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Abstract

In this paper, we construct a nonparametric estimator of the distributions of latent factors
in linear independent multi-factor models under the assumption that factor loadings are
known. Our approach allows to estimate the distributions of up to L (L + 1) /2 factors
given L measurements. The estimator uses empirical characteristic functions, like many
available deconvolution estimators. We show that it is consistent, and derive asymptotic
convergence rates. Monte-Carlo simulations show good finite-sample performance, less
so if distributions are highly skewed or leptokurtic. We finally apply the generalized
deconvolution procedure to decompose individual log earnings from the Panel Study of
Income Dynamics (PSID) into permanent and transitory components.

JEL codes: C13, C14.

Keywords: Factor models, nonparametric estimation, deconvolution, Fourier trans-
formation, earnings dynamics.



1 Introduction

In this paper, we consider linear multi-factor models of the form: Y = AX, where Y =
(Y1, ..., YL)T is a vector of L measurements, X = (X7, ..., XK)T is a vector of K unobserved
and mutually independent latent factors, and A is a L x K matrix of parameters. The
analysis is conducted assuming that the number of factors and the matrix of factor
loadings A is known. The contribution of this paper is to provide a nonparametric
estimator of the distribution function of X from an i.i.d. sample {Y,,n=1,..., N} for
up to K = L(L + 1)/2 factors.

Applications of factor models are numerous in social sciences, and economics in par-
ticular. For example, the standard model of individual earnings dynamics is a linear
multi-factor model with four additive components, or factors: a deterministic function of
regressors, a fixed effect, a persistent autoregressive component, and a transitory moving-
average component (e.g., Hall and Mishkin, 1982, Abowd and Card, 1989). Factor vari-
ances are usually estimated based on second-order moment restrictions. Estimating the
whole distribution of factors is less common but still useful. Lillard and Willis (1978)
compute transition probabilities into and out of poverty (“first passage times”). More
recently, economists have shown considerable interest in estimating complete earnings
models to feed life-cycle consumption models (e.g., Guvenen, 2007a, 2007b, Kaplan and
Violante, 2008). Estimating factor distributions nonparametrically in those models is
thus of substantial interest.!

Horowitz and Markatou (1996) were the first to propose fully nonparametric esti-
mators for linear models with error components, with an application to earnings panel
data. They show that, unlike in the standard semiparametric deconvolution problem,?
every component of the convolution can be identified and nonparametrically estimated if
repeated observations of the dependent variable are available. The basic setup that they
study has two measurements (two observations per individual), one common factor and
two independent errors with identical and symmetric distribution.?

Horowitz and Markatou consider several extensions of this simple framework, namely

!The usual approach is to adopt flexible parametric distributions for the individual effects and the
innovations (e.g., Chamberlain and Hirano, 1999, Hirano, 2002, Geweke and Keane, 2000, 2007).

2For references on the classical deconvolution problem, see Carroll and Hall (1988), Zhang (1990),
Fan (1991), and Carroll et al. (1995).

3Susko and Nadon (2002) consider the same setup and estimator as Horowitz and Markatou with an
application to gene expression. More recently, Delaigle, Hall and Meister (2008) have proposed a modified
kernel estimator that may achieve, under smoothness conditions, the same asymptotic performance as
if the distribution of errors were known.



stationary AR or MA errors, or asymmetric errors.* However, it is not easy to see how
to extend the basic approach in a systematic way to analyze more complex models.
In this paper, we extend their approach and develop a general method for estimating
factor distributions in linear factor models with many independent factors with different,
unrestricted distributions.

Our estimator generalizes the one proposed in another important paper by Li and
Vuong (1998). Li and Vuong consider the same basic setup as Horowitz and Markatou,
with repeated measurements and independent errors. They allow measurement errors to
display different, possibly asymmetric, distributions.® Their estimator of the densities of
the common factor and the independent errors builds on an identification result due to
Kotlarski (1967) (also stated by P. Rao, 1992, p. 21).

Székely and C. R. Rao (2000) generalize Kotlarski’s identification result to the general
case of linear multi-factor models Y = AX with known A and unrestricted, independent
unobserved factors X. They show that the L(L + 1)/2 second-order partial derivatives
of the characteristic function of Y deliver a system of functional identifying restrictions
allowing to identify a maximal number of K = L(L + 1)/2 factors. Our estimator
is based on this system of identifying restrictions, replacing the characteristic function
of the vector of measurements by an empirical analog, and using a smoothing kernel
with trimming. Our estimator requires no optimization, unlike parametric approaches.
Moreover, we provide a simple method to choose the trimming parameter, inspired by
the “plug-in” method proposed in Delaigle and Gijbels (2004).

We compute upper bounds to the rate of uniform convergence of the estimator, as
is usual in the deconvolution literature. However, we depart from most of the previous
literature, and in particular from Li and Vuong (1998), by allowing the supports of factor
distributions to be unbounded. The rate of convergence of our estimator depends crucially
on the smoothness of factor distributions, and may be very slow. When the characteristic
function of the factor of interest has fatter tails than the characteristic functions of other
factors, the rate may be logarithmic in N. These slow rates of convergence do not
indicate a flaw in our approach but are instead a fundamental property of nonparametric

deconvolution estimators. Indeed, logarithmic rates are the best convergence rates that

“These extensions are developed in Horowitz (1998, p. 125-136).

SLi and Vuong’s estimator has been used by Li et al. (2000) in the context of a structural auction
model, and in Li (2002) in a nonlinear errors-in-variables model. Hall and Yao (2003) proposed an
estimator that is closely related to Li and Vuong (1998). Related methods have been used by Schennach
(2004a, 2004b) in the context of nonlinear regression and nonparametric regression, respectively, when
the regressors are measured with error, and by Hu and Ridder (2007) in order to deal with measurement
error when marginal information is available.



can be attained in some circumstances (Carroll and Hall, 1988, Fan, 1991).

Despite the slow asymptotic rates of convergence, Monte Carlo simulations are en-
couraging. When the true factor distributions are normal or Laplace, we find moderate
biases and tight confidence bands. Interestingly, our generalized deconvolution estimator
has the same finite-sample bias and variance as a standard deconvolution estimator as-
suming that all factor densities are known except the one to be estimated. Moreover, it
achieves comparable finite-sample performance to the estimators of Horowitz and Marka-
tou (1996) and Li and Vuong (1998) in the basic setup with two measurements. We also
find that the shape of factor distributions strongly influences the performance of the es-
timator. In particular, the estimation of factor distributions is more difficult when these
distributions are skewed or leptokurtic.

We apply our methodology to individual earnings data from the PSID. We model the
residuals of log earnings on individual covariates as the sum of an individual effect, a
random walk and a white noise, and estimate the distributions of innovations from first
differences, instead of earnings levels as in Horowitz and Markatou (1996).% Our results
show that both shocks exhibit more kurtosis than the normal distribution. We use the
model to analyze the respective roles of permanent and transitory shocks in earnings
mobility, and to correlate the variance of earnings shocks to job mobility. In particular,
we find that frequent job changers face more permanent and more transitory earnings
shocks than job stayers.

The outline of the paper is as follows. Section 2 presents the model and assumptions.
In Section 3, we provide a simple proof of the identification result in Székely and Rao
(2000), that we use in Section 4 to construct an estimator of factor densities. In Section
5, we prove the consistency of the estimator and discuss convergence speed. Sections 6
display Monte Carlo simulations. Section 7 presents an application to earnings dynamics.

Section & concludes.

2 Model and assumptions

2.1 Model

The main features of the model are summarized in the following assumption (A" denotes

the matrix transpose of matrix A):

6Note that Horowitz and Markatou assume independent shocks with identical symmetric distribu-
tions. As they use CPS data, which is a two-year panel, possibilities for identifying complex error-
component models are extremely limited.



Assumption A1 We consider the following basic setup:

1. X, = (an,...,XnK)T,n =1,...,N, are N independent copies of a vector X =
(X1 eeny XK)T of K real valued, mutually independent, and non degenerate random
variables, with zero mean and finite variances. Vectors Xy, ..., Xy are unobserved

to the econometrician and are called factors.

2.Y, = (Ynl,...,YnL)T,n = 1,....,N, are N independent copies of a vector Y =
(Y1, ..., Y2)" with zero mean. Vectors Y1, ..., Yy are observed and are called mea-

surements.

3. Y = AX |, where A = [ag] is a known L x K matriz of scalar parameters and any

two columns of A are linearly independent.

Remark 1. It is usual to denote as U instead of X a factor variable that appears in

only one equation (an error).

Remark 2. Measurements are demeaned. Obviously, factor distributions are only iden-

tified up to a location parameter. We therefore normalize the factor means to 0.

Remark 3. Assuming that factors have finite variances implies that the characteristic
functions of factors Xj are twice differentiable (Lukacs, 1970, Theorem 2.3.1.). This
property is instrumental in the construction of the characteristic functions of factors
from that of the vector of measurements. However, it is not a necessary condition for

identification, as shown by Székely and Rao (2000).

Remark 4. We assume that factor loadings are known to the researcher. Alternatively,
one could assume that a root-/V consistent estimator of A is available. The asymptotic
results derived in this paper would remain unchanged, as we find convergence rates of

density estimators that are slower than root-N.

With K < L, the distribution of X is trivially identified as that of A~Y, where A~ is
a pseudo inverse of A. The aim of this paper is to propose a general method to estimate
the distributions of factors when there are more factors than measurements (K > L).
This situation arises naturally if there are L common factors and L errors, as in standard
factor analysis.

The empirical application that we shall later consider deals with earnings dynamics.

The standard model assumes that log earnings residuals can be decomposed into a fixed



effect, a persistent component and a transitory component (e.g., Hall and Mishkin, 1982,

Abowd and Card, 1989):

4

Wy = fotyl+yh, n=1,.,N, t=1,.,T, (1)
Unt = Ynpo1tEns t2>2 (2)
yrrl;t = Tt (3)

(4)

M1 = Mur =0,

where w,; is the residual of a regression of individual log earnings on a set of strictly
exogenous regressors,’ f, is the fixed effect, y!, is the persistent component, usually
modelled as a random walk, and y, is the transitory shock/measurement error, modelled
as a white noise. Innovations €,; and 7,,, are mutually independent and independent over
time.

The model considered in Horowitz and Markatou (1996) is a simplified version of
model (1)-(4), without the permanent component (g,; = 0), and with i.i.d. transitory
shocks 7,,;, which in addition are assumed symmetrically distributed.

Unlike Horowitz and Markatou (1996), we shall not attempt to estimate the distribu-
tion of the fixed effect f,. The existence of an autoregressive component makes earnings
levels depend on an initial condition that may be correlated with f,. As is usual in the
literature on earnings dynamics (e.g., Abowd and Card, 1989, Meghir and Pistaferri,
2004), we instead difference out unobserved individual fixed effects. For example, setting

T = 4 to simplify the presentation:

Wp2 — Wnp1 1 0 €n2
Wp3 — Wp2 = -1 1 ( In2 ) + En3 . (5)
Wp4 — Wp3 0 -1 T3 €n4

This model satisfies our setup with L=T—-1=3, K =21 —3 =25, and

Yn = (wn2 — Wnp1, Wp3 — Wn2, Wnpq — wnB)T s
X—n = (7777,27 Nn3s €En2; En3, 8n4)T )
1 0 1 0O
A = -1 1 0 10
0 -1 0 0 1

Most of the literature on earnings dynamics focuses on estimating the variances of

permanent and transitory shocks in models similar to this one. In comparison, we here

"See Horowitz and Markatou (1996) for a formal treatment of cases where the dependent variable is
the residual of a prior regression. Their analysis supposes strictly exogenous and bounded regressors,
and root-NN consistent estimates of the regression coefficients.



address the more difficult task of nonparametrically estimating the full distributions of

these shocks.

