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Summary. Modelling relationships between individuals is a classical question in social sci-
ences and clustering individuals according to the observed patterns of interactions allows us
to uncover a latent structure in the data. The stochastic block model is a popular approach
for grouping individuals with respect to their social comportment. When several relationships
of various types can occur jointly between individuals, the data are represented by multiplex
networks where more than one edge can exist between the nodes. We extend stochastic block
models to multiplex networks to obtain a clustering based on more than one kind of relation-
ship.We propose to estimate the parameters—such as the marginal probabilities of assignment
to groups (blocks) and the matrix of probabilities of connections between groups—through a
variational expectation–maximization procedure. Consistency of the estimates is studied. The
number of groups is chosen by using the integrated completed likelihood criterion, which is
a penalized likelihood criterion. Multiplex stochastic block models arise in many situations but
our applied example is motivated by a network of French cancer researchers. The two possi-
ble links (edges) between researchers are a direct connection or a connection through their
laboratories. Our results show strong interactions between these two kinds of connection and
the groups that are obtained are discussed to emphasize the common features of researchers
grouped together.

Keywords: Bivariate stochastic block model; Multilevel or multiplex networks; Social network

1. Introduction

Network analysis has emerged as a key technique for understanding and for investigating social
interactions through the properties of relationships between and within units. From a statis-
tical point of view, a network is a realization of a random graph formed by a set of nodes V

representing the units (e.g. individuals, actors or companies) and a set of edges E representing
relationships between pairs of nodes.

The system in which the same nodes belong to multiple networks is typically referred to as a
multiplex network or multigraph (see Wasserman (1994), for example). In recent literature, there
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has been an upsurge of interest in multiplex networks (see, for example, Cozzo et al. (2012),
Loe and Jeldtoft Jensen (2014), Rank et al. (2010), Szell et al. (2010), Mucha et al. (2010),
Maggioni et al. (2013), Brummitt et al. (2012), Saumell-Mendiola et al. (2012), Bianconi (2013)
and Nicosia et al. (2013)). In these multiplex networks, different kinds of link (or connection) are
possible for each pair of nodes. This induced link multiplexity is a fundamental aspect of social
relations (Snijders and Baerveldt, 2003) since these multiple links are frequently interdependent:
links in one network may have an influence on the formation or dissolution of links in other
networks.

The simultaneous analysis of several networks also arises when one is interested in the social
comportment of individuals belonging to organized entities (such as companies, laboratories
or political groups), with some individuals possibly belonging to the same institution. Whereas
the actors will exchange resources (such as advice) at the individual level, their respective or-
ganizations of affiliation will also share resources at the institutional level (financial resources
for instance). Each level (individuals and organizations) constitutes a system of exchange of
different resources that has its own logic and could be studied separately. However, studying the
two networks jointly (and hence embedding the individuals in the multilevel relational and orga-
nizational structures constituting the interorganizational context of their actions) would allow
us to identify the individuals who benefit from relatively easy access to the resources circulating
in each level, which is of much more interest. In other words, studying the two levels jointly
could help us to understand how an individual can benefit from the position of its organization
in the institutional network.

In this paper, we are interested in studying the advice relationships between researchers and
the exchanges of resources between laboratories. We adopt the following individual-oriented
strategy (this point is discussed in the paper): the institutional network is used to define a new
network on the individual level, i.e. the set of nodes consists in the set of individuals and, for a
pair of individuals, two kinds of link are possible: a direct connection given by the individual
network and a connection through their organizations given by the organizational network. As
a consequence, the individual and institutional levels are fused into a multiplex.

We then develop a statistical model that can detect in multiplex substantial non-trivial topo-
logical features, with patterns of connection between their elements that are not purely regular.
Several models such as scale-free networks and small world networks have been proposed to
describe and understand the heterogeneity that is observed in networks. These models allow
us to derive properties of the network at the macroscale and to understand the outcomes of
interactions. To explore heterogeneity at others scales (such as microscale or mesoscale) in
social networks, specific models such as stochastic block models (SBMs) (Snijders and Now-
icki, 1997) have been developed for uniplex networks. In this paper, we propose an original
extension of SBMs to the multiplex case. Our model is efficient in modelling not only the main
effects (that correspond to a classical uniplex) but also the pairwise interactions between the
nodes. We estimate the parameters of the multiplex SBM by using an extension of the variational
expectation–maximization (EM) algorithm. Consistency of the estimation of the parameters is
proved. As for uniplex SBMs, a key issue is to choose the number of blocks. We use a penalized
likelihood criterion, namely the integrated completed likelihood (ICL). The inference procedure
is performed on the cancer researchers and laboratories data set.

Since original work of Holland et al. (1983), probabilistic models for networks have been
studied. It is out of the scope of this paper to review this very large literature but the most
commonly used models are discussed in the survey by Goldenberg et al. (2010) as well as in
Matias and Robin (2014a). From a theoretical point of view, the Szemerédi regularity lemma
allows us to include SBMs in the theory of graph limits or inhomogeneous random graphs
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(see Komlós and Simonovits (1996)). These results were recently extended to multigraphs (see
Kunszenti-Kovács et al. (2014)). We shall not focus on limit theorems in the paper and we restrict
our goals to estimation of the parameters (as well as interpretation) of the model proposed.
Computational complexity of most of the proposed extensions leads to intractable models and
we focus here on a multiplex graph with (unknown) block structure.

Another classical question when recovering block or communities in graphs is sparsity. Real
world large-scale networks are usually sparse, in the sense that the node degrees are very small
compared with the total number of nodes. Since the data are generally a sample it is important
to understand what happens when the size of the sample increases. The extension of results
on sparsity to the case of multiplex SBMs is an important open question. The first step is
to extend the definition of sparsity to multiplex networks. In this work, we sampled the whole
population and the aim of this study is to understand the block structure of this given population
of researchers. Therefore we are not concerned with sparsity in our framework and we shall not
study this question in this paper.

The paper is organized as follows. The extension of SBMs to multiplex networks is presented
in Section 2, and the proofs of model identifiability and the consistency of the variational EM
procedure are postponed until Appendices A and B. In Section 3, we describe the data set of
Lazega et al. (2008) apply the new modelling and discuss the results. Finally, the contribution
of multiplex SBMs to the analysis of multiplex networks is highlighted in Section 4.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Multiplex stochastic block model

2.1. Description of the model
The main objective is to cluster the individuals (or nodes) into blocks sharing connection prop-
erties with the other individuals of the multiplex network. SBMs (Nowicki and Snijders, 2001)
for random graphs have emerged as a natural tool to perform such a clustering based on uniplex
networks (directed or not; valued or not). In what follows, we propose an extension of the SBM
to multiplex networks.

