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Abstract

A new algorithm is developed to solve models with heterogeneous agents and aggregate 
uncertainty. Projection methods are the main building blocks of the algorithm and – in 
contrast to the most popular solution procedure – simulations only play a very minor role. 
The paper also develops a new simulation procedure that not only avoids cross-sectional 
sampling variation but is 10 (66) times faster than simulating an economy with 10,000 
(100,000) agents. Because it avoids cross-sectional sampling variation, it can generate an 
accurate representation of the whole cross-sectional distribution. Finally, the paper outlines a 
set of accuracy tests.
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1. Introduction

Models with heterogeneous agents and aggregate uncertainty are becoming
increasingly important. They not only improve the predictions of representative
agent models, they also make it possible to study the behavior of sub groups in a
general equilibrium framework. Solving such models is difficult, because the set of
state variables contains the cross-sectional distribution of agents’ characteristics,
which is a time-varying infinite dimensional object in the presence of aggregate
uncertainty.

The most commonly used algorithm summarizes the cross-sectional distribution
with a finite set of moments and calculates the transition law for these state variables
using a simulation procedure.1 This algorithm is relatively easy to implement and
has been used to solve a variety of models. Nevertheless, it is important to have
alternative algorithms. First, if an alternative algorithm generates a very similar
numerical solution then this builds confidence in the generated results. Accuracy
checks are of course also helpful in this respect but accuracy tests have its limits. It is
especially difficult to test in all possible dimensions if the model has many
dimensions. For complex models it is not uncommon that the results of some
tests are not that great. If they occur in dimensions that are deemed not that
important for the main properties of the model, we typically argue that it is
not worth the extra computing time to fix the problem and sometimes it may not
even be feasible. The problem is that it is very hard to determine whether
inaccuracies in some parts of the model do not spill over to other more impo-
rtant parts or whether tiny but systematic inaccuracies do not accumulate to
something more important. It is therefore important if one can replicate results
using algorithms that uses different methodologies. The second reason to develop
multiple algorithms is that different algorithms have different strengths and
weaknesses and so one type of algorithm may be more suitable for a particular
problem.

The algorithm developed in this paper to solve models with heterogenous agents
and aggregate uncertainty is quite different from the popular simulations-based
algorithm in that simulations only play a minor role. In particular, simulation
procedures are not used to obtain the aggregate law of motion. Like Den Haan
(1997) and Reiter (2002), we parameterize the cross-sectional distribution, which
makes it possible to obtain a numerical solution using standard quadrature and
projection techniques. Our algorithm has important efficiency gains over the
algorithms developed in these two papers. In particular, we follow Reiter (2002) in
using reference moments to get a better characterization of the cross-sectional
distribution without increasing the number of state variables, but we do so in a way
that is much more tractable.

Two elements of the algorithm are likely to be useful in other applications as well.
First, to obtain reference moments we need to simulate the economy and we develop
1Descriptions of this algorithm can be found in Den Haan (1996), Krusell and Smith (1998), and Rios-

Rull (1997).



a simulation procedure that avoids cross-sectional sampling uncertainty. Second, we
propose a particular class of parameterizing densities that makes the problem of
finding the coefficients that correspond to a set of moments a convex optimization
problem. Using this class of functions avoids the need for good starting values,
whereas for other functional forms we found this to be a major concern. Linking
moments with a parameterized density is part of our simulation procedure and also
plays a key role in the solution algorithm itself.

The standard simulation procedures constructs a panel of NT observations and
NN agents. By parameterizing the cross-sectional distribution and using quadrature
integration, however, our procedure can generate an accurate simulation with a
continuum of agents. Note that models with a large number of heterogeneous agents
almost always assume a continuum of agents, so that the law of large numbers
ensures that idiosyncratic risk is averaged out. In fact, the assumption of a
continuum of agents plays a key role, not only in the specification of the state
variables and the definition of the equilibrium, but also in the construction of most
algorithms.2 Thus, by simulating with a continuum instead of a finite number of
agents, we stay much closer to the actual model being solved.

Our simulation procedure not only avoids cross-sectional sampling variation, it is
also much cheaper. We found that simulating an economy with 10,000 agents for
1000 periods took 10 times as long as simulating the same economy with a
continuum of agents. In our own algorithm, the simulation procedure only plays a
very minor role. This is, of course, no reason not to use a more accurate simulation
procedure. For algorithms that use a simulation procedure to calculate the aggregate
law of motion, however, the improved simulation procedure will have bigger
benefits.

The rest of this paper is organized as follows. The next section describes the
production economy of Krusell and Smith (1998). Section 3 briefly discusses existing
algorithms and summarizes the contributions of this paper. Section 4 describes the
algorithm in detail and Section 5 describes the simulation procedure. Section 6
discusses how to check for accuracy and reports the results. The last section
concludes.
2. The production economy

The economy is a production economy with aggregate shocks in which agents face
different employment histories and partially insure themselves through (dis)saving in
capital. For more details see Krusell and Smith (1998).

Problem for the individual agent: The economy consists of a unit mass of ex ante
identical households. Each period, agents face an idiosyncratic shock e that
determines whether they are employed, e ¼ 1, or unemployed, e ¼ 0. An employed
agent earns a wage rate of wt. An employed agent earns an after-tax wage rate of
2In particular, a crucial property being used is that conditional on realizations of the aggregate shock

and this period’s cross-sectional distribution, next period’s cross-sectional distribution is known with

certainty.



ð1� ttÞwt and an unemployed agent receives unemployment benefits mwt. Markets
are incomplete and the only investment available is capital accumulation. The net
rate of return on this investment is equal to rt � d, where rt is the rental rate and d is
the depreciation rate. Agent’s i maximization problem is as follows:

max
fci

t ;k
i
tþ1
g1
t¼0

E
P1
t¼0

btðc
i
tÞ
1�g
� 1

1� g
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ki
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(1)

Here ci
t is the individual level of consumption, ki

t is the agent’s beginning-of-period
capital, and l is the time endowment.

Firm problem: Markets are competitive and the production technology of the firm
is characterized by a Cobb–Douglas production function. Consequently, firm
heterogeneity is not an issue. Let Kt and Lt stand for per capita capital and the
employment rate, respectively. Per capita output is given by

Y t ¼ atK
a
t ðlLtÞ

1�a (2)

and prices by

wt ¼ ð1� aÞat

Kt

lLt

� �a

, (3)

rt ¼ aat

Kt

lLt

� �a�1

. (4)

Aggregate productivity, at, is an exogenous stochastic process that can take on two
values, 1� Da and 1þ Da.

Government: The only role of the government is to tax employed agents and to
redistribute funds to the unemployed. We assume that the government’s budget is
balanced each period. This implies that the tax rate is equal to

tt ¼
mut

lLt

, (5)

where ut ¼ 1� Lt denotes the unemployment rate in period t.
Exogenous driving processes: There are two stochastic driving processes. The first is

aggregate productivity and the second is the employment status. Both are assumed
to be first-order Markov processes. We let paa0ee0 stand for the probability that
atþ1 ¼ a0 and ei

tþ1 ¼ e0 when at ¼ a0 and ei
t ¼ e0. These transition probabilities are

chosen such that the unemployment rate can take on only two values. That is,
ut ¼ ub when at ¼ ab and ut ¼ ug when at ¼ ag with ub4ug.

Equilibrium: Krusell and Smith (1998) consider recursive equilibria in which the
policy functions of the agent depend on his employment status, ei, his beginning-of-
period capital holdings, ki, aggregate productivity, a, and the cross-sectional



distribution of capital holdings. An equilibrium consists of the following:
�

3

4

exp
Individual policy functions that solve the agent’s maximization problem.

�
 A wage and a rental rate that are determined by 3 and 4, respectively.

�
 A transition law for the cross-sectional distribution of capital, that is consistent

with the investment policy function.

3. Relation to existing algorithms

In this paper we give a brief overview of existing algorithms and then highlight the
contributions of this paper.