2.2 Assumptions

Given the assumptions of linearity and independence, it will be convenient to work with

characteristic functions. We make the following additional assumption.

Assumption A2 The characteristic functions of factor variables X1, ..., Xk have no real

ZEros.

This assumption is very common in the literature on nonparametric deconvolution
(see Schennach, 2004a, and references therein). The characteristic functions may have
complex zeros if factors have bounded support. Real zeros arise in the case of symmetric,
bounded distributions, such as the uniform.

Next, let Ay denote the kth column of matrix A, for k € {1, ..., K}. Then,

K
Y =AX =) AX;,
k=1

and the variance-covariance matrix of Y is thus
K
Var (Y) = A Var (X) A" = Z Var(X;)ARA7L, (6)
k=1
as factors are independent, hence uncorrelated.
Let vech be the matrix operator that acts on symmetric matrices like the standard

vec operator except that it only selects the components below or on the diagonal. For

example, if B = [bij] is 3 X 3 symmetric:

vec (B) = (b11,b12,b13,b12,b22,b23;b13;b23,533),
vech (B) = (bn,512,513,522,523,1333)-

As Var (Y) is symmetric, one can reexpress the set of second-order restrictions in (6) as

vech (Var (Y)) = ) Var(X;) vech (AzAy) (7)
i Var(X;)
Var(Xg)



where

Q = [vech (A;AT), ..., vech (AxATL)] .

Matrix Q has L(L +1)/2 rows and K columns. A generic row is [ag1am1, .., Gox @] for
Im=1,...,L ¢ <m.
Given A, factor variances are obviously identifiable only if the following assumption

holds true.
Assumption A3 Matriz Q has full column rank K < L(L +1)/2.

Note that Q could have rank less than K if two columns of A were proportional, a
case that is ruled out by Assumption Al. Also, it is easily seen that Assumption A3 is

equivalent to assuming that:
rank ([A; ® Ay, ..., Ax ® Ak|) = K,

where ® denotes the Kronecker product, and where matrix [A; @ A, ..., Ax ® Ag] is
sometimes referred to as the Kathri-Rao matrix product of A by itself (Kathri and C.
R. Rao, 1968).

2.3 Examples

Example 1: The classical measurement error model.

Yi = aX + Ul: (8)
}/2 = X + UQ;

has
Y = (}/la}/?)T, X = (Xa UlaU2)Ta
a2 10
A:(‘i‘é?), Q=| o 00
1 01
So Q has full rank 3 unless o = 0, in which case the first and third columns of A are

identical. The identification of « in model (8) was studied in Reiersol (1950).

Example 2: A simple spatial model.

Yi = X1 + pXyo + pX5 + Uy,
ng = le + X2 + ,0X3 + UQ, (9)
Y3 = pXi + pXo + X3 + Us,



has

Y = (KJ}/QJYE’))T7 X:(X17X27X37U17U27U3)T7

1 p2 p> 100

1 ppl00 ppszOOO
A=|p1p010], q=|~ P ~ 000
1001 po1 pt 010

P2 prP 1 001

One verifies that Q has rank 6 unless p € {—2,0,1}. If p = 0 or p = 1 then some
columns of A are proportional, so Q does not have full column rank. If p = —2, Q has

rank strictly less than K = 6, although any two columns of A are linearly independent.

3 Identification of factor distributions

In this section, we derive the identifying restrictions that will be used for estimation in
the next section. A sketch of the arguments below can be found in Székely and Rao
(2000, remark 6, p. 200).

3.1 Notation
Let us denote the characteristic function (c.f.) of Xj as
ox, (1) = ]E(eiTX’“) , TeR
= /ei”ka (x)dz, TER,
where fx, is the probability density function (p.d.f.) of Xy, and i = /—1.

As previously noted, X having finite variance, ¢x, is well defined and everywhere
twice differentiable. Moreover, as ¢, is nowhere vanishing, the cumulant generating
function (c.g.f.) of Xj, i.e. the logarithm of its characteristic function, is also well
defined and everywhere twice differentiable.® We denote the c.g.f. of X}, as

KX, (T) = In Px, (T) , TER,
= In [IE (e”X’“)} , TeR

The density is uniquely determined by the characteristic function by the inverse Fourier

transformation (for x in the support of Xj):

fr(e) = o [ ox, () dr, (10)

8Note that, for identification, it suffices to assume that the set of zeros of factor c.f.’s is Lebesgue-
negligible, see e.g. Carrasco and Florens (2007).



In particular, it follows from (10) that if the c.f. of X} is identified, then its p.d.f. is also
identified.
We similarly denote the multivariate c.f. and c.g.f. of Y, which are functions that

map R’ into the complex plane, as

oy (t) E (eitTY) .t € RE,
ky(t) = In [IE (eitTY” .t € RE
We will make extensive use of the derivatives of ky. Let Oyky (t) denote the ¢th
partial derivative of ky (t), and 02, Ky (t) the second-order partial derivative of ky (t)
with respect to ¢, and t¢,,. We also denote as Vky (t) = [O¢ky (t)] the gradient vector,
and as VV ™ ky (t) = [02 Ky (t)] the Hessian matrix.
3.2 Identifying restrictions

Because of a well-known property of characteristic functions, the c.g.f. of a linear
combination of independent random variables is equal to the same linear combina-
tion of their c.g.f.’s. Specifically, as factors are assumed mutually independent, for all

t= (tl, ...,tL) € RL,
K
k=1
First-differentiating equation (11) yields:

Vey (t) = Z Ky, (tTAL) A

If K > L there are more functions «'y, than partial derivatives dyxy. To obtain an

invertible system, we differentiate once more:
Z K%, (tTAg) AzAL.
As VV 'Ky (t) is symmetric, we may as well rewrite this set of restrictions as

vech (VV'ky (t)) = Zn (t"Ay) vech (ALAY)

KXl (tTAl)
= Q : : (12)
K'SI(K (tTAK)



Note that, evaluated at t = 0, equation (12) yields the covariance restrictions (7). The
independence assumption on factor variables, which is more restrictive than uncorrelat-
edness, yields many more restrictions on factor c.g.f.’s, one for each value of t € RL.
Equation (12) shows that, if Q has full column rank (Assumption A3) and if factors
are independent and not only uncorrelated, the second derivatives of the c.g.f.’s of factor
variables are identified. Namely, inverting (12), we obtain
K, (tTA)
: = Q vech (VV'ky (t)), (13)
k%, (tTAK)

where Q™ is a pseudo inverse of Q, e.g. Q™ = (QTQ)f1 QT.
Let 7 € R, and let k € {1,..., K'}. System (13) offers many overidentifying restrictions

for n’)’(k (7). Indeed, there are many ways to choose t such that tTA; = 7. A possible

TAL
ATAL"

asymptotic arguments in Section 5. We shall refer to Ay as our “preferred direction of

70
0TA’

choice is to take t = We will provide a motivation for this choice based on

for

integration”. However, this direction is by no means unique. Any choice of t =
0 € RE\ {0}, will also work.
Let Q, denote the kth row of Q™. For any direction 8 € R“\{0} and 7 € R,
_ T 70
K, (1) = Qy, vech (VV Ky <0TAk)> :

The c.gf. of X then follows by integrating twice this equation. Two constants of

integrations are readily available: «'y (0) = iEX; = 0, as factors have zero means, and

kx, (0) = 0, because a c.f. is equal to one at zero. Hence,

Kx, (T) :/0 /0 Q) vech (VVTK)Y (0¥Zk>) dvdu. (14)

Equation (14) can be used for estimating factor characteristic functions and densities, as

we explain in the next section.

3.3 Example 1: The measurement error model

In the case of model (8), we have:

Ky (t1,t2) = kx (aty 4+ t2) + Ky, (t1) + Ko, (L2) ,

and
a%lliy (tl, tg) OZQ 1 0 K,’)I( (Ozt1 + tz)
vech (VVTK,Y (t)) = ky(ti,ta) | =| a 0 0 kg, (t1)
6%2/{3( (tl, tg) 1 0 1 li’tlh (tg)

10



This yields:

K (aty + t2) 0 ot 0 0% ky (t1,t2)
li’lljl (tl) = 1 —Q 0 8%2/<cy (tl, tg) . (15)
I{sz (tz) 0 —O!_l 1 8%2#;\( (tl, tg)

The common factor. Let us set a =1 for comparability with previous results in the

A _ (1T :
) ATA = (2, 2) and kx (7) can be thus represented as:

/ / 812/<;Y dvdu (16)

Alternatively, using @ = (0, 1) as direction of integration yields:
kx (1) = / / 055Ky (0,v) dvdu
0o Jo
= / 81K)Y (0, U) du. (17)
0

This is the expression used in Li and Vuong (1998) and Schennach (2004a, 2004b), which

literature. Then

requires only one single differentiation and integration. However, it is not true in general
that the double integral in (14) can be simplified into a simple integral by using an
appropriate direction of integration, as Example 2 below will show.

Remark that, for any «, our preferred direction of integration is A; = («, 1)T. So,
when |a gets larger, Y) contributes more to kx relative to Y. This makes intuitive sense,

as Y7 becomes more informative about X.
A, T
Errors. For Uy, ATA; = (1,0)", and

ko (T) = /T /u (87, — 8%,) Ky (v,0) dvdu
= Ky (7,0)— / Osky (u,0) du
= Ky (T / Oty (u,0)d (18)
Li and Vuong use a slightly different formula:

Ko, (T) = Ky, (1) — /OT 016y (0, u) du. (19)

3.4 Example 2: The spatial model

We then reconsider the case of model (9). We obtain, for the first factor:

0%y + 073 — (p+ 1) 03
(1=p)(p+2)p

11

K:I),(l (tl + pt2 + ,Ot?,) = Y (tl, tz, tg) ,



and, for the first error:

Oh = (p+p°+1) (91, +05) + (20 + 1) 03
(p+2)p

Ky, (t) = y (t1,12,13) .

Set th=7T-— ptg — ,Otg Then,

0% + 0% — (p+1) 03
Kx; ( / / [ 12 /Ep+ 2)1)0 23 Ky (v — pty — ptg,tz,t3)] dvdu.

One easily verifies that, even when ¢y = t3 = 0, the double integral does not simplify to

a single integral.

Lastly, in this example our preferred solution is

2 2 T
kx, (T / / % + O —(p+1) 823/<a (vi(l’ ) )] dvdu.

Y(p+2)p 1+2p?
Here also, this solution has intuitive appeal when |p| increases.

4 Estimation

We here introduce our estimator of factor densities. Asymptotic theory is in the next

section.

