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Abstract

In this paper, we compare and contrast earnings inequality and mobility across the
U.S., Canada, France, Germany and the U.K. at the turn of the 21st century. We first
construct and estimate a flexible model of individual earnings dynamics for each country
that isolates mobility within a stable earnings distribution, allowing, or not, for individual
fixed effects. We then simulate individual earnings trajectories given base-year earnings
(1998) and construct lifetime annuity value distributions for each country. Our model
provides an excellent fit to both the earnings and the mobility data despite its simplicity
and limited data requirements. Our results show that equalizing mobility is positively
correlated with earnings inequality with the U.S. displaying the most equalizing mobility
and France the least. The models with and without fixed effects provide upper and lower
bounds, respectively, on the resultant lifetime inequality levels in each country, and reveal
that the countries are much more similar in terms of long run inequality than cross-section
measures suggest.
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1 Introduction

Because individuals are subject to shocks that make them change and exchange positions within

earnings distributions, cross-sectional survey data can only offer an incomplete picture of earn-

ings inequality across countries or across different groups within the same country. In order

to account for such sources of instability as unemployment risk and, more generally, earnings

mobility, it is thus essential to consider long run measures of earnings inequality.

Long run earnings inequality studies are usually based on measures of permanent income

obtained by averaging actual, individual or familial, pre- or post-tax income series over periods

of at least five years with a strong preference for even longer panels.1 However, as few countries

have collected long panel data sets, the number of cross-country studies of earnings mobility

and long run earnings inequality is small relative to the large literature that compares and

contrasts cross-section earnings inequality across countries.2

Moreover, besides requiring long panel data sets, the use of five-year-or-more earnings av-

erages has the drawback of mixing structural mobility (changes in the steady-state equilibrium

wage distribution) and exchange mobility (earnings dynamics within a particular steady-state

equilibrium) – the dynamics of the economy and that of individuals.3 It is therefore arguable

that a model of earnings dynamics is useful both to filter out macroeconomic trends and to

simulate lifetime earnings.4

Our aim in this paper is to develop a model that is at the same time highly flexible, for

the simulations to remain credible even over long time spans, and easy enough to estimate and

simulate for a large cross-country comparison study to be feasible. We start by detrending the

1See Moffit and Gottschalk (2002) for a discussion as to why at least five years are necessary for averaging.
2Examples of comparative studies of mobility include the following. Aaberge et al. (2002) compare the

U.S. and Scandinavian countries (Denmark, Norway and Sweden). Burkhauser, Holtz-Eakin and Rhody (1997),
Burkhauser and Poupore (1997), Maasoumi and Trede (2001), and Schluter and Trede (2003) compare post-
government-tax family income in the U.S. Panel Study of Income Dynamics (PSID) and the German Socio-
Economic Panel (GSOEP) in the 1980’s before the reunification of East and West Germany. Van Kerm (2004)
compares Belgium (Belgium Socio-Economic Panel), Western-Germany (GSOEP) and the U.S. (PSID) as far as
post-tax-and-transfer disposable household income in 1985 and in 1997 is concerned. Buchinsky et al. (2003)
and Fields (2005b) look at earnings mobility in France and the U.S. between 1970-1995 using PSID data and the
French DAS/DADS register data. Cohen (1999) and Cohen and Dupas (2000) use a search model to compute
lifetime welfare functions for French and American workers and compare the cost of unemployment in both
countries. Flinn (2002) compares Italy and the U.S. in 1988-1989. For cross-country comparisons of earnings
inequality see the surveys of Levy and Murnane (1992), Katz and Autor (1999) and Gottschalk and Smeeding
(2000).

3In addition, this constraint makes it difficult to study different time periods as lengthy representative panels
are then required for multiple time periods. When a single panel is available for such a long period, e.g. the
Panel Study of Income Dynamics (PSID) in the US or the German Socio-Economic Panel (GSOEP), authors
often argue that the full panel should be used to get a more accurate measure of permanent income rather than
breaking up the panel to study different time periods. See Gangl, Palme and Kenworthy (2007) regarding the
former argument and Baker and Solon (2003) as an example of the latter.

4Lillard (1977) is one of the first paper to use this approach to measure human wealth and its dispersion. See
Haider (2001), Flinn (2002) and Bowlus and Robin (2004) for recent applications.
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earnings data to remove any structural mobility. The earnings process is then assumed to be

a function of standard observable characteristics such as sex, education and experience. While

the analysis is conducted separately for males and females, parametric forms are assumed for

the dependence of earnings and its dynamic process on education and experience. We also

allow for unobserved heterogeneity through an individual fixed effect in log wage means and for

heteroskedasticity conditional on education and experience. The distributions of the fixed effects

and the residuals are estimated nonparametrically. Next we use a flexible copula approach

(the continuous equivalent of matrices of transition probabilities across earnings quantiles)

to model the dynamics of individual ranks of the standardized residuals within the marginal

distributions. We then put these two components together and compute simulated realized

values needed to construct our lifetime earnings measures.5 Finally, the amount of equalizing

mobility is measured by the ratio of lifetime earnings inequality to base-year earnings inequality

(Shorrocks, 1978, Fields, 2005b).

We model the autoregressive dynamics of the ranks of the standardized residuals in a flex-

ible way by combining multinomial logit models for movements between earnings deciles and

employment states over time with a smooth nearest-neighbor procedure for within decile place-

ment. Hence, like the more traditional literature on earnings mobility (e.g. Gottschalk, 1997,

Buchinsky and Hunt, 1999), we also consider relative mobility and model, as nonparametrically

as possible, the joint distribution of consecutive ranks. In this way, we do not impose any undue

symmetry.

In addition, our model also incorporates some of the features of the dynamic earnings models

found in the literature.6 It has the familiar factor structure with a deterministic component, a

permanent component, and a transitory, covariance-stationary component. Yet, the dynamics

of the transitory shocks are less complex. In particular, the permanent component is a standard

fixed effect and the transitory component is only first-order Markov. With respect to the former

our model allows for very little unobserved heterogeneity compared to Alvarez et al. (2007),

Altonji et al. (2007) and Pavan (2008), for example. With respect to the latter, our transitory

innovations are much simpler than, for example, the ARCH process in Meghir and Pistaferri

(2004).

We treat the individual-specific, unobserved factor as a fixed effect and we do not allow

for measurement error. This makes the model very straightforward to estimate. However,

5An alternative would be to use present values (Lillard, 1977). Bowlus and Robin (2004) show that results
using present or realized values are qualitatively identical.

6See, for example, Moffitt and Gottschalk (1995, 2002), Baker (1997), Haider (2001), Baker and Solon (2003),
Geweke and Keane (2000, 2007), Meghir and Pistaferri (2004), Alvarez et al. (2007), Altonji et al. (2007) and
Pavan (2008).
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short panel data are likely to yield inconsistent estimates. We thus show that disregarding

unobserved heterogeneity in marginal distributions over-predicts mobility. The fixed effect

model reproduces the patterns of earnings rank-autocorrelations much better, despite some

tendency to under-predict mobility. The two models – with and without fixed effects – therefore

provide useful bounds for measuring the amount of equalizing mobility. Random-effect models

such as those of Altonji et al. (2007) and Pavan (2008) are, by comparison, considerably more

difficult to estimate whereas our methodology only requires standard econometric software (OLS

and MLOGIT procedures) and can be easily utilized by non-academics.

The countries of our study were chosen to showcase both a range of earnings inequality

levels and a range of earnings and employment mobility patterns. They include the U.S., the

U.K., Canada, France, and Germany. For all five countries we use panels of three to seven years

in length that cover the end of the 1990s with a base year of 1998. The use of this time period

allows us to report on more recent trends in mobility as most studies - single and multiple

countries - tend to use data from the 1980s and early 1990s.

Our main results are as follows. First, our model provides an excellent fit to the data;

it even captures the tail dependence remarkably well. Second, the U.S. displays the most

earnings mobility with the U.K. second followed by Canada, Germany and France.7 Third, the

U.S. also displays more employment mobility followed closely by the U.K. and Canada. France

and Germany display far less employment mobility than the other countries. Fourth, lifetime

inequality measures that incorporate only earnings mobility leave the cross-country inequality

rank orderings basically the same with the U.S. displaying the most inequality. Fifth, the

inclusion of employment mobility brings the countries much closer together as employment

mobility is an equalizing factor in the U.S., the U.K. and Canada and a non-equalizing factor in

France and Germany. Thus, despite large differences in earnings inequality in 1998, overall the

countries display more similar lifetime inequality levels. How much more depends on whether

or not one allows for unobserved heterogeneity.

Given our results, we speculate that mobility likely reduces earnings inequality over a life-

time by about 20-30% in the U.S., Canada and the U.K. and very little, if at all, in France

7The OECD Employment Outlook of 1996 draws the following conclusion about earnings mobility between
1986 and 1991 across various OECD countries including the U.S., France and Germany. “The conclusion that
similar and substantial levels of mobility prevail across countries is also confirmed when movements across
earnings quintiles are examined. [...] indices suggest that Denmark, the United Kingdom and the United States
(and, perhaps, Finland) had somewhat higher rates of earnings mobility than France, Germany, Italy and Sweden.
But the overall picture is, nevertheless, one of considerable similarity.” [page 79] Contini (2002) uses the OECD
(1996) data and refines the Employment Outlook’s conclusion as follows. “Upward and downward mobility of
the relatively better off fraction of the workforce is higher in the USA than in the European countries.[page 5] ”
Therefore, the cross-country mobility differences that we find seem to be a more recent phenomenon, that was
amplified during the 1990’s.
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and Germany. Within our sample of countries, the countries with relatively higher earnings

inequality are also those countries with more equalizing mobility. Thus, incorporating mobility

reveals that countries with North American style labor markets are more similar to countries

with Continental European style labor markets in terms of long run inequality than measures

of short-run inequality would suggest.