Let X1, : : : , XK be K directed graphs relying on the same set of nodes E = {1, : : : , n}. We
assume that ∀.i, j/, i �= j, and ∀k ∈ {1, : : : , K}, Xk

ij ∈ {0, 1}. We define a joint distribution on
X1:K = .X1, : : : , XK/.

The simplest distribution would be ∀ .i, j/∈{1, : : : , n}2, i �= j, and ∀w ∈{0, 1}K,

P.X1:K
ij =w/=π.w/ ∑

w∈{0,1}K

π.w/ =1,

where the .X1:K
ij /i,j are mutually independent. This model is quite simple since any relationship

between two individuals (a relationship being a collection of edges) is independent of the rela-
tionships between the other individuals. However, note that the different kinds of relationships
(k =1, : : : , K) between two individuals .i, j/ are not assumed to be independent.

To consider more complex patterns, we use the SBM approach, considering a mixture distri-
bution on the {X1:K

ij , i=1, : : : , n, j =1, : : : , n, i �= j}.
Let Q be the number of blocks (groups or clusters). We introduce the latent variables .Zi/i=1,:::,n

such that Zi = q if individual i belongs to block q (note that an individual can belong to
only one block in this version). The multiplex version of SBMs is written as follows: ∀.i, j/ ∈
{1, : : : , n}2, i �= j, ∀w ∈{0, 1}K and ∀.q, l/∈{1, : : : , Q}2,
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P.X1:K
ij =w|Zi =q, Zj = l/=π

.w/
ql ,

P.Zi =q/=αq:
.1/

Conditionally on the affectations Z = .Z1, : : : , Zn/, the .X1:K
ij /i�=j are independent. We stress

again the fact that the independence is between ties and not between the types of tie (k =
1, : : : , K). Some particular types of dependence (for instance Markov dependence) between
the various types or levels of ties can be introduced by constraints on the set of parameters
.π

.w/
ql /w∈{0,1}K ,.q,l/∈{1,:::,Q}2 .
The heterogeneity in the network topology is introduced through the latent variables.
Such a model includes .2K −1/Q2 +Q−1 parameters. Introducing the notation

α= .α1, : : : , αQ/,

π= .π
.w/
ql /w∈{0,1}K ,.q,l/∈{1,:::,Q}2 ,

θ = .α, π/,

the likelihood function is written as:

l.X1:K; θ/=
∫

z∈{1,:::,Q}n
lc.X1:K, z; θ/dz

= ∑
Z∈{1,:::,Q}n

p.X1:K|z;π/p.z;α/,

= ∑
Z∈{1,:::,Q}n

∏
i,j,i�=j

π
.X1:K

ij /

ZiZj

n∏
i=1

αZi , .2/

where lc.X1:K, Z; θ/ is the complete likelihood and p.X1:K|z;π/ is the conditional probability.
The latent variables z (the block affectations) are integrated out. The identifiability of the model
can be proved (see Appendix A, theorem 1) and some consistency results can be proved on the
maximum likelihood estimators (theorem 2).

Remark 1. In the multiplex SBM, the modelling is actor based, which means that the individ-
uals are the same for all the networks X1, : : : , XK and we model conjointly all the connections.

Remark 2. Some data sets can be enhanced by covariates yij characterizing the couples of
nodes .i, j/; the covariates yij depend on only the couple .i, j/ and are not linked to the network
under consideration. Introducing the covariates in the model can be judicious if one wants to
highlight (and infer) heterogeneous patterns of connections once the effect of the covariates has
been removed. In this particular case, the probability connections would be written as

P.X1:K
ij =w|Zi =q, Zj = l/= exp.μ

.w/
ql +β.w/Tyij/

1+ ∑
v�=.0,:::,0/

exp.μ
.v/
ql +β.v/Tyij/

,

P{X1:K
ij = .0, : : : , 0/|Zi =q, Zj = l}= 1

1+ ∑
v�=.0,:::,0/

exp.μ
.v/
ql +β.v/Tyij/

,

.3/

where xT denotes the transposed vector of x.

2.2. Maximum likelihood estimation
As soon as n or Q is large, the observed likelihood (2) is not tractable (because of the sum
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on Z ∈ {1, : : : Q}n) and its maximization is a challenging task. Several approaches have been
developed in the literature (for a review, see Matias and Robin (2014b)), both in the frequentist
and in the Bayesian frameworks, starting from Snijders and Nowicki (1997) and Nowicki and
Snijders (2001). However, when the latent data space is really large, these techniques can be
burdensome. Some other strategies have been proposed, such as Bickel and Chen (2009), relying
on a profile likelihood optimization or moment estimation proposed by Ambroise and Matias
(2012) to name just a couple.

The variational EM algorithm in the context of the SBM proposed by Daudin et al. (2008)
is a flexible tool to tackle the computational challenge in many types of graph. In a few words,
the standard EM algorithm is a popular tool for estimation in models with latent variables, but
it cannot be implemented easily in this context, owing to the absence of an explicit expression
for the conditional distribution p.Z|X1:K; θ/. The variational EM algorithm aims at optimizing
a lower bound of the log-likelihood, namely

Iθ.R1:K
X /= log{l.X1:K; θ/}−KL{RX1:K , p.·|X1:K; θ/}

where KL is the Kullback–Leibler divergence, p.·|X1:K; θ/ is the true posterior distribution of the
latent variables Z given the observed data X1:K and RX1:K is an approximation of this conditional
distribution. Iθ.R1:K

X /= log{l.X1:K; θ/} if and only if the RX1:K =p.·|X1:K; θ/. Dealing with the
exact distribution is impossible, and so we approximate it by R1:K

X , where R1:K
X belongs to a

certain class of distributions. The variational EM algorithm alternates between the maximization
of Iθ.R1:K

X / with respect to R1:K
X and its maximization with respect to θ.

Simulation studies showed its practical efficiency (Mariadassou et al., 2010; Gazal et al.,
2012). Moreover, its theoretical convergence towards the maximum likelihood estimates has
been studied by Celisse et al. (2012) and more recently by Bickel et al. (2013) for standard SBMs.
In Appendix B, we give the details of the implementation of the variational EM algorithm in
multiplex SBMs. Some first results about its convergence towards the true parameter are proved
(theorem 3).

