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Abstract 
In this work, the problem of ionic species transport through concrete porous media has been 

documented. Chloride ions penetration in cementitious materials is one of the processes widely 

responsible for the degradation of concrete structures. Therefore there exists an immense need for its 

correct understanding and quantification. Different research groups worldwide have proposed 

different chloride ingress models. Here, a one-dimensional model based on a multi-species approach 

of the ionic transport is presented. It is the new version of a previous model MsDiff developed a few 

years ago in our group [TRU 00] that describes the diffusion of ionic species with the Nernst-Planck 

equation instead of Fick’s laws. This newer version is named, the package version of MsDiff after it 

requires a package of five input data at any given age of concrete. With a multi-species approach, it 

is possible to take into account the interactions, which exist among different ionic species in pore 

solution of concrete. The numerical scheme of the model is based on finite difference method with 

Crank-Nickolson and Law-Wendroff techniques.  

In order to run MsDiff, we do need an input data. Several experiments were performed accordingly 

to provide experimental feedback to MsDiff. Standard immersion tests were conducted to validate 

the outcomes of MsDiff. Special attention is given to the diffusion coefficients of the ions and the 

interactions between the ionic species and the solid phase.  

In addition to MsDiff, some other existing models were also tried for the sake of comparison with 

the experimental chloride profiles.  

Certain experimentation was conducted to watch the effect of exposure period, concrete age at 

exposure and concentration in the environmental solution.  

In the end, the simulations were performed with MsDiff in order to calculate the chloride-induced 

corrosion initiation time using the experimental data already achieved while making use of different 

criteria adopted by different research groups in order to evaluate the corrosion initiation.  
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Résumé 
Dans ce travail, le problème du transport d'espèce ionique à travers les milieux poreux saturés a été 

documenté.  La pénétration d'ions chlore a travers les matériaux cimentaires est un des processus 

largement responsable de la dégradation des structures en béton armé. Ceci nécessite donc la 

compréhension et la quantification correctes de ce phénomène.  Différents groupes de recherche ont 

proposé des modèles de pénétration des chlorures.  Ici, un modèle unidimensionnel basé sur 

l’approche multi-espèce est présenté.  C'est la nouvelle version d'un modèle précédent, MsDiff, 

développé il y a quelques années dans notre groupe [TRU 00] qui décrit la diffusion d'espèce 

ionique avec l'équation de Nernst-Planck au lieu des lois de Fick. La nouvelle version est appelée, la 

version ‘package’ de MsDiff car elle exige un ensemble de cinq données d'entrée à un certain âge  du 

matériau.  Avec l’approche multi-espèces, il est possible de prendre en compte les interactions qui 

existent entre les espèces ioniques différentes dans la solution interstitielle du béton.  Le schéma 

numérique du modèle est basé sur la méthode des différences finies avec des techniques de Cranck-

Nickolson et de Lax-Wendroff.  

Afin de faire les simulations avec MsDiff, nous avons besoin des données d'entrée.  Plusieurs essais 

ont été exécutés afin de les acquérire.  Des essais standards d'immersion ont été effectués pour 

valider les résultats de MsDiff.  Une attention particulière est donnée aux coefficients de diffusion 

des ions et aux interactions entre les chlorures et la phase solide du matériau.  En plus de MsDiff, 

quelques autres modèles existants ont été également essayés pour la comparaison avec les profils 

expérimentaux de chlorure.  Des expérimentations ont été faites pour observer l'influence de la 

période d'exposition, de l'âge du béton à l'exposition et de la concentration de la solution 

environnementale sur la pénétration des chlorures.  Enfin, les simulations afin de calculer le temps 

d’initiation de la corrosion ont été effectuées avec MsDiff en utilisant les données expérimentales 

déjà obtenues tout en utilisant différents critères adoptés par différents groupes de recherche pour 

évaluer le temps d’initiation de corrosion. 
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NOMENCLATURE 
 

Latin letters 

A  Concrete cross-sectional area, 

C  Total chloride concentration per unit mass of concrete, 

Ci  Initial total chloride concentration per unit mass of concrete, 

Ccr  Chloride critical concentration for corrosion, 

Cs  Surface total chloride concentration per unit mass of concrete, 

Ct  Total chloride concentration per unit volume of concrete, 

c  Free chloride concentration per unit volume of pore solution, 

ci  Free concentration of ion i in moles/m3 of solution, 

cin  Initial chloride concentration of pore solution, 

cf,s  Free chloride concentration at concrete exposed surface, 

cb  Bound chloride concentration per unit volume of the material, 

cb,chem  Chemically bound chlorides concentration, 

cb,phy  Physically bound chlorides concentration, 

cm,b   Bound chloride concentration per unit mass of the material, 

cm,b   Bound chloride concentration in % mass of the material, 

cv  Free chloride concentration per unit volume concrete, 

D  Chloride diffusion coefficient in water in m²/s, 

Da  Chloride apparent diffusion coefficient in water in m²/s, 

De  Chloride effective diffusion coefficient in m²/s, 

Di  Effective diffusion coefficient of ion i in m²/s,  

DNPS  Chloride diffusion coefficient measured with LMDC test in m²/s, 

DRCM  Rapid chloride migration coefficient in m²/s (NT Build 492), 

Dss  Chloride steady state migration coefficient (ClinConc model), 

Dw  Water diffusion coefficient in m²/s, 

Ea  Activation energy for diffusion in Joule/mol 

Eb  Activation energy for chloride binding in Joule/mol 

F  Faraday constant (96480 J/(V.mol)), 

I  Current in amperes, 

J  Chloride flux in water in moles/(m².s), 

Ji  Flux of ion i in moles/(m².s), 
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Je  Chloride effective Chloride flux in moles/(m².s), 

j  Current density in Ampere/m²,  

k  Ratio of effective diffusion coefficient of ion i and that of chloride ion in 

water, 

L  Concrete thickness, 

N  Number of nodes in MsDiff modeling, 

n  Number of ionic species in medium, 

p  Material porosity in %age, 

R  Ideal gas constant (8.314 J/(mol.K)), 

T  Absolute temperature in K, 

t  Time dimension (s), 

t  Concrete age in days, 

tex  Concrete age at exposure to saline environment, 

ui  Electrical mobility, 

V  Volume in m3, 

v  Liquid velocity in concrete pores 

Wgel   Gel content in concrete (kg/m3 of concrete), 

WC  Water to Cement ratio, 

w  Pore solution water content, 

X  Tolerance, 

x  displacement , 

xp  Penetration depth from exposed surface, 

zi  Charge number of ion i, 

 

Greek letters 

α  Empirical coefficient for chloride binding isotherm, 

β  Empirical coefficient for chloride binding isotherm, 

γ  Ionic mobility coefficient, 

ε0    Coefficient of dielectricity or permittivity of vacuum (8.854E-12 C/V), 

ε~    Relative coefficient of dielectricity (for water at 25°C, ε~ = 78.54), 

ρ  Concrete density in kg/m3, 

ρw  Water density in kg/m3, 

ψ  Electrical potential, 
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σ  Time dependency factor for diffusion coefficient, 

τ  Material tortuosity, 

γ  Chemical activity coefficient, 

ξ  Dielectric permittivity of medium, 

θ  Degree of hydration in %age, 

∆t  Time step in modeling, 

∆x  Incremental distance in modeling, 

Indexes 

Cl  Chloride, 

FA  Fly ash, 

i  Ion, 

in  Intrinsic, 

K  Potassium, 

Na  Sodium, 

OH  Hydroxide, 

PC  Portland cement, 

r  Reference, 

SF  Silica Fumes, 

SG  Slag 
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Objectives and outlines of thesis 

The objective of this thesis work is to develop a numerical model, which predicts the chloride 

penetration in cementitious materials. The work was carried out in Laboratoire Matériaux et 

Durabilité des Constructions of Toulouse. The basic intention was to renovate the already 

existing MsDiff model, developed in 2000 by O.TRUC [TRU 00], into a more user-friendly, 

more comprehensive and more inclusive one. In this regard, it was considered to re-evaluate 

the physical and numerical structure of the present model, improve its competency and 

performance and to provide experimental feedback for the validation of its new version.  

The present work consists of three main parts, constituting ten chapters. Essential conclusions 

are provided at the end of each chapter.  

The first part is dedicated to a bibliographic review. This part consists of three chapters. The 

first chapter deals with of ionic diffusion. Emphasis is also given to multi-species theory, 

which provides the bases for model MsDiff. The second chapter comprises of the existing 

chloride penetration models. Arguments in favor of further work are given at the end of this 

chapter. The third chapter includes the description of MsDiff model i.e. its fundamentals, the 

governing equations, the input data required to run this model and the model outcomes. 

Reasons in favor of MsDiff as our target model are also pointed out in this chapter. In 

addition, the numerical scheme of MsDiff is also discussed. 

The second part, comprising of chapters 4 and 5 is devoted to the methodology and 

experimental work. An extensive experimental program was inevitable to achieve two goals: 

primarily to attain input data for MsDiff and secondarily to validate MsDiff outcomes with 

the experimental results. In this part, chapter 4 describes the standard test methods thought to 

be helpful to achieve our targets. In this chapter, the choice for particular tests carried out is 

also justified. Chapter 5 includes the experimental program and the description of concrete 

material chosen for the task.  

The third part of this thesis report consists of chapter 6, 7 and 8. This important part is mainly 

meant to judge models outputs against experimental results. The experimental results and 

numerical outcomes with MsDiff are compared in chapter 6. The importance of concrete age 

at exposure to saline environment is also emphasized in this chapter. The experimental results 

are also compared with the simulations made with chloride ingress models other than MsDiff 

in chapter 7.  

The chloride penetration might provoke corrosion of the steel bars embedded in reinforced 

concrete structures, which are exposed to marine environment or de-icing salts. The chloride 
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ingress study is basically conducted to evaluate the chloride-induced corrosion initiation time. 

Chloride profiles serve to determine how deeper the chlorides have penetrated into a structure. 

And in this way the chloride content at the steel reinforcement provides information whether 

its value has not crossed a certain threshold value, which leads to the initiation of steel 

corrosion.  Chapter 8 deals with the utilization of model MsDiff as a tool to determine the 

chloride-induced corrosion initiation time.  