Finally, we note that our use of simulation methods to construct lifetime earnings profiles

in order to estimate long run measures of inequality is closely related to the methods used by

Flinn (2002) and Bowlus and Robin (2004) and to a lesser extent Cohen (1999) and Cohen and

Dupas (2000). These papers use partial-equilibrium, on-the-job, stationary search models as

a behavioral model and compute present values to measure individual welfare. They all find

mobility results in significant equalization in the U.S.; enough equalization to bring the U.S.

close to Italy (Flinn, 2002) and France (Cohen, 1999) in terms of long run inequality. While

similar in spirit and results, our model is considerably more flexible than these models both

because it allows for unobserved heterogeneity and because it is not restricted by the rather

stringent implications of search theory.

The plan of the paper is as follows. The next section develops a theoretical framework for

computing lifetime values. The data are discussed in Section 3. Section 4 discusses the fit of

the model, and Section 5 analyzes the results. Conclusions are given in Section 6.

2 The Model

In this section we explain how we model individual earnings dynamics and how we then use

this model to simulate individual trajectories and compute lifetime earnings.

Our goal is to have the model satisfy the following requirements. First, it should be condi-

tional on individual characteristics like gender, education and experience. While it is possible

to cluster the population by gender and we do so, the number of potential interactions be-

tween the other covariates rules out an approach based on clustering the population by all

these characteristics and modeling employment and earnings dynamics unconditionally within

each population cluster. Hence, we develop a parametric index model for exogenous individual

covariates that allows for non-linearity and interactions between covariates.

Second, conditional on individual characteristics, the model for the joint distribution of

two consecutive earnings should be flexible. It is thus important to allow for non-symmetric

dynamics. For example, wage decreases should be more likely when one is at the top of the

earnings distribution and increases more likely when one is at the bottom. In addition, the

model should be simple enough to make Monte Carlo simulation easy. Therefore, we adopt a
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nonparametric approach based on first discretizing the support of the marginal distributions

and then smoothing the empirical distribution.

Third, the model should isolate the dynamics of individual positions within marginal earn-

ings distributions separately from the dynamics of the marginal distributions themselves. To

this end, we detrend the earnings data before conditioning the marginal earnings distributions

on interactions between education and experience and modeling the residual stochastic dynam-

ics of individual ranks within the equilibrium cross-sectional earnings distributions.

2.1 Model Specification

To meet the above requirements we set up the following model. First, we detrend all wages by

regressing log earnings on time dummies interacted with education dummies.8 Let wht denote

the detrended earnings for an employed worker h at time t. Next, we posit a linear regression

regression for log earnings

lnwht = xhtβ + fh + eht, (1)

where xht is a vector of regressors comprising education dummies interacted fully with a quartic

function of potential experience. We allow (or not, for comparison) for a fixed effect fh. The

components of the parameter β that are associated with time-varying variables are estimated

by the within-group estimator. The remaining components of β and the fixed effect fh are

estimated by applying OLS to the within-group regression residuals.

We also allow for conditional heteroskedasticity of the following form

Var (eht|xht) = xhtγ, (2)

where the parameter γ is estimated by regressing the squared residuals ê2
ht on xht. To improve

efficiency, we then re-estimate β and fh by weighted least squares, with weights proportional

to (xhtγ̂)−1/2.

Let G be the cumulative distribution function (cdf) of the standardized residuals, uht =
eht√
xhtγ

. We estimate G by the empirical cdf of ûht =
êht√
xhtγ̂

. Let rht = G (uht) be the rank of

the residual uht in the distribution G. We estimate rht by r̂ht = Ĝ (ûht). Finally, let qht denote

a discrete version of the ranks rht,

qht = max

{⌊Nrht⌋ + 1

N
, 1

}
, (3)

where ⌊·⌋ is the integer part function. Note that qht is never equal to 0 even if wht is the

minimum earnings. Hence, we use the notation qht = 0, if individual h is unemployed at time

8As stated above, the model is estimated separately for men and women. To simplify the notation we do not
index the parameters by gender.
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t. We call “state” the value of qht in {0, 1
N , 2

N , ..., 1}. In the empirical analysis N is set equal

to 10.

Incorporating transitions between employment and unemployment is nonstandard in the

earnings dynamics literature as authors often require individuals to have positive earnings in

every year of the period under study. However, unemployment risk has been shown to be an

important component of variation in earnings as well as measures of lifetime inequality (see

Bowlus and Robin (2004), Altonji et al. (2007) and Pavan (2007)). In addition there is wide

variation in unemployment risk across countries and as such its inclusion makes a difference

in cross-country comparisons. Thus, we include unemployment as a state in our transition

matrix in order to incorporate unemployment risk in our analysis. However, we recognize that

determining the level of income during unemployment is basically an ad hoc process and so we

conduct sensitivity analysis to this choice in our analysis.

Standard ARIMA models of earnings dynamics typically require only a few parameters

and, therefore, characterize changes in earnings means and variances well but fail to produce

a good description of tail dependence. For this reason a common practice in the literature

of earnings inequality and earnings mobility is to examine matrices of transition probabilities

across quintiles or deciles (e.g. Buchinsky and Hunt, 1999). We adopt this approach here as

well.

Let P (i, j|xht) be the probability of moving from state qht = i at time t to state qh,t+1 = j

at time t+1, with
∑

j P (i, j|xht) = 1 . We parameterize the transition probabilities P (i, j|xht)

using multinomial logits for each initial state i. Specifically,

P (i, j|xht) =
exp[xhtκ(i, j)]

N∑
m=0

exp[xhtκ(i, m)]

. (4)

The set of covariates for these multinomial logit models includes an experience quadratic and

the set of education dummies. However, in this case we do not allow for interactions due to

small sample sizes within some education*experience groups for some state-to-state transitions.

If the destination cell sizes are too small, e.g. destination quantiles distant from the quantile

interval of origin, we collapse infrequent destination quantiles together. For example, if for qht =

1
10 there is little chance to reach a rank at t+1 above 5

10 , irrespective of the vector of individual

characteristics xht, we concatenate the whole range of ranks rh,t+1 above 1
2 . Specifically, upper

and lower destination deciles are combined by collapsing all destination deciles
[

j−1
10 , j

10

]
such

that |j − i| > k, for some k, where
[

i−1
10 , i

10

]
is the decile of origin.

Having produced an approximation of the joint distribution of ranks at times t and t + 1

given covariates xht at discrete nodes, we then obtain an approximation over the whole range
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of rank values by using a nearest neighbor procedure. Given rht and xht we predict the quantile

at t+1, qh,t+1, using the multinomial logit models. Then we predict rh,t+1 as the value of rh,t+1

in the data that yields the closest match of rht and qh,t+1.

One aspect of the earnings data that we do not model is measurement error. In general

validation studies of wage and earnings data find that measurement error is nonclassical and

mean reverting, i.e. individuals under report high wages and over report low wages (Bound

et. al. (2001) and Gottschalk and Huynh (2007)). While classical measurement error would

tend to overstate inequality, nonclassical measurement error results in an understatement of

earnings inequality. In terms of earnings mobility the effect of nonclassical measurement error

is less clear. Evidence from Gottschalk and Huynh using data from the U.S. Survey of Income

and Program Participation (SIPP) matched to U.S. tax records (assumed to be measured

without error) indicates that the effects from the nonclassical measurement error are largely

offsetting when examining earnings mobility. Thus, even though the SIPP data are found to

be measured with error and this results in an understatement of earnings inequality, estimates

of the correlation in earnings over time from the SIPP are found to be similar to estimates

from the tax records. Since we do not have access to validation data for each country nor an

identification strategy for estimating the form and/or degree of measurement error, we do not

attempt to incorporate measurement error into our model. We recognize that our measures of

earnings inequality may understate the true levels, but we expect the reporting biases to be

similar across the countries and we are encouraged by Gottschalk and Huynh’s finding that our

mobility measures may not be biased.

2.2 Simulation of the Value Functions

In Bowlus and Robin (2004) we computed both ex ante and ex post lifetime income values with

the former based on taking expectations or averaging over expected future transition paths and

the latter based on simulated paths for each individual in the sample. Here we adopt the ex

post measure of lifetime income values as our unit of analysis because in our previous work

we found that the results for ex post and ex ante values were qualitatively similar and ex post

values are easier to compute.

To simulate an individual’s remaining path from some date t onward we start them at

their current employment state and salary. Next, we randomly draw a sequence of states

for the periods following t until their retirement year based on their experience level, which

increases with age, and their characteristics using the same marginal distribution G and the

same transition probability matrix P . So doing, we allow the individual’s age to change and

modify the earnings process but the macroeconomic environment responsible for shifts in G
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and P is held fixed in its state at time t.

While employed, individuals receive the annualized value of their earnings. Income during

unemployment is equal to a country specific unemployment insurance replacement rate ρ times

the previous period’s annual earnings if the individual was working in the previous period and

times a minimum earnings level, w, if the individual was unemployed in the previous period.

Finally, we set income following retirement at age a equal to 0.