3.1. Existing algorithms

A standard aspect of numerical algorithms that solve models with heterogeneous
agents is to summarize the infinite-dimensional cross-sectional distribution of agents’
characteristics by a finite set of moments, m. The transition law is then a mapping that
generates next period’s moments, m0, given the values of the moments in the current
period, m, and the realization of the aggregate shock. Krusell and Smith (1998) propose
to calculate this transition law as follows. First, construct a time series for the cross-
sectional moments by simulating an economy with a large but finite number of agents.
Second, regress the simulated moments on the set of state variables. Den Haan (1996)
uses the panel simulation to solve the individual problem, which avoids the need for an
aggregate law of motion. The first disadvantage of the simulation procedure is that
moments are calculated using Monte Carlo integration, which is known to be an
inefficient numerical integration procedure.3 The second disadvantage is that the
observations are clustered around the mean, since they are taken from a simulated series.
An efficient projection procedure, however, requires the explanatory variables to be
spread out, for example, by using Chebyshev nodes.4 Consequently, the use of simulation
procedures may make it expensive (in terms of computing time) to obtain an accurate
solution, especially if one wants the solution to be accurate across the whole state space.

Den Haan (1997) parameterizes the cross-sectional distribution with a flexible
functional form, Pðk; rÞ, which makes it possible to use quadrature techniques to do
the numerical integration. In addition, his algorithm uses Chebyshev nodes to
construct a grid of explanatory variables for the projection step. The coefficients of
the approximating density, r, are pinned down by the set of moments used, m. The
disadvantage of Den Haan (1997) is that the shape of the distribution is completely
pinned down by the moments used as state variables and the class of flexible
functional forms used. Consequently, a large number of state variables may be
needed to get the shape of the cross-sectional distribution right even when just a few
See Judd (1998).

Note that in the classic regression problem the standard errors, s2ðX 0X Þ�1, are also lower when the

lanatory values are more spread out.



moments actually matter for agents’ behavior. Another drawback of Den Haan
(1997) is that an inefficient procedure is used to find the coefficients of the
approximating density. Reiter (2002) improves upon the algorithm of Den Haan
(1997) in an ingenious way by letting the shape of the distribution depend not only
on the moments used as state variables, m, but also on a set of reference moments
that are obtained by a simulation procedure.

Promising recent alternatives to the standard algorithm have been developed
in Preston and Roca (2006) and Reiter (2006). Reiter (2006) first solves a model
without aggregate uncertainty using standard projection procedures. Next, by
replacing the endogenous variables in the equations of the model with the
parameterized numerical solution, he obtains a difference equation in the numeri-
cal coefficients. Then he uses perturbation techniques to solve for the sensitivity
of the numerical solution to aggregate shocks. This is quite a different approach
then the procedure used here, which is good for the profession, because the
more variety among available approaches used the better. Preston and Roca (2006)
use a ‘pure’ perturbation method to solve the model.5 Perturbation methods are
likely to work well when the distribution needs to be characterized by many
statistics, because dealing with many state variables is the strength of perturbation
methods.

3.2. The contributions of this paper

The main contributions of this paper are the following.
Calculating the transition law of the cross-sectional distribution: The disadvantage

of Reiter (2002) is that the particular implementation of the idea of reference
moments is very cumbersome.6 As in Den Haan (1997) and Reiter (2002), this paper
develops a procedure to calculate this transition law without relying on simulation
procedures to calculate moments and to carry out the projection step. As in Reiter
(2002), it uses reference moments, but the modifications introduced make the
procedure much more straightforward to implement. In other words, the algorithm
is an important improvement over earlier attempts that use projection methods to
solve models with heterogeneous agents. Moreover, because the building blocks are
so different from the simulation procedures, it provides a constructive alternative.
5They replace the inequality constraint with a penalty function, since perturbation methods cannot deal

well with the kind of inequality constraint used here. This also accomplishes that agents do not have

negative capital holdings and try to stay away from low capital stocks.
6Reiter (2002) constructs a reference density GðmÞ, which relates the shape of the distribution to the set

of moments that serve as state variables. It is a weighted average of distributions from a simulated

economy, where distributions with moments closer to m get more weight. Step functions are used to

construct a reference distribution, which has the advantage of being very flexible but has the disadvantage

of using a lot of parameters. One problem of the approach in Reiter (2002) is that the moments of the

reference density may not be equal to m. This means that one first has to apply operations to ensure that

one obtains a new reference function eGðmÞ for which this is not the case. But even if m contains only first

and second moments, then this problem entails more than a linear transformation, since eGðmÞ has to be a

step function that conforms to the specified grid and cannot violate the constraints on the support of the

distribution, such as the constraint that kX0.



Calculating the approximating density for given moments: The algorithm links a set
of moments with a parameterized density. Consequently, an important part of the
algorithm is the mapping between the set of moments and the coefficients of the
density. One possibility would be to use an equation solver that chooses the set of
coefficients so that the moments of the parameterized density are equal to the
specified moments. We found this procedure to be slow and intermittently breaking
down. By choosing a particular choice for the basis functions of the approximating
polynomial we transform this problem into a convex optimization problem, for
which reliable convergence algorithms exist. This procedure is likely to be useful
outside the literature of numerical solution techniques, since characterizing a cross-
sectional distribution with a CDF from a class of flexible functional forms is a
common problem in econometrics.

Simulating a panel without cross-sectional sampling variation: This paper develops a
procedure to simulate an economy without cross-sectional sampling variation.
Standard procedure is to simulate data using a finite number of agents and a finite
number of time periods, which means that the outcome depends on the particular
random draw used. Sampling variation disappears at a slow rate and could be
especially problematic if the number of a particular type of agent is small relative to
the total number of agents.

Existing models with a large number of heterogeneous agents typically assume
that there is a continuum of agents. This implies that conditional on the realization of

the aggregate shock there is no cross-sectional sampling variation, a property that
plays a key role in the definition of the set of state variables and the definition of the
recursive equilibrium. The simulation procedure developed in this paper sticks to
the assumption of the model and uses a continuum of agents. Moreover, because the
procedure avoids cross-sectional sampling variation, it can obtain an accurate
description of aspects of the distribution such as behavior in the tails much more
easily than simulation methods.

Accuracy tests: It is never trivial to check the accuracy of a numerical solution for
dynamic stochastic models, since the true solution is not known. Checking for
accuracy is made especially difficult, because there are many aspects to the solution
of this type of model. In this paper, we discuss several tests to evaluate the accuracy
of the solution for a model with heterogeneous agents.
4. The algorithm

In this section, we discuss the different steps of the algorithm. In Section 4.1, we
start with a discussion of the state variables used, followed by an overview of the
algorithm in Section 4.2. The remaining sections describe the steps of the algorithm.

4.1. State variables and transition laws

Krusell and Smith (1998) consider a recursive equilibrium in which the policy
functions of the agent depend on his employment status, ei, his beginning-of-period



capital holdings, ki, aggregate productivity, a, and the cross-sectional distribution of

capital holdings.7 Let f w
ðkÞ be the cross-sectional distribution of beginning-of-period

capital holdings for agents with employment status w 2 fe; ug and kX0. The arrow
pointing left indicates that the cross-sectional distribution refers to the distribution
at the beginning of the period (but after all shocks are observed, that is once
individual employment shocks and aggregate shocks had taken place). Similarly,

f w!
ðkÞ refers to the distribution at the end of the period. The following two steps

determine the transition law that links the current-period distribution, f w
ðkÞ, with

next period’s distribution, f w0
�
ðkÞ.
�

�
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The end-of-period distribution is determined by a, f e , f u , and the individual

investment function. That is, f e!
¼ U e�!

ða; f e ; f u
Þ and f u!

¼ U u�!ða; f e ; f u
Þ.
Next period’s beginning-of-period distribution, f w0
�
ðkÞ, is determined by the end-

of-period distribution and the employment-status flows corresponding to the

values of a and a0. Thus, f e0
¼ U e�ða; a0; f e

!
; f u
!
Þ and f u0

 �
¼ U u �ða; a0; f e

!
; f u
!
Þ.

U e
�
ð�Þ and U u

�
ð�Þ are simple functions that are determined directly by the

transition probabilities.8
An alternative to using the cross-sectional distribution of employment and capital
holdings is to use all past realizations of the aggregate shocks.9 For the model
considered here, we found that a large number of lags is needed. Nevertheless, if one
does not have a complete description of the cross-sectional distribution, it still may
be worthwhile to add some lagged values of a.10 In our algorithm we, therefore, add
the lagged value of a as a state variable. But there is another reason, which will
become evident in the remainder of this section.

To deal with the infinite dimension of the cross-sectional distribution, we follow
Den Haan (1996, 1997), Krusell and Smith (1998), and Rios-Rull (1997) and describe
the cross-sectional distribution with a finite set of moments. The remainder of this
section discusses in detail which moments we use.