2.3. Selection of the number of clusters Q
We chose to perform the selection of the most adequate number of blocks Q by using the ICL
criterion whose principle is recalled later.

The Bayesian information criterion BIC is a penalized likelihood criterion, which is widely
used for model choice. It is defined as

BIC= log{l.X1:K; θ̂, MQ/}−PenBIC.MQ/, .4/

PenBIC.MQ/ (penalizing the complexity of the model) derives from a Laplace approximation of
the marginal likelihood

∫
l.X1:K; θ, MQ/p.θ/dθ. The BIC-criterion provides, under regularity

conditions, a reliable approximation to this integrated likelihood. However, these regularity
conditions on the likelihood function do not hold for mixture models or SBMs. Even if BIC
is used in practice for model selection in mixture models, it suffers from major drawbacks
(see the introduction in Biernacki et al. (2000)). Moreover, in the SBM context, the quantity
log{l.X1:K; θ̂, MQ/} has no explicit expression (owing to the integration over the latent variables
Z).

As a consequence, the ICL criterion is an alternative to BIC in the mixture model context.
ICL relies on the integrated complete log-likelihood log{∫

θ lc.X1:K, Z; θ, MQ/p.θ/dθ}.
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A direct and easy extension of the demonstration in Daudin et al. (2008) gives

log
{∫

θ
lc.X1:K, Z; θ, MQ/p.θ/dθ

}
= log{lc.X1:K, Z; θ̂, MQ/}

− 1
2 [Q2.2K −1/log{Kn.n−1/}+ .Q−1/log.n/}

when the prior distribution on θ, p.θ/, is a well-chosen non-informative prior. This alternative
penalty

PenICL.MQ/= 1
2{Q2.2K −1/ log{Kn.n−1/}+ .Q−1/ log.n/}

is then used in the ICL criterion, defined as

ICL=EZ|X1:K,θ̂,MQ
[log{lc.X1:K, Z; θ̂, MQ/}]−PenICL.MQ/: .5/

Remark 3. Note that the ICL is a penalized conditional complete likelihood. Besides, using
the following decomposition of log{l.X1:K; θ̂, MQ/}, namely

log{l.X1:K; θ̂, MQ/}=EZ|X1:K,θ̂,MQ
[log{lc.X1:K, Z; θ̂, MQ/}]+H.Z|X1:K; θ̂, MQ/ .6/

where H.Z|X1:K, θ̂, MQ/ = − ∫
log{p.Z|X1:K; θ̂, MQ/}p.Z|X1:K; θ̂, MQ/dZ is the entropy of

the conditional distribution p.Z|X1:K, θ̂, MQ/, ICL can be seen as a penalized maximum like-
lihood, where the penalty includes the complexity of the model Pen.ICL/ and the entropy of
p.Z|X1:K, θ̂, MQ/. Using the ICL will automatically encourage clustering configurations with
well-separated groups. Its capacity to outline the clustering structure in the data has been tested
in the literature, either in mixture models (Baudry et al., 2008), latent block models (Keribin
et al., 2014) or SBMs (Mariadassou et al., 2010).

In the SBM context, under standard asymptotic assumptions, the posterior distribution
p.Z|X1:K, θ̂, MQ/ concentrates on the true affectations (see Mariadassou and Matias (2015)).
As a consequence, for n large, the entropy vanishes and ICL becomes a standard penalized
maximum likelihood. We expect the same type of results in the multiplex SBM, but additional
theoretical work is required.

2.3.1 Computing the integrated completed likelihood
Now, computing EZ|X1:K ;θ̂, MQ

[log{lc.X1:K, Z; θ̂, MQ/}] is the difficult part of the procedure in
the SBMs or multiplex SBMs. Indeed, using the expression of the complete log-likelihood, the
conditional expectation can be decomposed into

EZ|X1:K ;θ̂, MQ
[log{lc.X1:K, Z; θ̂, MQ/}]=

n∑
i, j=1, i�=j

Q∑
q,l=1

EZ|X1:K ;θ̂, MQ
[IZi=q,Zj=l] log.π̂

.X1:K
ij /

ql /

+
n∑

i=1

Q∑
q=1

EZ|X1:K ;θ̂, MQ
[IZi=q] log.α̂q/:

The posterior expectations of the EZ|X1:K ;θ̂, MQ
[IZi=q, Zj=l] have no explicit expression. For that

reason, the EM algorithm could not be applied directly and we had to resort to the variational
version of the EM algorithm (which is described in Appendix B) to maximize the likelihood.
The variational EM algorithm proposed an approximation to the conditional distribution. This
approximation can be used once again here: p.Z|X1:K; θ̂, MQ/ is replaced by RX1:K .Z/. Using
the notation that is introduced in Appendix B, we obtain
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EZ|X1:K ;θ̂, MQ
[IZi=q]= τ̂ iq,

EZ|X1:K ;θ̂, MQ
[IZi=q,Zj=l]= τ̂ iqτ̂ jl

resulting in a tractable computation of the ICL criterion.
In Appendix C, we propose a simulation study to assess the performance of the ICL in our

context.

Remark 4. Recently, Côme and Latouche (2014) and Wyse et al. (2014) considered a Bayesian
context and proposed an exact version of the ICL criterion. In their context, the BIC- or
asymptotic approximations are replaced by an exact computation of the integrated likelihood
and they proposed an adequate algorithm to calculate the ICL value.

Remark 5. Exactly as before, if we consider covariates as in equation (3), then the ICL penalty
should be adapted as follows:

PenICL.MQ/= 1
2{PQ log{Kn.n−1/}+ .Q−1/log.n/},

where PQ is the dimension of .μ, β/= .μ
.w/
ql , β.w/

ql /q,l∈{1,:::,Q}2,w∈{0,1}K .

3. Analysis for the laboratory–researcher data

3.1. The data
French scandals during the 1990s involving the voluntary sector around cancer research dried
up large donations that funded research laboratories. In the 2000s, cancer research became
politicized, with the launch of the ‘Cancer plan’ and the creation of a dedicated institution. The
aim of this public agency is to co-ordinate cancer research and to promote collaboration around
top researchers. In this context, Lazega et al. (2008) studied the relationships of advice between
French cancer researchers who were identified as ‘elite’ conjointly with the relationships of their
corresponding laboratories.

