7 below contains the average of the estimated standard errors of both θ_n^* and θ_n^{**} by means of the analytical formulae and the bootstrap, together with the empirical standard deviation for a selection of the Monte Carlo experiments that follow. It can be observed that, for both estimators, the plug-in estimates are too low on average. The bootstrap-based standard errors are much more in line with the variability of the estimators as actually observed over the Monte Carlo runs. For this reason, I focus on the coverage rates of the confidence intervals based on resampling below.

Table 2: Monte Carlo results for model (4.8)-(4.9) under dependence $(\rho_0 = .4)$.

	WEIGHT	111	MEAN	MEAN BIAS	MEDIAN	N RIAS	CTP			·	RMSE	[近 [近	CIC	(V	CI/R	
E	N CTOT	11	*0	10	***	_	2 *	۲ ج	* *). 	*0	1	*	0±		10
7	Ж	σ_n	θ_n	ρ_n^{\prime}	θ_n	a_n	ρ_n	u_n	a_n	ρ_n	a_n	u_n	a_n	a_n	ρ_n	a_n
က	Normal	small	0003	0006	0010	0000.—	.1532	.1554	.2046	.2079	.1532	.1554	.9184	.9107	.9243	.9192
က	Normal	medium	0011	0012	0002	0004	.1000	.1003	.1338	.1339	.1000	.1003	.9350	.9330	9236	.9294
က	Normal	large	0036	0038	0039	0040	.1060	.1063	.1400	.1400	.1061	.1064	.9351	.9350	.9327	.9324
ಬ	Epanech.	small	.0018	.0012	0000.	9000.	.2302	.2387	.2919	.2967	.2302	.2387	7688.	.8757	.9213	.9162
က	Epanech.	medium	0002	0004	0004	0000	.1328	.1341	.1769	.1795	.1328	.1341	.9294	.9256	.9320	.9290
ಜ	Epanech.	large	0023	0025	0026	0028	.0984	.0993	.1308	.1310	0985	.0994	.9312	.9293	.9319	.9321
က	Quartic	small	.0015	2000.	0007	.0001	.2532	.2658	.3188	.3319	.2532	.2657	.8784	8603	.9206	.9103
က	Quartic	medium	0004	0007	0012	0015	.1428	.1441	.1893	.1919	.1428	.1440	.9256	.9195	.9273	.9241
က	Quartic	large	0016	0018	0008	0008	0985	.0985	.1313	.1316	0985	.0985	.9338	.9321	.9311	9299
က	Cosine	small	.0017	.0012	.0002	9000.	.2335	.2423	.2954	.3014	.2334	.2423	8888.	.8728	.9206	.9133
33	Cosine	medium	0002	0004	0003	0007	.1342	.1354	.1786	.1825	.1342	.1354	.9290	.9241	.9305	.9280
33	Cosine	large	0022	0023	0025	0029	0860.	7860.	.1309	.1309	0860.	7860.	.9307	.9298	.9317	.9315
9	Normal	small	.0010	6000.	.0010	.0010	.1010	.1014	.1340	.1347	.1010	.1014	.9308	.9293	.9302	.9283
9	Normal	medium	70007	0007	0004	0005	.0664	.0665	6680.	6680.	.0664	.0665	.9406	.9401	.9365	.9351