4.1 Characteristic functions

Given an i.i.d. sample {Y7,..., Yy} of size N, with Y,, = (Y,1, ..., YnL)T, we first estimate
ky and its derivatives by empirical analogs, replacing mathematical expectations by

arithmetic means:
Ry(t) = In (EN [eitTY]) ,

Ex [}/geitTY]

——

agliy(t) = ZW = aZEY(t):
and
— Ex [Y}YmeitTY} Ex |:Y'eeitTYi| Ex [YmeitTY} -
aﬂm’{Y(t) = Ex [eitTY} + Ey [ez‘tTY] Ey [ez’tTY} - aquiy(t),

where Ey denotes the empirical expectation operator: Eyg(Y) = + SN 9(Y,). For
example:

N
1 .
exp (Ky(t)) = N > et Yr teRE,

n=1

is the empirical characteristic function of Y.

12



Then, for any & € R” (the direction of integration), we estimate factor cumulant

generating functions as:

R (1) = [ [ @ veet [vv%y <¥—0>}dvdu, reR (20)
o Jo 0" A,

Equivalently, the characteristic function of X} is estimated as

Px, (1) =exp (/ / Q,, vech [VVT (Ovik)] dvdu) , TER (21)

Our estimator of ¢y, depends on the direction of integration 8. We suggest to choose

0 = A (our preferred choice). More generally, it is possible to average various alternative

estimators over a distribution W of 0’s:

Px, (1) = exp ( / / Q; vech [ / VV Ry <”0 )dW(O)} dvdu). (22)

In the Monte-Carlo section, we will show the performance of an estimator based on

W =3, 0s;, where the 8;’s are drawn from N (Ay, 0%I1) for some o.

4.2 Density functions

The probability distribution function (p.d.f.) of X is obtained from its characteristic
function by the inverse Fourier transformation (10). However, it is well-known that the
integral in (10) does not converge when the characteristic function is replaced by its
empirical analog, using @y, instead of vy, (e.g., Horowitz, 1998, p. 104).

To ensure convergence we truncate the integral on a compact interval [—Ty,Ty],
where Ty tends to infinity with the sample size N at a rate that will be discussed in the
next section. The p.d.f. of X} is then estimated as

~ 1 T irma

Foo) = 5 [ou () e o 00m (23)
where Py, () is given by (22). In equation (23), ¢y is a function supported on [~1,1]
that is the Fourier transform of a kernel H of even order: ¢y (u) = [ €™ H(v)dv.?

The kernel H allows to smooth the estimation of the den51ty, especially in the tails.
We shall use the second-order kernel

Hy(v) = 48;(;i($) <1 B g) B 144;;1;(33) (2 B E) ’

which corresponds to:

0, (u) = (1 — u2)3 - H{u € [-1,1]}.

9A kernel of order q is a function H, not necessarily nonnegative, such that v* H(v) is integrable for
all k <gq, [v*H(v)dv=0for all k < q—1, and [v7H(v)dv # 0. See, e.g., P. Rao (1983), p. 40.

13



The second-order kernel Hs has often been used in the deconvolution literature (see,
e.g., Delaigle and Gijbels, 2002, and references therein). Higher-order kernels may also
be used in place of Hs, such as the infinite-order kernel H.,(v) = sin(v)/v used in Li and
Vuong (1998), that yields ¢, _(u) = 1{u € [~1,1]}. Higher-order kernels reduce the bias

of the density estimate at the cost of higher variance.

Numerical issues. Computing the density estimator ka in practice requires integrat-
ing three times: twice to recover the cumulant generating function of X, and once to
perform the inverse Fourier transformation. It is well-known that usual fast integration
techniques such as Romberg’s method may give very misleading results when computing
the inverse Fourier transform, because the function to integrate is strongly oscillating
(Delaigle and Gijbels, 2007). For this reason, we use as integration method the slow
but reliable trapezoid rule, with a large number of nods. In our experiments, using 200
equidistant nods (over the interval [—Ty, Tx|, where the choice of Ty will be discussed
below) gave very good approximations.

In addition, our estimator of the characteristic function of X} given by (21) or (22)
does not, guarantee that |$Xk‘ is less than one, as a proper c.f. should be. In practice,

we suggest to set Py, (1) = 0 whenever |Px, (7)| > 1.1.

5 Asymptotic theory

In this section, we study the asymptotic properties of the estimator and show that ka
given by (23) is a uniformly consistent estimator of fx,, for all £ =1, ..., K. All mathe-
matical proofs are in the appendix.

The study of the asymptotic properties of our estimator is in two steps. First, we
characterize the properties of the estimator of factor characteristic functions @y, (7).
Then, we study their inverse Fourier transforms, that is the density estimators ka'

We characterize upper bounds to the rates of uniform convergence of the estimators.
Besides providing sufficient conditions for consistency, this asymptotic analysis is useful to
understand the properties of factor distributions which improve convergence. Moreover,

it will allow us to motivate our preferred direction of integration.

5.1 Characteristic functions
The c.f. estimator Py, involves means of functions of measurements of the form ety

Y'Y, or YyV;,e Y. Because $y, (7) is then obtained by integration over t, a uniform
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consistency result is needed for Exe®® Y, ExyYse'® ¥, and EyY;Y,,e® Y. The next lemma
extends Horowitz and Markatou’s Lemma 1, that deals with Ey eitTY, to empirical means
of Y'Y or Y;Y;,et'Y.

Li and Vuong (1998)!° assume that factor distributions have bounded support. This
may be quite restrictive in some cases, as in the case of earnings data which display
particularly wide ranges of values. Here we relax this assumption and allow for unbounded
support.

For any vector t = (t,...,t,)" € RE (L > 1), we use the sup norm: |t| = max; [t.

Lemma 1 Let X be a scalar random variable and let'Y be a vector of L random variables.
Define Z = (X, YT)T. Let F denote the c.d.f. of Z (E denotes the corresponding
expectation operator) and let Fy (resp. Ey ) denote the empirical c.d.f. (resp. mean)
corresponding to a sample Zy = (71, ..., Zy) of N i.i.d. draws from F. Assume that the
moment generating functions of X? and |XY| exist in some neighborhood of 0. Define
filz,y) = ze®'Y, for t € RY. Then,

sup |Eyfi —Efi| = O(en) a.s.

[t|<Tn

if Ty and ey are chosen such that

Ty = BN:, B, >0,

In N
en = AP AS 821 L1 +0).

Lemma 1 shows that (v/N/InN) is an upper bound to the rate of convergence on
[—Tn,Tn], provided that Tx does not grow faster than some power of N. The proof
requires that the moment generating functions (m.g.f.) of X? and |XY| exist in some
neighborhood of the origin. This implies in particular that every moment of X? and
|XY| is finite. This is a restrictive assumption, which could be relaxed by assuming the
existence of the first J > 2 moments of |X| and | XY/, at the cost of a lower rate of
convergence in Lemma 1.1

Remark also that existence of the moment generating function is less restrictive than

assuming that factors have bounded support. Under this assumption, Li and Vuong

0 Horowitz and Markatou (1996) do not assume support boundedness. However, as pointed out by
Hu and Ridder (2008), their reference (p. 164) to theorem 2.37 of Pollard (1984) is inexact, and support
boundedness is implicitly needed.

1'When only the existence of the first J > 2 moments of |X | and |XY] is assumed, a strict upper
bound to the rate of convergence in Lemma 1 is given by: N2~27.
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1
(1998) obtain a better bound O [(W) 2], as support boundedness allows to use the

law of iterated logarithm as in Csorgd (1981, Theorem 1).2
Lemma, 1 applies to Ey [lf}geitTY} and Ey [YgYme"tTY} , for every £,m =1, ..., L, if the

following assumption holds.

Assumption A4 All variables Y7, YiYy, and oYY, for £,m, 5 in {1,..., L}, have their

m.g.f.’s existing in some neighborhood around 0.

Assuming that this assumption holds, the following uniform consistency result for the

characteristic functions of factors follows.

Theorem 1 Suppose that there exists an integrable, decreasing function g : Rt — [0,1],
such that |y (t)| > g(|t]) for |t| large enough. Then:

N A
[7[<Tn

with ey and Tx as in Lemma 1, and with the additional restriction that the right-hand

0

oTA, TaenO (1) as.  (24)

‘)3 dW (6)

side in (24) is o(1) for consistency.

Theorem 1 provides an argument for our preferred choice for the directions of integra-
tion @ = A,. As norms are equivalent in finite dimensional spaces and as g is decreasing,
-3
0 .
OT—A‘) . ThlS
13 So, the

one can replace the sup norm of by its Euclidian norm in g (T N

oTA
quantity is minimum for @ = A, which minimizes the Euclidian norm of

eTA
fastest rate is attained when W assigns all mass to @ = Aj. In Section 6, we will also

provide finite sample evidence that supports this choice of direction of integration.'*
In the rest of this section, for expositional simplicity, we consider the special case

where T assigns all mass to one single 6, and redefine g such that (24) becomes

sup ‘goXk ngk(T)‘ = O(1) as. (25)

7| <T g(Tn)3

with the additional restriction that ( )3 is o(1) for consistency.

1214 and Vuong’s argument, p. 146, that boundedness is not a strong assumption as it can be achieved
by transforming Y suitably and assuming that the transformed Y follows the linear factor model, is a
bit contrived. Economic theory usually strongly conditions the form of the model and statistical theory
has little say in that construction process.

13Tndeed, Cauchy-Schwarz inequality implies that (8" A;)? < (87 8)(AT Ay), so (622)2 > (:TE::)Q.
k

4 However, a drawback of our preferred direction of integration is that it is not invariant to a linear
transformation of the model (as BY = BAX) unless the transformation is a rotation (B orthogonal).
Hence, our preferred direction of integration depends on the model representation, which is arbitrary.
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Theorem 1 shows that the rate of uniform convergence for ¥, depends on the tail of
the characteristic function of the vector of measurements, as characterized by function g,
which measures the smoothness of the distribution of Y.!® Furthermore, the estimation
error increases with 7'y because of the integration step. More estimation errors add up if
one has to integrate an estimate of Kil)'(k over a wider range. Hence, the rate of convergence
decreases when Ty grows, both because of a wider range of integration and of division
by small values of the characteristic function.

Lastly, it is instructive to compare the convergence rate of Theorem 1 to the conver-
gence rates obtained in simpler models by other authors. The general form of our esti-
mator proceeds from the second-order differentiation of kv (t) and a subsequent double-
integration.'® If no differentiation were required (as in Horowitz and Markatou, 1996, or
Delaigle et al., 2008) or if first-order differentiation sufficed (as in Li and Vuong, 1998),
then both ¢(Ty) and Ty would be raised to a smaller power. This is why these authors
obtain faster convergence rates of the estimators of factor characteristic functions. Note,
however, that previous work on deconvolution focuses on much simpler models than the
general multi-factor models that we consider. In the present case, differentiation and

integration are likely to be necessary steps in the construction of the estimator.

Special cases. In a seminal contribution to the standard deconvolution theory with
only one unknown factor distribution, Fan (1991) distinguished two classes of distribu-
tions: ordinary smooth, for which the c.f. converges to zero at a polynomial rate (e.g.,
Laplace or Gamma), and supersmooth distributions, for which the c.f. converges to zero
at an exponential rate (e.g., normal). Here we illustrate the previous results in the case
of ordinary smooth and supersmooth factor distributions.

Let us first consider the case where all factor distributions are ordinary smooth:
gty =t t>0, B> 1. (26)

Taking Ty = N% and ey = Aln N/+/N, as in Lemma, 1, we obtain

Tien In N
oIy NI (21)

5 Technically, the estimation error on ¢ x, decreases with g(Tv) because the estimator is based on
the differentiation of ky (t) = Inpy (t). A term 1/ |p+ (t)| thus appears, which is bounded by 1/g(|t]),
hence by 1/g(Tw) if |t| < Tn and |t| large enough.