Let Eat(w) be the discounted sum of the predicted future income stream for someone with

age a and wage w at time t. In order to compare present values across all individuals, not only

those within the same cohort, we compute the annuity value of employment rather than the

stock value. To convert stock values Ea(w) into annuity values we use the standard formula for

an annuity Aat(w) with interest rate r such that:

Aat(w) =
Eat(w)

∑a−a+1
t=1

1
(1+r)t

= rEat(w)
(1 + r)a−a+1

(1 + r)a−a+1 − 1
. (5)

In the empirical analysis r is set equal to an annual rate of 5%.

3 Data Description

In this section we describe the data used from each of the countries to conduct the above

exercise. We have chosen to examine data from the U.S., the U.K., France, Germany and

Canada in order to present a wide range of cross section inequality levels as well as varying

mobility patterns. The inequality analysis below examines the year 1998 for all of the countries,

and all five of these countries have at least three-year panel data sets that cover the late 1990’s.

We have tried as much as possible to make the samples consistent across the countries. We note

below where this has not been possible. For the U.S. we use the Survey of Income and Program

Participation (SIPP) for 1996-1999. For France we use individuals in the three-year panel from

the French Labor Force Survey (LFS) for 1997-1999. 9 The 1996-2001 wave of the Survey of

Labour and Income Dynamics (SLID) is used for Canada. For the remaining countries we use

ongoing panel data sets including The British Household Panel Survey (BHPS) for the U.K.

9 The French LFS is a rotating three-year panel that starts a new three-year wave every year. Here we include
only those individuals from the 1997 wave who are in the panel all three years. Inclusion of individuals from the
1996 and 1998 waves for the years 1997-1999 results in too many individuals with only two wage observations.
Estimating the fixed effect model with only two wage observations leads to residual terms that are equal in
absolute value and the negative of each other. This leads to a transition matrix that has very little weight on the
diagonals and a lot of weight on opposite decile transitions such as 1-10, 2-8, 3-7, etc. Thus to avoid this pattern
which results solely because of the length of the panel we require individuals be in the panel for three periods.
Because the French LFS is a residence based survey unlike the others which are individual based surveys, one
implication of this restriction, and the survey structure in general, is that individuals who move during the survey
period will be dropped. While we cannot test this implication on the French data we did estimate the model
for the U.S. excluding individuals who move during the survey period. The two samples produced very similar
results suggesting movers and non-movers in the U.S. face the same levels of mobility.
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and the German Socio-Economic Panel (GSOEP) for Germany. For these latter countries we

use seven years of data from 1995-2001.10

Unlike in Bowlus and Robin (2004) and most other inequality studies, we do not impose

many sample restrictions. Instead our samples include most individuals, i.e. males and females,

all races,11 and full- and part-time workers. For each year of the panel we exclude individuals

who are self-employed,12 in the military, and those out of the labor force.13 The latter includes

those who are retired, enrolled in school and who work less than 10 hours per week. Finally, our

sample is restricted to individuals between the ages of 16 and 65 for the U.S., U.K. and Canada

and ages 16 to 60 for France and Germany with the latter reflecting the earlier retirement age

in those countries.

For the transitions we use the labor force status of the individual at the time of the annual

surveys in France, the U.K. and Germany. For Canada we use the labor force status in the

month of March, and for the U.S. we use the month the individual was first surveyed in 1996.

We then examine the transitions of individuals who are employed or unemployed (as classified

by the surveys) in adjacent years.

To standardize all annual earnings values we use a full-year earnings measure. For the U.S.

and France we multiply the monthly earnings by 12.14 U.S. figures are reported in U.S. dollars,

while the French earnings measure is divided by 6.55957 to convert to Euros. For Canadian

earnings we divide annual earnings by weeks worked and multiply by 52 and report the figures

in Canadian dollars. Figures for the U.K. are reported in British pounds and are calculated

by multiplying the monthly wage by 12. Finally, for Germany the monthly wage is multiplied

by 12 and then divided by 1.95583 to convert to Euros. All earnings measures are deflated by

consumer price indices for each country with a base year of 1990. To deal with top-coding in

the SIPP data we use the imputed base year averages given in the SIPP for top-coded values

multiplied (prior to deflation) by a growth factor of 1.019 raised to the number of months since

the base year.15 Top-coding is not an issue for the other countries although in the French LFS

10The sample sizes of the BHPS and GSOEP are substantially smaller than the SIPP and the French LFS. So
to increase the sample size we use a longer time period. However, we do not use the full available panels for the
U.K. and Germany in order to make the results more comparable with the other countries.

11We do not include race in x because race is not identified in the data sets for all countries.
12We also exclude unpaid family workers under self-employed in Canada. In the French LFS we use the

occupation or profession variable to exclude self-employed workers. In this case we exclude self-employed farmers,
craftsmen, retail and small firm executives. For Germany we exclude self-employed or free lance professional
workers. In addition to those in school in the UK we exclude those in government training programs and in
Germany those in apprenticeship programs.

13Thus an individual does not have to meet all of our requirements over the entire panel to contribute to the
analysis. Only those person years in which the requirements are not met are dropped.

14The SIPP collects earnings for each month on up to two jobs. We sum the monthly earnings from each job
to compute our monthly earnings measure.

15This procedure to deal with top coding follows that given in the SIPP manual.
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we do delete monthly earnings greater than 900000. Finally, we weight all calculations using

the appropriate weights given in each data set.16

We use a trim procedure to deal with outliers in the data. Minimum and maximum earnings

levels are determined using the 1998 samples and then applied to the other years. We trim

earnings at the top and bottom for each sex*education group. This results in mean earnings

that vary appropriately across groups reflecting each group’s relative position in the market.

The trim levels vary with the quality of the data in each country. For the U.S. we trim 2% at

the bottom and 1% at the top. For France and Germany we trim 1% off the top and bottom.

For the U.K. we trim 1% off the top and 2% off the bottom and for Canada we trim 2% off the

top and bottom. These trim levels are non-trivial and basically remove all of the excess kurtosis

from the log wage distributions. However, our inequality indexes (ninety-ten percentile ratios

and Gini coefficients) are relatively indifferent to the length of the upper and lower tails,17 and

thus the results are generally insensitive to variation in the trim levels around these values.

As noted above the regressors in the transition probability and wage models include indica-

tors for education levels. For the U.S., Canada and France there are four education categories

that correspond to less than high school, high school, some college, and university. Because of

the sample size issues mentioned above as well as coding issues in their surveys we use only

three education categories for the U.K. and Germany. For the U.K. the categories are less than

high school, high school graduate and more than high school. For Germany the categories are

based on a years of education measure grouped as follows: no more than 10 years, more than

10 but less than 14 years, 14 or more years. Experience is computed as age minus age at end

of education where the latter age is standardized for each education category.18

The sample size is not large enough in any of the countries to get an accurate picture of the

transition probabilities if only the transitions between 1998-1999 are used. Thus we use all of

the year-to-year transitions observed over our sample periods to estimate the multinomial logit

models. Only the U.S. has a large enough sample size and mobility level such that an 11 by 11

16We do not use the weights given in the BHPS. The longitudinal weights for the late 1990s require the
individual to have been in the sample continuously since the survey began in 1991 otherwise the individual is
given a weight of zero for that year. Since we only require the individual to be present in two consecutive years,
the weight requirement is much more stringent than ours and results in a nontrivial reduction in the sample
size. We also do not use the cross section weights because they are very close to 1 and also not available for all
individuals in the sample in each year. Since they are very close to 1, using them makes little difference and so
we opted for the larger sample size in order to better fill out our transition matrix.

17For a study on upper-tail inequality in the U.S. and France see Piketty and Saez (2003).
18To maintain consistency in terms of experience levels within an education group we set age at end of education

equal to a common figure for each education level. For the U.S. and Canada this age level is 16 if less than high
school, 18 if high school graduate, 20 if some college and 22 if university. For the French data we set the age at
end of education equal to 16 if less than high school, 19 if high school, 21 if some college, and 24 if university.
For the U.K. we set it at 16 if less than high school, 18 if high school graduate and 21 if greater than high school.
Finally, for Germany we use 16 if 10 years or less, 18 if more than 10 but less than 14 years, and 21 if 14 years
or more.
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transition matrix can be recovered using a multinomial logit specification for each decile and

unemployment. For the other countries we ran into the problem of small cell sizes and even

zeros for some events. This was particularly true for the transition from the top of the earnings

distribution to unemployment and vice versa. To take care of the small cell sizes, upper and

lower destination deciles were then combined, as indicated before, by collapsing all destination

deciles
[

j−1
10 , j

10

]
such as |j − i| > k, where

[
i−1
10 , i

10

]
is the decile of origin. For Canada, the

U.K. and Germany, k was set equal to 3, while for France a less restrictive formulation was able

to be used such that k = 4.

Finally we had to determine the earnings level to use to compute the income received during

unemployment. Since in the 1998 sample we do not necessarily observe the previous earnings

for unemployed individuals, we impute an earnings level using the regression coefficients and the

characteristics of the individual with potential experience set to one year less than the current

value. For future unemployment values in the simulation we either use the simulated earnings

from the previous period or the minimum earnings levels by education and sex after trimming

for those in unemployment more than one period. The replacement rates are taken from Martin

(1996). These are gross replacement rates computed by the OECD in 1995 for an individual

with a spouse at work. We use the values for the first year of unemployment. They are: 25%

for the U.S., 18% for the U.K., 54% for Canada, 58% for France and 35% for Germany. As

noted above we do some sensitivity analysis to this choice by also simulating lifetime values

assuming income during unemployment is 0.

Because we merge several years of data we need to be concerned about any trends in earnings

over the sample period, as these trends will be incorporated into the transition functions and

the lifetime earnings measures if not removed. To remove any overall trends as well as trends

within education groups we detrend the earnings data using year dummies interacted with the

education categories. The year 1998 is taken as the control year such that these coefficients are

not used when we simulate the future earnings trajectories.