9	Normal	large	0014	0015	0008	0011	0799	0080.	.1100	.1102	6620.	.0801	.9427	.9423	.9395	0380
9	Epanech.	small	2000.	0000	.0033	.0023	.1475	.1489	.2000	.1997	.1475	.1489	.9198	.9153	.9258	.9237
9	Epanech.	medium	2000.	2000.	0001	.0005	.0871	7280.	.1159	.1169	.0871	2280.	.9333	.9321	.9316	.9318
9	Epanech.	large	0012	0012	0007	0007	0675	.0682	0060.	.0910	0675	.0682	.9413	.9381	.9370	.9354
9	Quartic	small	.0001	0003	.0018	.0023	.1614	.1633	.2136	.2160	.1614	.1633	.9132	.9083	.9224	.9167
9	Quartic	medium	6000.	6000.	9000.	9000.	.0938	.0941	.1249	.1252	8860.	.0941	.9318	.9311	.9311	9297
9	Quartic	large	0010	0010	0005	9000.—	0990.	.0662	.0883	.0885	0990.	.0662	.9403	.9385	.9384	.9377
9	Cosine	small	9000.	0003	.0023	.0018	.1496	.1510	.2017	.2026	.1496	.1510	.9185	.9145	.9247	.9215
9	Cosine	medium	2000.	2000.	.0002	0000.	.0881	.0885	.1171	.1177	.0881	.0885	.9336	.9326	.9318	.9309
9	Cosine	large	0011	0011	0009	0007	6990.	.0675	0893	9060.	6990.	.0675	.9419	.9390	.9367	.9363
6	Normal	small	.0012	.0012	.0010	.0012	8080	.0804	.1074	.1083	.0803	.0804	.9356	.9351	.9305	.9305
6	Normal	medium	.0010	.0010	.0017	.0017	.0541	.0541	.0724	.0725	.0541	.0541	.9411	.9412	.9363	.9361
6	Normal	large	0005	0006	0007	9000	.0715	.0716	.0955	0926	.0715	.0716	.9394	.9393	.9357	.9362
6	Epanech.	small	6000.	6000.	9000.	0000.	.1158	.1166	.1547	.1560	.1158	.1166	.9302	.9290	.9325	6086.
6	Epanech.	medium	.0013	.0013	.0018	.0014	0693	9690.	0936	860.	0693	9690.	.9393	.9388	.9345	.9362
6	Epanech.	large	9000.	0000	2000.	.0004	0568	.0572	.0764	6920.	0568	.0572	.9443	.9431	9397	9399
6	Quartic	small	.0005	.0004	0001	0001	.1259	.1268	.1679	.1690	.1259	.1268	.9264	.9245	.9313	.9271
6	Quartic	medium	.0012	.0012	.0015	.0014	.0746	.0747	.1001	.1005	.0746	.0747	.9371	9366	.9333	.9336
6	Quartic	large	8000.	8000.	.0010	.0010	.0544	.0546	.0731	.0730	.0544	.0546	.9419	.9416	.9380	.9378
6	Cosine	small	8000.	8000.	.0001	0001	.1173	.1181	.1573	.1579	.1173	.1180	.9304	.9279	.9320	.9300
6	Cosine	medium	.0013	.0013	.0014	.0014	.0701	.0703	.0947	.0952	.0701	.0703	6386	.9386	.9350	.9357
6	Cosine	large	9000.	9000.	9000.	.0004	.0561	.0564	.0755	.0763	.0561	.0564	.9453	.9425	7986.	0380
	m — 100	Ш	0 000 Monto Co.	Olas Olas		Λ11 1-2.		1	0	100	. L. 41.	100000000000000000000000000000000000000	4:20 0404	1000	***************************************	