In this model, agents face a borrowing constraint, kX0. We, therefore, include the

fraction of agents of each type that start the period with zero capital holdings, me;c�

Miao (2006) shows the existence of a recursive equilibrium, but also uses expected payoffs as state

iables. It is not clear whether a recursive equilibrium exists when the smaller set of state variables is

d. For a numerical solution this is less important in the sense that approximation typically entails not

ng all information.

Details are given in A.1.

This is the approach used in Veracierto (2002). He solves a model with irreversible investment in which

cross-sectional distribution matters because the investment decision is of the (S,s) variety. Instead of

ping track of the cross-sectional distribution, he keeps track of a history of lower and upper threshold

els.
0The numerical cost is fairly low, since a can take on only two values.



and mu;c��. Employed agents never choose a zero capital stock. This means that the

density f e! does not have mass at zero. In contrast, f e does have mass at zero,
because some of the agents that are employed in the current period were unemployed

in the last period and chose a zero capital stock. Both me;c� and mu;c�� can be easily

calculated from mu;c
�1

��!
and the employment-status flows corresponding to the values of

a�1 and a. Thus, instead of using ½a;me;c�;mu;c ��� we also can use ½a; a�1;m
u;c
�1

��!
�. We prefer

to use ½a; a�1;m
u;c
�1

��!
�, because a�1 can take on only two values and is, thus,

computationally an inexpensive state variable. Moreover, as explained above a�1

could have predictive value that goes beyond the ability to determine me;c� and mu;c��.
In addition, the algorithm uses centralized moments of the distributions of strictly

positive capital holdings. The set of moments that are used as state variables are
stored in the following vector:

m ¼ ½mu;c
�1

��!
;me;1
��
; . . . ;me;NM

���
;mu;1
��
; . . . ;mu;NM

���
�,

where mw;j
��
is the jth-order centralized moment for workers with employment status

w and strictly positive capital holdings. The dimension of the vector is
N�M ¼ 2NM þ 1.

The aggregate state is thus given by s ¼ ½a; a�1;m�. Since we only use a limited set
of moments as state variables, the transition law only needs to specify how this

limited set of moments evolve over time. Thus, instead of calculating U e�!
ð�Þ and

U u�!ð�Þ, we now calculate ½mu;c��!
;mu;1
��!

; . . . ;mu;NM
���!

� ¼ Gu
n

�!
ðs;cGu

n Þ and ½me;c�!
;me;1
��!

; . . . ;

me;NM
���!

� ¼ Ge
n

�!
ðs;cGe

n Þ, where Gw
n

�!
ðsÞ is an nth-order polynomial with coefficients cGw

n .

To simplify the notation we will typically write Gw�!ðsÞ, but one should keep in
mind that this is an approximating function with coefficients that are determined
by the algorithm. In the implementation of the algorithm, we set NM equal to 1.
Krusell and Smith (1998) only use the aggregate capital stock so we use
more information by using the means conditional on employment status and
the fraction of agents at the constraint. This adds little information, however,
since the aggregate capital stock is mainly dominated by the capital held by the
employed.

4.2. Overview

An important part of this algorithm is to avoid Monte Carlo integration by

approximating the densities f e and f u with flexible functional forms. To determine
this functional form, we use the moments that are used as state variables, m, as well
as some additional information that we will refer to as ‘reference moments’. The
reference moments are higher-order moments that are helpful in getting the shape of
the distribution right.



The algorithm uses the following iterative procedure to solve the model.
�

1

Given transition laws, Ge
!
ðsÞ and Gu

�!
ðsÞ; solve for cðe; k; sÞ and k0ðe; k; sÞ. This is

discussed in Section 4.3.

�
 Use the solutions for the individual policy functions, cðe; k; sÞ and k0ðe; k; sÞ to

obtain information about the ‘reference moments’. This is discussed in Section 4.4.

�
 Given solutions for the individual policy functions, cðe; k; sÞ and k0ðe; k; sÞ, solve

for Ge
!
ðsÞ and Gu

�!
ðsÞ. This is discussed in Section 4.6. This requires setting up a

grid of the aggregate state variables ½a; a�1;m� and a procedure to link the values
of the moments m and the reference moments with an explicit cross-sectional
density. This procedure is discussed in Section 4.5.

�
 Iterate until the transitions laws used to solve for the individual policy functions

are close to the transition laws implied by the individual policy functions.

4.3. Procedure to solve for individual policy functions

The procedure to solve for individual policy functions relies on standard
projection methods, except that we modify the standard procedure to deal with
the inequality constraint on capital. In this section, we describe how to solve for the

individual policy rules taking the aggregate policy rules Ge
!
ðsÞ and Gu

�!
ðsÞ as given.

The first-order conditions of the agent are given by11

cðe; k; sÞ�g ¼ E½bcðe0; k0; s0Þ�gð1� dþ rðs0ÞÞ� for k040,

cðe; k; sÞ�gXE½bcðe0; k0; s0Þ�gð1� dþ rðs0ÞÞ� for k0 ¼ 0; and ð6Þ

cþ k0 ¼ rðsÞk þ wðsÞðð1� tðsÞÞleþ m � ð1� eÞÞ þ ð1� dÞk. (7)

In this system wðsÞ and rðsÞ only depend on a and the aggregate capital stock and can
be solved directly from Eqs. (3) and (4). The conditional expectation in Eq. (6) is a
function of the individual and aggregate state variables. To solve the individual
problem we approximate this conditional expectation with a flexible functional form.
That is,

E½bcðe0; k0; s0Þ�gð1� dþ rðs0ÞÞ� � Cnðk; e; s;c
E
n Þ, (8)

where Cnð�Þ is an nth-order polynomial and cE
n its coefficients. Let kðe; sÞ be the

capital stock such that

k0 ¼ 0 if kpkðe; sÞ. (9)

Then qk0=qk ¼ 0 for kokðe; sÞ. This implies that E½bcðe0; k0; s0Þ�gð1� dþ rðs0ÞÞ� as a
function of k is flat for kok and non-differentiable at k ¼ k. When kokðe; sÞ one
does not need the approximation Cnð�Þ, since k0 ¼ 0 and one can solve consumption
from the budget constraint. To calculate the approximation for the conditional
expectation, we only use grid points at which k04kðe; sÞ. This means that the grid is
1We have suppressed the i superscript for notational convenience.



no longer fixed within the algorithm and we loose some of the optimality properties
of using Chebyshev grid points, but we found that with this procedure we can obtain
more accurate solutions.

Besides this modification, our procedure to solve for the individual policy rules is a
standard application of projection methods as discussed in Judd (1992). In
particular, we use the following procedure.
�

1

1

pro

me

onl

like

mig
1

elem
Construct a grid for the values of individual and aggregate state variables.

�
 Use c as the initial value for cE

n . Given the value c, it is straightforward to solve
for cðe; k; sÞ and k0ðe; k; sÞ from the first-order condition and the budget constraint.

�
 At each grid point calculate k0.

�
 For all possible realizations of a0 and e0 calculate bcðe0; k0; s0Þ�gð1� dþ rðs0ÞÞ. This

requires calculating m0 but this is easy since Ge! and Gu�! are given.12 Next,
calculate E½bcðe0; k0; s0Þ�gð1� dþ rðs0ÞÞ� by weighting the possibly outcomes with
the probabilities.

�
 Perform a projection to obtain a new estimate for cE

n ,
bc.
�
 Use a weighted average of bc and c as a new initial value for cE
n .
�
 Iterate until the coefficients have converged.13

4.4. Procedure to generate reference moments

The reference moments are used to ensure that the functional form of the cross-
sectional distribution is appropriate without using too many moments explicitly as
state variables. Note that an extra state variable increases the dimension of the grid
and the set of arguments of each function, whereas an extra reference moment does
not. Given the complexity of the system one has to rely on simulations to obtain
information about the shape of the distribution. Thus, we also use a simulation
procedure to obtain reference moments, but we propose a new simulation procedure
that reduces the amount of sampling variation. This new simulation procedure is
discussed in Section 5.