In Table 1 we present the stationary equilibrium distributions that stem from our predicted

transition probabilities. 19 If we have isolated only exchange mobility, the wage decile elements

within each column should be the same and equal to 1 minus the equilibrium unemployment rate

divided by 10. For most countries and for both men and women, the equilibrium distributions

obtained from the homogeneous model show a somewhat uneven spread across the deciles. In

the U.S. there is only a slight accumulation in the middle deciles. However, in the U.K. and

19To compute equilibrium distributions, we first average the transition probability matrix P across individual
characteristics. The equilibrium distribution is the eigenvector associated with the first eigenvalue of its transpose.
In the cases where the destination deciles are collapsed, we divide the predicted probabilities for entering the
combined destination evenly across the deciles contained in that destination state.
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Canada there is a marked accumulation in the top deciles; in France in the bottom deciles;

and in Germany in both the right and left tails. Allowing for fixed effects results in a marked

improvement for the U.K., Canada and Germany. In the case of France, allowing for fixed effects

now induces an accumulation in the middle deciles. This is an indication that three years are

not enough for a precise estimation of the fixed effects. With longer panels, our results suggest

that our method of detrending the data is successful. We also do a reasonable job of matching

the overall unemployment rate over the sample periods.20

4 Data Analysis and Model Fit

4.1 Cross-Section and First-Order Markov Dependence

In terms of fit, the proposed regression framework does a good job of capturing the features

of the earnings data in both levels and logs. Tables 2 and 3 show the actual and predicted

moments of the log earnings and earnings distributions for each country for males and females

for the specifcations without and with unobserved heterogeneity, respectively.21 Given our log

wage specification the predicted means and standard deviations match those in the data almost

exactly. In turn this yields a fairly good fit for the mean and standard deviation of the level

distribution. The skewness and kurtosis predictions are not quite as good but in most cases

the fit is reasonable given that these moments are not functions of the explanatory variables.

While both model specifications match the mean and variance, the unobserved heterogeneity

model fits the skewness and kurtosis levels better.

In order to examine how well we fit relative earnings mobility using the multinomial logit

models and our interpolation procedure, we compute Spearman’s correlation using the ranks

from the actual and predicted log earnings data for each country. To do so we compute the

rank correlations for actual log earnings in adjacent periods (combining the data across all

two-year pairs in the sample period) and the rank correlations for actual log earnings in the

first period and predicted log earnings from our model in the second period. We examine the

rank correlations of the earnings data rather than the residuals even though our mobility model

is estimated only on the residuals. Thus this test effectively captures how well the full model

20Since we use multiple periods to estimate the transition matrix we mitigate the problem of cyclical variation
in unemployment rates to some extent. Our model matches the average unemployment rate over several years
rather than the actual rate in any one year which may be high or low depending on whether the country is
in a recession or boom. This is important when conducting cross-country comparisons as not all countries will
be at the same stage of the business cycle during the base year. Only France with its relatively short sample
period and high unemployment rate over this period is at greater risk of having its lifetime inequality measure
influenced by the business cycle.

21The actual moments for log earnings differ across the two specifications because the weights are adjusted for
the variance model which differs across the specifications. The unadjusted sample weights are used for the level
calculations.
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reproduces the observed earnings mobility. In addition we examine rank correlations rather than

level correlations because we are interested in capturing exchanges within the distribution, not

level changes. Further, in the simulation exercise the marginal distribution is fixed and mobility

results entirely from rank dynamics. Table 4 presents the results by earnings decile of origin.

The fit is very good with a slightly better fit for the middle deciles than the extreme deciles.

Both specifications produce a good fit to the data in the middle deciles; for most countries the

specification with unobserved heterogeneity produces a slightly better fit in the extreme deciles.

Several features of the data stand out in this table: 1) the U.S. exhibits much lower cor-

relations than any of the other countries, 2) the correlation is larger at the extreme deciles of

the distributions than in the middle, 3) it is larger for the top than the bottom, and 4) the

correlation levels for males and females within each country are quite similar. The second and

third conclusions are important as they justify our nonparametric approach. That is, one single

correlation parameter does not permit a full characterization of the earnings autocorrelations

throughout the entire distribution.

4.2 Long Run Dynamics

Given the flexibility of our model specification, it is likely not surprising that the model can

return the main features of the data used in estimation. For a model of lifetime earnings the

true test is long run dynamics. To measure the performance of our model over a longer period

(as allowed by the length of each panel) we compute Spearman’s correlation using the ranks

at all possible orders. That is, for each 2-year, 3-year, 4-year, etc. pair observed in the data

we compute the rank correlations between the actual earnings levels and the rank correlation

between the actual earnings in the initial year and the earnings level predicted 2, 3, and 4 years

later, respectively.22 Table 5 displays the Spearman correlations at all possible orders for each

country.

There is definite evidence that the model with no fixed effect fails to fit the long run

dynamics. In particular, it predicts too much mobility over time resulting in correlations that

decrease much faster with time than those found in the data. For example, in the U.S. the

correlation in the data falls from 0.76 for 1-year differences to 0.66 for 3-year differences, while

the model predicts a much lower correlation of 0.49 for 3-year differences. This pattern is

found for both males and females in all of the countries. In comparison the fixed effect model

22For example for the U.S. we have 4 potential earnings observations for each respondent (1996, 1997, 1998
and 1999). Thus we have at most two 2-year observations (1996-1998 & 1997-1999) and one 3-year observation
(1996-1999) for each respondent. Only respondents who are working in both periods enter into the calculations
for the actual figures, and only respondents who are working in the initial period and predicted to be working in
the latter period enter into the calculations for the predicted figures.
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does a much better job, although it predicts more persistence in earnings over time than there

actually is in the data. In fact the fixed effect specification produces very little decrease in the

correlation over time suggesting that the fixed effects essentially maintain individuals’ ranks

within the distribution.23 Given these two specifications produce results that encompass the

observed correlations, they provide useful benchmarks or bounds on the amount of mobility in

each country.

The figures in Table 5 support the previous finding that the U.S. exhibits much more mobility

than the other countries with no other country coming even close to the low correlations for the

U.S. The U.K. exhibits the second highest mobility levels, while Canada and Germany appear,

perhaps surprisingly, to be quite similar. Finally, France is the most immobile country of all

with the highest 1-year correlations and no apparent drop for 2-year correlations. Interestingly

males and females exhibit the same correlation patterns despite differences in the earnings

distributions themselves.24

The full sample correlations in Table 5 are much higher than the conditional correlations

in Table 4. This pattern indicates that a significant part of the overall (auto)correlation is

between deciles with the remainder within deciles. This finding is particularly true for the U.S.

It is interesting to examine whether the correlation patterns vary by education or experience.

Table 6 shows the education results for male workers, while Table 7 shows the experience

results.25 In general we find that younger and less educated individuals exhibit higher levels of

mobility and therefore less persistent earnings trajectories. This is confirmed by the multinomial

logit coefficients for education and experience which for all countries tend to be negative across

most initial*destination deciles. The education patterns are the strongest for the U.S., the

U.K and Germany, while the relationship is much weaker for Canada and France. In terms

of experience the variation across the countries is more similar with France and Canada again

showing less variation. Finally, in terms of 1-year differences the model fits the data just as

well within education or experience groups as in the whole population. Over time the same

pattern emerges with the homogeneous model under fitting mobility and the fixed effect model

over fitting.

23In some cases the rank correlation in the fixed effect specification actually increases from 1-year differences
to 2-year differences. This happens when the panel lengths are shorter, e.g. the U.S. and France, because
the mobility matrix in short panels tends to produce oscillating patterns such that individuals have a high
probability to move away from and then back to the initial residual decile. This produces correlations that are
high for even-year differences. See footnote 9 for further details.

24See Tables 2 and 3 for the differences between males and females.
25The results for females are similar and are available upon request.
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5 Lifetime Inequality

Having demonstrated that our empirical specification provides a good fit of the observed data,

we now move on to the calculation of lifetime inequality. As mentioned above we construct

our measure of permanent income from simulations of ex post income realizations using the

estimated transition and earnings processes. Because we have calculated a value of unemploy-

ment, we can calculate the average annuity value based on the full sample including individuals

unemployed in the base year or based only on the employed sample as with earnings. In general,

the average taken over all respondents is lower than that for the employed sample because the

unemployment values are, on average, lower than the employment values. This difference is

more pronounced in countries that have longer unemployment durations (i.e. lower exit rates

out of unemployment). In addition, lifetime inequality levels based on the full sample are higher

because inclusion of the unemployed lowers the left tail of the distribution. Since we do not

have income values while unemployed for our base sample, we use only those employed in the

base year in our calculations of current and lifetime inequality. In this way we have comparable

samples across all of our calculations.

5.1 Education and Experience Earnings Differentials

To get a sense of how the annuity values differ from earnings Table 8 presents earnings and

value differentials across education and experience groups by gender. Focusing first on gender

differences, we find that within each country there is a substantial gender differential. This

differential is present in both current earnings and annuity values at similar levels. Thus

mobility does not alleviate nor exacerbate gender differences. The gender differences reported

here are larger than those often found in the literature because of the inclusion of part-time

workers combined with the fact that more women work part-time than men. In countries where

the fraction of women working part-time is particularly high, e.g. the U.K. and Germany, the

male-female differential is quite large.