6Hence, T is squared in (25) because of the double integration, and g(Tn) is cubed because of the
second-order differentiation (42) of the logarithm (+1) of the characteristic function of Y.
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1
2+38°

an upper bound to its rate of convergence being given by (27). Hence, a smoother

and for any 0 < the estimator of factor c.f. converges uniformly on [—Ty,Tn],

distribution of Y (a larger value of ) requires more trimming (a lower 4).

Let us then consider the case where factor distributions are supersmooth, so:

g(t) =t Poe Pt >0, 8,8, > 0. (28)
Then, because of the restriction that ﬁ—;% = 0(1) in Theorem 1, Ty cannot increase at
polynomial rate any longer. One has to restrict Ty to a logarithmic function of N in order
to ensure uniform convergence of 9, on [T, Ty]. For example, taking Ty = (6 In N )5 L
the rate becomes:
TRen _ [A5(2+3ﬂ0)ﬂl] (In V)12 +380)8: )
gy (Tn)? N3>—380 ’
and the estimator is consistent if § < %. Again, a smoother distribution (5 larger)

requires more trimming (lower §).

5.2 Density functions

The following theorem gives conditions under which ka converges uniformly to fx, when

the sample size tends to infinity.

Theorem 2 Suppose that there exists an integrable, decreasing function ¢ : Rt —
[0,1] such that |px(T)| = ‘H,ﬁil Ox, (Tk)‘ > (7)) for T =(71,....7x)" and for |T| =
max (|7¢|) large enough. Suppose also that there exist K integrable functions hy : Rt —
[0, 1] such that hy, (|7]) > |g0X,c (T)| for all 7. Lastly, let H be a kernel of even order q > 2
with Fourier transform satisfying g (t) =0 for |t| > 1. Then:

7 Iven 6.
sup | f ) = f (@) = %00
+7 v2hy(Jv|)dv + 2/ hi(v)dv a.s.
TN —Tn Tn
(30)
where g(t) = g(L|A|t), with |A| = max; ;(|a;;|), C is a positive constant, and where
en and Ty are as in Lemma 1, with the additional restriction that gT(JS%IiI)V:.; = o(1) for
consistency.

The estimation error on fx,, in sup norm, has two components. The first component

directly results from the estimation error on the characteristic function ¢y, 17 The second

n particular, T is cubed in (30) instead of squared because of the integral in the inverse Fourier
transform.
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component results from the fact that the inverse Fourier transform yielding ka depends

on the smoothing kernel . For example, with ¢y (u) = ¢y_(u) = 1{u € [-1,1]}, then
1 —tvT
ka (x) = % € (pXk(’U)d’U,
1 [T

fx,(x) = o o e‘me“oxk(v)dv,

and thus

P (@) = fr, (2) = = / e [y (v) — o, ()] do— © / " e Re [y (v)] dv.

21 J_py T J1y

One thus has to ensure that f;; e Re [¢x, (v)] dv tends to zero when N tends to
infinity. Interestingly, this term is decreasing in T, and it is smaller the thinner the tails
of x, -

The presence of the second component on the right-hand side of (30) has two conse-
quences. First, although we emphasized in the previous section that more trimming (a
lower value of Tl) is necessary to ensure a faster convergence of the estimator of ¢y, on
[—Tn,Ty], less trimming (a larger Ty) is required to reduce the second component of
(30). This tension between two conflicting objectives arises in standard nonparametric
deconvolution, and explains why asymptotic convergence rates are often slow. Second,
although the presence of smoother factor distributions makes deconvolution more diffi-
cult, a smoother distribution of X also makes the second component in (30) smaller,

improving the convergence rate of the density estimator.!8

Special cases. We illustrate the results in the case of ordinary smooth and super-
smooth factor distributions. To minimize the complexity of the discussion, we focus on
the kernel oy (u) = ¢y _(u) = 1{u € [-1,1]}. Remark that ¢y _ is an infinite-order
kernel (¢ = 00), so that the term ﬁ f_Tj"fN v?hy(|v])dv is zero in (30).

Let us start with ordinary smooth factors. As Xj is ordinary smooth one can choose:

Let Ty = N3, § > 0. Then,

+o00 N—g(a—l)
/ hy(w)dv = ——.
T,

N

18This also happens in the standard deconvolution problem: Y = X + U, U known, where the
performance of the estimator of the density of X improves when the smoothness of U decreases, and
when the smoothness of X increases.
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So the convergence rate of ka satisfies, using (27):
sgp ka (x) — ka(x)‘ =0 (%) +0 <m> : (31)

Remark that the first term on the right-hand side of (31) increases when § increases,
as a larger Ty reduces the convergence rate of the characteristic function. However, the
second term on the right-hand side of (31) decreases when ¢ increases, as less trimming
decreases the quantity | f;; e ™" Re [¢x, (v)] dv|. Hence, intuitively, there should exist
an optimal degree of trimming.

Remark also that the convergence rate of ka is polynomial in N. For example,
by choosing § arbitrarily close to 1/(2 4+ 38 + «), we see that an upper bound to the
convergence rate of the density estimator is given by:

sup  F o) = (o) =0 ().

z N #¥68+2a
So the rate is faster when « increases (smoother Xj), as long as 3 (the smoothness of
Y) stays constant. Moreover, it is easy to see that, with § > «a, the convergence rate of
ka is never faster than (Ns/InN) (obtained when a = 8 — +00). This rate is lower
than the best rate of standard nonparametric deconvolution (which, according to Fan,
1991, p. 1265, is N%), and it is also lower than the rate derived by Li and Vuong (1998),
who find a strict upper bound of N § in the ordinary smooth case.!® Slower rates are the
price to pay for allowing for many unobservable components.

Interestingly, when factor X} is ordinary smooth but Y is supersmooth we obtain
much lower rates of convergence. This case may arise if one of the factor variables
(different from X}) has a supersmooth distribution.?’

Let Ty = (61n N)?t. Then:

+o00 51 N—ﬂ1(a—1)
[t = LR
Ty a—1

which yields, using (29):

R (In N)1+3(1+ﬁ0)/3’1 1
Slip ka(.T) - ka(.I)‘ =0 ( N%—3/55 +0 W ) (32)

This rate is logarithmic in N, because of the presence of the second term on the right-hand
side of (32).

19Li and Vuong’s estimator requires one first-order differentiation and one integration. This case yields

:(1’2}1?5’20 (1) instead of gT(JE};I;’SO (1) in (30). This explains the difference between N'/® and N'/6.

20For example, in the simple deconvolution model Y = X + U with X ordinary smooth and U
supersmooth, ¢y (t) = px (t)¢y(t) has thin tails because of the presence of ¢y, hence Y is supersmooth.
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Logarithmic rates of convergence are also obtained in the classical deconvolution prob-
lem with one unknown factor, when the distribution of the factor of interest is ordinary
smooth while the distribution of the error is supersmooth (Carroll and Hall, 1988, Fan,
1991). Finding optimal convergence rates for the multi-factor model we consider in this
paper is a difficult task, which we do not address.

Before ending this discussion, note that additional convergence rates can be derived
in the cases where X}, follows a supersmooth distribution, although the expressions are

more involved.

5.3 Practical choice of the trimming parameter Ty

We use a method recently developed in deconvolution kernel density estimation to choose
the trimming parameter 7. In the context of the deconvolution problem with known
error distribution, Delaigle and Gijbels (2002, 2004) propose to base the choice of the
bandwidth on an approximation of the Mean Integrated Squared Error of the kernel
density estimator. Comparing different approaches, they find that a “plug-in” method
works well in many simulation designs.

We adapt Delaigle and Gijbels’ method to the case of a multi-factor model Y = AX
as follows. For k € {1, ..., K}, let 8 be a direction of integration. Then

'Yy 0TAX 0TA
= =X X, 33
0TA, 6TA, 2 (33)

We treat the distribution of »_, %?f—‘z’sz in (33) as if it were known. In this case, the
problem of estimating the density of factor X boils down to a deconvolution problem
with known error distribution, and the method of Delaigle and Gijbels (2004) can be
applied. A detailed presentation of the “plug-in” method and of our bandwidth selection

procedure is given in Appendix D.

6 Monte-Carlo simulations

In this section, we study the finite-sample behavior of our density estimator.

6.1 Measurement error model

We start with the estimation of the density of X in the measurement error model (8)

with @ = 1. Namely:
Yi=X+U;
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where Uy, U, and X are mutually independent, and have mean zero and variance one.
We first consider the case of normal errors U; and U,, and various choices of distri-

bution for X. In Figure 1 we report the outcomes of 100 simulations of samples of size

N =1000. In the first column we estimate the density of X using our method, assuming

that all three distributions are unknown, and with our preferred choice of direction of

integration (%, %) In the second column we estimate the density of X from:
Yi+ Y, U, + U-
1;' 2 _ x4 1;‘ 2’

assuming that % has known c.f. @u,+v, (u) = exp (—3u?). We use kernel deconvolu-
2

tion for estimation, with the second-order kernel H, for smoothing, and choose the trim-
ming parameter T using the “plug-in” method of Delaigle and Gijbels (2004). Lastly, in
the third column we show the Gaussian kernel density estimator of X for comparison, us-
ing Silverman’s rule of thumb for choosing the bandwidth. Obviously, this last estimator
cannot be computed with real data as X is unobserved. On each graph, the thin solid line
represents the population density of X, and the thick solid line is the pointwise median
of simulations. The dashed lines delimit the 10%-90% pointwise confidence bands.

Both nonparametric deconvolution methods estimate normal factor distributions well.
However, the density at the mode is significantly biased—the true value being systemati-
cally outside the confidence band. They both display very similar biases, and the same
confidence bands, only moderately wider than when X is observed without error. This
suggests that repeated measurements can be very effective at providing information on
the distributions of unknown latent variables. Also, the informal choice of bandwidth
that we use appears to give very good results, as good as for the deconvolution problem
with known error distribution for which it was initially designed.

For non Gaussian factor distributions, we observe that the deconvolution estima-
tors have some difficulty to capture skewness and kurtosis. The Gamma(5,1) and
Gamma(2, 1) distributions have skewness .9 and 1.4, and kurtosis 4.2 and 6, respec-
tively. We see that the bias is larger in the second case. To further study the impact of
factor kurtosis on estimation we consider for X a two-components normal mixture that
has excess kurtosis equal to 100, that is: X ~ $03N(0,3) + 72N (0,43%). The bias is
also larger than in the case where X is normal, although the estimator does a good job
at capturing the peak of the density. Lastly, we generate a bimodal distribution as a
two-component mixture of normals with different means: X ~ IN(-2,1) + sN(2,1).

The estimator fails to capture the bimodality.?!