The simulation generates a time series with for each period a set of observations

m
w;j
t

��
for w 2 fe; ug and j 2 fNM þ 1; . . . ;NMg. The simplest way to proceed would be

to use the sample averages as the reference moments, but we let the reference
moments depend on a.14
2For details see A.1.
3As pointed out by Reiter (2006), one does not need the law of motion for m0 to solve the individual

blem. Using the parameterized cross-sectional distribution, one could in principle use quadrature

thods to directly calculate the values of m0 when needed. By doing this one could in each iteration not

y update the individual policy rules but also the law of motion for the aggregate state variables. This is

ly to speed up the algorithm if it is on course towards the fixed point, but the simultaneous updating

ht make the algorithm less stable.
4Without complicating the algorithm, one could let the higher-order moments depend on all the

ents of the aggregate state variables, s, that is



4.5. Procedure to find cross-sectional distribution

At each grid point, we know the values of a and a�1 as well as the values of mw;j
��
for

w 2 fe; ug and j 2 fc; 1; . . . ;NMg. We also have a set of higher-order reference

moments mw;j
��
, w 2 fe; ug and j 2 fNM þ 1; . . . ;NMg. Let Pðk; rwÞ be the exponential

of a polynomial of order NM with coefficients rw. One way to solve for rw is to solve
the following system of NM þ 1 equations and unknowns:Z 1

0

½k �mw;1
��
�Pðk; rwÞdk ¼ 0,Z 1

0

½ðk �mw;1
��
Þ
2
�mw;2

��
�Pðk;rwÞdk ¼ 0,

� � �Z 1
0

½ðk �mw;1
��
Þ
N

M �mw;N
M

���
�Pðk; rwÞdk ¼ 0,Z 1

0

Pðk; rwÞdk ¼ 1. ð11Þ

This is a non-linear system of equations and without additional restrictions on
Pðk;rwÞ, there are no algorithms with reliable convergence properties. It is feasible to
solve this system, but it required in our experience a lot of work in finding good
initial conditions. By adopting a particular class of approximating polynomials one
can reduce this problem to a convex optimization problem for which convergence is
no longer problematic.

Our alternative procedure parameterizes the density with a polynomial, but the
basis functions are constructed in a specific way. In particular, the polynomial of
order NM is written as

Pðk;rwÞ ¼ rw
0 exp

rw
1 ½k �mw;1

��
�þ

rw
2 ½ðk �mw;1

��
Þ
2
�mw;2

��
� þ � � � þ

rw
N

M
½ðk �mw;1

��
Þ
N

M �mw;N
M

���
�

0
BBBBB@

1
CCCCCA. (12)
(footnote continued)

mw;j
��
¼ Fw

n ðsÞ, (10)

where Fw
n is an nth-order flexible functional form. One can obtain the coefficients of Fw

n by a simple

regression and at each aggregate grid point it is trivial to use Fw
n to determine the set of reference moments.

We have not done so, because – as pointed out by Young (2005) – higher-order moments do not exhibit a

clear relationship on average to lower-order moments.



When the density is constructed in this particular way, the coefficients, except for
rw
0 , can be found with the following minimization routine:

min
rw
1
;rw
2
;...;rw

N
M

Z 1
0

Pðk; rwÞdk. (13)

The first-order conditions correspond exactly to the first NM equations in (11). rw
0

does not appear in these equations, but rw
0 is determined by the condition that the

density integrates to one.
The Hessian (times rw

0 ) is given byZ 1
0

X ðmw;1
��
; . . . ;mw;N

M

���
ÞX ðmw;1

��
; . . . ;mw;N

M

���
Þ
0Pðk;rwÞdk, (14)

where X is an ðNM � 1Þ vector and the ith element is given by

ðk �mw;1
��
Þ for i ¼ 1,

ðk �mw;1
��
Þ
i
�mw;i

��
for i41. ð15Þ

The Hessian is positive semi-definite since X does not depend on rw.15 Consequently,
this is a convex optimization problem. Our minimization routine (BFGS) does not
exploit the fact that this is a convex optimization problem. Even without exploiting
the convexity in the minimization routine we found that finding a solution for rw was
an enormous improvement. Most importantly, it avoided the need for good initial
conditions. When using exponentials to parameterize the density and using (11) to
find the coefficients, the algorithm often got stuck and had to be restarted with better
initial conditions. Even when good initial conditions were given then the convex
problem made it possible to find a solution much faster (even though the
minimization routine did not exploit the convexity).16

4.6. Procedure to solve for aggregate laws of motion

The procedure is characterized by the following steps:
�

1

1

r0 e
of

use

Ne

too
We construct a grid with values for a, a�1, mu;c
�1

��!
, and mw;j

��
for w 2 fe; ug and

j 2 f1; . . . ;NMg. Here mu;c
�1

��!
is the fraction of unemployed agents that chose k0 ¼ 0

last period and mw;j
��
is the jth moment of the distribution of strictly positive capital
5Note that evaluated at the solution for rw, it is a covariance matrix.
6In particular, we tried finding the coefficients using standard exponentials, i.e.,

xpðr1k þ r2k2
þ � � �Þ, and using our preferred functional forms. The best way to find the coefficients

the exponential – in our experience – is to solve (11) using a Newton procedure. As starting values we

d in both procedures the solution to a slightly perturbed set of values for the target moments. With the

wton procedure it took on average 57 s to find the solution, whereas with our preferred procedure it

k on average 0.24 s, more than 200 times as fast.



holdings for agents with employment status w. Given values for a, a�1, and mu;c
�1

��!
;

we can calculate me;c� and mu;c��. The grid values for this period’s and last
period’s aggregate state are the two possible realizations and we use Chebyshev
nodes to locate the grid points for the other state variables. These are the
‘x-values’. ��!

�
 Using quadrature methods, we calculate end-of-period moments, mw;j for j 2

fc; 1; . . . ;NMg; at each grid point. These are the ‘y-values’. The parameterization
of the cross-sectional distribution discussed in the last section makes it possible to
use Simpson quadrature to calculate end-of-period moments.

�
 Using the y-values and the x-values, we perform a projection step to find the

coefficients of the approximating function, Ge
n

�!
ðs;cGe

n Þ and Gu
n

�!
ðs;cGu

n Þ.
5. Simulating a panel with a non-random cross section

An important contribution of this paper is to develop a simulation procedure
that eliminates the amount of cross-sectional sampling variation in the simulation
of a panel. Simulations play a relatively minor role in the algorithm proposed
here and are only used to get information on the shape of the cross-sectional
distribution. But this simulation procedure can also be used in algorithms that
rely on simulations to determine the law of motion of the aggregate state variables,
such as, the algorithm used in Krusell and Smith (1998). This section discusses
the new procedure. Accuracy tests for this procedure are proposed in the next
section.

The idea of the simulation procedure proposed is to stay close to the idea that
there is a continuum of agents in the model. This implies that – conditional on
the realization of the aggregate shock – there is no cross-sectional sampling variation
with our simulation procedure, just as there is none in the true solution. The
standard procedure in the literature uses a large but finite number of agents,
NN . Since sampling variation only vanishes at rate

ffiffiffiffiffiffiffiffi
NN

p
one may need a high

value of NN to get accurate moments and indeed quite high values are used in
the literature (between 10,000 and 100,000). Having an accurate procedure to
simulate a cross-sectional distribution is also useful if one is interested in a
particular region of the distribution. If the simulated series do not visit these regions
frequently then one would not accurately describe what happens there even if the
value of NN is high enough to accurately describe the moments used as state
variables.

The procedure works as follows:
�
 Use a random number generator to draw a time series for the aggregate
productivity shock, fatg

NT
t¼0. Although the procedures eliminates the cross-

sectional sampling variation, there is still sampling variation due to the stochastic
nature of the aggregate productivity shock.



�

�

�

In period 1, the procedure starts with the following information. First, the
fractions of employed and unemployed agents with zero capital stock at

the beginning of the period, me;c
1

�
, and mu;c

1

��
. Second, N bM centralized moments of

the distribution of strictly positive beginning-of-period capital holdings for the

unemployed and the employed, m
w;j
1

��
for w 2 fe; ug and j 2 f1; . . . ;N bMg. Since this

procedure is relatively cheap and not part of a complex fixed-point calculation
one can set N bM fairly high. We set N bM ¼ NM ¼ 6, but these parameters do not
have to be equal to each other.
The moments m
w;j
1

��
for w 2 fe; ug and j 2 f1; . . . ;N bMg determine the densities of

positive capital holdings for the employed and unemployed, Pðk; re
1Þ and Pðk; ru

1Þ.
That is, using the procedure discussed in Section 4.5, we find the coefficients of the
densities in period 1, re

1 and ru
1, so that the moments of Pðk; re

1Þ and Pðk; ru
1Þ

correspond to the specified moments.
Use Pðk; re
1Þ; Pðk; ru

1Þ, me;c
1

�
, and mu;c

1

��
, i.e., the distribution of beginning-of-period

capital holdings together with the individual policy rules to calculate the end-of-

period moments, m
w;j
1

��!
for w 2 fe; ug and j 2 fc; 1; . . . ;N bMg, and mu;c

1

��!
. We use

Simpson quadrature to do the integration.