At the interindividual level, the actors (researchers) were sent a list of cancer researchers and
asked in interviews whom they sought advice from. Two actors are linked if there is at least
one kind of advice between them. The different types of advice are advice to deal with choices
about the direction of projects, advice to find institutional support, advice to handle financial
resources, advice for recruitment and finally advice about manuscripts before submitting them
to journals. Note that the links are directed. At the laboratory level (concerning only laboratories
with elite researchers), the laboratory directors were asked to specify what type of resources they
exchanged with the other laboratories on the list. The resources examined were the recruitment
of postdoctoral students and researchers, the development of programmes of joint research,
joint responses to tender offers, sharing of technical equipment, sharing of experimental mat-
erial, mobility of administrative personnel and invitations to conferences and seminars. Two
laboratories are said to be linked if there is at least one link between them. From this network
of laboratories, we can derive indirect links between the researchers, i.e. two researchers are
connected if their laboratories exchange resources. We finally have two adjacency matrices on
the same set of nodes (researchers).

This corresponds to transforming the multilevel network (individual and organization) into a
multiplex network (several kinds of relationships between individuals). This is reasonable since
the majority of laboratories contains a unique elite researcher. Thus, there is no big difference
in the number of nodes between the institutional and individual levels. In addition, auxiliary
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Table 1. (a) Size of blocks obtained by multiplex SBM, (b) cross-frequencies
of blocks versus the laboratories’ location (in Île-de-France (IDF) or not), (c)
cross-frequencies of blocks versus the researcher’s status (laboratory director or
not) and (d) cross-frequencies of blocks versus the researcher’s specialities†

Block Not IDF Not Director
IDF director

(a) (b) (c)
1 2 1 1 1 1 1 1
2 48 2 26 22 2 21 27
3 19 3 10 9 3 12 7
4 26 4 11 15 4 12 14

PH Su He ST Fph FMo FMoG

(d)
1 0 0 0 0 0 1 1
2 12 5 6 10 7 7 1
3 0 1 3 1 1 10 3
4 6 1 7 4 2 2 4

†PH, public health; Su, surgery; He, haematology; ST, solid tumours; FPh, funda-
mental pharmacology; FM0, fundamental molecular research; FMoG, fundamental
molecular genetic research.

covariates are available to describe the researchers: their age, their speciality, two publication
performance scores based on two periods of 5 years, their status (director of the laboratory or
not). Auxiliary covariates are also available for the laboratories: their size (number of researchers)
and their location.

Remark 6. We do not aim at looking for heterogeneity in the multiplex network once the effect
of the covariates has been taken into account—model (3)—but rather uncovering blocks based
only on the observed connections—model (1)—and, then, understanding their composition
through the covariates.

Remark 7. Another approach could be to consider a uniplex SBM network of researchers with
the laboratories relationships as covariates. More precisely, on each edge, it could be possible
to introduce a covariate yL

ij such that yL
ij = 1 if a relationship exists between the laboratory of

researcher i and the laboratory of researcher j. However, it is unsatisfactory since it creates a
disequilibrium between the two levels: analysing laboratories with researchers as covariate is
not the same as analysing the researchers with laboratories as covariate.

Complete data for 95 researchers identified as the elite of French cancer research working in
76 laboratories are available.

3.2. Group inference for the multiplex researchers network
To estimate the parameters of the multiplex SBM model on this data set, we use a modified
version of the variational EM algorithm (Daudin et al., 2008) which is described in Appendix
B. The optimization of the ICL criterion derived from likelihood (2) leads to four blocks (indis-
tinctly denominated clusters or groups). For clarity, we index by R and L (rather than X1, X2)
the two adjacency matrices (respectively the direct and indirect matrices).
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Fig. 1. Marginal probabilities of researcher connections (a) between and within blocks (P.R D1/), and prob-
abilities of researcher connections between and within blocks conditionally on (b) absence (P.R D 1jL D 0/)
or (c) presence (P.R D1jLD1/) of a laboratory connection: the size of the vertex is proportional to the size of
the block; the width of the edge is proportional to the probabilities of connection; if this probability is smaller
than 0.1, edges are not displayed

In Figs 1 and 2 we plot the marginal and conditional probabilities of the connections of
researchers and laboratories respectively between and within blocks.

Note that the study of the estimated marginal distributions allows us to have results on
the researchers without considering the laboratories. This gives a clear interpretation of the
importance of the laboratory for the researcher network structure. The blocks obtained are
described in Table 1: block (a) gives the sizes of the four blocks; blocks (b), (c) and (d) describe the
blocks with respect to the covariates ‘location’, ‘director or not’ and ‘speciality’. The estimations
by the variational EM procedure were conducted with wmixnet (Leger, 2014) with our specific
implementation of the bivariate Bernoulli model.

We now discuss the results. The multiplex SBM reveals interesting structural features of the
multiplex network. More precisely, collaboration takes place in a clustered manner for both re-
searchers and laboratories; collaborating laboratories tend to have affiliated researchers seeking
advice from one another. Indeed, Fig. 1 shows that the existence of a connection (an exchange of
resources) between laboratories clearly increases the probability of connection (sharing advice)
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Fig. 2. Marginal probabilities of laboratory connections (a) between and within blocks (P.L D 1/), and
probabilities of laboratory connections between and within blocks conditionally on (b) absence (P.LD1jR D0/)
or (c) presence (P.LD1jR D1/) of researcher connections: the size of the vertex is proportional to the size of
the block; the width of the edge is proportional to the probabilities of connection; if this probability is smaller
than 0.1, edges are not displayed

between researchers. The reinforcement of this probability of connection is clearly outstanding
in block 2. In this block, the researcher connections are quite unlikely within the block or with
other blocks. However, conditionally on the existence of a laboratory connection, the researcher
connections become more important especially with block 4. In block 4, the links between re-
searchers are strengthened given a connection between their laboratories. Researchers in block 3
seem to be the least affected by the connections that are provided by their laboratories. The case
of block 1 is quite peculiar since it contains two researchers only. This clustering demonstrates
that not all researchers benefit on equal terms from the institutional level. Some researchers are
more dependent on their laboratories in terms of connections. Furthermore, Fig. 2 shows that
the likeliest connections between laboratories are mainly with block 1. The fact that researchers
are sharing advice inflates the probability of exchanging resources between laboratories.