21Tt is worth noting that in these various designs, we experimented increasing the sample size to
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Figure 1: Monte Carlo estimates of fx in the measurement error model with normal
errors

Normal

Gamma(5,1)

Gamma(2,1)

= = T

Yy, Py, unknown Yy, , Py, known X observed

Note: Density of X in model (34). Thin line=true; thick=median of 100 simulations;
dashed=10%-90% confidence bands. “Normal mizture, unimodal” is 9N (0, 1) + 2= N(0, 438),
“Normal mizture, bimodal” is sN'(—2,1) + 2N(2,1). N = 1000.
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Table 1: MISE of various density estimators in the measurement error model

| fx fo,
Standard normal errors

1y 2 G | @

Normal .0011 .0052 .0050 | .0069
Laplace 0030 .025 .026 | .0045
Gamma(2,1) 0036 .026  .024 | .0044
Gamma(5,1) .0012 .011  .010 | .0062
Log-normal 099 .29 24 1 .0032

Normal mixture, unimodal || .0076 .020 .022 | .0040
Normal mixture, bimodal | .0024 .041  .049 | .0097
Standard Laplace errors

1 2 @) | @

Normal .0012 .0047 .0042 | .034
Laplace 0027 .018 .020 | .020
Gamma(2,1) .0030 .018 .018 | .019
Gamma(5,1) .0012 .0069 .0070 | .027
Log-normal .061 22 16 011

Normal mixture, unimodal || .0074 .016 .016 | .021
Normal mixture, bimodal | .0027 .029 .038 | .035

Note: See the note to Figure 1. (1) refers to the case where X is observed, (2) to the de-
convolution estimator with known error distributions, and (3) to our generalized deconvolution
estimator of fx. (4) refers to our estimator of fy,. N = 1000, 100 simulations.

In Table 1 we report the Mean Integrated Squared Error of various estimators fX of

fx, given by:
MISE =E [/ (fx(x) - fX(x)>2dx] .

In addition to the case of standard normal errors, we also report the results for Laplace-
distributed errors. X follows one of the five distributions of Figure 1, and may also be
Laplace or log-normally distributed. The estimators we consider are: a kernel density
estimate of the density when the factor is observed (column 1), the deconvolution es-
timator with known error distributions (column 2), and our generalized deconvolution
estimator (column 3). Our estimator of fy, is reported in column (4).

Table 1 confirms that the performance of our estimator is comparable to that of the
deconvolution estimator with known error distributions. When errors are distributed as
Laplace random variables, theory suggests that the deconvolution problem should be less

difficult, and the MISE is indeed slightly lower than in the case of normal errors. Still,

N =10000, and still obtained a sizeable bias (although reduced compared to the case N = 1000).
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the differences between the cases of ordinary smooth and supersmooth errors do not seem

very large.

6.2 Comparison with other estimators

Here we still consider the measurement error model (34), using the same setup as above,
and compare our estimator to the ones of Horowitz and Markatou (1996, HM hereafter)
and Li and Vuong (1998, LV hereafter). For all estimators we use the smoothing kernel
H, and select the trimming parameter Ty using the “plug-in” method of Delaigle and
Gijbels (2004).

The first two columns of Table 2 display the MISE of the HM and LV estimators.
Column (3) gives the MISE of our estimator using our preferred direction of integration
(3,3) (LV use (0,1)). Lastly, column (4) shows the MISE of an estimator that averages
over the directions of integration, see (22), using ten draws of a bivariate normal distrib-
ution with mean (3, ) and standard deviation .10. We show the MISE of the estimators
of the density of X (the factor) and of that of U; (the first error).

Our estimator performs very well compared to HM and LV. The MISE of fX is
consistently lower for our estimator, except when X is lognormally distributed, in which
case all estimators do badly. For the error U;, the MISE of our estimator is comparable
to that of HM, and generally lower than that of LV. Also, the estimator that averages
over various directions of integration performs similarly or slightly worse than the one

using our preferred direction of integration.??

In Section 5 we argued that choosing the direction of integration that minimizes the

0
0TA,

evidence in support of this claim.

norm of yields faster convergence rates. We now provide some direct Monte Carlo

Figure 2 presents Monte Carlo simulations for estimates of the c.g.f.’s of Y and X in
the measurement error model (8). The setup is as before (100 simulations). In panels a)
and b), we plot empirical estimates of Reky (0,7) and Rery(F, ), for 7 € R*. We set
the scale on the z-axis equal to 72. The c.f. of the standard normal distribution being
e~*/2_ the true value of the c.g.f. is then a straight line with slope —1 in panel a), and
—3/4 in panel b).

The c.g.f. of Y is well estimated over a wide range but the precision is worse at

T T

higher frequencies (see also Diggle and Hall, 1993). This explains why Rery(3, %) is

better estimated, for given 7, than Reky (0,7). In panel c), we report estimates of the

22We also tried to average directions of integration around the origin, and obtained much larger MISE.
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Table 2: Comparison with other estimators in the measurement error model

H MISE of fx
H ® 6 0
Normal .0090 .0079 .0049 .0056
Laplace 035 .037 .026 .026
Gamma(2,1) 031 .035 .024 .028
Gamma(5,1) .016 .013 .011 .0087
Log-normal .24 23 .35 .25

Normal mixture, unimodal | .030 .024 .019 .020
Normal mixture, bimodal 062  .063 .048 .051

MISE of fy,
n @ 6 @

Normal .0062 .0096 .0066 .0072
Laplace .0042 .0056 .0046 .0051
Gamma(2,1) .0043 .0051 .0046 .0057
Gamma(5,1) .0056 .0069 .0054 .0064
Log-normal .0039 .0027 .0026 .0041

Normal mixture, unimodal || .0048 .0058 .0047 .0055
Normal mixture, bimodal .0084 .017 .0099 .0084

Note: See the note to Figure 1. (1) refers to the estimator in Horowitz and Markatou (1996),
(2) to the estimator of Li and Vuong (1998), (3) to our generalized deconvolution estimator,
and (4) to a modification of our estimator which averages 10 different directions of integration,
see the text. Errors are standard normal. N = 1000, 100 simulations.
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Figure 2: Monte Carlo simulations for the estimated characteristic functions in the mea-
surement error model

Q Q
\
N
AN N
- ‘\:\ - \::\
N \\ \\\*
A \\\\ N \~\\
~ ~ SO ~
\\ \~\ S ~~\
N -,
\\ S N \\~
~ \\~ So ~~~
N ~ Ss
_2 \\ ~\\~\ -2 \\\ ~
N ~ ~
~ ~ ~
\\ ~~\~~- \\
N
N
N
N
N
-3 Y -3
0 1 2 3 0 1 2 3
T T
a) Relﬁy(O,T) b) Relﬁly(Q,?)
a T a
..\".\\\
RN B
4 A T -1 DS
\'\, B - s ST
\, . -
“ M Teeea
. I A TS
\.\. =
\\~ T
-2 .\' -2 I-I.
“\_ o~ I-'-
N '-I
\\ N ‘-I
\“'//’ ‘...
= ‘ ‘ ‘ ‘ = ‘ ‘ ‘ ‘ \
0 1 2 3 4 5 0 1 2 3 4 5
_ (11
c) Rekx (1), 8 =(0,1) d) Rekx(7), 0= (35, 3)

Note: Estimates of ky and kx is the measurement error model (84). 72 is plotted on the -
azis, c.g.f.’s on the y-axis. Thin line=true; thick=median of 100 simulations; dashed=10%-90%
confidence bands. N = 1000.

27



c.g.f. of X obtained by Li and Vuong’s method; that is: integrating along the direction
(0,1). Panel d) shows the results of our preferred method, integrating along the direction
(3,3)- The c.gf. of X is better estimated (more precisely and with less bias) by the
second method.

6.3 Spatial model

We then consider the spatial model with L = 3 and K = 6:

Yi = 2X3 + Xo + X5 4+ U
o = Xi + 2X + X3 + U (35)
Y; = X7 + Xo + 2X3 + Us,
where Xy, k =1,...,3, and Uy, k =1, ..., 3, are mutually independent. This corresponds
to model (9) with p =1/2.

All factor densities belong to the same parametric family. We only let their variances
differ: the variances of X, Xy and X3 are equal to 1, while U;,U, and Uz have either
variance 1 (first column in the figure), 4 (second column), or 16 (third column). The
sample size is N = 1000, and the number of simulations and the conventions used in
graphical display are the same as for the measurement error model.

Figure 3 presents the results. We see that when errors U;, U, and Us have moderate
variance (1 or 4) the density of X, is well estimated. The results are comparable to the
ones obtained in Figure 1, with a slightly larger bias. When error variances increase to
16, the density of X; becomes badly estimated.

For other distributions, namely Gamma or mixture of normals, we generally obtain
worse results than for the measurement error model (34). This is confirmed by Table 3,
which shows the MISE of the density estimates of X; and U;. Remark that, when o2
increases, the performance of fxl worsens while that of fUl improves.

Estimating 6 factor densities using 3 measurements is of course more difficult than
estimating 3 factor densities using 2 measurements. Yet, in the case of moderate error
variances the shapes of the densities are reasonably well reproduced. This suggests that
nonparametric deconvolution techniques can be successfully applied to difficult problems,
where the number of factors one is trying to extract is large relative to the number of

available measurements.
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Figure 3: Monte Carlo estimates of fx, in model (9)

Normal

Gamma(5,1)

Gamma(2,1)

= = = l H s -y = = 1 H s = = = l H s

Note: Density of X1 in model (35). Xy, k =1,2,3, are drawn from the same distribution with
mean zero and variance 1. Uy, k = 1,2,3, are drawn from the same distribution as X1, Xo, X3
with mean zero and variance o®. “Normal mizture, unimodal” is %N(O, %) + &N(D, 4%),
“Normal mizture, bimodal” is AN'(—2,1) + 1N(2,1). N = 1000, 100 simulations.
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Table 3: MISE of the generalized deconvolution estimator in the spatial model

[ MISE of fyx, MISE of fy,
0’=1 0°=4 0°=16|0’=1 o0*=4 0%>=16

Normal .013 .022 .047 .040 .0096 .0049
Laplace .039 .059 .098 .081 .038 .028
Gamma(2,1) .036 .053 .092 072 .039 027
Gamma(5,1) .018 .028 .058 .050 .019 .0094
Log-normal .35 .30 40 .32 15 12

Normal mixture, unimodal || .030 .044 10 078 .028 .022
Normal mixture, bimodal .074 077 .098 .098 .068 .055

Note: All factors follow the same distribution up to scale: X1 to X3 have unitary variance,
while Uy to Us have variance 0. N = 1000, 100 simulations.

7 Application to earnings dynamics

In this section, we apply our methodology to estimate the distributions of permanent

and transitory shocks in a simple model of earnings dynamics.

7.1 The data

We use PSID data, between 1978 and 1987. Let y,; denote the logarithm of annual
earnings, and let z,; be a vector of regressors, namely: education dummies, a quadratic
polynomial in age, a race dummy, geographic indicators and year dummies. We compute
the residuals of the OLS regression of Ay, = Yt — Ys—1 O Axpy = Ty — Tpy1, and
denote them as Aw,;. In the sequel we shall refer to Aw,; as wage growth residuals,
while keeping in mind that they reflect changes in wage rates and hours worked. We
select employed male workers who have non missing observations of Aw,; for the whole
period, and for whom wage growth does not exceed 150% in absolute value. We obtain
a balanced panel of 624 individuals, with 9 observations of wage growth per individual.
Descriptive statistics are presented in the first column of Table 4.

Wage growth residuals Aw,,; are the measurements that we use in this application.