n = 100, $\theta_0 = .5$, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

Table 3: Monte Carlo results for model (4.10)–(4.11); $\rho_0 = 0$, T = 3.

WEI	GHT		MEAN	N BIAS		, (MEDIA	N BIAS	
k	$\frac{\sigma_n}{\sigma_n}$	θ_n^*	θ_n^{\dagger}	θ_n^{**}	$\theta_n^{\dagger\dagger}$	θ_n^*	$\frac{\theta_n^{\dagger}}{\theta_n}$	θ_n^{**}	$\theta_n^{\dagger\dagger}$
Normal	$\frac{\sigma_n}{\text{small}}$	0269	$\frac{0.0138}{0.0138}$	0.00000000000000000000000000000000000	$\frac{0}{.0171}$	$\frac{0}{0418}$	$\frac{0.0109}{0109}$	$\frac{0}{0377}$	$\frac{0}{0084}$
Normal	medium	0395	.0127	0292	.0270	0531	0131	0456	0084
Normal	large	0486	.0116	0351	.0244	0648	0167	0546	0128
Epanech.	small	0454	.0207	0449	.0143	0646	0306	0649	0317
Epanech.	medium	0298	.0158	0238	.0239	0423	0080	0347	0036
Epanech.	large	0469	.0119	0341	.0233	0628	0155	0529	0130
Quartic Quartic	small	0540	.0130	0535	.0138	0736	0382	0759	0377
Quartic	medium	0268	.0144	0231	.0174	0402	0071	0327	0049
Quartic	large	0442	.0123	0324	.0208	0603	0140	0486	0094
WEI		10222		ГД		10000		QR	
k	$\frac{\sigma_n}{\sigma_n}$	$ heta_n^*$	$\frac{\theta_n^{\dagger}}{\theta_n}$	θ_n^{**}	$\theta_n^{\dagger\dagger}$	θ_n^*	θ_n^{\dagger}	$\frac{\theta_n^{**}}{\theta_n^{**}}$	$\theta_n^{\dagger\dagger}$
Normal	$\frac{\sigma_n}{\text{small}}$.2430	$\frac{\sigma_n}{.3425}$	0.00000000000000000000000000000000000	$\frac{0.000}{0.4094}$	$\frac{\sigma_n}{.2786}$	$\frac{\sigma_n}{.2824}$	$\frac{\sigma_n}{.2924}$	$\frac{\sigma_n}{.3199}$
Normal	medium	.2702	.3367	.2727	.5898	.3137	.3421	.3179	.3526
Normal	large	.2915	.3629	.2928	.4589	.3390	.3646	.3379	.3876
Epanech.	small	.2998	.5632	.3069	.5004	.3329	.3728	.3535	.4158
Epanech.	medium	.2519	.3360	.2540	.4593	.2913	.3095	.2931	.3231
Epanech.	large	.2878	.3580	.2897	.4567	.3356	.3604	.3344	.3788
Quartic	small	.3274	.8390	.3382	.7210	.3550	.4042	.3729	.4498
Quartic	medium	.2435	.3068	.2462	.3443	.2816	.2984	.2896	.3181
Quartic	large	.2815	.3504	.2847	.4589	.3274	.3546	.3288	.3715
WEI			RA	ISE			CI	(B)	
k	σ_n	θ_n^*	θ_n^{\dagger}	θ_n^{**}	$\theta_n^{\dagger\dagger}$	θ_n^*	θ_n^{\dagger}	θ_n^{**}	$ heta_n^{\dagger\dagger}$
Normal	small	.2445	.3428	.2484	.4098	.9332	$\frac{n}{.9354}$.9506	$\frac{n}{.9524}$
Normal	medium	.2730	.3369	.2742	.5904	.9250	.9344	.9470	.9564
Normal	large	.2955	.3631	.2949	.4595	.9244	.9304	.9446	.9516
Epanech.	small	.3032	.5635	.3101	.5006	.9326	.9328	.9510	.9540
Epanech.	medium	.2536	.3364	.2551	.4599	.9320	.9366	.9496	.9554
Epanech.	large	.2916	.3582	.2917	.4572	.9250	.9308	.9452	.9516
Quartic	small	.3318	.8391	.3424	.7211	.9280	.9298	.9440	.9522
Quartic	medium	.2449	.3071	.2473	.3447	.9352	.9390	.9498	.9554
Quartic	large	.2849	.3506	.2865	.4593	.9260	.9318	.9468	.9524
		-				1			

 $n = 100, \theta_0 = .5, 10,000$ Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

An important difference between the least-squares estimator as considered in the previous subsection and the GMM estimator for the dynamic model is that it uses levels as instruments rather than differences. While this is also the case when ϑ_i does not depend on v, there might be additional finite-sample effects when v is autocorrelated. To see this, recall that local differencing removes $\Delta \vartheta_i(v_{it})$ from the moment conditions only asymptotically. For any finite n, therefore, lagged dependent variables will correlate with $w_{it}\Delta \xi_{it}$. To assess the importance of this serial correlation, I manipulate ρ_0 from zero to unity. When $\rho_0 = 0$, v is independent over time while, when $\rho_0 = 1$, it is

first-order autocorrelated with some sequences being nearly integrated of order one.

The kernel and bandwidth choices from before were maintained, and n was equally kept at 100. To save on space, I report results only for a subset of the design variations. Additional results are available as supplementary material.

Table 4: Monte Carlo results for model (4.10)–(4.11); $\rho_0 = 1$, T = 3.