With regard to education and experience we find that, in all cases, the education premiums

increase when comparing earnings differentials to annuity value differentials. In contrast, the

experience premiums decrease. Thus mobility reinforces education differences and basically

eliminates differences across experience groups. The latter is because low experience levels

incorporate future growth in earnings in the annuity value measure, while higher experience

levels incorporate flat to declining future profiles. In terms of inequality, these findings indicate

that educational differences tend to enhance long run inequality, while differences in experience

levels tend to reduce it.
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The above patterns hold for both the model with no unobserved heterogeneity and the fixed

effects model. Thus, incorporating unobserved heterogeneity does not affect these comparisons.

5.2 Earnings and Lifetime Income Inequality

We now turn our attention to a comparison of earnings and lifetime inequality. Table 9 shows

the levels of inequality for earnings and annuity values using 90-10 ratios and Gini coefficients

for males and females separately for each country for the model with no unobserved hetero-

geneity. Table 10 shows the same results for the fixed effect model. These tables also display

counterfactual exercises aimed at measuring the effects of earnings mobility and unemployment

risk on long run inequality.26

Starting with earnings inequality and comparing across countries, we find that for males

the U.S. exhibits the highest level of earnings inequality. Canada and the U.K. exhibit similar

levels that are between the U.S. and France and Germany where the latter have the lowest

levels. For females, the U.S. has again the highest level. However, the U.K. is now closer to the

U.S.; Canada remains in the middle; and France and Germany exhibit low levels of inequality.

The cross-country ordering presented here for males is similar to that given in Katz and Autor

(Table 10, 1999) for all full-time workers with the exception of France. In their table France

has a higher level of inequality than the U.K. while here we find the opposite.

Turning to annuity values, we find that, as in Bowlus and Robin (2004), the level of annuity

value inequality is in general lower than the level of earnings inequality. The exception to this

finding being France. As might be expected the U.S. exhibits the largest differential between

earnings and annuity value inequality levels. After the U.S. comes Canada and then the U.K.

Germany and France have the lowest levels of equalization.

Within each country females exhibit more earnings inequality than males. Similar to the

explanation for the large male-female earnings differentials, this is due to the fact that a greater

fraction of women work part-time and part-time workers have lower earnings and therefore pull

down the earnings distribution. This is again particularly true for countries such as the U.K.

and Germany that have high rates of part-time work among females. Females also have higher

lifetime inequality levels than males although the male-female gap is reduced for all countries.

It is likely that mobility between full- and part-time employment for women aids in reducing

26To compute these calculations we use the 1998 sample only. Because the sample sizes for a single year are
relatively small for the U.K., Germany and France, the inequality measures can vary across simulations. Thus
we implement the following Monte Carlo: after n iterations of the counterfactual simulations let x(n) be the
mean of the n statistics of interest (e.g. 90/10 ratio); stop if |x(n)−x(n−1)| is less than 1% of x(n−1). To save
space we list the standard deviation of these means for only the full mobility counterfactuals. The others are
available upon request. We note that the 90/10 ratios exhibit more variation than the Gini coefficients, females
exhibit more variation than males, and Germany with the smallest sample size exhibits more variation than the
other countries.
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this gender differential.

To determine the relative importance of different forms of mobility we simulate the lifetime

annuity values under various scenarios. We start with earnings mobility only and examine the

level of long run inequality that results if we allow for only upward earnings mobility, only

downward earnings mobility and both.27 Our results show that both upward and downward

mobility have equalizing effects and that together the decrease in inequality is even greater.

While the inclusion of earnings mobility results in a reduction in inequality levels for all

countries, it does not change the relative rankings across the countries. The U.S. still exhibits

the most inequality. This is particularly true for the fixed effect model where the degree of

equalization due to earnings mobility is similar across the countries. This result is in line with

other cross-country studies of long run inequality that have used 5 or 10 year earnings averages

as a measure of permanent income (e.g. Burkhauser and Poupore (1997) and Gangl, Palme

and Kenworthy (2007)).28

Our inclusion of unemployment risk, however, shows a different pattern.29 When we allow

for mobility only between employment and unemployment we find that the equalizing effect is

much lower and in some countries unemployment risk actually increases inequality in the long

run. This is especially true for countries such as France and Germany that have a very low

exit rate out of unemployment.30 Thus, in the long run, earnings mobility is clearly equalizing

but unemployment risk is not. This explains why France, and, to a lesser extent, Germany,

exhibit such a limited long run reduction of inequality, if not a small increase. Clearly ignoring

unemployment risk would have resulted in the incorrect conclusion that France and Germany

had equalization rates similar to the other countries and therefore substantially lower levels of

lifetime inequality.

Further confirmation of the inequality-enhancing role of unemployment risk in France and

Germany can be found in Tables 11 and 12 for the homogeneous and fixed effect models, respec-

tively. These tables display the results of a counterfactual simulation assuming the replacement

income level during unemployment is 0. In countries such as the U.S., the U.K. and Canada

where unemployment risk is minimal the results are basically unchanged. However, for France

and Germany the long run inequality levels are now all higher and often greater than the

27Here we set the probability of exiting to unemployment to zero and transfer that probability to remaining in
the current state. Likewise for the case of only upward (downward) mobility we set the probability of transiting
to lower (higher) deciles to zero and transfer that probability to remaining in the current state.

28It is not surprising that our fixed effect model produces results that are similar to 5 or 10 year averages since
the fixed effects effectively contain this average for our sample periods which range from 3 to 7 years.

29This pattern is more apparent in the 90/10 ratios than the Gini coefficients. This is because the addition
of unemployment risk primarily affects the lower tail of the distribution. The 90/10 ratio picks up this change
more than the Gini coefficient which focuses on the middle of the distribution.

30For example, the exit rate out of unemployment is 0.27 for France compared to 0.75 for the U.S.
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cross-section levels.

The finding that unemployment risk is an important component of lifetime inequality is

supported by Altonji et al. (2007) and Pavan (2008) who also find important links between

unemployment risk and earnings. Our results incorporating full mobility are also in agreement

with studies that use structural search frameworks to incorporate unemployment risk and wage

mobility through job changes such as Flinn (2002) and Cohen (2000). In particular, the homo-

geneous version of our model also produces the result that the levels of lifetime inequality are

quite similar across the countries despite very different cross section inequality levels. The simi-

larity in the results is likely related to the fact that these studies do not incorporate unobserved

heterogeneity but do incorporate unemployment risk.

Turning now to a comparison of the models with and without fixed effects, we find, as

expected, that the equalizing effect of earnings mobility is much smaller in the fixed effect

model. Instead of a reduction of inequality of about 30-40%, in the case of the U.S., Canada

and the U.K., when no unobserved heterogeneity is allowed for, the reduction is only 10-15%

in the fixed effect model. Since the homogeneous model overstates mobility and the fixed-effect

model understates it, the true measure of the equalizing force of mobility lies somewhere within

the limits imposed by the two benchmark models.

As an additional sensitivity test of our results we also computed the inequality analysis

using a utility based approach to see if risk aversion made a difference.31 We used a CRRA

utility function specification with an intertemporal substitution elasticity of 2.32 In general the

inequality levels for the utility based approach are much lower than those for the income based

approach. The reduction in inequality due to moving to lifetime measures is also substantially

smaller for the 90-10 ratios, but similar for the Gini coefficients. All of the other orderings and

conclusions remain the same.

Given our results, we speculate that mobility likely reduces earnings inequality over a life-

time by about 20-30% in the U.S., Canada and the U.K. and very little, if at all, in France

and Germany. Within our sample of countries, the countries with relatively higher earnings

inequality are also those countries with more equalizing mobility. Thus, incorporating mobility

reveals that countries with North American style labor markets are more similar to countries

with Continental European style labor markets in terms of long run inequality than measures

of short-run inequality would suggest.

31These results are available upon request.
32We do not incorporate a utility value for leisure.
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6 Conclusions

In this paper we compare and contrast earnings inequality and mobility across the U.S., Canada,

France, Germany and the U.K. at the turn of the 21st century. We are particularly interested

in the degree to which exchange mobility in each country reduces lifetime inequality measures

as compared to current earnings inequality measures. That is, we are interested in determining

the amount of equalizing mobility in each country. To examine exchange mobility we construct

and estimate a flexible model of individual earnings dynamics for each country that removes

all structural mobility features in order to isolate only that mobility within a stable earnings

distribution. We then simulate individual earnings trajectories given base-year earnings (1998)

and construct lifetime annuity value distributions for each country. Finally, we examine current

and lifetime measures of inequality across the countries.

To facilitate cross-country comparisons we designed our model so that it could be estimated

on panels of relatively short lengths. Despite its simplicity and limited data requirements

we find that our model provides an excellent fit to both the earnings and the mobility data.

Therefore, we conclude that short panel data do not really forbid measuring the equalizing force

of mobility. What is important is the ability to simulate ex post realizations of income over a

longer period than that observed in the data.33

In our analysis we compare and contrast two different models: one which does not allow for

unobserved heterogeneity and a simple fixed effect model. We find that the homogeneous model

tends to predict far too much mobility over several years. The fixed effect model somewhat

“overshoots” and predicts too little mobility, but the fit of higher-order rank autocorrelations

is much better for this model. Thus, we use the two models as benchmarks or bounds for the

measurement of the degree of equalization. Our results show that the U.S. displays both much

more earnings inequality than the other countries (at least those we consider) and much more

equalizing mobility. In addition countries with somewhat similar labor market structures as

the U.S., such as Canada and the U.K., also display more equalizing mobility than Continental

European countries such as France and Germany. The end result is that the countries we

examine, which look very different in terms of current inequality, tend to look much more

similar in terms of lifetime earnings inequality.