�
 Use the values of the productivity shocks in periods 1 and 2, i.e., a1 and a2,

together with the end-of-period moments for period 1 to calculate beginning-of-

period moments for period 2, m
w;j
2

��
and mw;c

2

��
for w 2 fe; ug and j 2 fc; 1; . . . ;N bMg.

Recall that this simply takes care of the effects of changes in the employment
status on the cross-sectional distribution. Details are given in Appendix A.1.

�
 Use the procedure discussed in 4.5 to find the values for re

2 and ru
2.
�
 Repeat the procedure for the next period until t ¼ NT .
To ensure that the sample used to obtain information about the cross-sectional
distribution has reached (or is at least close to) its ergodic distribution one should
disregard an initial set of observations. For the particular model we study in this
paper, we found that if the initial distribution is not close to the ergodic set, then one
has to disregard a large number of initial observations, since it can take quite a while
before the economy has reached the ergodic distribution. After some experimenta-
tion, one has a good idea about a reasonable initial distribution and then this is less
of a problem.

For some policy functions, it may be the case that some higher-order moments of
the cross-sectional distribution do not exist or that higher-order moments are on an
explosive path. In our numerical procedure we integrate over a finite range of
capital holdings so this problem cannot occur. To make sure that the numerical
procedure does not hide diverging properties of the true model it is important
to check whether the results are robust to changing the upper bound of capital
stock.



6. Results and accuracy

In this section, we discuss the accuracy of the aggregate policy function and the
parameterized cross-sectional distribution. We also discuss the accuracy of our
simulation approach. Tests to check the accuracy of the individual policy function
are standard and these are discussed in A.3. Parameter settings of the numerical
procedure, such as the order of the polynomial and the number of grid points, are
given in A.2.

6.1. Parameter values

Parameters values are taken from Krusell and Smith (1998) and are reported in
Tables 1 and 2. The discount rate, coefficient of relative risk aversion, share of
capital in GDP, and the depreciation rate take on standard values. Unemployed
people are assumed to earn a fixed fraction of 15% of the wage of the employed.17

The value of Da is equal to 0.01 so that productivity in a boom, 1þ Da, is 2% above
the value of productivity in a recession, 1� Da. Business cycles are symmetric and
the expected duration of staying in the same regime is eight quarters. The
unemployment rate in a boom, ug, is equal to 4% and the unemployment rate in a
recession, ub, is equal to 10%. The time endowment, l, is chosen to normalize total
labor supply in the recession to one. The average unemployment duration is 2.5
quarters conditional on staying in a recession and equal to 1.5 quarters conditional
on staying in a boom. These features correspond with the transition probabilities
reported in Table 2.

6.2. Aggregate policy function

In this section, we address the accuracy of the aggregate policy function. In
Section 6.2.1, we establish the accuracy of the functional form taking the
parameterization of the cross-sectional distribution as given. In Section 6.2.2, we
establish whether more moments are needed as state variables. In Section 6.2.3, we
describe a more demanding accuracy test by taking a multi-period perspective.

6.2.1. Accuracy of functional form of aggregate policy function

The aggregate policy functions, Ge
n

�!
ða; a�1;m;c

Ge

n Þ and Gu
n

�!
ða; a�1;m;c

Gu

n Þ capture

the law of motion of the end-of-period values of the three moments that are used as
state variables. The approximation uses a tensor product polynomial with at most
first-order terms for a and a�1, since a can take on only two values, and up to
second-order terms for the elements of m.

Accuracy is evaluated using a grid of the aggregate state variables on which the
three variables with continuous support can take on a fine range of values. In
17This is the only change relative to Krusell and Smith (1998) who set m ¼ 0. This has little effect on the

properties of the model but avoids the possibility of agents having zero consumption.



Table 2

Transition probabilities

s; e=s0; e0 1� Da; 0 1� Da; 1 1þ Da; 0 1þ Da; 1

1� Da; 0 0.525 0.35 0.03125 0.09375

1� Da; 1 0.038889 0.836111 0.002083 0.122917

1þ Da; 0 0.09375 0.03125 0.291667 0.583333

1þ Da; 1 0.009155 0.115885 0.024306 0.850694

Table 1

Benchmark calibration

Parameters b g a d l m Da

Values 0:99 1 0:36 0:025 1=0:9 0:15 0:01
particular, fme;1
��
g ¼ f35; 35:2; . . . ; 42:4g, fmu;1

��
g ¼ f33:5; 33:7; . . . ; 41:5g, and fmu;c

�1

��!
g ¼

f0; 0:05%; . . . ; 0:2%g. At each grid point, we use the values of m and the reference
moments to obtain the corresponding density exactly as they are calculated in the
algorithm. Whether this parameterization of the cross-sectional distribution is
accurate will be discussed below. Using the parameterized density and the individual

policy function, we calculate mu;c��!
, me;1
��!

, and mu;1
��!

. These explicitly calculated values

are compared with those generated by the approximations Ge
!
ðsÞ and Gu

�!
ðsÞ.

Table 3 reports for each of the three statistics the average and maximum absolute
% error across this fine set of grid points.18 The errors for the first-order moment of
the capital stock of the employed are small. The maximum error is 0.012% and the
average error is 0.0059%. The moments for the unemployed are somewhat bigger. In
particular, the maximum error for the first-order moment is equal to 0.92% and the

average error is equal to 0.24%. This maximum is attained when the value of me;1
��

takes on the highest and mu;1
��

the lowest grid value, which is an unlikely if not

impossible combination to occur. The average and maximum error for mu;c��!
are 0.2

and 0.84 percentage points (pp), respectively.19 There are two reasons why these two
numbers are not problematic. First, given that both the actual and the
approximation predict very low fractions of agents at the constraint, these errors
are of no importance and it would not make sense to spend computing time on

improving the part of Gu�!ðsÞ that determines mu;c��!
. Second, in Section 6.2.3, we show
18Since mu;c��!
is a small number and already a percentage, we express the error for mu;c��!

in terms of pp

difference and not as a percentage.
19This maximum difference for mu;c��!

is also attained at the unlikely combination of a very high value for

me;1
��
and very low value for mu;1

��
. At this grid point, the value from our approximation is equal to 0.152%

and the recalculated value is 0.996%.



Table 3

Accuracy of functional form of aggregate policy function

Moment Approximation error

Average Maximum

me;1
��! 5:9e� 3% 1:2e� 2%

mu;1
��! 2:4e� 1% 9:2e� 1%

mu;c��! 2:0e� 1 pp 8:4e� 1pp

Note: This table provides information about differences, calculated on a fine grid, between explicitly

calculated end-of-period moments and those implied by the approximating function for the aggregate law

of motion.
using a simulation that the economy does not get close to points in the state space
where such large errors are observed. In fact, using a simulation of 1,000 periods we
find an average error of 0.0076 pp and a maximum error of 0.071 pp.
6.2.2. Number of moments as state variables

The algorithm uses mu;c
�1

��!
, me;1

��
, and mu;1

��
as state variables and in this section we

analyze whether additional moments should be used as state variables. That is,
conditional on staying within the class of cross-sectional distributions pinned down by

the reference moments does it make a difference if additional moments are used as
state variables. In particular, we check whether changes in the second-order moment

matter for the key set of moments the agents predict, i.e., mu;c
�1

��!
, me;1

��
, and mu;1

��
. To do

this we calculate at each of the aggregate grid points mu;c��!
, me;1
��!

, and mu;1
��!

in two

different ways. First, when me;2
��
and mu;2

��
take on its reference values, i.e., the average

observed in the simulated series (conditional on the value of a). Second, when me;2
��

and mu;2
��
take on the maximum values observed in the simulation, but the values of

me;j
�
, and mu;j

�
for j42 are still equal to the reference moments.