				•		1, 1 = 3	
WEIGHT		N BIAS			MEDIA		
δ k σ_n θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$\theta_n^{\dagger\dagger}$	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$ heta_n^{\dagger\dagger}$
Normal small .0158	.0769	.0104	.0638	.0012	.0406	.0019	.0359
Normal medium .0563	.1500	.0519	.1634	.0382	.0991	.0385	.0925
Normal large .0604	.1774	.0545	.2262	.0430	.1069	.0372	.1015
Epanech. small 0429	.0567	0474	.0191	0660	0211	0622	0208
Epanech. medium .0409	.1152	.0341	.0887	.0262	.0737	.0297	.0771
Epanech. large .0601	.1711	.0550	.2466	.0419	.1059	.0376	.0989
Quartic small 0526	.0711	0547	.0570	0748	0312	0721	0330
Quartic medium .0287	.0994	.0223	.0772	.0149	.0564	.0144	.0584
Quartic large .0592	.1632	.0548	.2105	.0409	.1026	.0364	.0972
WEIGHT	SI	ГD			IQ	R	
δ k σ_n θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$\theta_n^{\dagger\dagger}$	θ_n^*	θ_n^{\dagger}	θ_n^{**}	$\theta_n^{\dagger\dagger}$
Normal small .3178	3 .7237	.3294	1.0133	.3191	.3472	.3254	.3806
Normal medium .3921		.4015	1.7770	.3674	.4143	.3614	.4494
Normal large .4331	1.0987	.4475	2.5873	.4008	.4526	.3903	.4816
Epanech. small .3578	3 1.3454	.3903	2.0493	.3571	.4037	.3686	.4507
Epanech. medium .3396	.7551	.3578	1.2447	.3449	.3779	.3309	.4035
Epanech. large .4251	1.0993	.4340	3.7695	.3960	.4467	.3855	.4750
Quartic small .3814	2.5693	.4034	2.5677	.3720	.4307	.3900	.4859
Quartic medium .3190	.6842	.3356	1.0863	.3305	.3622	.3234	.3843
Quartic large .4127	7 1.1089	.4221	2.5327	.3884	.4375	.3791	.4613
WEIGHT	RN	ISE			CI(B)	
δ k σ_n θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$\theta_n^{\dagger\dagger}$	θ_n^*	θ_n^{\dagger}	θ_n^{**}	$\theta_n^{\dagger\dagger}$
Normal small .3182		.3295	1.0152	.9512	.9648	.9516	.9654
Normal medium .3961	1.2296	.4049	1.7844	.9482	.9580	.9522	.9688
Normal large .4373	3 1.1128	.4508	2.5970	.9452	.9588	.9572	.9694
Epanech. small .3603	1.3465	.3931	2.0493	.9326	.9560	.9360	.9584
Epanech. medium .3421	.7638	.3594	1.2478	.9494	.9616	.9506	.9660
Epanech. large .4293	3 1.1125	.4374	3.7774	.9462	.9588	.9566	.9696
Quartic small .3850		.4070	2.5682	.9310	.9514	.9358	.9604
Quartic medium .3203	.6914	.3363	1.0890	.9490	.9616	.9504	.9664
Quartic large .4169	1.1208	.4256	2.5413	.9460	.9580	.9544	.9692

 $\overline{n} = 100$, $\theta_0 = .5$, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

Table 3 gives the usual descriptive statistics for the case where T=3, $\theta_0=.5$, and $\rho_0=0$. Both the one- and two-step estimator have a reasonably small bias. The choice of k and σ_n seems particlarly important here. The jackknifed estimators give an improvement in terms of centrality, but at a cost of a higher STD and RMSE. When n

is larger, however, this discrepancy vanishes. The IQR of θ_n^{\dagger} and $\theta_n^{\dagger\dagger}$ are, however, not much larger than those of θ_n^* and θ_n^{**} and also the coverage rates are comparable.

When ρ_0 is set to unity, the estimators' performance change. All estimators now have both a larger bias and a higher variability. Although the bias never skyrockets, the jackknife estimators do not outperform θ_n^* and θ_n^{**} in terms of any of the statistics reported, although they start doing so for larger n. Moreover, they are more biased than the original estimators, and their standard deviation is large. Nevertheless, the IQR remains relatively small and the coverage rates are close to .95.