More importantly, some complex features of the within-level network structure are explained
mainly by cross-level interactions. In this empirical case, units of each level are clustered in
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blocks that make sense from the perspective of the categories of people and organizations, at
each level separately and together.

Block 1 members work in the biggest laboratories in terms of size (Fig. 3(b)). The SBM clusters
them because they have many more relations than the other members of the network. They have
among the highest indegrees, and average outdegrees in laboratories that have highest average
indegrees and outdegrees (Figs 3(e), 3(f), 3(g) and 3(h)). They have the highest performance in
terms of publication performance scores in both periods (Figs 3(c) and 3(d)). In fact, they have
a similar relational profile since they are providers of transgenic mice for the experiments of
many similar colleagues.

Block 2 members are among the lowest indegrees and outdegrees in laboratories that have
the lowest average indegrees and outdegrees (Figs 3(e), 3(f), 3(g) and 3(h)), are slightly older
than the others (Fig. 3(a)) and mainly in the smallest laboratories in terms of size. This block
is heterogeneous in terms of specialities (especially 40% clinicians and 25% diagnostic, or pre-
vention or epidemiology specialists) except fundamental research (Table 1, part (d)). They also
have among the lowest performance levels for both periods (Figs 3(c) and 3(d)), although this
is increasing. This is the biggest block. Their behaviour may be described as fusional as pro-
posed in Lazega et al. (2008) since it corresponds to individuals for whom the probabilities of
connection are the most affected by the connections of their laboratories.

In block 3, younger fundamental researchers in laboratories carrying out fundamental
research (mostly molecular research) prevail (Fig. 3(a) and Table 1, part (d)). They have
relatively low indegrees and outdegrees and are in laboratories that have the highest indegrees
(after block 1) and average outdegrees (Figs 3(e), 3(f), 3(g) and 3(h)). 70% are among the top
performers of this population, i.e. the highest performance levels after block 1 members, for
both periods (Figs 3(c) and 3(d)). Their dominant relational strategies are individualist or in-
dependentists (as shown in Fig. 1) since the probabilities of connection between researchers
remain quite unchanged, no matter whether their laboratories are connected.

Block 4 is also heterogeneous in terms of specialities but its largest subgroup is composed
of haematologists (clinical and fundamentalists) (Table 1, part (d)). Researchers have average
indegrees and outdegrees in laboratories that have relatively low indegrees and outdegrees and
that are also of average size (Figs 3(e), 3(f), 3(g) and 3(h)). There are proportionally more direc-
tors of laboratories in this block than in the others (Table 1, part (c)). Their dominant strategy
can be called fusional or collectivist. The performance levels of the majority for both periods
are somewhat mixed and average, but decreasing (Figs 3(c) and 3(d)). In this block, researchers
can take advantage of their laboratories to be connected with colleagues but they can also hold
relationships apart from their laboratories. In this case, SBMs highlight in the data a specific kind
of block structure that provides an interesting understanding of the effect of dual positioning.
The SBM mixes people and laboratories that previous analyses used to separate. It is interesting,
for example, that the SBM partitions the population regardless of geographic location (Table 1,
part (b))—a criterion that was previously shown to be meaningful to understand collective ac-
tion in this research milieu. In fact this partition may highlight the links between laboratories and
between individuals that cut across the boundaries and remoteness that is created by geography,
showing that certain categories of actors tend to reach across these separations when it suits them,
either as investments to prepare future collaborations, or as a follow-up for past investments.

4. Discussion

The essence of ‘networks’ is to help actors to cut across organizational boundaries to create
new relationships (Baker, 1992), to identify new opportunities and, eventually, to create new
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Fig. 3. Boxplots of (a) age, (b) size of laboratory, (c) performance in the first period, (d) performance in the
second period, (e) indegree for researcher relationship, (f) outdegree for researcher relationship, (g) indegree
for laboratory relationship and (h) outdegree for laboratory relationship, grouped by blocks
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organizations to use or hoard these new opportunities (Lazega, 2012; Lazega et al., 2013; Tilly,
1998). This work is a step forward to a more precise comprehension of such mechanisms.

In this paper, we proposed an SBM for multiplex networks. This way of partitioning the
graph and calculating the probabilities that two individuals are connected takes into account
more parameters in the graph than just centrality scores and size as in Lazega et al. (2007).
Besides, compared with multilevel exponential random graph models (Wang et al., 2013), this
method takes inhomogeneities of actors more into account because the separate blocks tend to
make sense as blocks with a specific identity. Multiplex SBM statistical analysis designed for the
analysis of multilevel networks given as ‘superposed’ (Lazega et al., 2007) network data aims at
identifying the rules that govern the formation of links at the interindividual level conditioned
by the characteristics of the interorganizational network. Our analysis found a general structure
that shows the ways in which these rules can be derived in this case and help to assess actor
inhomogeneities in terms of their influence on parameter estimates. This assessment is new in
the sense that it shows that formation of connections in the interindividual network does not
apply to all actors in the network identically.

In this paper, the model is applied to K = 2 networks. Applying with K much larger would
imply difficulties in estimation since the number of parameters exponentially depends on K.
However, particular assumptions (such as Markovian dependences) can reduce the difficulty
and lead to feasible cases. Besides, in our example, going from multilevel to multiplex was
quite natural since few laboratories contained more than one researcher. If the number of
organizations were far smaller then the number of individuals then maybe it would be interesting
to introduce another kind of relationship, specifying whether the individuals are in the same
laboratory or not. In this case, the probabilities vector would have a special structure, taking
this specificity into account (if the individuals belong to the same organization then they are
automatically linked through their organization).

The consistency results that were obtained for the variational approach require an additional
assumption for the parameters of the marginal distribution on the blocks memberships. We
think that it could be possible to extend the consistency result for uniplex binary networks that
was proved in Bickel et al. (2013) to the case of multiplex networks including asymptotic regimes
with sparsity. However, this extension is far from trivial and would constitute a contribution
per se mainly focused on theoretical aspects.

In this version of the analysis, the covariates were studied a posteriori, the classification being
done purely on the network. From a practical point of view, including the covariates in the
model would imply difficulty in estimation (and even more if the effect of the covariates on the
connection probabilities depends on the blocks). However, even if attractive at first sight, the
choice of including the covariates in the modelling must be questioned. Including them will
cluster the data beyond the effect of these covariates, whereas not including them will provide
a description of blocks on the basis of the relationship, and this relationship may be influenced
by these covariates. This second strategy may lead to more interpretable results.