Table 4 reports for each of the three statistics the average and maximum absolute
% change across the grid points when the variance increases. The effect of the

increase in the variance on me;1
��!

and mu;1
��!

is small, especially considering that the
increase in the variance is enormous. Again, the largest changes occur at unlikely

grid points and the changes for mu;c��!
are larger. Of course, it is not surprising that an

increase in the variance has an effect on the fraction of agents choosing a zero capital
stock, since the increase in the variance increases the fraction of agents close to zero.
Given the lack of importance of agents at the constraint, it does not make sense to
add the second-order moment as a state variable.



Table 4

Effect of increase in variance under reference distribution

Moment Average change Maximum change

me;1
��! 5:2e� 3% 1:1e� 1%

mu;1
��! 1:9e� 1% 6:4e� 1%

mu;c��! 1:6e� 1pp 5:8e� 1 pp

Note: This table provides information about differences, calculated on the grid, between the values of the

(explicitly calculated) end-of-period moments when the reference values of the second-order moments are

used and the corresponding values when much higher values are used (namely the maximum values

observed in a long simulation).
6.2.3. Multi-period perspective

A word of caution is warranted in drawing conclusions about accuracy from the
type of one-period tests performed in the last two sections. The reason is that small
errors can accumulate over time if they do not average out. To investigate this issue

we compare values for me;1
��!

, mu;1
��!

, and mu;c��!
generated by two different procedures.

First, we generate these statistics with our simulation procedure that explicitly
integrates over the choices made by the agents in the economy. This procedure does

not use our approximations Ge!ða; a�1;mÞ and Gu�!ða; a�1;mÞ. Second, we generate

these statistics using only our approximations Ge!ða; a�1;mÞ and Gu�!ða; a�1;mÞ. It is
important to point out that this second procedure only uses Ge

!
ða; a�1;mÞ and

Gu�!ða; a�1;mÞ, and involves nothing more than basic algebra. That is, the output of
our aggregate law of motion will be used as the input in the next period.20 This
comparison, thus, is truly a multi-period accuracy test.21

The results for me;1
��!

, mu;1
��!

, and mu;c��!
are plotted in Figs. 1, 2, and 3, respectively. The

graphs make clear that our approximate aggregate laws of motion do a magnificent

job of tracking the movements of me;1
��!

and mu;1
��!

. In fact, one cannot even distinguish

the moments generated by Ge
!
ðsÞ and Gu

�!
ðsÞ from the corresponding moments

generated by explicit integration over the individual policy rules. Some differences

between the two procedures are visible for mu;c��!
, but our approximate aggregate laws

of motion track the changes in mu;c��!
well. As mentioned above, in a sample of 1,000

observations the average and maximum absolute difference are 0.0076 and 0.071 pp,
respectively.
20After adjusting, of course, for the employment-status flows.
21This is the key part of the accuracy procedure proposed in Den Haan (2007).
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6.3. The parameterized cross-sectional distribution

Parameterization of the cross-sectional distribution with a flexible functional form
serves two objectives in our algorithm. First, it enables the algorithm to calculate the

aggregate laws of motion, Ge!ðsÞ and Gu�!ðsÞ, with standard projection techniques,
since with a parameterized density (i) next period’s moments can be calculated on a
prespecified grid and (ii) next period’s moments can be calculated with quadrature
instead of the less efficient Monte Carlo techniques. Second, it makes it possible to
simulate the economy without cross-sectional variation, which improves the
procedure to find the reference moments.
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An accurate representation of the cross-sectional distribution may not be
necessary for an accurate solution of the model. What is needed for an accurate

solution of the model are accurate aggregate laws of motion, Ge
!
ðsÞ and Gu

�!
ðsÞ, since

the agent is only interested in predicting future prices and to determine these one
does not need the complete distribution, just the set of statistics that determine

prices, that is, mu;c
�1

��!
, me;1

��
, and mu;1

��
.

In this section, we take on the more demanding test to check whether the cross-
sectional parameterizations, Pðk; reÞ and Pðk; ruÞ, are accurate. This is a more
demanding test for the following reasons. First, it requires that all moments used to
pin down the distribution are accurately calculated instead of just the NM moments
that are used as state variables. More importantly, because the shape of the cross-
sectional distribution is endogenous and time-varying, the functional form used must
be flexible enough to capture the unknown and changing shapes.

To check the accuracy of our simulation procedure and, thus, the accuracy of our
parameterized densities, we do the following. We start in Section 6.3.1 with a
comparison between the simulated time path of moments generated by our
parameterized densities, with those generated by a standard simulation using NN

agents. The alternative simulation is, of course, subject to sampling variation, but
the advantage of the standard simulation procedure is that there is no functional
restriction on the cross-sectional distribution at all. A second accuracy test consists
of checking whether the results settle down if N bM increases. This is done in
Section 6.3.2. The last accuracy test checks whether moments of order higher than
N bM are calculated precisely. Throughout this section, we use the same individual

policy function, namely the solution of our algorithm.22
22In particular, when changing N bM we do not adjust the number of reference moments, NM , and the

numerical solution of the model. Here we only check whether the polynomial approximation of our new



6.3.1. Comparison between simulation procedures

In this section, we compare the moments generated by our new simulation
approach with those generated by the standard Monte Carlo simulation procedure.
We report Monte Carlo simulations with 10,000 agents and 100,000 agents.23 We
plot time paths of generated moments when we impose the value of a to alternate
deterministically between 1� Da and 1þ Da every 100 periods so that the behavior
of the economy during a transition between regimes becomes clear. A set of initial
observations is discarded so that effects of the initial distribution are no longer
present.24

Fig. 4 reports the evolution of the end-of-period first moment of the employed me;1
��!

using our procedure and the standard simulation procedure with 10,000 agent. In
Fig. 5, we plot the results over a shorter sample and in addition give the results using
the standard simulation procedure with 100,000 agents. Although the sampling
variation is still visible in the time path simulated using 10,000 agents, it is small
relative to the observed changes in the calculated moment. It has virtually
disappeared in the simulation with 100,000 agents, as can be seen in Fig. 5. More
importantly for our purpose, our ‘‘constrained’’ procedure tracks the ‘‘uncon-
strained’’ procedure excellently (except for the noise of course).

Figs. 6 and 7 are the equivalent graphs for the evolution of the-end-of period first-

order moment of the unemployed mu;1
��!

. The number of observations in this group is
much smaller, amounting to 400 agents (4,000 agents) during recessions in the Monte
Carlo simulation with 10,000 (100,000) agents. The sampling variation is substantial
in the simulation with 10,000 agents and is still visible in the simulation with 100,000
agents. Again, these pictures do provide no reason to believe that the constraints we
impose to be able to eliminate cross-sectional sampling variation are too restrictive.

The effect of sampling variation is very clear when we consider the fraction of

agents at the constraint mu;c��!
, whose evolution is reported in Fig. 8. In this case, even

the Monte Carlo simulation with 100,000 agents displays severe sampling variation.
Although the large sampling variation hampers the comparison to some extent, the
picture suggests that our structural approach does systematically underpredict the
fraction of agents at the constraint when the economy stays in a downturn for several
periods. To capture this tail behavior better we may need a higher-order
approximation for our cross-sectional distribution. The fraction of agents at the
constraint is small, however, and the unemployed do not own much capital. Any
(footnote continued)

simulation procedure is flexible enough to capture accurately the changes in the cross-sectional

distribution over time.
23In our implementation of the simulation procedure we impose – as in Krusell and Smith (1998) – that

ut ¼ ug ðubÞ when at ¼ ag ðabÞ. We also ensure that the flows into and out of (un)employment expressed as

a fraction of the total population correspond to those one would find with a continuum of agents. Our

alternative simulation procedure uses a continuum of agents and automatically imposes the correct stocks

and flows.
24Details about the simulation procedure are given in Table 9.
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inaccuracy is, thus, likely to be inconsequential for the properties of any aggregate
series.25

A good way to document the higher accuracy of the new simulation procedure is
to look at the transition from the bad regime (high unemployment rate) to the good
regime (low unemployment rate). The new simulation procedure clearly shows a
sharp increase in the fraction of agents at the constraint when the economy enters the
good regime. In contrast, for the standard simulation procedure this increase is not
always present and there are many other spikes. The true solution of the model
should exhibit such a spike. In this economy, employed agents become unemployed
every period. When the economy moves from the high-unemployment to the
25The same is true for the inaccuracy due to the sampling variation.
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low-unemployment regime, then the flow out of employment into unemployment
drops sharply. This means that after the regime change, a smaller fraction of
employed becomes unemployed every period, and thus an unemployed agent is much
less likely to have been employed the previous period. Consequently, after a change
to the low-unemployment regime, a larger fraction of unemployment agents will
have a zero capital stock.