Table 5: Monte Carlo results for model (4.10)-(4.11); $\rho_0 = 0$, T = 6.

	abie 5: iv.				Juei (4.1	0) (4.11			
WEIG	GHT		MEAN					N BIAS	
k	σ_n	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$ heta_n^{\dagger\dagger}$	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$ heta_n^{\dagger\dagger}$
Normal	small	0558	0036	0560	0031	0548	0052	0541	0066
Normal	medium	0469	0041	0436	0033	0461	0033	0426	0034
Normal	large	0520	0062	0466	0040	0512	0070	0454	0040
Epanech.	small	1025	0136	1035	0139	1030	0202	1039	0235
Epanech.	medium	0469	0029	0460	0028	0473	0040	0462	0056
Epanech.	large	0509	0058	0459	0039	0505	0062	0444	0046
Quartic	small	1192	0184	1187	0165	1210	0279	1203	0291
Quartic	medium	0496	0028	0494	0025	0505	0053	0483	0035
Quartic	large	0493	0051	0449	0037	0485	0050	0439	0045
WEIG	GHT		ST	. D			IC)R	
k	σ_n	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$ heta_n^{\dagger\dagger}$	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$\theta_n^{\dagger\dagger}$
Normal	small	.0999	.1168	.1092	.1395	.1323	.1541	.1435	.1812
Normal	medium	.0953	.1059	.1021	.1267	.1265	.1400	.1377	.1620
Normal	large	.1008	.1126	.1060	.1329	.1333	.1479	.1409	.1748
Epanech.	small	.1261	.1646	.1398	.1989	.1650	.2033	.1801	.2508
Epanech.	medium	.0955	.1085	.1033	.1304	.1254	.1399	.1364	.1690
Epanech.	large	.0997	.1111	.1052	.1315	.1321	.1467	.1406	.1722
Quartic	small	.1356	.1827	.1502	.2232	.1750	.2276	.1963	.2868
Quartic	medium	.0968	.1111	.1052	.1329	.1282	.1473	.1398	.1729
Quartic	large	.0979	.1089	.1040	.1295	.1310	.1450	.1389	.1687
WEIG	GHT		RM	ISE			CI	(B)	
k	σ_n	θ_n^*	θ_n^{\dagger}	θ_n^{**}	$\theta_n^{\dagger\dagger}$	θ_n^*	θ_n^\dagger	θ_n^{**}	$\theta_n^{\dagger\dagger}$
Normal	small	.1144	.1169	.1228	.1395	.8790	.9322	.8880	.9270
Normal	medium	.1062	.1059	.1110	.1268	.8990	.9322	.9126	.9308
Normal	large	.1134	.1128	.1157	.1329	.8962	.9280	.9102	.9290
Epanech.	small	.1625	.1652	.1739	.1994	.8272	.9178	.8450	.9216
Epanech.	medium	.1064	.1085	.1130	.1304	.8946	.9308	.9058	.9248
Epanech.	large	.1119	.1113	.1148	.1315	.8978	.9290	.9104	.9276
Quartic	small	.1805	.1836	.1914	.2238	.8036	.9126	.8246	.9168
Quartic	medium	.1087	.1112	.1162	.1329	.8856	.9318	.8974	.9244
Quartic	large	.1096	.1090	.1132	.1295	.8968	.9316	.9114	.9290

 $n = 100, \theta_0 = .5, 10,000$ Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

Tables 5 and 6 show what happens when T is increased to 6. Of course, the STD and IQR shrink, and considerably so. For $\rho_0 = 0$, the bias of all estimators increases while, for $\rho_0 = 1$, the opposite happens. The coverage rates worsen slightly across both design variations. This effect is less pronounced for θ_n^{\dagger} and $\theta_n^{\dagger\dagger}$ than it is for θ_n^* and θ_n^{**} .