The first aim of Lazega et al. (2008) was cancer research management. Thus, the covariate
‘performance in terms of publication’ attracts more attention. Indeed, this modelization can
generate other questions such as the influence of the networks on the performance of the actors
(publications in our case). In this work, the performance is treated as a factor to explain the
relationships. However, one could dream of a model which would help the actors to build the
ideal network to optimize the performance. If it is true that contemporary society is an ‘organi-
zational society’ (Coleman, 1982; Perrow, 1991; Presthus, 1962)—in the sense that action and
performance measured at the individual level strongly depend on the capacity of the actor to
construct and to use organizations as instruments, and thus to manage his or her interdepen-
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dences at different levels in a strategic manner—then the study of interdependences jointly at
the interindividual and the interorganizational level is important for numerous sets of problems.
Proposing a hierarchical model in this direction is out of the scope of the paper but is clearly a
possible extension.

To conclude, application to sociological network analysis will clearly benefit from this method-
ological contribution. In spite of several limitations that were listed before, this analysis of mul-
tiplex networks seems therefore adapted to certain types of question that sociologists ask when
they try to combine both individual and contextual factors to estimate the likelihood that an
individual or a group will adopt a given behaviour or to reach a given level of performance.
More generally, this approach explores a complex mesosocial level of accumulation, of appro-
priation and of sharing of multiple resources. This level, which is still poorly known, is difficult
to observe without a structural approach.

Appendix A: Identifiability of the multiplex stochastic block model and
convergence of the maximum likelihood estimates

A.1. Identifiability
Celisse et al. (2012) have proved the identifiability of the parameters for uniplex Bernoulli SBMs. We
extend their results to the multiplex SBM. First we recall the notation ∀ .i, j/∈{1, : : : , n}2, i �= j, ∀ .q, l/∈
{1, : : : , Q}2 and ∀w ∈{0, 1}K; we set

π.w/
ql =P.X1:K

ij =w|Zi =q, Zj = l/,
αq =P.Zi =q/:

Let us introduce π.w/ = .π.w/
ql /.q, l/∈{1,:::,Q} and π = .π.w//w∈{0,1}K . α = .α1, : : : , αQ/. Theorem 1 sets the

identifiability of θ = .α, π/ in the multiplex SBM.

Theorem 1. Let n�2Q. Assume that, for any q∈{1, : : : , Q}, αq > 0 and, for every w ∈{0, 1}K, the co-
ordinates of r.w/.θ/=π.w/ ·α are distinct. Then, the multiplex SBM parameter θ= .α, π/ is identifiable.

Proof. The proof given by Celisse et al. (2012) can be directly extended to our case, leading to the
expected result. As explained in Celisse et al. (2012), the identifiability can be proved by using algebraic
tools. The only difference in the multiplex context is that the proof must be applied for any type of tie
w ∈{0, 1}K.

For any w ∈ {0, 1}Q, we set r.w/
q .θ/ the probability that a member of block q has a tie of type w with

another individual: r.w/
q .θ/=ΣQ

l=1 π.w/
ql αl. Let R.w/.θ/ be the Q-square matrix such that R

.w/
iq .θ/={r.w/

q .θ/}i

for i=0, : : : , Q−1 and q=1, : : : , Q. R.w/ is a Vandermonde matrix, which is invertible by assumptions on
the co-ordinates of r.w/.θ/. Now, for any w and any i=0, : : : , 2Q−1, we set

u
.w/
i .θ/=P.X1:K

11 =: : :=X1:K
1i =w; θ/=

Q∑
q=1

αq{r.w/
q .θ/}i, .7/

and M.w/.θ/ is a .Q+1/×Q matrix such that

M
.w/
ij .θ/=u

.w/
i+j.θ/, i=0, : : : , Q, j =0, : : : , Q−1: .8/

For any i = 0, : : : , Q we define the Q-square matrix Mi.w/.θ/ by removing line i from this matrix. In
particular,

MQ.w/.θ/=R.w/.θ/A.θ/R.w/.θ/T, .9/

where A.θ/ is the α-diagonal matrix. As all the αq are non-null and R.w/.θ/ is invertible, then det.MQ.w//>0.
So, if we define

B.X; θ/=
Q∑

i=0
.−1/i+Q det{Mi.w/.θ/}Xi:
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B is of degree Q. Let us define V i.w/.θ/= .1, r
.w/
i .θ/, : : : , {r

.w/
i .θ/}Q/; then

B{r
.w/
i .θ/; θ}=det.M.w/.θ/, V

.w/
i .θ//,

where .M.w/.θ/, V
.w/
i .θ// is a Q + 1 square matrix. As the columns of M are linear combinations of the

V
.w/
i , we obtain B{r

.w/
i .θ/; θ}=0 for any i=0, : : : , Q−1. So, we can factorize B as

B.x; θ/=det{MQ.w/.θ/}
Q−1∏
i=0

{x− r
.w/
i .θ/}: .10/

Now, assume that θ = .π, α/ and θ′ = .π′, α′/ are two sets or parameters such that, for any multiplex
graph X1:K, l.X1:K; θ/= l.X1:K; θ′/. Consequently, from equation (7), we obtain u

.w/
i .θ/=u

.w/
i .θ′/ and, from

equation (8), we deduce that Mi.w/.θ/ = Mi.w/.θ′/ for any i = 0, : : : , Q − 1. As the polynomial function B
depends on the determinant of the Mi.w/.θ/s, we have B.·; θ/=B.·; θ′/, leading to ri.w/.θ/= ri.w/.θ′/ for
all i=0, : : : , Q−1, by equation (10). Thus R.w/.θ/=R.w/.θ′/ and

A.θ/= .R.w/.θ/T/−1MQ.w/.θ/R.w/.θ/=A.θ′/:

As a consequence, α=α′.
Finally, let U

.w/
i,j (0� i, j �Q) denote

U
.w/
i,j =P.X1:K

1,k =w, k =1, : : : , i+1 and k =n− j +1, : : : , n/:

We can write the Q × Q matrix U.w/.θ/ as U.w/.θ/ = R.w/.θ/A.θ/π.w/ A.θ/R.w/.θ/T. Using the fact that
R.w/.θ/=R.w/.θ′/ and A.θ/=A.θ′/, we obtain

U.w/.θ/=U.w/.θ′/⇒π.w/ = .π′.w//, ∀w ∈{0, 1}K:

And the theorem is demonstrated.