We shall also consider moving sums of wage growth residuals, defined as

s
Aswm = Wnpt — Wpt—s = E Awn,t—k—l—l; for s = 1, 2,
k=1

Table 5 shows the marginal moments of these variables, as well as their first three au-

tocorrelation coefficients. Focusing on the first row, we see that the variance of Ajw,,

increases with s. This indicates that wage differences between two points in time are
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Table 4: Means of variables

Job changes | Al None One/two Three/more
Annual earnings (/1000) || 36.4 35.3 36.7 37.0
Age 374 39.6 37.3 36.1
High school dropout 21 22 23 16
High school graduate .04 .59 bl b4
Hours 2194 2191 2199 2191
Married .85 .84 .84 .85
White 70 .63 .69 75
North east 15 15 13 A7
North central .26 30 .24 27
South 43 44 51 .36
SMSA 59 .60 .55 .61
Number 624 150 234 240

Note: Balanced subsample of 624 individuals extracted from the PSID, 1978-1987. “None”=no
job change; “One/two”= one or two job changes; “Three/more”= more than three job changes.

Table 5: Moments of wage growth residuals

Wage growth

| t/t+1 t/t+2 t/t+3 t/t+T

Variance
Skewness
Kurtosis
Autocorrelation 1
Autocorrelation 2
Autocorrelation 3

055 073 .086 137
-.077 .062 -.073 457
10.3 11.2 8.0 4.8
-.33 21 .35 -
-.06 -.34 .08 -
-.02 -.06 -.34 -

Note: Balanced subsample of 624 individuals extracted from the PSID, 1978-1987. Wage growth

residuals are the OLS residuals of first-differenced log earnings on regressors.

Wage growth

between t and t + s is obtained as the sum of s consecutive wage growth residuals.

more dispersed the longer the lag. Another feature of Table 5 is the high kurtosis of

wage growth residuals. This evidence of non-normality is consistent with previous find-

ings on U.S. data.

7.2 Model and estimation

We consider the model outlined in Section 2:

Awnt

Ent + Nnt —

Ayrll?t + Ayg‘ta

i=1,..,N, (36)

Mnt—1s
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where y!, follows a random walk: y”, = yb, | + ¢,;, where &, and 7, are white noise
innovations with variances o? and o2. As 1, and e, are not separately identified, we
normalize 7,,; to zero. Likewise, we set 7,7 to zero. We shall refer to yI, as the permanent
component and to 7, as the transitory component.

Permanent-transitory decompositions are very popular in the earnings dynamics lit-
erature, see among others Hall and Mishkin (1982) and Abowd and Card (1989). There
is a growing concern that the distributions of wage shocks might be non normal (e.g.,
Geweke and Keane, 2000). To assess this issue, Horowitz and Markatou (1996) estimate
a model of earnings levels with an individual fixed effect and a transitory i.i.d. shock.
There is no permanent shock in their model. Their estimation procedure is fully non-
parametric. However, one particular implication of their model is that Aw,;, Aswp,, ...
are identically distributed. This is clearly at odds with the evidence presented in Table
5. The introduction of a permanent component easily permits to capture the increase in
Var(A,wy;) when s increases.??

Turning to estimation, the earnings dynamics model (36) is a linear factor model
with L = T — 1 equations and K = 2T — 3 factors (see Section 2). The estimator
given by (23) thus yields consistent estimates of the densities of all shocks. We estimate
these densities using the second-order kernel H; and Delaigle and Gijbels’ (2004) method
to select the trimming parameter T. We then average all estimated densities.?* This
has the advantage that, if the stationarity restrictions do not hold, one still estimates
consistently the average of shock densities over the period. This is appealing in our
context, as there is ample evidence that the U.S. economy was subject to large changes
in the wage distribution at the beginning of the 1980’s. Likewise, different variances can
be estimated for all shocks, and averaged ex post, yielding estimates 6? and 3,27. We use

Equally Weighted Minimum Distance to estimate those variances.

7.3 Results

The estimated average variance of permanent shocks is 8? = .0208, and the estimated
average variance of transitory shocks is 82 = .0185, with standard errors of .0029 and
.0017, respectively.?> According to these estimates, permanent shocks account for 36%

of the total variance of wage growth residuals.

ZNotice that model (36) implies that: Var (Aswy;) — Var (Awy;) = (s — 1) 02. The marginal distrib-
utions of Awy; and Aswy,, thus contain all the necessary information to identify o2 and a%.

24We verified that averaging c.g.f’s instead yielded very similar results.

25Standard errors were computed by 1000 iterations of individual block bootstrap.
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Figure 4: Nonparametric estimates of the densities of standardized permanent and tran-
sitory shocks.

density
density

Q.5 0.5

Q.0

permanent shock transitory shock

a) Permanent shock b) Transitory shock

Note: Density estimates of €t and 1,,;, both standardized to have unit variance. Density
estimate (thick); 10%-90% confidence bands of 100 bootstrap simulations (dashed); standard
normal density (thin).

Figure 4 presents the estimated densities, obtained by averaging density estimates
over the period. The permanent and transitory components are shown in panels a) and
b), respectively. In each panel, the thick solid line represents the density of the shock,
standardized to have unit variance, and the thin solid line represents the standard normal
density, that we draw for comparison. The dashed lines delimit the bootstrapped 10%-
90% confidence band.?®

Figure 4 shows that none of the two distributions is Gaussian. Both permanent and
transitory shocks appear strongly leptokurtic. In particular, they have high modes and
fatter tails than the normal. Moreover, the transitory part seems to have higher kurtosis
than the permanent component.?” Lastly, both densities are approximately symmetric.

As noted above, we estimate the densities of permanent and transitory shocks by
averaging the period-specific density estimates. Figure 5 shows the density estimates of
the non-standardized permanent and transitory shocks in every period. In particular, we

see that the density of permanent shocks tends to be more peaked in the second half of

26Remark that, as we do not derive the asymptotic distribution of the nonparametric estimator, the
validity of the bootstrap in our context is difficult to verify.

2"We checked that varying the trimming parameter Ty around the value that we obtained using
Delaigle and Gijbels’ (2004) method had little effect on the estimate f., but a stronger effect on f,, tail
oscillations increasing with T'y.
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the period, suggesting an increase in kurtosis, although the density shapes are not well

estimated enough to be conclusive.

7.4 Fit

Figure 6 compares the predicted densities of A w,;, s = 1,2, 3, using the model and the
estimated densities of permanent and transitory shocks, to kernel density estimates. In
panels al) to c1), the thin line is a kernel estimator of the density Asw,; (s = 1,2,3). The
thick line is the predicted density. The dashed line shows the density that is predicted
under the assumption that shocks are normally distributed. The predicted densities of
Aswy, s = 1,2, 3, were calculated analytically by convolution of the estimated densities
of e, and n,,.

Figure 6 shows that our specification reproduces two features apparent in Table 5:
the high kurtosis of wage growth residuals, and the decreasing kurtosis when the time
lag increases. Note that the high mode of the density is remarkably well captured by our
nonparametric method, even in the case of Azw,;. In contrast, the normal specification
gives a rather poor fit.

We then present in Table 6 the moments of wage growth residuals, as in the data and
as predicted under normality and nonparametrically. We see that variances are severely
underestimated, reflecting a rather bad estimation of the density in the tails. Moreover,
the estimated kurtosis is 5.6, that is significantly non-normal but very different from the
kurtosis of the distribution to be fitted (10.3). Overall, our method captures the shapes
of the densities of wage growth variables very well, but fails at fitting the tails, which
leads to underestimating higher moments.

To fit the moments better, we use the nonparametric estimates ﬁ and ﬁ] as a guide to
find a convenient parametric form for factor densities. Figure 4 suggests that a mixture
of two normals centered at zero may work well in practice. We thus estimate model (36)
under this parametric specification for both ¢,; and 7,,. Parameters are estimated by
Maximum Likelihood, using the EM algorithm of Dempster, Laird and Rubin (1977).
Panels a2) to ¢2) in Figure 6 show the fit of the model. The shape of the densities is very
well reproduced. Moreover, the last three rows of Table 6 show that the normal mixture
specification yields much better estimates of the variance and kurtosis of wage growth
residuals.

Notice that the normal mixture model was already used by Geweke and Keane (2000)

to model earnings dynamics. Our results strongly support this modelling choice.
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Figure 5: Density estimates of the non-standardized permanent and transitory shocks in
every period

Permanent shocks

:

1979* 1980 1981
1982 1983 1984
1985 1986 1987*
Transitory shocks
1979 1980 1981 1982
1983 1984 1985 1986

Note: Density estimates of ent and n,, in every period. In the first and last periods, the
“permanent” shock includes the permanent and transitory components (indicated by *).
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Figure 6: Fit of the model, densities of wage growth residuals.

4.0 4.0
35 35
30F 30}
251 25}
% 20 g 20
151 150
1.0} 1.0k
05 05|
0.0 . . . 0.0 . . .
-1.5 -1.0 -0.5 Q.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 Q.0 0.5 1.0 1.5
wage growth, t/t+1 wage growth, t/t+1
al) wage growth ¢/t + 1 a2) wage growth ¢/t + 1, normal mixture
3.0 3.0
251 25}
20 20}
% 1.5 % 151
1.0} 1.0k
05 05|
0.0 . . . 0.0 . . .
-1.5 -1.0 -0.5 Q.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 Q.0 0.5 1.0 1.5
wage growth, t/t+2 wage growth, t/t+2
bl) wage growth ¢/t + 2 b2) wage growth ¢/t + 2, normal mixture
3.0 3.0
251 251
20 20}
% 1.5 % 151
1.0} 1.0k
05 05
0.0 . . . 0.0 . . .
-1.5 -1.0 -0.5 Q.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 Q.0 0.5 1.0 1.5
wage growth, t/t+3 wage growth, t/t+3
cl) wage growth ¢/t + 3 c2) wage growth ¢/t 4+ 3, normal mixture

Note: Graphs al), bl) and c1) show the fit of wage growth residuals calculated over one, two
and three years, respectively, using the generalized deconvolution estimator. Graphs a2), b2)
and c2): densities are estimated by Mazimum Likelihood, where shocks follow two-component
miztures of zero mean normals. Predicted density (thick); kernel density estimate (thin); normal

(dashed).
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Table 6: Fit of the model, moments of wage growth residuals

Wage growth | t/t+1 t/t+2 ¢/t+3

| Data
Variance .055 073 .086
Skewness -.08 .06 -.07
Kurtosis 10.3 11.2 8.0
Predicted, nonparametric
Variance .037 .053 .069
Skewness -.02 -.02 -.02
Kurtosis 5.6 4.6 4.2
Predicted, normal
Variance .057 .076 .096
Skewness 0 0 0
Kurtosis 3 3 3
Predicted, normal mixture
Variance .058 072 .086
Skewness 0 0 0
Kurtosis 6.3 5.3 4.8

Note: See the note to Figure 6. Moments are predicted using the predicted densities shown in
Figure 6, by computing the integrals numerically.

37



Figure 7: Conditional expectations of shocks given wage growth residuals

-1.0 -05 00 a5 0 -1.0 -05 00 a5 0 -10 -05 0.0 05 10
7 wage growth, t/t+1 7 wage growth, 1/t+2 7 wage growth, t/t+3

a) Wage growth, ¢/t + 1 b) Wage growth, ¢/t + 2 c) Wage growth, ¢/t + 3

Note: See the note to Figure 6. a): conditional expectation of eny (thick) and 1y, — 0y, 41 (thin)
given Awnt; b): ent+ent1 (thick) and npy —np ;o (thin) given Agwnt; ¢): ent+éent—1+Ent—2
(thick) and 0,y — 1y 43 (thin) given Azwpg.