To conclude, our new simulation procedure tracks the unconstrained simulation
procedures well but without the noise and these results suggest it is thus more
accurate. Moreover, our proposed simulation method is not only more accurate than
Monte Carlo simulation, it is also an order of magnitude faster. For instance, Monte
Carlo simulations over 3500 periods would take 1 h and 6min with 10,000 agents and
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polynomial used to approximate the cross-sectional density.
7 h and 40min with 100,000 agents. In contrast, our simulation procedure takes only
7min for the same number of periods.26

6.3.2. Increasing N bM
To check the importance of N bM , we simulate an economy using different values of

N bM to parameterize the cross section. We check when the results settle down. The
idea of the test is made clear in Figs. 9 and 10 that plot the second and sixth-order
moment of the distribution for the unemployed for different values of N bM . When
N bM is increased from 2 to 4 (not shown) then the generated moments change
26Using a 2.66GHz Intel Core 2 Duo E6700 processor.



650000000

700000000

750000000

800000000

850000000

900000000

950000000

1000000000

1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Time

m
u

6

mu6_Nm=6
mu6_Nm=5
mu6_Nm=4

Fig. 10. mu;6
��!

generated using a continuum of agents with different values of N bM . N bM is the order of the
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enormously. As documented in the figures, a further increase from 4 to 5 still causes
some changes, but when we increase N bM from 5 to 6 then the changes are very
minor.

Table 5 reports the results for all moments. It corroborates the results from the
figures. Using a value of N bM equal to 2 is clearly way too low to generate an accurate
set of moments. An increase in N bM from 5 to 6, however, only causes minor changes

in the generated moments. For example, the average change for me;2
 ��

is only 0.25%

and the average change for mu;2
��
is equally small. The average (maximum) change for

me;6
��

and mu;6
��

are equal to 2.3% (3.7%) and 2.4% (3.7%), respectively. These are,
thus, somewhat, higher, but as made clear in the graph, these errors are low relative
to the observed variation in the moments.
6.3.3. The shape of the distribution

There are two aspects to our approximation of the cross-sectional distribution.
First, the class of functions used and second the value of N bM . The coeffi-
cients are chosen so that the first N bM moments are correct. But higher-
order moments are implied by the values of the first N bM moments and the class

of functions chosen. For example, when one uses a normal distribution, then one can
impose any mean and variance, but skewness and kurtosis are no free parameters.

So for any finite value of N bM , the class of approximating polynomials used, thus,
imposes certain restrictions on the function form. Here we check those restrictions
along a simulated time path by comparing the jth-order moments for j4N bM implied
by the parameterized cross-section with those calculated by integration of the
individual’s policy function.

In particular, we do the following. Draw a long time series for the aggregate
productivity shock, a. Let re

1 and rw
1 be the parameters of the cross-sectional

distribution in the first period and let me;c
1

�
and mu;c

1

��
be the fraction of employed



Table 5

Increasing order of approximating density

Moment % Change relative to N bM ¼ 6

Average Maximum

N bM ¼ 2 (%) N bM ¼ 4 (%) N bM ¼ 5 (%) N bM ¼ 2 (%) N bM ¼ 4 (%) N bM ¼ 5 (%)

me;2
�� 32.9 2.5 0.25 35.9 2.8 0.54

me;3
�� 90.2 12.5 1.5 95.1 14.5 2.4

me;4
�� 60.2 6.5 1.4 63.6 7.9 2.2

me;5
�� 90.6 9.7 2.4 95.0 14 3.5

me;6
�� 78.0 7.1 2.3 80.9 12.1 3.7

mu;2
�� 32.2 2.4 0.25 36.0 2.8 0.55

mu;3
�� 91.9 12.6 1.5 95.5 14.6 2.4

mu;4
�� 60.3 6.6 1.4 63.6 7.9 2.2

mu;5
�� 92.0 9.2 2.4 95.4 13.1 3.5

mu;6
�� 78.0 6.7 2.4 80.8 11.2 3.7

Note: This table documents the importance of using a high enough order to approximate the density by

comparing the implied moments in a simulation when a sixth-order polynomial is used with the

corresponding moments when a lower-order polynomial is used.
and unemployed agents with zero capital holdings at the beginning of the period.
With this information, we calculate the end-of-period values of the first N bM
moments.27

mw;1
1

��!
¼

Z 1
0

kðew;k; sÞPðk; rw
1 Þdk; w 2 fe; ug, (16)

m
w;j
1

��!
¼

Z 1
0

½kðew;k; sÞ �mw;1
1

��!
�jPðk; rw

1 Þdk; 1ojpN bM ; w 2 fe; ug. (17)

In exactly the same way, we calculate higher-order moments. That is,

m
w;j
1

��!
¼

Z 1
0

½kðew;k; sÞ �mw;1
1

��!
�jPðk; rw

1 Þdk; j4N bM ; w 2 fe; ug. (18)

Now we check whether these higher-order moments (j4N bM) are similar to the
moments implied by the parameterized cross-sectional distribution. To do this, we
use the first N bM end-of-period moments to calculate the coefficients of the

corresponding approximating density, re
1

!
and ru

1

!
. Next, we calculate higher-order
27By indicating in bold the variable that we are integrating over, we make clear that we are integrating

over the argument of the policy function not the outcome of the policy function.



Table 6

Differences between implied and actual higher-order moments using second-order approximating density

N bM ¼ 2 Employed Unemployed

Error (%) Average (%) Max (%) Average (%) Max (%)

jIw;3
��
�mw;3

��
j

mw;3
�� 5.6 9.1 7.0 15.3

jIw;4
��
�mw;4

��
j

mw;4
�� 2:8E� 1 3:2E� 1 2:1E� 1 6:4E� 1

jIw;5
��
�mw;5

��
j

mw;5
�� 4.7 7.5 5.6 11.7

jIw;6
��
�mw;6

��
j

mw;6
�� 5:7E� 1 7:5E� 1 9:3E� 1 2.6

jIw;7
��
�mw;7

��
j

mw;7
�� 3.7 6.1 5.3 10.3

jIw;8
��
�mw;8

��
j

mw;8
�� 6:5E� 1 1.2 2.3 5.7

jIw;9
��
�mw;9

��
j

mw;9
�� 2.9 5.0 5.6 10.3

jIw;10
��
�mw;10

��
j

mw;10
�� 5:6E� 1 1.7 4.0 9.2

Note: The table reports for N bM ¼ 2 whether explicitly calculated higher-order moments, mw;i
��

with i42,

are close to higher-order moments implied by the functional form of the density and the value of the first

N bM moments, Iw;i
�
.

moments implied by this parameterized cross-sectional density. That is,

I
j
1

�!
¼

Z 1
0

½k�mw;1
1

��!
�jPðk; rw

1

�!
Þdk; j4N bM ; w 2 fe; ug. (19)

Finally, end-of-period moments are transformed into beginning-of-period moments.
If the shape of the cross-sectional distribution is not too restrictive, then the implied
higher-order moments correspond to the explicitly calculated higher-order moments.

We perform this exercise using values for N bM equal to 2 and 6 and then calculate
the average and maximum error observed along the simulation of 2,000 observations
with the error term defined as follows28:

jIw;n��
�mw;n��j

mw;n�� .
28Note that the accuracy measure is actually defined for beginning-of-period moments, but this is simply

a transformation of end-of-period values taking into consideration the change in the employment status.



Table 7

Differences between implied and actual higher-order moments using sixth-order approximating density

N bM ¼ 6 Employed Unemployed

Error (%) Average (%) Max (%) Average (%) Max (%)

jIw;7
��
�mw;7

��
j

mw;7
�� 2:8E� 2 7:3E� 1 1:0E� 1 2:2E� 1

jIw;8
��
�mw;8

��
j

mw;8
�� 4:3E� 2 1:0E� 1 1:8E� 1 4:3E� 1

jIw;9
��
�mw;9

��
j

mw;9
�� 9:3E� 2 2:3E� 1 3:8E� 1 8:8E� 1

jIw;10
��
�mw;10

��
j

mw;10
�� 1:3E� 1 3:1E� 1 5:6E� 1 1.3

Note: The table reports for N bM ¼ 6 whether explicitly calculated higher-order moments, mw;i
��

with i46,

are close to higher-order moments implied by the functional form of the density and the value of the first

N bM moments, Iw;i
�
.