A.2. Consistency of the maximum likelihood estimator in multiplex stochastic block
models
We study the asymptotic properties of the maximum likelihood estimator in multiplex SBMs.

Assumption 1. For every q �=q′, there exists l∈{1, : : : , Q} such that πql �=πq′l, or πlq �=πlq′ .

Assumption 2. There exists ζ > 0 such that, ∀ .q, l/∈1, : : : , Q, π.w/
ql ∈]0, 1[⇒π.w/

ql ∈[ζ, 1− ζ].

Assumption 3. There exists γ ∈ .0, 1=Q/ such that, ∀q∈1, : : : , Q, αq ∈ [γ, 1−γ].

Let X1:K be a realization from the multiplex SBM: X1:K ∼p.X1:K|ZÅ;αÅ, πÅ/ where ZÅ = .ZÅ
1 , : : : , ZÅ

n / is
the true group label sequence and .αÅ, πÅ/ are the true parameters. Let .α̂, π̂/ be the maximum likelihood
estimator defined as

.α̂, π̂/=arg max
.α,π/

l.X1:K;α, π/,

where

l.X1:K;α, π/= ∑
Z∈{1,:::,Q}n

exp[log{p.X1:K|Z;π/}]
n∏

i=1
αZi

,

log{p.X1:K|Z;π/}=
n∑

i,j, i�=j

log{P.X1:K
ij |Zi, Zj ;π/}=

n∑
i,j, i�=j

∑
w∈{0,1}K

IX1:K
ij =w log.π.w/

ZiZj
/:

Theorem 2. Let assumptions 1–3 hold. Then, for any distance d.·, ·/ on the set of parameter π, we have

d.π̂, πÅ/
P→

n→∞
0:

Moreover, assume that ‖π̂−πÅ‖∞ =oP{√
log.n/=n}; then, for any distance d.·, ·/ in RQ,

d.α̂, αÅ/
P→

n→∞
0:
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Note that the rate oP{√
log.n/=n} has not been proved yet. However, in the uniplex context, there is

empirical evidence that the rate of convergence on π̂ is 1=n (Gazal et al., 2012). This result relies on a direct
extension of the results given in Celisse et al. (2012) (see Appendix B.4).

Appendix B: Variational expectation–maximization algorithm for multiplex
stochastic block models: principle, details and convergence

B.1. General principle of the variational expectation–maximization
SBMs belong to the incomplete-data models class, the non-observed data being the block indices .Zi/i=1,:::,n∈
{1, : : : , Q}n. As written before, the likelihood has a marginal expression:

l.X1:K; θ/= ∑
Z∈{1,:::,Q}n

exp[log{p.X1:K|Z;π/}]p.Z;α/, .11/

which is not tractable as soon as n and Q become large. The variational EM method is an alternative
method to maximize the marginal likelihood with respect to θ. The variational EM algorithm (applied
in the SBM context by Daudin et al. (2008)) relies on the following decomposition of equation (11). Let
RX1:K be any probability distribution on Z; we have

log{l.X1:K; θ/}=∑
Z

RX1:K .Z/log{lc.X1:K, Z; θ/}−∑
Z

RX1:K .Z/ log{RX1:K .Z/}

+KL{RX1:K , p.·|X1:K; θ/}, .12/

where KL is the Kullback–Leibler distance, lc.X1:K, Z; θ/ is the joint density of X1:K and Z (namely
the complete likelihood) and p.·|X1:K; θ/ is the posterior distribution of Z given the data X1:K and the
parameters θ. Instead of maximizing log{l.X1:K; θ/}, the variational EM algorithm optimizes a lower
bound Iθ.RX1:K / of log{l.X1:K; θ/} where

Iθ.RX1:K /= log{l.X1:K; θ/}−KL{RX1:K , p.·|X1:K; θ/},

=∑
Z

RX1:K .Z/log{lc.X1:K, Z; θ/}−∑
Z

RX1:K .Z/log{RX1:K .Z/}

� log{l.X1:K; θ/}:

.13/

Thanks to equality (13), optimizing Iθ.RX1:K / with respect to θ no longer requires the computation of the
marginal likelihood. Note also that the equality Iθ.RX1:K / = log{l.X1:K; θ/} holds if and only if RX1:K =
p.·|X1:K; θ/. As a consequence, RX1:K will be taken as an approximation to p.·|X1:K; θ/ in a certain class of
distributions. Jaakkola (2000) proposed to optimize it in the following class:

RX1:K ,τ .Z/=
n∏

i=1
h.Zi, τ̂ i/,

where h.·;τ i/ is the multinomial distribution of parameter τ i = .τi1, : : : , τiq/. Finally, the variational EM
algorithm updates alternately θ and τ in the following way. At iteration .t/, given the current state
.θ.t−1/, τ .t−1//:

step 1, compute

τ .t/ =argmin
τ

KL{RX1:K ,τ , p.·|X1:K; θ.t−1//}=arg max
τ

Iθ.t−1/ .RX1:K ,τ /;

step 2, compute

θ.t/ =argmaxθ Iθ.t/ .RX1:K ,τ .t/ /:

The details of steps 1 and 2 directly depend on the statistical model considered. For uniplex SBMs without
covariates, they are given in Daudin et al. (2008). The details for the multiplex SBM are now given here.

B.2. Details of the calculus for multiplex stochastic block models
We now detail step 1 and step 2 for multiplex SBMs.

Step 1: τ .t/ verifies

τ .t/ =argmin
τ

KL{RX1:K ,τ , p.·|X1:K; θ.t−1//}=argmax
τ

Iθ.t−1/ .RX1:K ,τ /:
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We first rewrite Iθ.RX1:K ,τ / for this special context:

Iθ.RX1:K ,τ /=∑
Z

RX1:K ,τ .Z/ log{lc.X1:K, Z; θ/}−∑
Z

RX1:K ,τ .Z/ log{RX1:K ,τ .Z/},

with

log{lc.X1:K, Z; θ/}= log{p.X1:K|Z; θ/}+ log{p.Z; θ/}
= ∑

i,j, i�=j

log{p.X1:K
ij |Zi, Zj ; θ/}+

n∑
i=1

log.αZi
/:

This quantity must be integrated over Z where Z∼RX1:K ,τ which means that Z= .Zi/i=1,:::,n are independent
variables such that P.Zi =q/= τiq. We obtain

Iθ.RX1:K ,τ /=∑
Z

RX1:K ,τ .Z/
[ ∑

i,j, i�=j

log{p.X1:K
ij |Zi, Zj ; θ/}+

n∑
i=1

log.αZi
/
]
−∑

Z
RX1:K ,τ .Z/ log{RX1:K ,τ .Z/},

=∑
q, l

∑
i,j, i�=j

log{p.X1:K
ij |Zi =q, Zj = l; θ/}τiqτjl +

n∑
i=1

Q∑
q=1

τiq log.αq/−
n∑

i=1

Q∑
q=1

τiq log.τiq/,

where log{p.X1:K
ij |Zi =q, Zj = l; θ/}’s expression is given in equation (1).