7.5 Wage mobility

We then use the model to weight the respective influence of permanent and transitory
shocks in wage mobility. To this end, we compute the conditional expectations of the
permanent and transitory components of Asw,, s = 1,2, 3: ]E(Z 0 Ent—r|As wm) and
K (77nt - 77nt—s|Aswnt)-

To do so, we first compute the conditional distribution of permanent and transitory
shocks using Bayes rule. For example, the conditional density of the permanent shock

given wage observations is given by:

fe|Aw) = Je(e ) (Awle) _ (e) J fa(n) fo(Aw — € +n)dn
J @) f(bwle)de ffe 5) [ Fol) fo(Bw — & + ) dndE”

where f; is the p.d.f. of € and f, is the p.d.f. of . We proceed similarly for transitory

shocks 7,y — N1

Figure 7 plots these conditional expectations. We verify that the volatility of earnings
is more likely to have a permanent origin if s is large. In panel a), we see for example
that a log wage growth of +100% has a transitory origin for more than +60% and a
permanent origin for less that £30%. In panel ¢), we see that a change Azw,; of £100%

is almost twice more likely to be permanent than transitory.
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Table 7: Variances of the shocks by categories of job changers

Job changes || None One/two Three/more
| wage growth, t/t + 1

total .034 .039 .068
permanent .014 .016 .022
transitory .020 .023 .046
| wage growth, ¢/t + 2
total .041 .053 .089
permanent .025 .032 .053
transitory .016 .021 .036
| wage growth, t/t + 3
total .054 .063 108
permanent .037 .044 .076
transitory 017 .019 .032

Note: See the note to Figure 6. “None”=no job change in the observation period; “One/two”=
one or two job changes; “Three/more”= more than three job changes. Variances of wage
growth residuals (“Total”) and the variances of the permanent and transitory parts, conditional
on having experienced a given number of job changes.

7.6 Job changes

Finally, we address the issue of the link between the degree of permanence of wage shocks
and job-to-job mobility. It is notoriously difficult to identify job changes precisely in the
PSID (see Brown and Light, 1992), so we tend to think of this exercise as tentative. We
adopt the simplest criteria to identify job changes, setting the job change dummy equal
to one if tenure is less than 12 months.?® We then classify individuals into job stayers
(no job change during the period), infrequent job changers (one or two job changes) and
frequent job changers (more than three job changes). The last three columns of Table 4
in Appendix give descriptive statistics for these three groups of individuals.

Then we compute the densities of permanent and transitory shocks given wage growth
residuals, separately for each category of job changers by averaging within each group
the conditional densities that we have already calculated. Table 7 presents the variances
of permanent and transitory shocks for each mobility group. Focusing on the first three
rows we see that wage volatility, as measured by the variance, is higher for frequent job

changers. Moreover, these individuals are more likely to experience both permanent and

28Note that there were two “tenure” variables before 1987 in the PSID: time in position and time with
employer. We take the former as our definition of tenure.
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transitory wage changes. The transitory variance is about 15% higher for infrequent job
movers than for job stayers (.023 versus .020), and about 2.3 times higher for frequent
job movers (.046). At the same time, the permanent variance is about 15% higher for
infrequent job movers than for job stayers (.016 versus .014), and about 60% higher for
frequent job movers (.022). As permanent shocks accumulate over time while transitory
shocks do not, the difference in wage growth volatility increases with the length of time
over which wage growth is computed. For example, the variance of wage growth over ten
years is .16 (= .020 + 10 % .014) for an individual who stayed with the same employer
over the whole period, while it is about .27 (= .046 + 10 % .022) for an individual who
has changed job three times or more.

These results give some basis to the interpretation of permanent shocks to log earnings
as resulting for a large part from job changes.?® Nevertheless, identifying permanent
shocks with job changes is likely to be wrong for two reasons. First, part of the shocks
faced by job stayers is permanent. Indeed, the share of permanent variance in total
variance is higher for job stayers (40%) than for frequent job changers (30%). This finding
suggests that there might be other permanent wage movements, caused for example by
within-job promotions. Second, job changers also face more transitory shocks. Describing

precisely these effects requires modelling job change decisions together with wage profiles.

8 Conclusion

This paper provides a generalization of the nonparametric estimator of Li and Vuong
(1998) to linear independent factor models, allowing for any number of measurements,
L, and at most K = @ latent factors. On the theoretical side, the main lessons
of the standard deconvolution literature carry over to the more general context that we
consider in this paper. In particular, asymptotic convergence rates are slow, and it is
more difficult to estimate the distribution of one factor if the characteristic functions of
the other factors have thinner tails.

Our Monte Carlo results yield interesting insights. The finite-sample performance of
our estimator seems rather good, remarkably similar to the performance of the kernel
deconvolution estimator that assumes that the distributions of all factors but one are

known, and at least as good as alternative estimators proposed by Horowitz and Marka-

29Note that we do not identify the part of the wage growth variance that comes from differences in
hours worked from the one coming from differences in wage rates. Nor are we able to tell whether job
or individual-specific components are mostly responsible for the results.
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tou (1996) and Li and Vuong (1998) in the measurement error model. Moreover, the
performance critically depends on the shape of the distributions to be estimated, as we
find that it is easier to estimate distributions with little skewness or excess kurtosis.?’

In any case, identifying the distributions of more factors than measurements should
be viewed as considerably more difficult than the classical nonparametric deconvolu-
tion problem. Given the difficulty of the problem at hand, we view the results of our
simulations and the application as a confirmation that the generalized nonparametric
deconvolution approach that we propose can be successfully applied to a wide range of
distributions.

The empirical application shows that the permanent and transitory components of
individual earnings dynamics are clearly non normal. Predicting transitory and perma-
nent shocks for the individuals in the sample, we see that frequent job changers face
more permanent and transitory earnings shocks than job stayers. These results have
important consequences for welfare analysis. For example, savings and insurance could
be very different if the risk of large deviations is much higher than is usually assumed
with normal shocks. Of course, the model of earnings dynamics that we have considered
is very limited. One might want to add non i.i.d. transitory shocks and yet allow for
measurement error (as in Abowd and Card, 1989). We experimented with a MA(1) tran-
sitory shock without much success. It seems very difficult to nonparametrically identify
the MA(1) component from the PSID data. Thus, maybe the sample is not appropriate,
or a single non normal MA(0) transitory shock/measurement error is enough to describe
the PSID data.

Another interesting issue is the assumption of independence between factors that
we maintain throughout this analysis. Meghir and Pistaferri (2004) shows evidence of
autoregressive conditional heteroskedasticity in permanent and transitory components.
It is not straightforward at all to extend the study of the nonparametric identification

and estimation of factor densities in conditionally heteroskedastic factor models like:
=A b= b k=1,.,K
Ynt Ents gnt 0-(€nt—1)77nt7 PREES] 9

where 7,, = (n},,...,n%)T is a K x 1 vector of i.i.d. random variables. But this is a very

interesting problem for future research.

30In Bonhomme and Robin (2008), we show that skewness and peakedness are required for the matrix
of factor loadings to be identified from higher-order moments. There is thus a tension between obtaining
a precise estimate of factor loadings and a precise estimate of the distribution of factors in models where
second-order information is not sufficient to ensure the identification of the factor loadings.
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APPENDIX

A Proof of Lemma 1
(i) First, remark that

Ex ft — Efy = En Re(ft) — ERe(ft) + 4 [Ex Im(f;) — EIm(f4)]

and, for any T > 0,

sup |En f; — Efi| < sup |Exy Re(f;) — ERe(fi)| + sup [Exy Im(f;) — EIm(fy)].
[tI<T [t|<T [t <T

It will thus suffice to show that the proposition is true for the family of functions Re(f;)(z,y) =

zcos(tTy), t € RE, for it to be true for functions Im(f;) and f;. So, without loss of generality,

we prove the result for real functions f;(z,y) = z cos(t'y), using the same notation for f; and

its real part.

(ii) For any T, let G = {fi(z,y),|t| < T}. The first step of the proof is to find the
Li-covering number of G.3! For any couple (t1,t2),

< z(tly — t3y)|
< Y Jaye (te — tar)|
V4

Z |[zye| - [t — tof
¢

Lzy|-[t; —tof.

|z cos(tly) — zcos(tly) ‘

IN

AN

L
Discretize (=T, T)" into (%‘XY‘ — 1) points t; by cutting [-7,T] into equidistant seg-

ments of length m. Let gj(z,y) = :Ecos(t;ry). Then, for all t € [T, T]", there exists j
such that

En ‘X cos(tTY) — Xcos(tJTY)‘ < LEy |XY]|-|t —t;]
< e
It follows that the Li-covering number of G satisfies
TEN|XY]\"
N1(€,PN,Q)§C f y

where Py is the probability measure obtained by independent sampling from F, and C =
(2L)".

Note that although the covering number is indeed inversely proportional to a power of ¢,
Theorem 2.37 of Pollard (1984, p. 34) cannot be applied for three reasons. First, the upper
bound to the covering number depends on the sample Py via Ey|XY]|. Second, the functions
in G are not bounded because the support of X is unbounded. Third, eventually, one will index

31Let @ be a probability measure on S and F be a class of functions in £,(Q). For € > 0, the
covering number N (g, @, F) is the smallest integer m such that there exists functions g1, .., gm
in £1(Q) such that min; Eq ||f — g;|| < € for all f € F (Pollard, 1984, p. 25).
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T on N to make it go to infinity with V. A specific proof therefore has to be tailored to adjust
Pollard’s proof of Theorem 2.37 to our setup.

(iii) Equations (30) and (31) in Pollard (1984, p. 31) imply that, for a given sample Zy,
TEx|XY[\* Ne¢?
ZN} < 8C (M> exp [—%/ENXQ] . (A1)
€

as ENgJQ- < En X2 for all 7, and provided that VarEy fi < %. Now,

PT{ sup [Ex fi — Efg| > €
[t|<T

NVarEy fy = Var [X Cos (tTY)]
= E [X2 cos (tTY) 2] — [EX cos (tTY)] 2
< EX? =M, < .

So inequality (A1) is true for N > 85%.
Then, for all & > 0:

Pr{sup |]Eth—]Eft|>€} Pr{sup |En ft —Efe| > ¢
[t|<T

[t|<T

ExX? < k,Ex|XY| < kz}
x Pr{ExX? < k,Ex|XY]| < Kk}

+PT{ sup [En fi —Efg| > €
6} <T

Ex X% >k or Ey|XY]| > k}

x Pr{ExX? >k or Ex|XY| >k}

IA

PT{ sup |En ft — Efy| > €
o<1

ExX? < k,Ex|XY| < k}

+Pr{ExyX? >k or Ex|XY| >k},

where the last inequality results from bounding two of the four probabilities above by one.
To obtain a final inequality, use a general Chernoff bound:

Pr {]ENX2 >kor Ey|XY]| > k} = Pr{exp (IENXQ) > ek or exp (En|XY]) > ek}
2
< ]E[exp (IENX )] +kE[exp (]EN|XY|)]. (A2)
e
Now,
1 N
E[exp (IENX2)] = E|exp (N E:IX£>]

n=

- Lzl ()
- (s’

- e

denoting as M2 the moment generating function of X2. By assumption, My (t) exists for all
t in a neighborhood around 0. Hence all moments of X? are finite, and

Mx2 (1/N) =1 +EX?/N 4+ O(1/N?),
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so that
lim My> (1/N)" = exp (EX?).