At the end, a general conclusion about the work and perspectives are presented in chapter 9 

separately, followed by the references. 
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1 CHAPTER 1  
 
IONIC DIFFUSION 
 
 

1.1 Introduction 

Diffusion accounts for the fact that an open bottle of perfume can quickly be smelled across 

the room. It is regarded as a process whereby particles of liquids, gases and solids intermingle 

as the result of their spontaneous movement caused by thermal agitation and in dissolved 

substances move from a region of higher to lower concentration.  

Diffusion or movement of a chemical species (ions, molecules) from an area of higher 

concentration to an area of lower concentration is an important phenomenon in many diverse 

fields (from protein channels [NAD 03] to cementitious [TRU 00]).  
Many results of systematic analysis of concrete deterioration in marine environment reveal 

that almost all are concerned to ionic diffusion [BER 88]. Among these, chloride diffusion 

and sulfate attack are two main deteriorating factors. De-icing salt (sodium chloride) is 

applied to remove snow and ice from highways and bridges. The elements most at risks are 

the bridge decks which are protected by a water proof membrane, chloride ions can penetrate 

into the concrete through retaining walls, parapets, bridge columns, through faulty joints etc.  

Steel embedded in concrete is normally protected against corrosion by the high alkalinity 

existing in the porous solution of the cement paste. The pH of concrete is determined by 

equilibrium between the hydrates and the pore solution. One of the by-products of the 

hydration reactions is calcium hydroxide, which provides the alkalinity. The presence of a 

high pH is responsible for the presence of a passive iron oxide film on the surface of 

embedded reinforcing steel. But this corrosion protection is at high risk in the presence of 

chlorides. The chloride ions present within the pore structure of the concrete interfere with the 

passive protective film formed on reinforcing steel.  

Chloride induced corrosion results in localized breakdown of the passive film. The result is 

rapid corrosion of the metal at the anode leading to the formation of a 'pit' in the bar surface 

and significant loss in cross sectional area. This is known as 'pitting corrosion'. Occasionally a 

bar may be completely eaten through. After this initiation (local breakdown of the film) an 

anode forms where the film has broken, while the unbroken film (or protective layer) acts as a 

cathode. This will accelerate localized attack and pits will develop at the anodic spots. The 

electrolyte inside the growing pit may become very aggressive (acidification) which will 
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further accelerate corrosion. Thus on one hand, it results in steel bar cross-section reduction 

leading to lesser bar strengths. On the other hand, the corrosion products formed on steel as a 

result of chloride ions have much greater volume than the metal consumed in the corrosion 

reaction. The increase in volume around the steel bars exerts great disruptive tensile stress on 

the surrounding concrete. If the resultant tensile stress is greater than the concrete tensile 

strength, concrete cracks, leading to more changes by allowing water and chlorides direct 

access to the steel bars. As the corrosion proceeds, these cracks widen leading to the complete 

spalling of concrete. 

Chloride induced reinforcement corrosion may occur even in apparently benign conditions 

where the concrete quality appears to be satisfactory. Even if there is poor oxygen supply 

reinforcement corrosion may still take place. It is for this reason therefore that failure of 

reinforcement may occur without any visual sign of cracking.  

The present study is focused in the mechanism of chloride penetration by diffusion in 

cementitious materials. 

1.2 Fick’s law 

The typical approach to characterize diffusive transport of ions in porous materials begins 

with Fick’s law of diffusion. Whenever a concentration gradient of a species ∂c/∂x exists in a 

finite volume of a substance, the species will have the natural tendency to move in order to 

distribute itself more evenly within the substance and decrease the gradient. Given enough 

time, this flow of species will eventually result in homogeneity within the substance, causing 

the net flow of species to stop. The mathematics of this transport mechanism was formalized 

in 1855 by Adolf Fick, who, while working with salts postulated that the flux of material 

across a given plane is proportional to the concentration gradient across that plane:  

x
cDJ

∂
∂

−=                      [ 1.1]

            
Here J (mol/m².s) is the diffusion flux, D (m2/s) the constant of proportionality referred to as 

the diffusion coefficient of species, c (mol/m3) the concentration and x (m) the position. The 

negative sign indicates that the diffusing mass flows in the direction of decreasing 

concentration.  

It should be kept in mind that the above equation is valid for the diffusion of molecules in an 

ideal solution. 
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For a porous medium, things should be a little bit different as in addition to porous solution, 

the diffusion is also subjected to the complex geometry of porous structure i.e. its 

constrictivity, tortuosity etc. [OLL 02]. 

The diffusion coefficient of a species in a saturated porous medium depends upon the 

geometry of the porous structure and the diffusion coefficient of that species in an ideal 

solution. Hence the Fick’s first law of diffusion for a saturated porous medium can be written 

as follows: 

x
cDJ ee ∂

∂
−=                      [ 1.2]

            
Where Je is the effective flux and De is the effective diffusion coefficient, which takes into 

account the complexity of porous structure. The value of De is found to be 1000 times lesser 

than that of D as observed from experiments.  

1.3 Nernst-Planck system of equations 

The Nernst-Planck equation is commonly used in various fields and while its complete 

derivation for each field including for saturated porous media can be found out elsewhere, we 

just intend to present its brief introduction for the present study.  

For an ionic species i, present in infinitely diluted solution, Fick’s first law of diffusion is 

described as: 

x
c

DJ i
ii ∂

∂
−=                    [ 1.3] 

 
Since the ions are charged particles, therefore their movement in an electrolyte is governed by 

not only the concentration gradient but also a local electrical gradient due to other ions in their 

vicinity, known as membrane potential [REV 99] and the ionic flux due to this electrical 

gradient is given by: 

x
cuJ iii ∂

∂
−=

ψ                   [ 1.4] 

 

where ui is the ionic mobility and ψ is the local electrical potential. The combined flux will be 

a sum given by equations [1.3] and [1.4]. 

x
cu

x
c

DJ ii
i

ii ∂
∂

−
∂
∂

−=
ψ                  [ 1.5] 

The ionic mobility and diffusion coefficient in dilute solutions are related by the Nernst-

Einstein equation: 
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RT
FzD

u ii
i =                     [ 1.6]

            
Putting the value of ionic mobility from [1.6] into [1.5]: 

x
Dc

RT
Fz

x
c

DJ ii
ii

ii ∂
∂

−
∂
∂

−=
ψ                  [ 1.7] 

 
Where zi is the charge number, R is the ideal gas constant, F is the Faraday’s constant and T is 

the absolute temperature. The above equation [1.7] is known as the Nernst-Planck equation, 

used for the diffusion of charged particles in an infinitely diluted electrolyte. 

For the case of a saturated porous medium, the equation [1.7] is transformed into equation 

[1.8]. 

 
x

Dc
RT

Fz
x
c

DJ iei
ii

ieie ∂
∂

−
∂
∂

−=
ψ

,,,                   [ 1.8] 

Where Je,i is the effective flux and De,i is the effective diffusion coefficient of ion i. Note that 

the effective values of these parameters are meant to take into account the porous structure to 

which an ion is subjected while traveling through porous solution. 

1.4 Free and bound chlorides 

Chloride ions exist in two forms in concrete, i.e. free chloride ions mainly found in the 

capillary pore solution and chloride ions bound to the concrete solid surface due to 

interactions with the cement hydration products and the term ‘total chlorides’ in literature 

means the sum of free and bound chlorides.  

 bvt ccC +=                     [ 1.9]
            
In equation [1.9], Ct, cv and cb are the total, free and bound chloride concentrations 

respectively. In case of seawater or de-icing salts, where chlorides penetrate the surface of the 

concrete, the ratio free to combined chloride may be 50:50 [ARY 90].  

Although the free chloride is generally believed to be responsible for the initiation of 

corrosion [HOP 85], the threshold value needed to initiate corrosion is mostly provided in 

terms of total chlorides and occasionally in terms of free chlorides. According to Mohammed 

et al. [MOH 03], this may be due to the difficulties in evaluating free chloride contents in 

concrete. Nevertheless, chloride binding is an extremely important phenomenon as the 

capacity of a material to bind chlorides will dictate how much free content is available to 

cause damage.  
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There are four major compounds in Portland cement, C3A, C4AF, C3S and C2S. Among these 

four phases, aluminate (C3A) and aluminoferrite (C4AF) phases in cement have been found to 

be responsible for the chemical binding of chlorides [SUM 04]. The increase of sulfate 

content tends to reduce chloride binding as the sulfates have a greater tendency to bind with 

C3A than chlorides. Thus C3A, C4AF and sulfates are the principal parameters to affect 

chemical chloride binding. It should be kept in mind that only that part of C3A and C4AF 

contributes to chemical binding, which reacts only during exposure period to form Friedel salt 

and calcium chloroferrite. On the other hand, physical binding depends upon the content of 

hydrated products like C-S-H [JUS 98] i.e. calcium-silicate-hydrate, a product of hydration 

reaction of two calcium silicates (C3S and C2S). Thus in brief, the total bound chlorides are 

the sum of those bound chemically and those bound physically.  

 b, phy chembb  c cc += ,                  [ 1.10]
                        
Where cb,chem is the chemically bound chloride concentration, cb,phy is the physically bound 

one and cb on left hand side of equation [1.10] implies their respective sum. 

1.5 Mass balance equation  

Consider an infinitesimal volume of an infinitely diluted solution (with no pressure gradient) 

of thickness dx and cross-sectional area A, as shown in Figure 1.1. Let J1 be the influx of 

species into the volume and J2 the flux, coming out of the volume over a time increment of ∂t. 