Table 6: Monte Carlo results for model (4.10)–(4.11); $\rho_0 = 1$, T = 6.

	able 6: M	ionte Cai			oder (4.1	0)=(4.11		-	
WEI	GHT		MEAN				MEDIA		
k	σ_n	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$ heta_n^{\dagger\dagger}$	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$ heta_n^{\dagger\dagger}$
Normal	small	0138	.0474	0212	.0376	0167	.0398	0197	.0331
Normal	medium	.0454	.1075	.0324	.0860	.0451	.1025	.0327	.0825
Normal	large	.0516	.1218	.0376	.0965	.0523	.1158	.0375	.0902
Epanech.	small	0897	0022	0933	0058	0922	0107	0930	0144
Epanech.	medium	.0230	.0810	.0113	.0641	.0206	.0738	.0114	.0603
Epanech.	large	.0510	.1197	.0372	.0949	.0514	.1137	.0373	.0890
Quartic	small	1078	0137	1099	0148	1093	0221	1115	0276
Quartic	medium	.0055	.0638	0043	.0502	.0032	.0568	0053	.0460
Quartic	large	.0496	.1158	.0360	.0921	.0497	.1102	.0368	.0871
WEI	GHT		ST	'D			IQ	PR	
k	σ_n	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$ heta_n^{\dagger\dagger}$	$ heta_n^*$	$ heta_n^\dagger$	θ_n^{**}	$ heta_n^{\dagger\dagger}$
Normal	small	.1161	.1484	.1211	.1719	.1510	.1821	.1547	.2072
Normal	medium	.1195	.1488	.1160	.1624	.1548	.1835	.1536	.2019
Normal	large	.1269	.1603	.1215	.1724	.1654	.1967	.1605	.2167
Epanech.	small	.1357	.1906	.1487	.2325	.1788	.2328	.1948	.2800
Epanech.	medium	.1180	.1485	.1170	.1652	.1527	.1832	.1531	.2016
Epanech.	large	.1255	.1580	.1204	.1704	.1630	.1941	.1591	.2116
Quartic	small	.1416	.2037	.1562	.2495	.1842	.2458	.2029	.3024
Quartic	medium	.1167	.1475	.1184	.1670	.1524	.1833	.1531	.2014
Quartic	large	.1233	.1545	.1187	.1672	.1609	.1903	.1562	.2094
WEIG	GHT		RM	SE			CI((B)	
k	σ_n	θ_n^*	$ heta_n^\dagger$	θ_n^{**}	$\theta_n^{\dagger\dagger}$	θ_n^*	θ_n^{\dagger}	θ_n^{**}	$ heta_n^{\dagger\dagger}$
Normal	small	.1169	.1558	.1230	.1760	.9190	.9122	.9250	.9202
Normal	medium	.1279	.1836	.1205	.1838	.8982	.8384	.9252	.8858
Normal	large	.1370	.2013	.1272	.1976	.8924	.8194	.9214	.8822
Epanech.	small	.1627	.1906	.1755	.2325	.8474	.9140	.8616	.9258
Epanech.	medium	.1202	.1691	.1175	.1772	.9202	.8818	.9320	.9102
Epanech.	large	.1355	.1982	.1260	.1950	.8930	.8206	.9224	.8834
Quartic	small	.1780	.2041	.1909	.2499	.8228	.9080	.8384	.9214
Quartic	medium	.1168	.1607	.1185	.1744	.9212	.9002	.9318	.9176
Quartic	large	.1329	.1931	.1240	.1908	.8936	.8234	.9240	.8848

n = 100, $\theta_0 = .5$, 10,000 Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

The last table in this subsection makes the comparison between the average estimated standard errors of θ_n^* and θ_n^{**} and their empirical standard deviation.

Table 7: A comparison between the estimated standard errors and the empirical standard deviation