Iθ.RX1:K ,τ / must be maximized with respect to τ under the constraint, ∀ i=1, : : : , n, ΣQ
q=1 τiq =1. As a

consequence, we compute the derivatives of Iθ.RX1:K ,τ /+Σn
i=1 λi.Σ

Q
q=1 τiq −1/ with respect to .λi/i=1,:::,n and

.τiq/i=1,:::,n,q=1,:::,Q where λi are the Lagrange multipliers, leading to the following collection of equations:
for i=1, : : : , n and q=1, : : : , Q,∑

l

n∑
j=1,j �=i

log{p.X1:K
ij |Zi =q, Zj = l; θ/}τjl + log.αq/− log.τiq/+1+λi =0:

This leads to the following fixed point problem:

τ̂ iq = exp.1+λi/αq

n∏
j=1, j �=i

Q∏
l=1

p.X1:K
ij |Zi =q, Zj = l; θ/τ̂jl , ∀ i=1, : : : , n, ∀q=1, : : : , Q,

which must be solved under the constraints, ∀ i=1, : : : , n, ΣQ
q=1 τiq =1. This optimization problem is solved

using a standard fixed point algorithm.

Step 2: compute θ.t/ =arg maxθ Iθ.t/ .RX1:K ,τ .t/ /.

Once the τ̂ have been optimized, the parameters θ maximizing Iθ.RX1:K , τ̂ / must be computed under the
constraints ΣQ

q=1 αq =1 and Σw∈{0,1}L π.w/
ql =1 for all .q, l/∈{1, : : : , Q}2.

The maximization with respect to α is quite direct and, in any case, we obtain

α̂q = 1
n

n∑
i=1

τ̂ iq,

π̂.w/
ql =

∑
ij

τ̂ iqτ̂ jlIX1:K
ij =w∑

ij

τ̂ iqτ̂ jl

:

Remark 8. If the edge probabilities depend on covariates

logit.π.w/
ql /=μ.w/

ql + .β.w/
ql /Tyij ,

then the optimization of .μ.w/
ql / and .β.w/

ql / at step 2 of the variational EM algorithm is not explicit anymore
and one should resort to optimization algorithms such as the Newton–Raphson algorithm.

B.3. Convergence of the variational expectation–maximization estimates
We now consider the consistency of the estimates that are obtained by the variational EM algorithm.
Using the variational EM algorithm that was previously described is equivalent to maximizing the so-
called variational likelihood I where
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I.X1:K;τ , α, π/=∑
i�=j

τiqτjl

∑
w∈{0,1}K

IXij=w log.π.w/
ql /−∑

iq

τiq{log.τiq/− log.αq/}:

The variational estimators are obtained by

τ̃ .α, π/=arg max
τ

I.X1:K;τ , α, π/,

.α̃, π̃/=arg max
α,π

I.X1:K; τ̃ , α, π/:

Theorem 3. Assume that assumptions 1–3 hold. Then, for any distance on the set of parameters π,

d.π̃, πÅ/
P→

n→∞
0:

Moreover, assume that d.π̃, πÅ/=oP.1=n/; then, for any distance on RQ,

d.α̃, αÅ/
P→

n→∞
0:

B.4. About the proofs of theorems 2 and 3
The proofs of theorems 2 and 3 require many intermediate results which will not be given here because their
adaptation to the multiplex context is quite direct. Indeed, at any step of the proof, the original Bernoulli
distribution needs to be replaced by its K-dimensional version. More precisely, a central quantity in the
proof is the ratio log{p.Z|X1:K;α, π/=p.ZÅ|X1:K;α, π/}. In the uniplex case, this quantity is

log
{

p.Z|X1:K;α, π/

p.ZÅ|X1:K;α, π/

}
= log

{
p.X1:K|Z;π/

p.X1:K|ZÅ;π/

}
+ log

{
p.Z;α/

p.ZÅ;α/

}

=∑
i�=j

Xij log

(
π.w/

Zi ,Zj

π.w/

zÅi ,zÅj

)
+ .1−Xij/log

(
1−π.w/

Zi ,Zj

1−π.w/

zÅi ,zÅj

)
+

n∑
i=1

log
(

αZi

αzÅi

)
:

In the multiplex case, the sum of two terms is replaced by a sum of 2K terms:

log
{

p.Z|X;α, π/

p.ZÅ|X;α, π/

}
=∑

i�=j

∑
w∈{0, 1}K

I{Xij=w} log

(
π.w/

Zi ,Zj

π.w/

ZÅ
i ,ZÅ

j

)
+

n∑
i=1

log
(

αZi

αzÅi

)
:

where Σw∈{0,1}K π.w/
ql =1, for any .q, l/. Going from two terms to 2K terms does not imply any mathematical

difficulty and so does not compromise the convergence results.

Appendix C: About the integrated completed likelihood criterion: numerical
simulations

1000 networks were simulated according to a multiplex SBM with n=95 nodes, four groups and parameters
fixed to the estimates that were obtained in Section 3.2. Table 2 displays the number of blocks Q selected by

Table 2. Number of blocks selected by the ICL criterion
and adjusted Rand index

Estimated Q ARI

3 for 178 data sets over 1000 Minimum: 0.4210
4 for 822 data sets over 1000 1st quartile: 0.9398

Median: 0.9646
Mean: 0.9393
3rd quartile: 1.0000
Maximum: 1.0000
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the ICL criterion and the adjusted Rand index ARI (Hubert and Arabie, 1985) for measuring the adequacy
of the clustering.

These simulations illustrate the efficiency of the ICL criterion for selecting the correct number of blocks
and for recovering the latent block structure.
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