The difference between the two fluxes must contribute to the change in concentration ∂c in 

this volume. Thus mathematically we can write equation [1.11], considering flux as a 

continuous function of distance x: 

 cAdxtA)JJ( ∂=∂− 21                   [ 1.11]
          
Since the flux is a continuous function of x, we can additionally describe from Figure 1.1. 

  dx
x
JJJ

∂
∂

−=− )( 21                   [ 1.12] 

Now inserting the net flux value from equation [1.12] into [1.11] and re-arranging, the mass 

conservation equation for an infinitesimal volume of solution can be written as: 
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The equation of flux J (for ions) by Nernst-Planck equation for the case of an ideal solution is 

given by equation [1.7]. Inserting the value of flux from [1.7] into [1.13] (assuming a constant 

diffusion coefficient), we obtain equation [1.14]. 
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If we change the infinitesimal solution volume by that of a reactive saturated porous medium, 

the situation would be a little bit different. Consider that Ct are the total chlorides in mol/m3 of 

the infinitesimal volume of the material, entering the medium. The equation [1.14] previously 
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Figure  1.1 Graphical presentation: Conservation of mass 
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written for an infinitely diluted solution will acquire the following form for a reactive porous 

medium: 
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,                 [ 1.15] 

Being a reactive medium, the solid surface of the material all along the circumference of 

pores will react with the ionic species moving in pores. Therefore, certain species will be 

bound to the solid surface. Let cm,b represent the bound species in mol/kg of solid surface and 

ci  the free ones in moles/m3 of the pore solution. Mathematically we can write as: 

( ) bmit ρcppcC ,1−+=                  [ 1.16] 

Where p is material porosity and ρ is the material dry density in kg/m3 of solid.  

Considering the interactions with the solid phase as concentration dependent and inserting the 

value of Ct from equation [1.16] into [1.15], we obtain equations [1.17] and [1.18]. These two 

equations ([1.17] and [1.18]) describe the un-steady state ionic transport in pore solution 

(using Nernst-Planck equation): 
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Or 
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If the ions are no more considered as the charge carrying particles, we can neglect the second 

term on right hand side of equation [1.17] or [1.18] i.e. 
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If it is further assumed that no interactions occur between the species and the material solid 

surface, we have: 
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Equation [1.19] and [1.20] represent the Fick’s second law of diffusion. 

 

 

 

CHAPTER 1 : IONIC DIFFUSION



 25

1.6 Semi-infinite source diffusion 

In the case of a semi-infinite medium, an analytical solution to Fick’s second law of diffusion 

exists which requires a constant surface concentration, while the boundary conditions are 

given by the following equations: 

( ) incxc =0,                    [ 1.21]
              

 ( ) sfctc ,,0 =                     [ 1.22]
            

 ( ) inctc =∞,                     [ 1.23] 
 

            
where cin and cf,s are the initial and surface free chloride concentrations. The analytical 

solution to Fick’s second law (equations [1.19] and [1.20]) under conditions [1.21] to [1.23] 

and a Dapp independent of (x,t) is given by [CRA 75]: 
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As discussed in the previous section (free and bound chlorides), the usual practice to analyze 

chloride diffusion by Fick’s second law of diffusion is to take into account the total chloride 

content and not the free ones. Consider equation [1.15]. If ionic species are no more 

considered as the charge carriers, the equation [1.15] can be written as: 
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For the case of a saturated porous medium assuming no interactions with the solid surface, we 

have from equation [1.16]: 

p
C

c t=                    [ 1.26] 

Putting the value of c from [1.26] into [1.25], we have: 
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Considering that bound species follow a linear behavior with respect to the free ones, we can 

have: 

Kcc b,m =                     [ 1.28]
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( ) Kpp
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With the transformations as offered by equation [1.29], we can convert equation [1.25] into 

equation [1.30] as follows: 
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If we choose to present values in mol/kg of material instead of per m3 of material (as is the 

practice in most chloride ingress models, which will be discussed in chapter 2), we have: 

CpCt )1( −= ρ                   [ 1.31]
           

where C is the total species concentration in mol/kg of material. With the above equations the 

Fick’s second law for the case of total chlorides can be re-arranged as following: 

 2

2

x
CD

t
C

a ∂
∂

=
∂
∂                   [ 1.32]

           

With the initial and boundary conditions, described by equations [1.21] to [1.23] for the case 

of total chlorides per unit mass of the material, the analytical solution to equation [1.32] can 

be written as: 
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In the above equation, Ci and Cs are the initial and the surface total chlorides per unit mass of 

the material. This is the above equation [1.33], widely used to determine the chloride profiles. 

The chloride ingress modeling based on equation [1.33] will be discussed in detail in Chapter 

2. It should be kept in mind that the above equation is based on the assumption of a constant 

surface concentration and a constant apparent diffusion coefficient. 

1.7 Multi-species theory 

For quite a long time, the chloride diffusion has been expressed by Fick’s laws in civil 

engineering research because of simplicity while using analytical solution given by equation 

[1.33], lack of high-speed computers and perhaps due to lack of knowledge. While these laws 

might be valid for diffusion of molecules, the interpretation of ionic diffusion on the basis of 

these laws leads to incorrect observations. It was thereafter thought that the ions being 

charged particles must influence the movement of each other. This argument led to the multi-

species description of chloride transport [TRU 00 LI 00 MAR 01]. 
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Let us consider an ion. Its flux in an electrolyte (infinitely diluted, where unit activity 

prevails) is given by the Nernst-Planck equation. Recall equation [1.8]. 

The movement of the ionic species in opposite directions induces an electrical potential 

between them. This electrical potential is called the liquid-junction potential [REV 99]. This 

phenomenon tends to accelerate the slower ions while decelerating the fast-moving ones. The 

current law states that:   

0=∑
i

ii JzF                    [ 1.34]

           
This equation also applies to electrically enhanced ionic transport, which is the basis of 

migration tests.  

Combining equations [1.8] and [1.34], we have: 
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Equation [1.35] comes in combination with the continuity equation. This system of equations 

does not have an analytical solution. The numerical method chosen in this thesis is presented 

in chapter 3.  

 

1.8 How to predict corrosion initiation time with chloride penetration 

In the introduction of this chapter, the consequences of the chloride ion penetration on 

cementitious material have been described. Whenever a cementitious material like concrete is 

in contact with a salt solution like marine environment, the chlorides penetrate into it. This 

penetration increases with the exposure time. The chloride profiles are shown in Figure 1.2. 

These chloride profiles are the ones achieved at the end of the time (t1, t2, t3 and t4), during 

which an imaginary structure was in contact with an exposure saline solution. It should be 

kept in mind that this figure is just for demonstration purposes and all the values are non-

dimensional. The criterion for corrosion initiation, which is adopted during the present study 

is different and will be demonstrated in chapter 9 of this work.  

In this figure, t1< t2 < t3 < t4. 
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In the above figure, the concentration at steel bar increases with increase in immersion period 

till a time is reached, where the concentration exceeds a certain threshold value (0.05 for 

example), which causes the initiation of corrosion of steel bar. In Figure 1.2, this time is 

reached between the immersion times, t3 and t4. Thus using this technique, the life of a 

concrete structure, which is exposed to marine environment, vis-à-vis chloride induced 

reinforcement corrosion can be calculated. Another demonstration of this technique is to 

present the chloride concentration directly at the steel bar instead of as a function of 

penetration depth from the exposed surface. If the chloride concentrations at steel bars are 

determined at various immersion periods, we obtain what is shown in Figure 1.3. In this 

figure, it can be observed that the chloride concentration at steel bar exceeds the threshold 

value of 0.05 at a time of immersion, slightly less than 0.3. Hence this time corresponds to 

corrosion initiation period.  

As mentioned above, this demonstration just gives an idea of calculation of corrosion 

initiation time. There are different criteria, adopted by different research groups, but all are 

based upon a threshold value for the corrosion initiation. These ideas will be discussed in 

detail in chapter 9. 

 

 

 

Figure  1.2 Chloride profiles in reinforced concrete 
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Figure 1.3 Prediction of corrosion with chloride penetration into concrete 
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2 CHAPTER 2 
 
CHLORIDE INGRESS MODELS 
 
 

2.1 Introduction 

The history of chloride ingress modeling starts with Collepardi [COL 70] in the early 

seventies. He is the first person to present a mathematical model for chloride ingress in 

concrete. Having known the hazardous consequences of chloride attack on reinforced 

concrete structures, an immense need for its correct understanding and quantification was 

considered necessary. Since then several models have been presented by researchers and 

engineers worldwide. Some models are based on a general solution to Fick's laws (classical 

approach) while the others are based on the Nernst-Planck equation (the two approaches have 

been discussed in the previous chapter). In the following, a brief description of some of the 

most important models present today is given.  

2.2 Models based on Fick’s laws of diffusion 

These models account only for the chloride penetration through the cementitious materials. 

The influence of other ions on the chloride transport is neglected, except ClinConc and LEO, 

where hydroxyl ion effect on chloride penetration is taken into account.  

2.2.1 Erfc D=constant Model 

Collepardi et al [COL 70] were the first to propose a solution to the Fick's second law of 

diffusion with the condition that both concrete surface concentration and apparent diffusion 

coefficient are constant. This is a model, which uses the analytical solution of Fick’s second 

law of diffusion to calculate chloride profile in a saturated porous medium. This is a uni-

dimensional model that considers the apparent chloride diffusion coefficient as a constant 

parameter. 
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where C is the total chloride concentration as a function of depth x (from exposed surface) 

and time of exposure, Ci is the initial total chloride concentration, Cs is the surface total 

chloride concentration, t is the material age, tex is the material age at exposure (thus (t-tex) is 
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the exposure period, a structure is in contact with a saline environment) and Da is the apparent 

chloride diffusion coefficient.  

 

Input data 

1. Surface chloride concentration, 

2. Apparent chloride diffusion coefficient measured from one chloride profile by curve fitting 

[Appendix 4], 

3. Exposure time. 

Output data 

Total chloride profiles as a function of time and distance from the exposed surface. 

This is a very simple model and a very limited data is required to execute it. The model takes 

constant diffusion coefficient while actually the apparent diffusion coefficient decreases with 

time, which results in overestimated chloride penetrations. Moreover the assumption for 

constant apparent diffusion coefficient and surface concentration might be valid for very old 

structures (where these two parameters may change slightly over time), but for newly built 

structure, the assumption is far from reality.  

2.2.2 False ERFC Model 

This model is the contribution of Prof. L. O. Nilsson et al. [NIL 01] of the University of 

Chalmers in Sweden. The model describes chloride ingress through a porous saturated 

medium when both the apparent diffusion coefficient and the chloride concentration at the 

concrete surface are time dependent. This is an empirical model based on the Fick's second 

law of diffusion for a semi-finite medium.  
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The model acquires the following relationships for the two parameters, Da (t) and Cs. 