Whether this is a good or a bad thing is a matter of interpretation. On the one hand, more

earnings and employment mobility moves individual positions more in the U.S. than elsewhere,

so that the U.S. is not such an unequal country after all. On the other hand, income uncertainty

33Our simulations reveal that 10 year averages capture most of the reduction in inequality in moving to a
lifetime measure, while 5 year averages capture about half the reduction.
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should be negatively valued by risk-averse individuals. Our attempt to introduce risk aversion

did not change the results. However, we are well aware that our welfare computations in the

presence of risk aversion are not satisfactory, because insurance markets are likely incomplete.

More income risk probably means more credit constraints, and this highlights the limits of the

present exercise. A more satisfactory welfare computation allowing for liquidity constraints

would require consumption data. The few available studies on consumer welfare (Cutler and

Katz, 1992, Attanasio and Davis, 1996, Blundell and Preston, 1998, Attanasio et al., 2002)

seem to indicate that there is less consumption inequality than income inequality, and possibly

fewer cross-country differences. However, this approach is very difficult to implement due to

the lack of consumer panels. Given the similarity of our findings to the consumption literature,

both in terms of inequality levels and cross-country differences, we think our study goes a long

way toward an assessment of cross-country welfare differences.
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MALES FEMALES
U.S. Can. U.K. Fra. Ger. U.S. Can. U.K. Fra. Ger.

Homogeneous Model

UNEMPLOYMENT
Equilibrium 0.023 0.051 0.045 0.139 0.059 0.020 0.047 0.025 0.161 0.069
Actual 0.033 0.072 0.069 0.137 0.081 0.031 0.077 0.037 0.169 0.090
WAGE DECILES
1 0.089 0.085 0.097 0.117 0.119 0.081 0.076 0.056 0.104 0.088
2 0.098 0.097 0.096 0.117 0.096 0.093 0.082 0.065 0.103 0.091
3 0.102 0.087 0.088 0.107 0.085 0.099 0.078 0.073 0.101 0.083
4 0.100 0.081 0.081 0.097 0.076 0.102 0.083 0.076 0.088 0.078
5 0.100 0.082 0.080 0.088 0.072 0.102 0.087 0.077 0.094 0.071
6 0.100 0.080 0.082 0.077 0.072 0.102 0.088 0.090 0.086 0.077
7 0.098 0.085 0.088 0.066 0.078 0.103 0.093 0.102 0.079 0.077
8 0.098 0.096 0.101 0.066 0.092 0.099 0.107 0.121 0.070 0.096
9 0.098 0.114 0.112 0.063 0.108 0.100 0.120 0.144 0.059 0.119
10 0.091 0.143 0.130 0.065 0.144 0.098 0.140 0.172 0.056 0.151
Actual 0.097 0.093 0.093 0.086 0.092 0.097 0.092 0.096 0.083 0.091

Fixed Effect Model

UNEMPLOYMENT
Equilibrium 0.024 0.055 0.045 0.142 0.057 0.021 0.052 0.027 0.171 0.075
Actual 0.033 0.072 0.069 0.137 0.081 0.031 0.077 0.037 0.169 0.090
WAGE DECILES
1 0.086 0.085 0.087 0.066 0.085 0.084 0.075 0.078 0.066 0.086
2 0.093 0.094 0.090 0.078 0.087 0.096 0.096 0.086 0.081 0.088
3 0.101 0.097 0.083 0.104 0.088 0.101 0.097 0.094 0.093 0.078
4 0.101 0.104 0.101 0.106 0.103 0.104 0.111 0.103 0.107 0.089
5 0.095 0.109 0.103 0.100 0.104 0.100 0.106 0.109 0.103 0.104
6 0.110 0.110 0.105 0.110 0.098 0.104 0.117 0.113 0.099 0.108
7 0.102 0.091 0.098 0.100 0.090 0.105 0.091 0.100 0.093 0.095
8 0.103 0.081 0.094 0.070 0.093 0.101 0.081 0.095 0.070 0.094
9 0.097 0.084 0.094 0.067 0.099 0.099 0.084 0.097 0.061 0.092
10 0.089 0.090 0.089 0.058 0.096 0.087 0.088 0.098 0.056 0.093
Actual 0.097 0.092 0.093 0.086 0.092 0.097 0.092 0.096 0.083 0.091

Table 1: Test of Stationarity (Equilibrium Distribution of Unemployment and Earnings)
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MALES FEMALES
U.S. Canada U.K. France Germany U.S. Canada U.K. France Germany

LOG EARNINGS
Mean Actual 10.05 10.36 9.54 9.49 10.11 9.69 9.92 9.00 9.25 9.61

Predicted 10.05 10.35 9.54 9.49 10.11 9.69 9.92 9.00 9.25 9.59
St dev Actual 0.62 0.55 0.46 0.37 0.35 0.65 0.59 0.62 0.48 0.54

Predicted 0.62 0.54 0.46 0.37 0.34 0.65 0.57 0.61 0.48 0.52
Skewness Actual -0.23 -0.69 0.08 0.32 0.20 -0.35 -0.61 -0.34 -0.48 -1.12

Predicted -0.03 -0.16 0.07 0.43 0.28 -0.05 -0.18 -0.05 -0.03 -0.26
Kurtosis Actual 3.17 3.76 3.11 4.12 3.64 3.14 3.15 2.67 3.33 4.44

Predicted 2.98 3.00 2.93 3.64 3.13 2.84 2.78 2.72 2.87 3.02

EARNINGS
Mean Actual 28,179 36,234 15,594 14,856 27,613 19,771 23,401 9,288 11,263 16,866

Predicted 28,325 36,266 15,657 14,926 27,414 19,936 23,468 9,312 11,364 16,365
St dev Actual 18,317 18,388 7,718 6,724 10,541 12,791 12,266 5,515 5,246 7,750

Predicted 19,371 20,359 7,644 6,904 10,487 13,878 13,368 6,000 5,716 8,876
Skewness Actual 2.24 1.07 1.74 2.20 1.05 1.66 0.78 1.16 1.23 0.39

Predicted 2.41 1.47 1.53 2.61 1.02 1.97 1.20 1.63 1.50 1.03
Kurtosis Actual 15.72 5.36 8.47 10.90 4.38 7.57 3.52 4.75 6.62 3.06

Predicted 15.14 6.28 6.80 15.62 4.52 9.16 4.51 6.57 6.97 3.79

Table 2: Cross-Section Distribution: Homogeneous Model
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MALES FEMALES
U.S. Canada U.K. France Germany U.S. Canada U.K. France Germany

LOG EARNINGS
Mean Actual 10.10 10.38 9.59 9.54 10.24 9.73 9.95 8.98 9.27 9.59

Predicted 10.10 10.38 9.59 9.54 10.24 9.73 9.95 8.98 9.27 9.59
St dev Actual 0.62 0.55 0.46 0.39 0.37 0.65 0.59 0.63 0.48 0.55

Predicted 0.62 0.54 0.46 0.39 0.37 0.65 0.59 0.62 0.49 0.55
Skewness Actual -0.25 -0.71 0.05 0.40 -0.19 -0.37 -0.64 -0.31 -0.53 -1.02

Predicted -0.14 -0.55 0.05 0.44 -0.14 -0.21 -0.51 -0.20 -0.45 -0.93
Kurtosis Actual 3.19 3.83 3.11 4.05 3.47 3.16 3.20 2.59 3.38 4.07

Predicted 3.01 3.43 2.99 3.96 3.24 2.90 3.02 2.60 3.19 3.88

EARNINGS
Mean Actual 28,179 36,234 15,594 14,856 27,613 19,771 23,401 9,288 11,263 16,866

Predicted 28,265 36,284 15,597 14,860 27,599 19,868 23,495 9,303 11,303 16,890
St dev Actual 18,317 18,388 7,718 6,724 10,541 12,791 12,266 5,515 5,246 7,750

Predicted 18,642 18,799 7,662 6,737 10,524 13,257 12,749 5,709 5,3525 8,026
Skewness Actual 2.24 1.07 1.74 2.20 1.05 1.66 0.78 1.16 1.23 0.39

Predicted 2.06 1.09 1.62 2.20 1.03 1.74 0.94 1.32 1.28 0.52
Kurtosis Actual 15.72 5.36 8.47 10.90 4.38 7.57 3.52 4.75 6.62 3.06

Predicted 11.28 5.09 7.50 10.80 4.20 7.86 3.92 5.12 6.91 3.09

Table 3: Cross-Section Distribution: Fixed Effect Model
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MALES FEMALES
U.S. Canada U.K. France Germany U.S. Canada U.K. France Germany

Actual 0.13 0.48 0.40 0.52 0.42 0.17 0.42 0.47 0.51 0.65

Decile 1 Homogeneous 0.15 0.38 0.32 0.46 0.45 0.16 0.32 0.41 0.43 0.61
Fixed Effect 0.19 0.53 0.47 0.59 0.45 0.23 0.46 0.46 0.52 0.66
Actual 0.16 0.39 0.25 0.39 0.30 0.17 0.34 0.29 0.47 0.40

Decile 2 Homogeneous 0.14 0.37 0.19 0.34 0.29 0.17 0.28 0.30 0.45 0.36
Fixed Effect 0.18 0.42 0.26 0.37 0.29 0.19 0.38 0.34 0.45 0.45
Actual 0.16 0.38 0.22 0.27 0.29 0.15 0.33 0.34 0.39 0.40

Decile 3 Homogeneous 0.16 0.35 0.18 0.27 0.26 0.15 0.27 0.27 0.37 0.37
Fixed Effect 0.14 0.37 0.21 0.29 0.31 0.16 0.33 0.34 0.41 0.43
Actual 0.15 0.34 0.18 0.29 0.15 0.18 0.29 0.22 0.27 0.38