					ρ_0	0 =					ρ_0	= 1		
	DESIGN	N.	SE (an	alytic)	SE (po	SE (bootstrap)	STD	Q.	SE (analytic)	alytic)	SE (po	SE (bootstrap)	STD	D D
L	ķ	σ_n	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}
က	Normal	small	.1798	.2185	.2493	.2632	.2430	.2472	.2086	.2632	.3067	.3301	'	.3294
က	Normal	medium	.1670	.2359	8692.	.2831	.2702	.2727	.2020	.3081	.3598	.3840	•	.4015
က	Normal	large	.1703	.2513	.2888	.3021	.2915	.2928	.2094	.3353	.3849	.4094	•	.4475
က	Epanech.	small	.2384	.2631	.3116	.3345	2998	.3069	.2731	.3012	.3463	.3728	•	.3903
3	Epanech.	medium	.1672	.2231	.2546	.2669	.2519	.2540	.1969	.2822	.3317	.3554	3396	.3578
3	Epanech.	large	.1696	.2486	.2853	.2984	.2878	7682.	.2077	.3301	.3808	.4047	•	.4340
က	Quartic	small	.2622	.2810	.3325	.3564	.3274	.3382	3000	.3183	9098.	.3902	•	.4034
3	Quartic	medium	.1711	.2185	.2498	.2633	.2435	.2462	.1993	.2684	.3162	.3393	•	.3356
3	Quartic	large	.1685	.2440	.2796	.2930	.2815	.2847	.2053	.3218	.3734	3965		.4221
L	ধ	σ_n	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	-	θ_n^{**}
9	Normal	small	.0962	.0805	.0964	.1060	6660.	.1092	.1026	.0826	.1068	.1154	.1161	.1211
9	Normal	medium	.0783	.0741	.0922	2860.	.0953	.1021	.0827	0779	.1083	.1119	.1195	.1160
9	Normal	large	.0781	0.0765	0963	.1023	.1008	.1060	0826	.0810	.1141	.1169	.1269	.1215
9	Epanech.	small	.1330	6660.	.1224	.1367	.1261	.1398	.1407	0985	.1265	.1410	.1357	.1487
9	Epanech.	medium	.0826	.0753	.0924	8660.	0955	.1033	9280.	.0793	.1071	.1121	.1180	.1170
9	Epanech.	large	.0780	0920.	0956	.1016	2660.	.1052	.0825	.0804	.1130	.1160	.1255	.1204
9	Quartic	small	.1445	.1043	.1294	.1444	.1356	.1502	.1521	.1018	.1316	.1467	.1416	.1562
9	Quartic	medium	0880	.0773	.0935	.1019	8960.	.1052	0936	0802	.1063	.1129	.1167	.1184
9	Quartic	large	0770.	.0752	.0943	.1005	6260.	.1040	.0824	.0794	.11113	.1144	.1233	.1187
L	k	σ_n	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}	θ_n^*	θ_n^{**}
6	Normal	small	.0818	.0516	.0757	8080.	.0793	.0891	.0881	.0524	.0837	.0881	.0911	.0971
6	Normal	medium	.0640	.0452	9690.	.0732	.0735	.0804	.0681	.0461	.0794	0819	.0921	.0922
6	Normal	large	.0633	.0459	.0719	.0752	0.0763	.0823	.0672	0469	0826	.0848	0960	0926
6	Epanech.	small	.1125	.0622	.0955	.1020	0995	.1115	.1200	.0610	6860.	.1052	.1045	.1166
6	Epanech.	medium	0690.	.0472	.0713	.0754	0.0756	.0830	0739	.0488	.0816	.0845	.0933	.0944
6	Epanech.	large	.0633	.0458	.0714	.0748	.0757	.0819	.0672	.0467	0819	.0842	.0954	.0949
6	Quartic	small	.1213	.0635	6660.	.1062	.1049	.1162	.1288	.0617	.1018	.1080	.1084	.1201
6	Quartic	medium	.0743	.0491	0729	0775	6920.	.0854	0799	.0505	.0824	0820	.0921	.0951
6	Quartic	large	.0634	.0455	7070.	.0741	.0748	.0812	.0673	.0464	6080.	.0833	.0941	860.
	1	1 0000		:		-								

 $n = 100, \theta_0 = .5, 10, 000$ Monte Carlo replications. All kernel arguments were scaled down by their respective standard deviation.

V CONCLUSION

This paper has used the notion of local differencing to construct an estimator for fixed-effect panel data models with nonparametric unobserved heterogeneity. In line with the traditional estimators, the fixed-effect 'ignorance' towards the models' unit-specific latent components that underlies first-differencing the data allows for the unobserved heterogeneity to take on very general forms. The resulting local GMM estimator was shown to be consistent and asymptotically normal. It complements the recent results on identification of random coefficients in linear panel data models with exogenous covariates. With some work, the approach can be extended to a more general class of nonlinear panel data models.