 
σ

⎥⎦
⎤

⎢⎣
⎡=

t
tDtD r

raa ,)(                     [ 2.3]

          

 BttAC exs +−= )ln(                    [ 2.4]

          

CHAPTER 2 : CHLORIDE INGRESS MODELS



 34

In order to have the relations Cs and Da(t), at least two experimental chloride profiles for the 

same material and with the same environmental conditions taken at two different times should 

be available. From these profiles, the apparent diffusion coefficient and the surface chloride 

concentration can be determined by curve fitting of the experimental data. The above 

relations, [2.3] and [2.4] can be deduced by plotting Cs and Da as function of time on semi-log 

paper. 

Input data  

1. Surface chloride concentration at two (at least) reference times, 

2. Apparent diffusion coefficient at two (at least) reference times,  

3. Exposure time. 

Output data 

Chloride profiles as function of time and depth. 

This is a simple model which requires nothing but at least two experimental profiles in order 

to determine the apparent diffusion coefficient and surface chloride concentration. The output 

chloride profiles depend upon the number of points used in the regression analysis.  

2.2.3 DuraCrete Model 

This model, formulated by Mejlbro [MEJ 96] is based on the solution to the Fick's second law 

of diffusion. The model is given by equation [2.5]: 
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Where kc is the parameter which takes into account the effect of curing conditions, ke 

considers the influence of environment (degree of saturation) on the diffusion coefficient, kt is 

a factor which counts for the deviation of the chloride diffusion coefficient measured under 

accelerated conditions and a diffusion coefficient measured under natural conditions, DRCM,r is 

the rapid chloride migration test measured NT Build 492 [NT 99] at an age tr of the material 

and σ represents the age dependency of the apparent chloride diffusion coefficient. 

2.2.4 Modifications in Duracrete by Gehlen 

The applied Duracrete model as described previously was later on sophisticated by Gehlen 

[GEH 00] by accounting for a convection zone just in the vicinity of the exposed surface in 
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which the chloride profile deviates from the behavior as presented by the Fick’s second law of 

diffusion. The modified form of the analytical solution to Fick's second law of diffusion is 

described as follows.  
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In the above equation, Cs,∆x is the surface chloride concentration in a depth ∆x termed as the 

depth of convection zone, Ci is the initial chloride concentration, kRH is the relative humidity 

factor, kT is the temperature parameter given by the equation [2.7] while DRCM,r is the chloride 

coefficient measured in saturated concrete under an electrical field at a reference time tr and a 

reference temperature Tr. 

Note that in equation [2.6], the author of the model has proposed a value of ∆x equal to 4 

[GEH 00].  

The model calculates the temperature parameter using the Arrhenius relation, as follows. 
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Where bT is the regression parameter, whose value is 4800 K.  

Input data 

1. Chloride diffusion coefficient DRCM,r, 

2. Relative humidity factor kRH (kRH =1 for submerged zone), 

3. Initial chloride concentration, 

4. Temperature factor kT, 

5. Test method factor kt and age factor σ,  

Output 

Chloride profiles as function of time and distance from the surface. 

This is a simple model and easy to use. If the experimental data corresponding to the transport 

properties is available, the output can be achieved with no difficulty, otherwise it involves the 

determination of diffusion coefficient and an estimated surface chloride concentration at the 

required time. The chloride diffusion coefficient has been related to the migration coefficient 

by empirical parameters.  

CHAPTER 2 : CHLORIDE INGRESS MODELS



 36

2.2.5 ClinConc model 

ClinConc or Cl in Concrete was developed by Tang and Nilsson in 1994 [TAN 96]. This is a 

physical model based on finite difference technique as numerical approach. This model while 

simulating the chloride ingress in the pore solution utilizes the Fick's law of diffusion.  
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Where Dapp is the apparent diffusion coefficient of ion i (chloride and hydroxyl here), ci is the 

ionic concentration and x represents the space dimension. For total chloride distribution, the 

model implies the mass balance equation with non-linear chloride binding. The chloride 

binding is described by Freundlich isotherm. The model assumes a minimum chloride binding 

in summer and a maximum in winter. In summer, the higher temperature decreases the 

chloride binding capacity and increases chloride diffusivity while in winter, the lower 

temperature increases the chloride binding capacity and thus decreases the chloride 

diffusivity. In this model the exposure time is described as a sinusoidal function whereas the 

effect of temperature on diffusion and chloride binding is expressed by the Arrhenius 

equation.  
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Where Dapp,Cl is the chloride apparent diffusion coefficient at a depth x from the exposed 

surface at an age t of concrete, Din,Cl is the intrinsic chloride diffusion coefficient (the value 

can be determined using equation [2.14]), f(x) accounts for depth from the exposed surface, 

g(t) is the concrete age function, Ea is the activation energy for diffusion (Ea=40000 J/mol), R 

is the universal gas constant (8.314 J/(mol. K)), Ta is the average seawater temperature 

(degrees Kelvin) and T is the temperature (degrees Kelvin) at which Dapp,Cl is to be calculated.  

The seasonal variations in seawater temperature have been presented by a sine function 

whereas an average annual seawater chloride concentration (for submerged zone only) has 

been proposed.  

The chloride binding is temperature and pH dependent in the model.  The pH and temperature 

effects have been taken into account by the following equations. 
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Where fOH and fb(T) are the hydroxide content and temperature dependent coefficients for 

chloride binding, (BCl)OH,ini and cb,r are the bound chlorides as determined by the equilibrium 

method in laboratory, (BCl)OH and cb are the corrected bound chlorides and Eb is the activation 

energy for chloride binding (42000 J/mol). The initial hydroxide concentration is calculated 

on the basis of the alkali content and pore content in concrete. The bound chlorides are given 

by equation [2.13]. 

( ) βα CligelbOHClbm cQTffc ,,, =                  [ 2.12] 

 
where Qgel  is the hydrate gel in kg of gel/m3 of concrete and α and β are the coefficients of 

Freundlich binding isotherm. The hydroxide diffusion coefficient is estimated by the 

following equation. 
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where Kb,OH is the hydroxide binding coefficient (assuming a value of 20 for calculation) and 

Din,Cl is the intrinsic chloride diffusion coefficient given by the following equation. The 

hydroxyl ion concentrations can be determined by using equation [2.13] in combination with 

equation [2.8]. 

p
D

D ss
Clin =,                    [ 2.14]

            

where Dss is the chloride diffusion coefficient determined by the steady state migration test 

[TAN 96] and p is the porosity of the material.  
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Input data 

1. Concrete composition (cement type, cement content, w/c ratio, aggregate content) and age 

at the time of immersion, 

2. Environmental conditions (chloride concentration, temperature),  

3. Chloride diffusion coefficient as determined by the CTH method [TAN 96], 

4. Chloride binding parameters as determined by the equilibrium method. 

Output data 

1. Free chloride concentration profiles, 

2. Total chloride concentration profiles, 

3. Free hydroxide concentration profiles. 

The model does not take into account the influence of other species present in the porous 

cementitius medium. The effect of hydroxyl ions on chloride binding is accounted for by a 

parameter as defined by the equation [2.10].  

2.2.6 SELMER Model 
The model was developed by SELMER Skanska [EUR 99]. This is an empirical model 

derived from curve fitting to experimental observations. The model is based on Fick's second 

law of diffusion for a semi-infinite medium with constant exposure.  
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The model adopts apparent diffusion coefficient as a time dependent parameter as described 

in the following equation. 

( )
σ

⎟
⎠
⎞

⎜
⎝
⎛=

t
tDtD r

raa ,                   [ 2.16] 

In the above equation, the parameter σ shows the time dependency of apparent coefficient of 

diffusion.  

λδσ +=                    [ 2.17] 

 

where δ represents the effect of continued hydration of the cement and λ represents the 

beneficial effect of ion exchange which takes place between the aggressive environment and 

the concrete surface layer and which tends to block the chloride ingress into the material. The 

values of λ vary from 0.32 to 0.96 while those for δ are in the range of 0.1 to 0.2. 
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Input data 

1. Surface chloride concentration (environmental load), 

2. Initial chloride concentration, 

3. Apparent diffusion coefficient at a reference time determined from exposure data (acid 

soluble chloride profiles), 

4. Curing and exposure time. 

Output data 

Chloride profiles as a function of time and distance from the surface. 

As stated earlier, this model uses the analytical solution to Fick's second law as a convenient 

tool for curve fitting and hence it is not clear whether chloride transport is due to diffusion or 

a combination of different processes. The high values for the exponent σ can considerably 

overestimate the chloride ingress.  

2.2.7 Hetek Model  

This is an empirical model based on 114 chloride profiles obtained over five years and a few 

laboratory studies [HET 96]. The model describes chloride ingress into concrete when the 

surface chloride concentration and the diffusion coefficient are time dependent.  The model is 

the general solution to Fick’s second law of diffusion. The specimens used were 

1000x700x100 mm concrete slabs. The specimens were exposed to 14 ± 4 g/l (an average 

marine environment between North Sea and Baltic Sea). 

The apparent diffusion coefficient and the surface chloride concentration are time-dependant 

according to following relations: 
σ
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The incorporation of the time-dependent diffusion coefficient and surface concentration as 

mentioned by the equations [2.18] and [2.19] in the solution of Fick's 2nd law is the Mejlbro-

Poulsen model.  

A ‘complete solution’ of the Fick’s second law is proposed: 
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The function Ψq is defined as: 
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The function Г(y) is given:   
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 for y > 0. The notation used should be noted as:  

)nq).....(q(qq)...q(qq;qq;q )n()()()( 1111 210 +−−=−===             [ 2.24]

    

where q(n) has n > 1 factors. 

If the chloride surface concentration is considered to be constant i.e. q = 0, the chloride profile 

is described by the well known error-function solution: 
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In the case when the diffusion coefficient is considered to be constant, Da(t) is replaced by Da. 

The chloride profiles are governed by four parameters Sp, q, Daex and σ. For convenience, the 

diffusion coefficients (D1 and D100) and surface chloride concentrations (C1 and C100) at time 

t1 = 1 year and t100 = 100 years are determined from where the above four parameters can be 

calculated. The estimation of these parameters can be performed through the data from natural 

exposure. Once D1, D100, C1, C100 are determined, the required parameters can be calculated as 

follows: 
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In order to obtain empirical coefficients, several experiments were performed on plain 

concrete. It was assumed that the correlation exists valid for concretes with puzzolanas.  
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A total of 978 chloride measurements in three local marine environments, three exposure 

times over five years and 13 types of concrete optimized the 20 parameters in the model. 