Tables 6 and 7 report the errors for N bM ¼ 2 and N bM ¼ 6, respectively. When N bM
is equal to 2, then observed error terms are large for the odd-numbered moments.
That is, the shape of the distribution implied by our class of approximating functions
does not capture the correct shape of the distribution when a second-order
approximation is used. The results are much better when N bM is equal to 6. Now
we observe much smaller errors. The largest errors are for the 10th order moment
of the capital stock of the unemployed. For this moment, the maximum error is
1.3%, which is quite high for an accuracy test but then the question is for what the
10th order moment could matter.
7. Concluding comments

In this paper, we have developed a new algorithm to solve models with
heterogeneous agents and aggregate uncertainty. We used the algorithm to solve
the model in Krusell and Smith (1998) and found our numerical solution to have
similar properties to the one obtained with simulation procedures. The ability to
obtain similar numerical outcomes with quite different algorithms builds confidence
in the results. Accuracy tests, of course, can do the same but they also have
limitations, especially in high-dimensional models.29 The models the profession will
consider in the future are likely to become more complex. Since different algorithms
have different strengths and weaknesses it is important to have a variety of algorithm
to choose from. This paper helps to create a richer portfolio of algorithms to solve
29In particular, small errors that accumulate over time to non-trivial magnitudes may be hard to detect.



these complex models especially because the building blocks used are so different
from the popular alternative.

Acknowledgment

The authors would like to thank Chris Carroll, Ken Judd, Michel Juillard,
Michael Reiter, and two anonymous referees for useful comments.
Appendix A

A.1. Details on transition equations

This appendix describes how the change in employment status that occurs at the
beginning of each period affects the moments of the cross-sectional distribution.
Although, we use centralized moments as state variables, we actually do not use
centralized moments here. It is easier to first do the transformation for non-
centralized moments and then calculate the centralized moments.

From beginning to end-of-period: Let ga;w be the mass of agents with employment
status w when the economy is in regime a. At the beginning of the period we have the
following groups of agents:
1.
 Unemployed with k ¼ 0, whose mass is equal to mu;c��ga;u.
2.
 Unemployed with k40, whose mass is equal to ð1�mu;c��Þga;u. �

3.
 Employed with k ¼ 0, whose mass is equal to me;cga;e.
4.
 Employed with k40, whose mass is equal to ð1� me;c�Þga;e.
Agents in group #1 choose k0 ¼ 0, while agents in group #2 either set k0 ¼ 0 or
k040. Let the fraction of agents that set k0 ¼ 0 be equal to zk0¼0

u;k40. Thus, the fraction
of unemployed agents that set k0 ¼ 0, is equal to

mu;c��!
¼ mu;c�� þ zk0¼0

u;k40ð1�mu;c��Þ.
The ith moment of the capital stock chosen by agents in group #2 is equal to

mk0X0;i
u;k40 ¼ zk0¼0

u;k40 � 0i þ ð1� zk0¼0
u;k40Þ � mu;i

�!
.

Thus,

mu;i
�!
¼

mk0X0;i
u;k40

ð1� zk0¼0
u;k40Þ

,

where mk0X0;i
u;k40 ¼

Rþ1
0 kð0; k; sÞiPðk;ruÞdk.

me;c�!
¼ 0, since employed agents never choose a zero capital stock. To

calculate me;i
�!

, we need the (mean of the) capital stock chosen by those in group



#3, i.e.,

mk040;i
e;k¼0 ¼ kð1; 0; sÞi,

and the mean of the capital stock chosen by those in group 4, i.e.,

mk040;i
e;k40 ¼

Z þ1
0

kðe; k; sÞiPðk;reÞdk.

Weighting the two means gives

me;i
�!
¼

me;c�mk040;i
e;k¼0 þ ð1� me;c�Þmk040;i

e;k40

me;c� þ ð1� me;c�Þ .

From end-of-period to beginning of next period: At the end of the current period, we
have the following groups of agents:
1.
 Unemployed with k0 ¼ 0, whose mass is equal to mu;c��!
ga;u.
2.
 Unemployed with k040, whose mass is equal to ð1�mu;c��!
Þga;u.
3.
 Employed with k040, whose mass is equal to ga;e.
gww0;aa0 stands the mass of agents with employment status w that have employment
status w0 in the next period, conditional on the values of a and a0. For all
combinations of a and a0 we have,

guu;aa0 þ geu;aa0 þ gue;aa0 þ gee;aa0 ¼ 1.

The number of agents with k0 ¼ 0 as a fraction of all agents that are unemployed
in the following period is equal to:

mu;c0
��
¼

guu;aa0

guu;aa0 þ geu;aa0
mu;c��!

and the fraction of all employed agents at the constraint is equal to

me;c0
��
¼

gue;aa0

gue;aa0 þ gee;aa0
mu;c��!

.

Next period’s ith-order moments of the distributions with strictly positive capital
holdings are equal to

mu;i 0
��
¼

guu;aa0 ð1�mu;c��!
Þmu;i
�!
þ geu;aa0m

e;i
�!

guu;aa0 ð1�mu;c��!
Þþ geu;aa0



and

me;i 0
��
¼

gue;aa0 ð1�mu;c��!
Þmu;i
�!
þ gee;aa0m

e;i
�!

gue;aa0 ð1�mu;c��!
Þþ gee;aa0

.

A.2. Parameters of numerical procedure

Tables 8 and 9 report the parameter settings used in implementing the numerical
procedure.
A.3. Accuracy of individual policy function

In this section, we discuss the accuracy of the numerical solution for the individual
policy function, taking as given the transition laws for the cross-sectional
distribution. We check the accuracy of our policy function using a grid of capital
holdings that is much more dense than the one used to obtain the numerical solution
and the grid points for the aggregate state variables. In particular, we use
k ¼ f0; 0:1; 0:2; . . . ; 99g. At each grid point, we first calculate the consumption level
implied by the numerical approximation, i.e., capp, and next period’s capital.
Table 8

Construction of the grid

State variables
k; e; a�1; a;m

u;c
�1

��!
;me;1
��
;mu;1
��

Number of grid points Mk ¼ 50;M
mu;c
�1

��! ¼ 5;M
me;1
�� ¼ 5;M

mu;1
�� ¼ 5

Me ¼Ma ¼Ma�1 ¼ 2

Range of values k: ½0; 99�
M

mu;c
�1

��!: ½0; 0:002�

M
me;1
 �� : ½35; 42:4�

M
mu;1
 �� : ½33:5; 41:5�

Location of points Chebyshev nodes

Table 9

Simulation procedure

Number of agents Non-random cross-section: 1

Monte Carlo: 10,000 or 100,000 agents

Number of periods 3,500 (first 1,000 discarded)

Initial distribution Stationary distribution in the bad state



Table 10

Euler equation error

Unemployed Employed

Average Maximum Average Maximum

0.17% 5.9% 0.15% 1.1%

Note: This table provides information about differences, calculated on a fine grid, between explicitly

calculated consumption values and those implied by the approximating individual policy function.
Next, we calculate the conditional expectation, not by using the approximation,
but by explicit (numerical) integration of bc0�gðr0 þ 1� dÞ over the possible
realizations of a0 and e0. The numerical approximation for the policy function is
used to evaluate next period’s consumption values for the different realizations of the
idiosyncratic and aggregate random variable. Let c be the current-period value of
consumption implied by the explicitly calculated conditional expectation on that grid
point. Accuracy is measured using jc� cappj=capp. We calculate the average and the
maximum across these approximation errors. Table 10 reports the average across
aggregate grid points and the maximum. Even the maximum errors are small for
most grid points. The average of the maximum errors for the unemployed is equal to
0.67%. For the employed, errors are substantially smaller. The maximum percentage
error for the unemployed is equal to 5.9%. Such a maximum error is high, but it
occurs when consumption takes on a value that is low even for an unemployed agent,
namely 0.690 according to our approximation and 0.651 according to the explicitly
calculated conditional expectation.30
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