Several questions and extensions of potential interest immediately suggest themselves. A pertinent question from an applied point of view is how to best choose the smoothing parameters. Ideally, a data-driven selection method should be found that determines the bandwidth in an optimal manner. Indeed, the Monte Carlo results suggest the smoothing used to be of substantial importance in small sample. A larger study of the sensitivity of the local GMM estimator to the form of the incidental functions and the stochastic behavior of their arguments would also be desirable. Related to this comment, it appears of interest to categorize all the information content in the data in terms of nonlinear moment conditions under additional assumptions such as homoskedasticity. Such an exercise in the spirit of Ahn and Schmidt (1995) would allow for efficiency gains and, arguably, improved finite-sample performance. Given the increased attention to cross-sectional dependence in the panel data literature—see Sarafidis and Wansbeek (2010) for an up-to-date review—it might be worthwhile investigating the potential for local first-differencing in the presence of factor structures in the disturbance processes. It seems reasonable to expect that the GMM estimators for such problems can be modified in a manner that is analogues to what was discussed here.

A final remark related to incorporating unit-specific non-stationary effects, such as time trends or time dummies. These are important empirical phenomena. Clearly, local first-differencing would break down under such a scenario as these variables, when transformed, are bounded away from zero. This is no different than in the binary-choice setting of Honoré and Kyriazidou (2000). An interesting extension to the model considered here, therefore, would be to construct a hybrid version that combines local differencing with a parametric random-coefficient specification such as the ones studied in Chamberlain (1992) and Arellano and Bonhomme (2010).

REFERENCES

- Ahn, S. C. and P. Schmidt. (1995). Efficient estimation of models for dynamic panel data. *Journal of Econometrics*, 68:5–27.
- Alvarez, J. and M. Arellano. (2003). The time series and cross-section asymptotics of dynamic panel data estimators. *Econometrica*, 71:1121–1159.
- Arellano, M. (2003). *Panel Data Econometrics*. Advanced Texts in Econometrics. Oxford University Press.
- Arellano, M. (2004). Modelling optimal instrumental variables for dynamic panel data models. Unpublished manuscript.
- Arellano, M. and S. Bond. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. *Review of Economic Studies*, 58:277–297.
- Arellano, M. and S. Bonhomme. (2010). Identifying distributional characteristics in random coefficients panel data models. Unpublished manuscript.
- Arellano, M. and O. Bover. (1995). Another look at the instrumental variable estimation of error-components models. *Journal of Econometrics*, 68:29–51.
- Browning, M., M. Ejrnæs, and J. Alvarez. (2009). Modelling income processes with lots of heterogeneity. *Review of Economic Studies*, forthcoming.
- Chamberlain, G. (1992). Efficiency bounds for semiparametric regression. *Econometrica*, 60:567–596.
- Donald, S. G. and W. K. Newey. (2000). A jackknife interpretation of the continuous updating estimator. *Economics Letters*, 67:239–243.
- Gozalo, P. and O. Linton. (2000). Local nonlinear least squares: Using parametric information in nonparametric regression. *Journal of Econometrics*, 99:63–106.
- Hall, A. R. (2005). Generalized Method of Moments. Advanced Texts in Econometrics. Oxford University Press.
- Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50:1029–1054.
- Hansen, L. P., J. Heaton, and A. Yaron. (1996). finite-sample properties of some alternative GMM estimators. *Journal of Business and Economic Statistics*, 14:262–280.
- Hastie, T. and R. Tibshirani. (1993). Varying-coefficient models. *Journal of the Royal Statistical Society, Series B*, 55:757–796.
- Holtz-Eakin, D., W. K. Newey, and H. S. Rosen. (1988). Estimating vector autoregressions with panel data. *Econometrica*, 56:1371–1395.
- Honoré, B. E. and E. Kyriazidou. (2000). Panel data discrete choice models with lagged dependent variables. *Econometrica*, 68:839–874.
- Lewbel, A. (2007). A local generalized method of moments estimator. Economics Letters, 94:124–128.
- Mundlack, Y. (1961). Empirical production function free of management bias. *Journal of Farm Economics*, 43:44–56.
- Mundlack, Y. (1978). On the pooling of time series and cross section data. Econometrica, 46:69–85.
- Powell, J. L. (1987). Semiparametric estimation of bivariate latent variable models. Unpublished manuscript.
- Sarafidis, V. and T. Wansbeek. (2010). Cross-sectional dependence in panel data analysis. Unpublished manuscript.
- Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. *Journal of Econometrics*, 126:25–51.