Input data 

1. Composition of concrete (water to cement ratio, binder content), 

2. Initial chloride concentration, 

3. Age of concrete when exposed to saline environment, 

4. Exposure time, 

Output data 

Total chloride profiles  

2.2.8 JSCE Model 

This model was developed in revised JSCE (Japanese Society of Civil Engineers) 

specifications in 1999. The prediction of chloride ingress in concrete is based on the analytical 

solution to Fick’s second law as follows, 
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Where C(x,t)  is the design chloride content at depth x and time t, Clγ  is a safety factor for 

taking into account the uncertainty of Cs and generally taken as 1.3, Dd is the design value of 

apparent chloride diffusion coefficient of concrete, Cs is the surface chloride content of 

concrete which is a function of distance from the coastline and Ci is the initial chloride 

constant. 

According to JSCE specifications, the apparent chloride diffusion coefficient is derived from 

experimental chloride profiles in real structures and concrete specimens. In the absence of 

experimental data, the apparent chloride diffusion coefficient in OPC is generally assumed to 

be 2.02.10-12 and 0.92.10-12 m²/s in the submerged and the atmospheric zones respectively. 

The initial chloride content is assumed to be zero in the prediction. The surface chloride 

content per unit volume of concrete is 15.2 kg. The threshold chloride content for corrosion 

initiation is 2.5 kg/m3 of concrete. The equation to determine Dp (cm²/s) is given as follows: 

  47.8)(145.0)²(5.4log   OPC, using concreteFor 10 −+= WCWCDP         [ 2.37]-a 

      74.5)(3.18)²(5.19log   GGBS, using concreteFor 10 −−= WCWCDP    [ 2.37]-b  
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These equations were derived from regression analysis between apparent diffusion coefficient 

and WC. 

From Dp, a characteristic value of the apparent chloride diffusion coefficient Dk is calculated 

by using the following relation. 

PPk DD γ=                    [ 2.38]

                        

where γP  is a safety factor, which takes into account the errors for predicted coefficient.  

The design value of the apparent chloride diffusion coefficient to be used in equation [2.36] is 

calculated as follows, 

kcd DD γ=                    [ 2.39]

              

γc  is the material factor for concrete. Generally γc = 1.0       

Input data 

1. Material properties (w/c ratio, Ci), 

2. Environmental load (Cs), 

3. Apparent diffusion coefficient (in case of user data) 

Output data 

1. Total chloride profiles 

For the apparent diffusion coefficient, no accelerated method has been specified. Rather it is 

obtained from results of chloride profiles in real structures and concrete specimens. According 

to the model, the effect of the age of concrete on apparent diffusion coefficient is not taken 

into account. Many uncertainties in the model are compensated by many safety factors.  

2.2.9 Life-365 Model 

This program was written by E. Bentz and M. Thomas in the University of Toronto [BEN 00]. 

The governing equation of the model is the Fick’s second law of diffusion. 
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The chloride apparent diffusion coefficient Da is a function of both time and temperature and 

Life-365 uses the following relationship to account for time-dependent changes in diffusion. 
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Where Da(t)  is the apparent diffusion coefficient at time t, Da,r  is the diffusion coefficient at 

some reference time tr (28 days in Life-365) and σ is a constant (depending on mix 

proportions). 

Life-365 selects values of Dr and σ based on the mix design details (i.e. water-cementitious 

material ratio and the type and proportion of cementitious materials). The user himself can 

also enter the value of the apparent diffusion coefficient. In order to prevent the diffusion 

coefficient decreasing with time indefinitely, the relationship shown in [2.41] is only valid up 

to 30 years. Beyond this time, the value at 30 years (D30y) calculated from [2.41] is assumed 

to be constant throughout the rest of the analysis period.  

Life-365 uses the following relationship to account for temperature-dependent changes in 

diffusion. 
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Where Da(T)  is the diffusion coefficient at temperature T, Da,r  is the diffusion coefficient at 

some reference temperature Tr. Ea is the activation energy of the diffusion process (35000 

J/mol), R is the gas constant and T is the absolute temperature. 

In the model tr refers to 28 days and Tr refers to 293K (20°C). The temperature T of the 

concrete varies with time according to the geographic location selected by the user. If the 

required location cannot be found in the model database, the user can input the necessary 

temperature data. 

The chloride exposure conditions (e.g. rate of chloride build up at the surface and maximum 

chloride content) are selected by the model based on the type of structure (e.g. bridge deck, 

parking structure), the type of exposure (e.g. marine or deicing salts) and the geographic 

location. Alternatively, the user can also provide input data for these parameters. 

The solution is carried out using a finite difference implementation of Fick’s second law 

(equation [2.40]) where the value of Da is modified at every time step using equations [2.41] 

and [2.42]. 

For a base case (plain Portland cement with no special corrosion protection applied), the 

model assumes the following values: 

 m²/s 10 )(40.206.12
28

WCD +−
=                  [ 2.43] 
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2.0=σ                    [ 2.44]

           

concrete) of mass (% 50.0=crC                 [ 2.45]

       

where  Ccr  is the critical value of chloride concentration for corrosion initiation. The above 

relations are based on a database of the diffusion tests carried out in the University of 

Toronto. Life-365 applies a reduction factor to the value of DPC calculated for Portland 

cement, based on the quantity of silica fume (% SF) in the concrete [2.46]. The relation is 

valid only up to 15% silica fume. The effect of silica fume on Ccr or σ is neglected in the 

model. 

 )165.0exp( SFDD PCSF −=                  [ 2.46] 

The model modifies the value of σ depending upon the amounts of fly ash (%FA) or slag 

(%SG) according to the equation [2.47]. The relationship is valid up to replacement levels of 

50% fly ash or 70% slag.         

 ⎥⎦
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Input data  

1. Concrete mix composition, 

2. Geographic location, 

3. Type of structure (one dimensional or two dimensional), 

4. Exposure conditions, 

5. Depth of concrete cover to steel bars. 

Output data 

1. Chloride Profiles  

2. The time to corrosion. 

2.2.10 LEO Model 

LEO model is an empirical model developed by EDF in France in 1998 [PET 00]. The model 

envisages chloride penetration in a saturated porous medium. Generally chloride ingress 

models provide information about the initiation of reinforcement corrosion but this model also 

addresses the structure evolution after corrosion initiation. It is based on the analytical 

solution of Fick's second law of diffusion for a semi finite medium as follows, 
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While the other terms in the above relation have been defined in all the above models, based 

on Fick's law, we find two additional parameters k and η. The parameter k is a correction 

factor for the ionic flux interaction between chloride and hydroxyl ions, while the parameter η 

takes into account the interactions ion-solid matrix. The following relation for α is proposed. 

[ ]Cl
k

4
11+=                    [ 2.49]

            

Where [Cl] represents the environment chloride concentration in moles per liter. 

The parameter η is calculated as follows: 

w
Wgel5.01

1

+
=η                   [ 2.50]

           

Where Wgel is the gel content in concrete (kg/m3 of concrete) and w is the water content in 

concrete pores (kg/m3 of concrete).  

It is important to note that the model makes use of a diffusion coefficient determined at 

laboratory temperature (20°C). For temperatures other than 20°C, the Arrhenius equation is 

used. 
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where Ea is the activation energy for diffusion (~ 40000 J/mol). 

Input data 

1. Material composition, 

2. Material properties (chloride apparent diffusion coefficient, initial chloride concentration, 

porosity), 

3. Structure configuration (cover depth), 

4. Isotherm of interaction (linear) for chloride binding phenomenon, 

5. Exposure conditions (temperature, surface chloride concentration). 

Output data 

Free chloride profiles 
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This model gives chloride profiles using the mass equilibrium equation.  The apparent 

diffusion coefficient is deduced either by migration test or immersion test. This is a one- 

dimensional model that does not take into account the effect of other ionic species present in 

the medium except hydroxyl ions. 

2.2.11 LERM 

This model was developed in Laboratoire d'Études et de Recherches sur les Matériaux 

(LERM) in France [HOU 00]. This is a physical model, which solves Fick's second law of 

diffusion by a finite element method (Newton-Raphson technique). The chloride ingress for a 

saturated porous medium is predicted. The model takes into account: 

♦ the chloride-solid phase interactions through a binding isotherm 

♦ the transport properties as a function of time and space, 

♦ the evolution of boundary conditions. 

The displacement of each ion present in the system is described by the partial derivative 

equation. 

i
i

i ccV
x
c

cDJ )()( +
∂
∂

=                  [ 2.52]

          

F
x
J

t
c ii +

∂
∂

=
∂
∂

                  [ 2.53]

           

By inserting the value of the flux from equation [2.52] into [2.53], we get, 
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where ci is the concentration of the ion, V is the resultant velocity of the ion in m/s (adsorption 

velocity, velocity under the effect of an electric field, pressure gradient), Di represents the 

apparent diffusion coefficient of the ion in m²/s, F is a function which represents the 

interaction of ion with the solid phase whereas Ji is the flux of the ion. 

The variation of the apparent diffusion with the time is given by, 
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The diffusion coefficient is determined by either diffusion or migration techniques. This 

models accounts for the evolution of the physical properties of the porous media and also the 

environmental parameters.  

The output of the model are ionic profiles.  

Equation [2.54] may be solved for several ionic species. Yet, the continuity equation written 

for a given ion is completely independent of the continuity equation for another species. There 

is no ion-to-ion dependency.  

2.2.12 Conclusions 

Most models based on the analytical solution to Fick's second law are more or less identical. 

The difference exists in making assumptions on the variations of the apparent chloride 

diffusion coefficient and surface chloride content. These differences in assumptions have 

come from the data used for the development of each model. Some of the models mentioned 

above suggest using a rapid diffusion method in order to determine the chloride diffusion 

coefficient. The co-relation between the natural diffusion coefficient and the accelerated 

diffusion coefficient is presented by an empirical coefficient. Look at equations [2.2] and 

[2.3]. The value of ‘σ ’ is obtained from Da(t) and Da(t) is obtained by applying a curve fit 

using equation [2.1] by which the assumption is made that Da(t) does not change over time 

(during immersion) while actually D(t) changes over time. A more correct way to determine 

‘σ ’ is proposed by Visser et al. [VIS 02]. The solution to Fick's second law of diffusion can 

now be derived as follows, taking Da(t) as time dependent. 
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But to use the above equation for curve fitting needs a value of ‘σ ’, for which it is necessary 

to have multiple measured profiles from the same structure taken at different exposure times.  