N—oo

One can thus bound E [exp (EN X 2)} by 2exp (IEX2) for N large enough. The same argument
applies to E[exp (Ex | XY])].

Therefore,
Tk\" Ne? exp (EX?) + exp (E|XY])
Pr{ sup |[Enfi —Efs| >ep <8C(— ) exp|— +2 . , (A3)
It|<T € 128k e

for any N large enough that satisfies N > 841
&€

(iv) Lastly, index €,T and k by N, and suppose that ey tends to 0 and that T and ky
tend to infinity in such a way that

1
N
and " N2
TN N EN
%:exp{Lln( - ) 128kN} < 00. (A5)

A standard application of the Borel-Cantelli lemma then implies that

sup |En fi — Eft] < en, a.s.
[t|<TN

Details about the Borel-Cantelli argument for almost sure convergence can be found in Pollard
(2002, p. 34-35).

Condition (Ab) is satisfied if exp [L In (TQ’ ﬁN ) - ggg‘}’v ] decreases faster than 1/N. Let
InN
ey = A2 Ao,
N i

kv = (14+a)lnN,

with @ > 0 to satisfy condition (A4). Hence

N 2 2

N 4 InN.
128ky  128(1 + o)

Let also s
Ty = BNz, B, > 0.

Then,

Tnkn N&T?V B(1+a) L A2
L1 — =Lln| ——~ —(1+40)—— | InN
n( en ) osky P\ T )T ) T aga )

decreases faster than —In IV if
A? > 64[L(1+6) +2] (1 + ).

Whatever § > 0, one can thus choose any A > 8,/2 + L(1 + ).
This achieves to prove Lemma, 1.
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Remark. Compared to the proof of the law of the iterated logarithm (also referred to as the

“log log law”), it is the additional term L In ( 1 ]’;N that makes all the difference. This term
arises from the necessity to cover the set of functions G. If X and Y are bounded, then one
can proceed differently, and adapt the proof of Theorem 1 in Csérgd (1981) that uses the law
of the iterated logarithm.

B Proof of Theorem 1

In this proof and the next, all convergence statements are implicitly understood to hold almost
surely.
Here, we aim at bounding sup,, <z, |@x, (T) — x,(1)], where

Px, (1) = exp ( / / Q;, vech [ / VV TRy (”0 )dW(o)] dvdu)

for some distribution W. This will easily follow from bounding, for any ¢,m =1, ..., L,

v0 T (% Pky v0
_ dvdu) .
/ / Bedt, <0TAk)dvdu /0 /0 ey <0TAk) oo

(i) Fix t € RE. Denote o(t) = oy (t) = E[eitTY], bo(t) = E[neitTY] and &, (t) =

E[YgYmeitTY], for any £,m = 1,...,L. Then, Lemma 1 implies that, for all function f in
{(105 {Ipf}b {é.fm}e,m}:

Cém = Ssup
|7|<Tw

sup | F(6) = £(t)] = O (en).

[t|<Tn

with
s
Ty = BNz, B,§ >0,

In N
en = An—m,A>8\/2+L(1+6).

(ii) There exists ¢ such that |p(t)| > g(|t|) when |t| > c¢. As g is decreasing, then for all
c <|t|§ Tn,
[p(t)] = g(It]) = 9(Tw).

Hence,

inf |<,0(t)|2min{ (Tn), inf [p(t )I}

[t]<Tn [t]<c

Notice that, because of Assumption A2 and the continuity of :32

f .
|§\n< lp(t)] >0

So, as limyg_,eg(|t[) = 0, it follows that min {g(Tw),inft <. |@(t)|} = g(Tn) for Ty large
enough.

32Remark that |py (t)] = |ox (ATt)| > 0 for all t by Assumption A2.
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Consequently, for N large enough,

o(t) — ot 0
ap [BEL) _Olem)
i<ty | @(t) 9(Tn)
The last equality follows from the fact that T( 51;[ > ( - for N large enough, and that, by
assumption, gT(%iI;’S = o(1).

(iii) We have

and

) ) B) et + o(t) o)
B(6)—p(t)
__%e¥) o(t) -~
S gf(t) B0 e® 1 | o(t) [W( ) = by )]

One can bound 1//;e(t) as follows:

sup [e(t)] < sup [o(6) = he(t)] + sup py(t)]

[t|<Tn [t|<Tn [t|<Tn
< sup [By(t) — (0| +E[Yil = O(),
[t|<Tn
as E|Y}| < 0.
It follows that
t
wp [P0 5®] _ 0len) _
<ty | () w(t) | g(Tn)
The same argument applies to show that
t t
Sup {\m( ) _ éém( ) _ O(eN) :O(l)
tl<ry | P(t) o(t) 9(Tn)

for all £,m, if E|Y,Y,,| < oc.
(iv) It is easy to extend these results to second derivatives of cumulant generating functions:
kv
(t)
OtyOty,

E [nymeitTY] E [YleitTY] E [YmeitTY]
R [it™Y] + E[et™Y] E[eitTY]
&t D6) B (0

p(t)  w(t) o(t)

Cfm (t)
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Let Com(t) = — 5" + 28 4a8). Then,
L)~ Cenl®) = — %yg)—fgé?]
L] 2®) _9e®)] 9 | [Fnlt) _ ) ] elt)
[P0 w®) | w®) |20 e®) | )
L [2t) _9e®) ] [$ult) _ dul®)
[P0 w6 | [ 20 )
Since balt) E|Y|
14 £
o [0 | = s

for all ¢, it follows that

|tT;1¥N ‘C@m(t) - Cém(t)‘ = 4(Tw)? + 9(Tn)?

for N large enough such that g(Tx) < 1.

O(en) | Olen) (0(€z\r)>2 O(en)
+ 3

(v) Fix a direction of integration 8 € RL\{0}, and 7 € R. Then:

(//Cfm( )d”d“—/ / sz( )dvdu

Cen (57a;) ~om (5753 )|
r€[- Ty, Tn] v|<Ty m\ 6T A, m\QTA,

<Th s [Qnl®) ~ Cnlt)]
i<y

Com (0) = sup
[-Tn,TN]

_6

oTA,
70

g (TN 0T AL D

Hence, for any distribution W:33
0
Com (0)dW (0) < | [ g (TN A

(vi) It easily follows from the previous step that:

sup  [kx, (T) — kx, ()] = l/g (TN
TE[—TN,TN}

In particular, sup,¢i_7y 7y KX, (T) — kx, (7)| < 1 for N large enough. Therefore, for N large
enough

TI%O(EN).

)3 W (8)

k

T]%]O(E:‘N) = 0(1).

P -3
oA, D dw (9)

sup @y, (1) —¢x, (1)] = sup  |exp(Rx, (1)) —exp (rx, (7))],
TE[*TN ,TN} ’TE[*TN,TN]
< sup  [Rx, () — kx, (7))
TE[*TN,TN]

33Technically, we need some support conditions on W that ensure that the statement O(ey)
above is uniform in 6.
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from which it follows that

_ o |\’
sw [ox, ()=, (0] = | [0 (7| |) 0w )] TR0,
T€[-TN,TN] 0" Ay
This ends the proof of Theorem 1.
C Proof of Theorem 2
For all z in the support of Xk:
n 1 v —wx (7
Ix;, (z) — ka(x) = o PH E € (@Xk(’u) —¥Xx, (U)) dv

1 v —ivx
+% (<PH (E) - 1) e "Tox, (v)dv,

where @y is the c.f. of a smoothing kernel that is equal to 0 outside [—1,1]. So, for N large
enough:

Fa@ - @] < o(f i

IN

on ()| w0 = ox, 0]

()

N ~ 1 )
N _ _ ) 1 hy(lw])d
< = \TS|151¥N‘(’0X’° (1) — ox, (T)\+27T/‘90H (TN) ‘ k(|v])dv,

ha(Jo)dv )

A

(C6)

where we have used that |y | <1 (as ¢p is a c.f.), and that |¢x, (v)| < hg(|v|) for all |v|.
Note that

K
I ex, (t7AK)
k=1

oy ()] = [E[*Y]| = [E[e*"2%] | = > G([tTA]) > G(TA]]t),

where |A| = max; ; (|a;j|). In the last inequality we have used that g is decreasing, and that
I
T
‘t A| ZmZaX .zzla,ijtj SL|A||t|
‘]:

Define g(t) = g(L|A|t). Function g inherits g’s properties: it maps R™ onto [0, 1], it is
decreasing and it is integrable, so that in particular g (|t|) — 0 when |[t| — co. We can thus
apply Theorem 1 and obtain:

_ Ty
sup |@x, (1) —ex, (1)| = O(en)

7| <Tw g(Tn)?

with ey and T as in Lemma 1.
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If H is a higher-order kernel of order ¢ > 2, then there exists a function m such that
vg() =1+ m(v)v? for all v € [-1,1], and g (v) = 0 for v ¢ [—1,1], where m is continuous
on [—1,1]. So the last term on the right-hand side of (C6) is:

/ ‘goH (%)—1‘hk(|v|)dv - /i m(%)‘(;’—N)qhkuvnde / :mhk(m)dv

= s imol (g [ moar) +2 [ iy,

q
ve[-1,1] Ty J-1y Tn

where sup,¢[_y,1]|m(v)| = O(1) since m is continuous on [-1,1].
This ends the proof of Theorem 2.

D “Plug-in” bandwidth selection

We here present the “plug-in” method of Delaigle and Gijbels (2004) to choose the bandwidth in
deconvolution kernel density estimation. We focus on second-order kernels in the presentation.

Known error distribution. To present the method, let us consider the deconvolution prob-
lem with known error distribution Y = X + U, where fy7, or equivalently ¢y;, is known. Based
on a random sample Y7, ..., Yy, the deconvolution kernel density estimator of fx is given by:

]?X(x) 1 /‘PH (L) e—ivwaY(v)dv’

o TN ey (v)

where 3y (v) = Eye®Y is the empirical characteristic function of Y.
Let the Mean Integrated Squared Error (MISE) of fx be:

MISE(Ty) = E (/ (fX(a:) - fX(a:))2dz> .

The choice of Ty relies on the following approximation of the MISE:

1 v 2 _ N%MR( g()
N

(D7)
where
P

(%) = [ @) do

For example, iy, o = 6.
The plug-in method estimates R (f%) by the following algorithm.

1. Estimate R (f¥') as if X was normally distributed:
8!
2941, /7 [@(X)]

ﬁ( ////) —

9"
2
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2. Minimize the following quantity with respect to 7"

,UH,Zﬁ( X) 1 UANE _9
2 27TN/”6 “pH (T)‘ lpu )] do.
n

This quantity can be interpreted as the squared asymptotic bias of E( ). This step
yields T'.

3. Compute:

2 2

aY (’U) dv.

ey (v)

~ 1
R( ///) :%/UG‘QDH (%)

4. Tterate one more time steps 2 and 3. This yields E( ).

Finally, once R (f%) has been estimated, Ty is obtained as the minimizer of the approxi-
mated MISE given by the right-hand side of (D7).

Unknown error distribution. In practice, we replace ¢y (v) in the above expressions by
an estimate of the c.f. of 37 ., %TT—‘:’:Xm, as explained in 5.3. Because of (33), a consistent
estimate of that c.f. is given by

-~ v0
@Xk (v)
where Py is the empirical c.f. of Y, and P, is the estimate of the c.f. of X given by (22).

Py (v) (D8)
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