Decile 4 Homogeneous 0.15 0.28 0.20 0.29 0.23 0.16 0.26 0.25 0.35 0.31
Fixed Effect 0.16 0.33 0.21 0.31 0.18 0.20 0.28 0.26 0.30 0.35
Actual 0.13 0.34 0.18 0.26 0.29 0.14 0.33 0.25 0.46 0.32

Decile 5 Homogeneous 0.10 0.29 0.22 0.26 0.24 0.15 0.32 0.24 0.38 0.28
Fixed Effect 0.11 0.30 0.21 0.29 0.23 0.11 0.32 0.26 0.40 0.29
Actual 0.14 0.35 0.23 0.33 0.26 0.15 0.30 0.20 0.45 0.30

Decile 6 Homogeneous 0.09 0.29 0.20 0.29 0.23 0.13 0.30 0.28 0.34 0.26
Fixed Effect 0.13 0.32 0.20 0.32 0.22 0.14 0.30 0.24 0.39 0.25
Actual 0.18 0.36 0.28 0.48 0.30 0.16 0.33 0.22 0.43 0.24

Decile 7 Homogeneous 0.16 0.29 0.22 0.42 0.22 0.16 0.28 0.22 0.33 0.24
Fixed Effect 0.15 0.33 0.26 0.47 0.27 0.16 0.29 0.22 0.38 0.31
Actual 0.18 0.35 0.30 0.40 0.33 0.22 0.38 0.35 0.53 0.42

Decile 8 Homogeneous 0.16 0.29 0.29 0.42 0.30 0.17 0.35 0.29 0.39 0.33
Fixed Effect 0.17 0.34 0.29 0.45 0.34 0.17 0.33 0.33 0.48 0.38
Actual 0.23 0.41 0.42 0.59 0.43 0.23 0.46 0.45 0.52 0.53

Decile 9 Homogeneous 0.20 0.34 0.39 0.50 0.44 0.21 0.43 0.40 0.45 0.51
Fixed Effect 0.23 0.41 0.40 0.59 0.43 0.22 0.46 0.39 0.49 0.48
Actual 0.43 0.68 0.65 0.81 0.71 0.42 0.72 0.72 0.82 0.62

Decile 10 Homogeneous 0.40 0.61 0.61 0.76 0.63 0.35 0.69 0.63 0.75 0.53
Fixed Effect 0.42 0.66 0.63 0.82 0.72 0.38 0.68 0.65 0.81 0.61

Table 4: Earnings Mobility by Earnings Decile of Origin (Spearman’s Correlation between Period 1 Earnings and Period 2 Earnings)
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MALES FEMALES
U.S. Canada U.K. France Germany U.S. Canada U.K. France Germany

Actual 0.76 0.92 0.88 0.94 0.91 0.77 0.90 0.90 0.94 0.93

1 Year Difference Homogeneous 0.76 0.91 0.86 0.93 0.89 0.76 0.89 0.89 0.93 0.91
Fixed Effect 0.76 0.92 0.88 0.94 0.90 0.77 0.90 0.90 0.95 0.92
Actual 0.71 0.87 0.83 0.92 0.87 0.72 0.85 0.86 0.92 0.88

2 Year Difference Homogeneous 0.60 0.81 0.75 0.86 0.80 0.60 0.79 0.80 0.87 0.84
Fixed Effect 0.82 0.91 0.87 0.96 0.89 0.82 0.90 0.88 0.96 0.90
Actual 0.66 0.84 0.79 0.85 0.68 0.82 0.82 0.84

3 Year Difference Homogeneous 0.49 0.73 0.66 0.72 0.49 0.68 0.71 0.78
Fixed Effect 0.77 0.90 0.86 0.88 0.78 0.89 0.88 0.90
Actual 0.81 0.75 0.81 0.79 0.79 0.81

4 Year Difference Homogeneous 0.66 0.58 0.66 0.63 0.64 0.72
Fixed Effect 0.89 0.85 0.87 0.88 0.87 0.89
Actual 0.81 0.75 0.81 0.79 0.79 0.81

5 Year Difference Homogeneous 0.58 0.52 0.60 0.54 0.56 0.64
Fixed Effect 0.86 0.83 0.86 0.85 0.86 0.88
Actual 0.70 0.78 0.73 0.71

6 Year Difference Homogeneous 0.48 0.54 0.53 0.59
Fixed Effect 0.83 0.86 0.86 0.85

Table 5: Higher-Order Earnings Mobility (Spearman’s Correlation across 1 to 6 Years)
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1 Year Difference 2 Year Difference 3 Year Difference 4 Year Difference 5 Year Difference 6 Year Difference
Act. Hom. FE Act. Hom. FE Act. Hom. FE Act. Hom. FE Act. Hom. FE Act. Hom. FE

U.S.
< High School 0.62 0.63 0.62 0.59 0.44 0.73 0.50 0.26 0.66
High School 0.67 0.68 0.68 0.59 0.47 0.76 0.54 0.32 0.67
Some College 0.70 0.69 0.70 0.64 0.48 0.77 0.57 0.37 0.72
University 0.75 0.75 0.76 0.68 0.56 0.79 0.62 0.41 0.75
CANADA
< High School 0.89 0.87 0.90 0.83 0.75 0.90 0.81 0.64 0.89 0.79 0.59 0.88 0.76 0.52 0.86
High School 0.91 0.90 0.90 0.85 0.79 0.89 0.81 0.71 0.89 0.78 0.61 0.86 0.74 0.51 0.83
Some College 0.91 0.90 0.91 0.86 0.80 0.90 0.83 0.71 0.89 0.80 0.63 0.88 0.76 0.56 0.85
University 0.91 0.90 0.91 0.85 0.79 0.88 0.80 0.71 0.87 0.75 0.63 0.85 0.71 0.50 0.81
U.K.
< High School 0.83 0.82 0.83 0.77 0.66 0.82 0.72 0.54 0.81 0.67 0.44 0.80 0.63 0.36 0.78 0.64 0.32 0.78
High School 0.86 0.84 0.86 0.80 0.70 0.84 0.73 0.59 0.82 0.69 0.50 0.80 0.65 0.41 0.78 0.61 0.34 0.75
> High School 0.90 0.88 0.89 0.85 0.77 0.87 0.79 0.68 0.86 0.72 0.59 0.85 0.67 0.51 0.83 0.59 0.45 0.82
FRANCE
< High School 0.92 0.90 0.92 0.89 0.82 0.94
High School 0.95 0.94 0.95 0.92 0.89 0.96
Some College 0.94 0.93 0.94 0.91 0.85 0.95
University 0.94 0.93 0.94 0.92 0.87 0.96
Germany
< 10 years 0.78 0.75 0.79 0.78 0.60 0.80 0.68 0.49 0.80 0.74 0.40 0.80 0.72 0.32 0.82 0.69 0.30 0.79
10 < < 14 years 0.87 0.86 0.87 0.84 0.74 0.86 0.81 0.63 0.85 0.77 0.55 0.85 0.77 0.49 0.84 0.75 0.40 0.85
>= 14 years 0.93 0.90 0.92 0.89 0.83 0.90 0.85 0.75 0.89 0.82 0.70 0.87 0.79 0.64 0.85 0.74 0.59 0.83

Table 6: Higher-Order Earnings Mobility by Education (Spearman’s Correlation across 1 to 6 Years) – Male Sample
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1 Year Difference 2 Year Difference 3 Year Difference 4 Year Difference 5 Year Difference 6 Year Difference
Act. Hom. FE Act. Hom. FE Act. Hom. FE Act. Hom. FE Act. Hom. FE Act. Hom. FE

U.S.
0 − 15 years 0.73 0.72 0.73 0.68 0.57 0.80 0.65 0.47 0.75
16 − 25 years 0.76 0.76 0.76 0.72 0.60 0.81 0.66 0.48 0.76
> 25 years 0.76 0.77 0.76 0.71 0.60 0.82 0.66 0.49 0.78
CANADA
0 − 15 years 0.90 0.89 0.90 0.84 0.78 0.89 0.81 0.67 0.89 0.77 0.62 0.87 0.75 0.57 0.86
16 − 25 years 0.92 0.91 0.92 0.87 0.81 0.90 0.85 0.74 0.91 0.84 0.67 0.89 0.80 0.58 0.87
> 25 years 0.92 0.91 0.92 0.88 0.82 0.91 0.84 0.74 0.90 0.82 0.67 0.90 0.78 0.59 0.87
U.K.
0 − 15 years 0.86 0.85 0.86 0.82 0.73 0.86 0.79 0.65 0.85 0.74 0.58 0.84 0.72 0.52 0.83 0.71 0.47 0.83
16 − 25 years 0.88 0.85 0.88 0.84 0.75 0.86 0.81 0.66 0.86 0.78 0.58 0.85 0.77 0.53 0.84 0.75 0.47 0.85
> 25 years 0.90 0.86 0.89 0.84 0.74 0.87 0.78 0.64 0.86 0.74 0.55 0.85 0.69 0.46 0.83 0.57 0.45 0.80
FRANCE
0 − 15 years 0.93 0.91 0.92 0.91 0.85 0.95
16 − 25 years 0.94 0.93 0.94 0.93 0.85 0.96
> 25 years 0.94 0.93 0.94 0.92 0.87 0.96
Germany
0 − 15 years 0.86 0.85 0.84 0.80 0.73 0.82 0.75 0.62 0.81 0.70 0.55 0.80 0.67 0.50 0.77 0.68 0.43 0.77
16 − 25 years 0.91 0.88 0.89 0.89 0.80 0.89 0.87 0.73 0.89 0.85 0.67 0.89 0.85 0.59 0.89 0.87 0.56 0.90
> 25 years 0.93 0.91 0.93 0.91 0.83 0.93 0.90 0.75 0.93 0.87 0.70 0.93 0.88 0.65 0.93 0.83 0.60 0.93