There might be another possibility to better use the above relation, as quoted by Stanish et al. 

[STA 03] by taking an average value of apparent diffusion coefficient (over the whole 

exposure period) in equation [2.2]. The following relation was suggested. 
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With the time taverage  is given by the following relation. 
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2.3 Models based on the Nernst-Planck equation 

2.3.1 Model presented by Li and Page 

This is a two dimensional model presented by L.Y. Li of Aston university, Birmingham and 

C.L. Page of University of Leeds in UK [LI 00]. The model was actually meant for 

electrochemical extraction of chlorides from cementitious materials. However, the model can 

also be used to study ionic penetration in a material both with and without an applied 

electrical field. This model takes into account the influence of a number of factors on the 

transport behavior of the ions like porosity, tortuosity, the interactions between the pore liquid 

phase and cement solid phase along with the electrostatic coupling between the ions. The 

model presents a non-linear diffusion-convection equation which is solved numerically by 

Galerkin finite element technique using an explicit approach.  

The transport of the ions is described by the mass balance equation, ionic flow and current 

conservation. By conserving the current, the mass balance and ionic flow equations for each 

ion present in the porous system can be written in the following form. 
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where ci represents the concentration of ionic species in the pores, Di is the diffusion 

coefficient, zi is the charge number, F is the Faraday constant, R is the general gas constant, T 

is the absolute temperature, ψ is the electrostatic  potential, I is the current density and t is the 

time.  

The above equations applicable to an ideal dilute solution were modified for a porous medium 

by taking into account the factors like porosity and tortuosity. 
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Where cb represents the bound ion concentration, τ is the tortuosity of the pore structure (τ 

=1.5 to 3 for concrete) and p is the porosity of the medium.  The above equations [2.61] and 

[2.62] are nonlinear convection-diffusion equations with variable coefficients from where the 

concentration profiles and the electrostatic potential for each ionic species can be determined 

for a given current density with known boundary and initial conditions.  

The relation between the free and the bound chlorides is approximated by the Langmuir 

isotherm.  

)1( 2

1

c w
ccb χ

χ
+

=                   [ 2.63]

           

Where cb and c are the bound and free chloride concentrations, w is the water content in 

which diffusion takes place, x1 and x2 are coefficients which can be determined 

experimentally. The model accounts for chloride binding. The binding of one chloride ion 

corresponds to the release of one hydroxyl ion. 

 

Input data 

1. The tortuosity of the porous structure, 

2. The porosity of the material, 

3. The diffusion coefficients of the ions present in the system, 

4. The coefficients of binding isotherm, 

5. Current density, 
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6. Initial and boundary conditions, 

7. Test duration. 

Output data: 

1. Concentration profiles of the ions, 

2. Potential gradients 

While this 2-dimensional model has several advantages e.g. all the ions present in the medium 

are taken into consideration instead of considering only chloride, the influence of the ions on 

the transport phenomenon is accounted for, it has certain limitations: the intrinsic diffusion 

coefficients are difficult to determine, measurement of tortuosity is itself a difficult task.  

2.3.2 STADIUM 

This model was developed by SIMCO Technologies Inc., in collaboration with the Laval 

University Canada [MAR 01]. The model presents ionic diffusion, moisture transport, 

chemical reactions and chemical damage in an unsaturated cement system. The model yields 

the transport of all the ions present in the system. The ionic diffusion is presented by the 

extended Nernst-Planck system of equations while the electrical coupling between different 

ionic fluxes is taken into account by the Poisson equation. The effects of the chemical 

alterations are described in terms of porosity changes. The influence of the chemical reactions 

on the transport phenomenon is taken into consideration. The model accounts for eight 

different ionic species (OH-, Na+, K+, SO4
-2, Ca+2, Al(OH)4

-, Mg+2 and Cl-) and nine solid 

phases (CH, C-H-S, ettringite, hydrogarnet, gypsum, Friedel’s salt, brucite, mirabilite and 

halite). 

In this model, the transport of the ions in the liquid phase is described by the continuity 

equation with an advective term as follows: 
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Where ci is the concentration of the species in liquid phase, Di is the diffusion coefficient, zi is 

the valence number, F is the Faraday constant, R is the ideal gas constant, T is the liquid 

temperature, ψ is the diffusion potential, γ is the chemical activity coefficient and v is the fluid 

velocity.  The diffusion coefficient Di is given as follows. 

water free,ii D D τ=                    [ 2.65]
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Where τ is the tortuosity of the porous structure and Di,free water is the ionic diffusion coefficient 

in bulk solution. 

The chemical activity coefficient is calculated using the Davies equation as follows. 
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Where Is is the ionic strength of the solution, AT and BT are temperature dependent parameters. 

The diffusion potential ψ is calculated by using the Poisson equation, 

0
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Where n is the total number of ionic species and ξ is the dielectric permittivity of the medium. 

The fluid velocity is described by a diffusion equation: 

  
x
wDv waterfree ∂

∂
−=                    [ 2.68]

           

Here D,free water is the water diffusion coefficient and w is the water content. The mass 

conservation of the liquid phase was also taken into account. 

The spatial discretization of the coupled system is performed using the standard Galerkin 

procedure. The non-linear set of equations is solved using Newton-Raphson algorithm. 

Input data 

1. Initial composition of the material,  

2. The characteristics of the material (compressive strength, density etc.),  

3. The exposure conditions (ionic concentration, relative humidity, temperature etc.),  

4. The initial composition of the pore solution,  

5. The boundary conditions, 

6. The porosity, and tortuosity 

7. Ionic and moisture properties of the material 

Output data 

4 Concentration profiles of different species,  

5 Prediction of the degradation of hydrated cement system exposed to an aggressive 

environment, 

6 Prediction of spatial distribution of the solid phases after a certain exposure period. 
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The model has several advantages over some other models in the sense that it takes a lot of 

factors into consideration, which affect the transport of different ions. But at the same time 

one has to determine a large number of items so as to better use it. 

2.3.3 Johannesson model  

This is a theoretical model, developed by B. F. Johannesson of Lund institute of Technology  

Sweden in 2003 [JOH 03]. The governing equation of this model is given by the following 

equation: 
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[ 2.69] 

where the first term on right-hand side describes the diffusion of ions due to concentration 

gradient, the second term represents the diffusion of ions caused by the locally induced 

electrical potential gradient in pore solution, the third term is change of concentration of ion i 

due to convective flows caused by a motion of the pore solution phase, the fourth term models 

the effect on the ion concentration due to a change in the mass concentration of pore water in 

the concrete while the final term gives the loss or gain of ions due to mass exchange between 

ions in pore solution and concrete hydration products.  

The mass density flow of water phase is given by 

  ( ) ( )( )ww
w D
t

ρρ
ρ

∇∇=
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The governing equation for the electrical potential ψ is given by  

i

N

i
i zcF∑
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where ε0  is the coefficient of dielectricity or permittivity of vacuum (8.854E-12 C/V), ε~  is 

the relative coefficient of dielectricity (for water at 25°C, ε~ = 78.54), F is the Faraday's 

constant, ci is the ionic concentration in pore solution and zi is the ion charge number.  
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Parameters Di (ρw) and Ai (ρw) are the ionic diffusion coefficient and ion mobility of i-th ion 

in pore solution respectively. The two parameters are related to bulk values (found in 

literature) by tortuosity τ (ρw).  

iwi DD )(~ ρτ=                   [ 2.72]

           

iwi AA )(~ ρτ=                    [ 2.73]

           

The tortuosity factors in the range of 0.006-0.009 in saturated conditions for water to binder 

ratios of 0.35-0.55 have been given [JOH 03]. Note that the parameters capped with ~ 

correspond to the bulk values found in literature. Further also note that the author of this 

model uses an inverse definition for tortuosity (of that previously defined in equation [2.65]) 

hence the values of tortuosity are lesser than 1.  

The mass balance principle for the local mass exchanges between pore solution phase and 

solid phase has been considered. Examples quoted are binding of chlorides and leaching of 

hydroxide [JOH 03]. 
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Note that in equations [2.69] to [2.74], the superscript c corresponds to concrete solid phase, 

while all the other parameters correspond to pore solution. In equation [2.74], i represents the 

ions (leached) in the pore solution, b the ions (bound) in the hydration products, N the total 

number of species (leached) in pore solution, J the total number of species (bound) in 

hydration products, the symbol h corresponds to hydration products and  f is the mass 

exchange function. 

Input data 

1. Material properties like tortuosity and ionic composition, 

2. Ionic transport properties like diffusion coefficients, 

3. Initial and boundary conditions 

Output data 

1. Free ionic profiles 

This model can be used both for ionic penetration and leaching. This is a versatile model, 

which takes into account (i) ionic diffusion caused by concentration gradient, (ii) diffusion 

caused by the gradient of electrical potential, (iii) mass exchange between ions in pore 

solution and hydration products in concrete, (iv) convective flows caused by the motion of 
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pore solution phase and finally (v) the effect on the ion concentration due to change in the 

concentration of pore water in concrete.        

2.3.4 Model presented by Stanish, Hooten and Thomas 

This model was presented in 2004 [STA 04]. The silent feature of this model is to propose 

modifications to the traveling ions due to the porous structure.  

When an electrical field is applied across a material specimen, the movement that causes the 

ions to move is the combination of diffusion and external electrical field. While the Fick’s 

first law states diffusion, the migration is governed by the Nernst-Planck equation and the 

combined ionic flux moving can be described by the following equation: 
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All the terms, described above have been defined in the previous pages. Solving the above 

equation for the non-steady state, constant surface concentration, infinite thickness boundary 

conditions results in the following numerical solution: 
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where cf,s is the exposure solution concentration. All the other terms of the above equation 

have been already described, the parameter a is given by the following equation: 

RTL
zFEa =                    [ 2.77]

            

This model considers the overall ionic penetrability to be the product of two components: the 

particles movement in a solution and the resistance faced due to porous structure, i.e.,  

ps PPP =                    [ 2.78]

           

where Ps is the penetrability of the particles traveling through the solution and Pp is the 

modification to the penetrability caused by the porous structure. In case of a pure diffusion 

process, DPs = , while in case of a migration process, 
RT
zFDPs = . 

It was considered that any ion traveling through the concrete will have to pass through many 

pore bodies (of different shapes and orientations) and the average modification to 
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penetrability will be a product of the individual modifications of the separate pore bodies. 

Using the central limit theorem, which states that the product of a large number of 

independent factors will tend to the lognormal distribution, the resistance due to the pore 

structure is thought to be of the following form: 
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where λ and ζ are constants, namely the mean and standard deviation of the natural logarithm 

of the distribution of the modification to the ion penetrability provided by the pore structure, y 

represents the modification to the penetrability and the function Pp is the proportion of ions 

that experiences this modification. The function Pp(y) is zero for all negative values of y. In 

order to conserve mass, the sum of Pp(y) for all values of y is equal to one.  
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The concentration of ions at any depth at a given time is a function of the number of ions that 

have a sufficient velocity to travel that distance or farther. This depth is a function of the 

distance, the ions should travel in free solution, namely x, while the minimum modification 

factor that can be experienced by the ions and still reach that point is given by y in the 

following equation. 
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All the terms of above equation are already described. The coefficient D corresponds to that 

found in the infinitely diluted solution (values can be found in literature). Now the portions of 

ions with a modification factor greater than this can be described by: 
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Thus for a constant surface chloride concentration, the model describes the chloride 

concentration profile as follows: 

( )( ) insf cyFcc +−= ζλ,,1,                  [ 2.84]

          

The surface concentration cf,s is the product of the solution concentration and the matrix 

porosity (thus it should be a free ionic concentration and not a total one). 

 

Input data 

1. Material properties like porosity and initial ionic composition,  

 

Output data 

1. Free ionic concentration profiles. 

The model calculates chloride profiles, assuming constant exposure solution. In actual marine 

environments, this concentration obeys a seasonal variation, as is accounted for by ClinConc 

model. The distance, an ion travels in pore solution is considered to be a normalized function 

of the distance, that ion should travel while in a free solution. Model takes into account, the 

ionic diffusion coefficients, as found in infinitely diluted solution.   

2.3.5 Conclusions 

The chloride ingress models, based on Fick’s laws of diffusion mainly serve to determine the 

total chloride content. In this regard, usually a threshold value for total chloride is provided, 

which if exceeded by the total chloride content at steel reinforcement should lead to the 

initiation of corrosion of rebar. It is a well-known fact that basically this is the chloride 

concentration in pore solution, which is responsible for the initiation of corrosion at steel 

surface. Therefore models describing the ingress of chlorides in the pore solution accounting 

for the influence of the membrane potential have been recently proposed. The diffusion 

coefficients of ions, other than chloride, have been extracted from values, found in the 

infinitely diluted solutions. These models, although sophisticated, need a lot of parameters to 

run the job.  
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3 CHAPTER 3 
 
MSDIFF-PACKAGE VERSION 
 
 

3.1 Introduction 

The objective of this chapter is to document a method of prediction based on a numerical 

model. As in other numerical codes, input data are necessary. The special focus here is to be 

able to derive the input data needed from a single sample of material, whatever its age. The 

analysis of a single sample would provide a ‘package’ of input data at a given age, while the 

model can be used to determine the chloride content in the material after any time of 

immersion into a containing chloride solution. The input data package consists of 5 

parameters, namely density, porosity, pore solution composition, effective chloride diffusion 

coefficient and chloride binding isotherm. In addition the specified boundary conditions (ionic 

composition of the exposure solution) are required. The material porosity could either be put 

as user data or left to the mercy of the model to calculate. Note that in this approach we do not 

avoid the difficulties inherent in the determination of the five input data. But because 

measurements are difficult, it is proposed to make them only once, at a given age of the 

material. That is the reason why, for the sake of prediction, the model is required to account 

for the time dependence of the variables. It is also required to show when and in which case 

the time dependency feature is necessary.  

At the end of this chapter, the numerical scheme of MsDiff is described in brief.  

3.2 Model 

The model MsDiff is based on a multi-species approach of the ionic transport. It accounts for 

the electrical interactions between the main ionic species present in the pore system. The flux 

of species is not expressed by the Fick’s first law of diffusion [1.1] rather it is presented by 

the Nernst-Planck equation [1.8]. The model is one-dimensional and written for a saturated 

porous medium. It is additionally assumed that no pressure gradient exists, this justifying the 

fact that convection terms do not appear in the equations. The model does not account for 

water uptake due to self-dessication of the concrete. Surface layer formation and pore 

blocking (due to chemical reactions with magnesium and potassium in seawater), which 

influence chloride penetration from marine environment, are not accounted for in the model.  
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For the sake of convenience, we recall here the main equations (earlier described in chapter 1) 

structuring MsDiff. The ionic flux through a saturated porous medium is given by the Nernst-

Planck equation.  
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It is introduced in continuity equation [3.2], leading to [3.3]. 
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It is assumed that the interactions with the solid phase are concentration dependent, hence we 

can conclude equation [3.4]. 
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Inserting equation [3.4] in [3.3] and re-arranging, we have: 
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Note that in the current model, the interactions of the cations (Na+, K+) with the solid phase 

are believed to be negligible in comparison with chloride binding [WAN 01]. The binding of 

one chloride ion is assumed to be balanced by the release of one hydroxyl ion. The ionic 

diffusion is fully described by the electroneutrality condition [3.6] and the current law 

equation [3.7].  
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The electrical field can be calculated from equations [3.1] and [3.7].  

∑
∑ ∂

∂

−=
∂
∂

i
iii

i

i
ii

cDz
x
c

Dz

F
RT

x ²
ψ                    [ 3.8] 

CHAPTER 3 : MSDIFF PACKAGE VERSION



 63

This model holds for constant boundary concentrations and for four different ionic species: 

Na+, K+, Cl- and OH-.  It was written in such a way that any other species could be added 

simply by specifying the total number of ionic species, provided that the characteristics of the 

species are known. Table 3.1 gives the diffusion coefficients for the 4 ions in an infinitely 

diluted solution. 

 
Table  3.1 Ionic diffusion coefficients in infinitely diluted solution 

Ionic species Na+ K+ 
Cl- OH- 

Diffusion coefficient (1E12 m²/s) 1.33 1.96 2.03 5.30 
 

Here it is assumed that the ratio between the diffusion coefficients of a species and the 

chloride diffusivity is the one found in an infinitely diluted solution.  

solution  diluted  infinitelymaterial,
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Where Di represents the diffusion coefficient for Na+, K+ and OH- and DCl for Cl-.  

The concrete properties are often measured 28 days after casting the material. Still it is 

possible that the concrete at this age is not mature enough to use these properties at a higher 

concrete age. In the model, following expressions [TAN 96] have been added to account for 

the evolution of effective diffusion coefficient with concrete age. 

Figure  3.1 Evolution of De with concrete age [TRU 00] 
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tconstcons ttDtD tantan  if ,)( ≥=                  [ 3.11]

         

The equations state that after a certain material age, the diffusion coefficient becomes 

constant. According to Truc’s experimental results, the effective diffusion coefficient of 

chloride reaches a constant value at the age of 70 days for the cement CEM I [TRU 00]. 

Hence tconstant = 70 days has been implied in the model. Note that the cement CEM I was used 

during this work.  

3.3 Chemical activity in concentrated electrolyte solutions 

The model does not account for the chemical activity of the electrolytic solutions. A more 

complete version of the model consists in replacing [3.1] with: 
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where γ is the chemical activity coefficient This coefficient equates 1 in an infinitely diluted 

or ideal solution. The assumption of an ideal solution fails when the electrolyte solution 

exhibits a high ionic strength, which is typically the case with the pore solution of 

cementitious materials. 

During the past few years, this issue has caught the attention of several research groups 

worldwide. For example, Truc et al. used a model based on Pitzer equations [PIT 79] and 

calculated the fluxes of ionic species and the potential created across a cement-based material 

by the ionic species in solution. Their results showed very little difference when compared 

with calculations based on assuming an ideal solution. Tang [TAN 99] reached the same 

conclusion. Samson et al. [SAM 99] proposed a modified version of the Davies law, allowing 

the calculations of the chemical activity coefficient γ for an electrolyte with high ionic 

strength. The modified version of the Davies law follows (with very good accuracy) the 

experimental data on the chemical activity coefficient of a sodium hydroxide solution. 

However, the numerical results presented by Samson et al. [SAM 99] on the concentration 

profiles of several ionic species through a membrane exhibit very little discrepancy when 

compared with or without the chemical activity term. A slight difference is observed when 

comparing the corresponding calculations for the membrane potential. Li and Page [LI 98] 

published some numerical results by using their own expression for the chemical activity 
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coefficient, which was based on empirical coefficients. Their results referred to diffusion 

under an electrical field.  

It is important to emphasize that the results reviewed above were obtained by different 

research groups, which used markedly different approaches. Based on this literature review, it 

was concluded that accounting for the activity term in the model would not increase the 

accuracy of the results. Therefore in the present model the ionic concentration is maintained 

equal to the ionic activity.  

3.4 Binding isotherm 

As the equation [3.3] describes, our model requires a binding isotherm. It is an important tool 

as the bound ions do not contribute to the ionic transport. While the experimental binding 

isotherms will be discussed later, the present paragraph serves to describe the binding 

isotherm equation included in the model. For low concentrations (lesser than 500 mol/m3-

solution), it is assumed that the binding of chloride is a monolayer adsorption, described with 

a good accuracy by a Langmuir type equation. Conversely, this trend is not followed at higher 

concentrations. Instead of reaching a plateau, as predicted by the Langmuir isotherm, the 

bound amount of chloride continues to increase. According to Byfors [BYF 90], the chemical 

chloride ability to bind would be enhanced for the higher concentrations leading to a multi-

layer adsorption. A Freundlich-like equation is often proposed when the free chloride 

concentrations are higher than 500 mol/m3. However the results given by Freundlich equation 

exhibit an important discrepancy with the experimental data for lower chloride 

concentrations. In this model, a Langmuir binding isotherm equation is proposed, corrected by 

a power law equation for the higher chloride concentrations: 

( )
2

2
1

11
, 1

βα
β
βα

c
c
c

c bm +
+

=                  [ 3.13] 

Where α1, β1, α2 and β2 are the coefficients (obtained by curve fitting to experimental data), 

cm,b is the bound amount of chlorides in mol/kg of concrete and c represents the free chloride 

concentration in mol/m3 of solution. 