Table 7: Higher-Order Earnings Mobility by Experience (Spearman’s Correlation across 1 to 6 Years) – Male Sample
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U.S. Canada U.K. France Germany

MALES and FEMALES
Gender Differential Current Earnings 0.70 0.65 0.59 0.76 0.61

Ex-post Annuities, Homogeneous 0.68 0.65 0.58 0.76 0.60
Ex-post Annuities, Fixed Effect 0.75 0.71 0.59 0.76 0.61

MALES
Education Premium Current Earnings 2.51 1.74 1.70 2.04 1.87

Ex-post Annuities, Homogeneous 2.59 1.74 1.79 2.30 2.23
Ex-post Annuities, Fixed Effect 2.65 1.73 1.70 2.27 2.07

Experience Premium Current Earnings 1.27 1.29 1.06 1.14 1.32
Ex-post Annuities, Homogeneous 1.04 1.01 0.89 0.97 1.03
Ex-post Annuities, Fixed Effect 0.98 0.98 0.90 1.00 1.05

FEMALES
Education Premium Current Earnings 2.73 2.19 2.07 2.06 1.67

Ex-post Annuities, Homogeneous 2.86 2.26 2.14 2.53 1.99
Ex-post Annuities, Fixed Effect 2.72 2.41 2.12 2.19 1.68

Experience Premium Current Earnings 1.08 1.11 0.81 1.02 0.94
Ex-post Annuities, Homogeneous 0.92 0.88 0.70 0.91 0.86
Ex-post Annuities, Fixed Effect 0.89 0.84 0.67 0.93 0.85

Table 8: Earnings and Annuity Value Differentials (Employed Workers Only)
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U.S. Canada U.K. France Germany

MALES
90/10
Annual earnings 4.88 4.02 3.20 2.55 2.66
Upward wage mobility only 2.72 2.41 2.20 2.46 2.21
Downward wage mobility only 3.30 3.55 2.57 2.38 2.39
Wage mobility only 2.67 2.51 2.28 2.23 2.17
Percentage reduction 55% 62% 71% 87% 82%
Unemployment mobility only 4.76 3.73 3.45 3.12 3.06
Ex post annuity values (full mobility) 2.76 2.65 2.40 2.65 2.55
Standard deviation (full mobility) (0.03) (0.03) (0.05)
Percentage reduction 57% 66% 75% 104% 96%

Gini
Annual earnings 0.33 0.28 0.26 0.22 0.22
Upward wage mobility only 0.21 0.19 0.17 0.21 0.17
Downward wage mobility only 0.27 0.27 0.22 0.21 0.20
Wage mobility only 0.22 0.20 0.19 0.20 0.18
Percentage reduction 65% 73% 72% 90% 81%
Unemployment mobility only 0.32 0.27 0.26 0.26 0.23
Ex post annuity values (full mobility) 0.22 0.21 0.20 0.23 0.21
Standard deviation (full mobility) (0.002) (0.001) (0.003)
Percentage reduction 66% 76% 76% 103% 94%

FEMALES
90/10
Annual earnings 5.35 4.67 5.20 3.73 4.02
Upward wage mobility only 3.05 2.65 2.92 2.65 3.03
Downward wage mobility only 4.00 4.15 4.25 3.73 3.98
Wage mobility only 2.87 2.75 3.28 2.79 3.00
Percentage reduction 54% 59% 63% 75% 75%
Unemployment mobility only 5.40 4.41 4.95 4.50 5.01
Ex post annuity values (full mobility) 2.94 2.96 3.28 3.49 3.49
Standard deviation (full mobility) (0.07) (0.08) (0.30)
Percentage reduction 55% 64% 63% 94% 87%

Gini
Annual earnings 0.34 0.29 0.32 0.25 0.27
Upward wage mobility only 0.22 0.20 0.22 0.22 0.22
Downward wage mobility only 0.30 0.29 0.31 0.27 0.28
Wage mobility only 0.23 0.21 0.25 0.22 0.23
Percentage reduction 67% 72% 77% 89% 88%
Unemployment mobility only 0.34 0.29 0.32 0.30 0.29
Ex post annuity values (full mobility) 0.23 0.23 0.25 0.26 0.25
Standard deviation (full mobility) (0.003) (0.002) (0.003)
Percentage reduction 68% 77% 78% 104% 94%

Table 9: Inequality Measures Across Experiments – Homogeneous Model
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U.S. Canada U.K. France Germany

MALES
90/10
Annual earnings 4.88 4.02 3.20 2.55 2.66
Upward wage mobility only 4.09 3.28 2.84 2.43 2.37
Downward wage mobility only 4.38 3.56 2.82 2.46 2.50
Wage mobility only 4.09 3.38 2.77 2.42 2.38
Percentage reduction 84% 84% 87% 95% 90%
Unemployment mobility only 4.71 3.67 3.18 2.68 2.97
Ex post annuity values (full mobility) 4.15 3.48 2.89 2.68 2.72
Standard deviation (full mobility) (0.03) (0.02) (0.11)
Percentage reduction 85% 87% 90% 105% 102%

Gini
Annual earnings 0.33 0.28 0.26 0.22 0.22
Upward wage mobility only 0.30 0.25 0.23 0.22 0.19
Downward wage mobility only 0.31 0.26 0.23 0.22 0.21
Wage mobility only 0.30 0.25 0.23 0.22 0.20
Percentage reduction 89% 89% 88% 97% 88%
Unemployment mobility only 0.33 0.26 0.25 0.24 0.23
Ex post annuity values (full mobility) 0.30 0.25 0.24 0.24 0.22
Standard deviation (full mobility) (0.001) (0.001) (0.003)
Percentage reduction 90% 91% 92% 106% 100%

FEMALES
90/10
Annual earnings 5.35 4.67 5.20 3.73 3.94
Upward wage mobility only 4.29 3.61 4.66 3.33 3.26
Downward wage mobility only 4.74 4.11 4.95 3.50 3.49
Wage mobility only 4.27 3.85 4.69 3.38 3.26
Percentage reduction 80% 82% 90% 90% 83%
Unemployment mobility only 4.91 4.23 5.32 3.79 4.13
Ex post annuity values (full mobility) 4.31 3.95 4.78 3.78 3.67
Standard deviation (full mobility) (0.06) (0.04) (0.13)
Percentage reduction 81% 85% 92% 101% 93%

Gini
Annual earnings 0.34 0.29 0.32 0.25 0.27
Upward wage mobility only 0.30 0.26 0.31 0.24 0.24
Downward wage mobility only 0.32 0.27 0.32 0.24 0.25
Wage mobility only 0.30 0.26 0.31 0.24 0.24
Percentage reduction 88% 89% 97% 95% 89%
Unemployment mobility only 0.33 0.28 0.33 0.26 0.27
Ex post annuity values (full mobility) 0.30 0.27 0.32 0.26 0.25
Standard deviation (full mobility) (0.001) (0.001) (0.004)
Percentage reduction 89% 92% 98% 105% 94%

Table 10: Inequality Measures Across Experiments – Fixed Effect Model
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U.S. Canada U.K. France Germany

MALES
90/10
Annual earnings 4.88 4.02 3.20 2.55 2.66
Ex post annuity values (full mobility) 2.77 2.70 2.42 2.95 2.67
Percentage reduction 56% 67% 76% 116% 100%

Gini
Annual earnings 0.33 0.28 0.26 0.22 0.22
Ex post annuity values (full mobility) 0.22 0.22 0.20 0.25 0.22
Percentage reduction 66% 77% 77% 112% 98%

FEMALES
90/10
Annual earnings 5.35 4.67 5.20 3.73 4.02
Ex post annuity values (full mobility) 2.93 3.03 3.30 3.86 3.61
Percentage reduction 55% 65% 64% 104% 90%

Gini
Annual earnings 0.34 0.29 0.32 0.25 0.27
Ex post annuity values (full mobility) 0.23 0.23 0.25 0.28 0.25
Percentage reduction 68% 79% 78% 111% 96%

Table 11: Inequality Measures Across Experiments: Homogeneous Model, Unemployment In-
come = 0

U.S. Canada U.K. France Germany

MALES
90/10
Annual earnings 4.88 4.02 3.20 2.55 2.66
Ex post annuity values (full mobility) 4.14 3.53 2.90 2.92 2.84
Percentage reduction 85% 88% 91% 115% 107%

Gini
Annual earnings 0.33 0.28 0.26 0.22 0.22
Ex post annuity values (full mobility) 0.30 0.26 0.24 0.25 0.23
Percentage reduction 91% 92% 92% 113% 104%

FEMALES
90/10
Annual earnings 5.35 4.67 5.20 3.73 3.94
Ex post annuity values (full mobility) 4.33 4.01 4.79 4.04 3.80
Percentage reduction 81% 86% 92% 108% 96%

Gini
Annual earnings 0.34 0.29 0.32 0.25 0.27
Ex post annuity values (full mobility) 0.30 0.27 0.32 0.28 0.25
Percentage reduction 89% 93% 98% 110% 96%

Table 12: Inequality Measures Across Experiments: Fixed Effect Model, Unemployment Income
= 0
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