3.5 Material properties  

The water porosity and density can be measured by well-known classical methods. These 

methods will be discussed in the next chapter ‘Experimental methods‘. The composition of the 

pore solution can be measured by pore solution extraction by squeezing from a concrete 

specimen. This method is also described in the next chapter.  
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Besides that, a new program for the calculation of porosity has been added in the model. This 

program uses degree of hydration calculated from Avrami’s equation [TEN 00] and the 

porosity from POWERS model [POW 47] for cement paste (CEM I). In the following 

paragraphs, the step-wise program for porosity calculation is described. 

3.5.1 Parameters required for porosity calculation 

• Water density ρω (kg/m3), 

• Cement density ρc (kg/m3), 

• Concrete air quantity Ac (m3/m3), 

• Concrete cement content C (kg/m3 of concrete), 

• Concrete water content W (kg/m3 of concrete), 

• Cement Bogue’s phase composition (C3S, C2S, C3A, C4AF) [BOG 50]. 

3.5.2 Initial porosity (POWERS model) 

Initial porosity of cement paste is the ratio of volume of water to volume of water plus 

cement. 

( )32.0/
/)(%0 +

=
CW

CWagep                  [ 3.14] 

Where W / C represents the water to cement ratio. 

3.5.3 Degree of hydration for each cement phase (AVRAMI model) 

The degree of hydration is defined as the ratio of hydrated mass of cement to initial mass of 

cement. The degree of hydration is calculated from the following equation. 

( )( )ic
iii bta −−−= exp1θ                  [ 3.15] 

Where θ is the degree of hydration for phase i (C3S, C2S, C3A and C4AF), t is the material’s 

age (days) and ai, bi and ci are the coefficients whose values are given in Table 3.2. It should be 

noted that the constants ai, bi and ci have been determined for a specific Portland cement 

[TAY 87] and are used as an approximation for other Portland cements (CEM I). The 

combined degree of hydration for cement is assumed to be the weighted average of those of 

its four phases.  

AFCACSCSCc 44332231 θθθθθ +++=                [ 3.16] 

Where the subscripts 1, 2, 3 and 4 correspond respectively to C3S, C2S, C3A and C4AF. 

Avrami equations are generally implied to describe nucleation and growth reactions and are 
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not concerned to more complex reactions occuring in Portland cements however they can be 

used as a simple model to approximate the hydration of pastes older than 1 day [TEN 00]. 

3.5.4 Cement paste porosity 

In the following, is given the relation to calculate the cement paste porosity in percentage with 

p0 calculated from equation [3.14] and θc from equation [3.16]. 

( ) ( )( )00 10053.0% ppagep cP −−= θ                            [ 3.17] 

3.5.5 Concrete porosity 

Once the cement paste porosity is known, the concrete porosity can be determined by 

multiplying it with the corresponding volumes of cement, water and air per cubic meter of 

concrete. 
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                 [ 3.18]

        
Table  3.2 Constants for Avrami’s equation 

Compound i a b c 

C3S 0.25 0.90 0.70 

C2S 0.46 0.90 0.12 

C3A 0.28 0.90 0.77 

C4AF 0.26 0.90 0.55 

 

It is worthy to note that the AVRAMI-POWERS model was adopted for its excellent 

comparison with the experimental data, obtained during this work. 

3.6 Outcomes of the model 

First of all, the model calculates the electrical potentials, using equation [3.8]. Once, electrical 

potential has been calculated, the continuity equation is solved for each species to determine 

the ionic concentrations [3.3]. Note that the ionic concentrations are the main result. At the 

end, the ionic fluxes are calculated by equation [3.1]. In addition to that, evolution of degree 

of hydration, material porosity and effective diffusion coefficient with materials age are also 

performed.  
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3.7 Numerical scheme of MsDiff 

Let us recall the system of equations, as adopted by MsDiff. The electrical potentials are 

calculated using equation [3.8]. For the purpose of convenience to readers, the equation is re-

quoted as [3.19]. 
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While the free ionic concentrations are calculated by equation [3.3], re-quoted here as [3.20]: 
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Look at the above equations. These equations contain certain parameters, which have very 

different orders of magnitude. For example on one hand the diffusion coefficients are in the 

range of 10-12 m²/s and on the other hand, the concentrations are in the range of thousands of 

mol/m3. In order to have stable computations, first of all the system of equations ([3.19] and 

[3.21]) was written in a non-dimensional way by setting the following conversions. Consider 

the case of a material of thickness L (m).  

L
xx =~                    [ 3.22] 

max

~
c

cc =                   [ 3.23] 

max

~
D

DD =                    [ 3.24] 

t
tt

∆
=~                   [ 3.25] 

ψ
ψψ
∆

=~                   [ 3.26] 

Note that in the above equations, the parameters ∆t and ∆ψ are presented in relations [3.27] 

and [3.28] respectively.  

max

2

D
Lt =∆                   [ 3.27] 
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F
RT

=∆ψ                   [ 3.28] 

With the conversions expressed in equations [3.22] to [3.28], we can transform the system of 

equations [3.19] and [3.21] into [3.29] and [3.30]. Note that in these equations, Dmax is the 

maximum of all the ionic effective diffusion coefficients (m²/s) and cmax is the maximum 

concentration among all the ionic concentrations in pore solution, upstream or downstream.  
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In equations [3.29] and [3.30], the parameters capped with the sign ∼ are those that have been 

adimensionalized. By assuming electroneutrality, the Poisson equation is equal to zero and the 

equation [3.30] can be replaced by equation [3.31]. 
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Finite difference technique was chosen to solve the system of above equations. The equation 

[3.29] was discretized with a fully explicit centered scheme. The diffusive part of equation 

[3.31] was solved with a second order Cranck-Nickolson scheme, while for the convective 

part, an upwind Lax-Wendroff scheme was chosen. Consequently the concentration profiles 

were obtained with second order schemes, which provided both stability and accuracy in 

results. These numerical schemes can be found out in any of the technical books, written on 

numerical codes.  

The whole code was implemented on a free environment Scilab, available on 

http://scilabsoft.inria.fr. The numerical code is divided into four function and one executable 

files. The four function files are named as ‘data’, ‘DDP’, ‘electro’ and ‘flux’, while the 

executable file is called as ‘MsDiff’. As the names reveal, the file ‘data’ is meant to insert input 

data, ‘DDP’ calculates the membrane potential, ‘Electro’ cares for electroneutrality and ‘flux’ 

determines the ionic fluxes. To recall, the model produces ionic concentrations, total chloride 

profiles, electrical potential and ionic flux. The results can be stored in any program like 

Microsoft excel. 
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3.8 Conclusions  

In this chapter, the physical structure of the model MsDiff is outlined. The model solves the 

continuity/current law equations and accounts for the chloride interactions with the solid 

phase. In addition to boundary conditions, it requires a set of five experimental characteristics 

(if porosity is a user data) available from a single sample of material, namely density, 

porosity, pore solution composition, effective chloride diffusion coefficient and chloride 

binding isotherm. The input data does not evolve with time except the ionic diffusivities (if 

porosity is a user data), which are time dependent. At the end, the numerical scheme of the 

code MsDiff is briefly given.  
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4 CHAPTER 4 
 
EXPERIMENTAL METHODS 
 
 

4.1 Introduction 

This chapter deals with the description of test methods, envisaged to acquire the input data of 

MsDiff. In addition, certain experimental data was needed to validate the modeling done with 

MsDiff. It is to recall that the package version of MsDiff requires determining five parameters 

i.e. porosity, density, pore solution ionic composition, chloride effective diffusion coefficient 

and binding isotherm at a certain material age. Among these parameters, first three are the 

pure material properties, which can be determined with classical methods. Here the important 

emphasis will be given to the methods employed for the determination of chloride effective 

diffusion coefficient and binding isotherm. 

4.2 Material porosity and density 

Material porosity and density can be determined by well-known classical methods [AFP 97]. 

Here only important points are given. The additional details are available in literature and can 

be also found in the common laboratory manuals.  

In this method, the specimens are first vacuum-saturated. The mass of the vacuum-saturated 

specimens in water is determined. Let this mass is Mw in grams. Also the temperature of water 

is determined. The water density relative to its temperature (ρw,θ) in g/cm3 can be found in 

literature books. After that, the saturated specimens are weighed in air. Let the mass in air is 

Ma in grams. Further the specimens are placed in ovens to dry at 105 ± 5°C until it acquires a 

constant mass. The hot specimen is allowed to cool to ambient temperature. The mass of the 

dry specimen in grams is determined. Let this mass is Md. The porosity (%) and density 

(g/cm3) are determined as follows: 
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4.3 Composition of pore solution ionic composition 

In this method [LON 73], the concrete specimen is placed in a pore expressing apparatus. A 

loading pressure is applied for expressing the pore solution. For this, the specimen is 

subjected to cycles of loading and unloading in order to get a few cm3 of pore solution. The 

evaporable water content of the specimen is also determined. The ionic composition of the 

pore solution is determined using chemical techniques while the pore solution volume is 

determined by evaporable water. From the evaporable water and ionic concentrations, the 

pore solution ionic composition can be calculated.  

4.4 Effective chloride diffusion coefficient 

The chloride penetration in concrete is a slow process. It cannot be determined directly in a 

time frame that would be useful as a quality control measure. Therefore, in order to asses the 

chloride ingress, a test method that accelerates the diffusion process is required so as to obtain 

the diffusion parameter in a reasonable time period. The test [TRU 00] developed in our 

laboratory (LMDC) is a non-steady diffusion test under an electrical field of 400 V/m. The 

LMDC-test set up is shown in Figure 4.1. In the cathodic compartment, an alkaline solution 

containing 4.65 g/l of KOH and 1 g/l of NaOH along with 20 g/l of NaCl is used. The anodic 

solution contains the same quantities of NaOH and KOH, but without NaCl. The concrete 

sample is saturated with 4.65 g/l of KOH and 1g/l of NaOH before being placed in the cell. A 

voltage of 12 V is applied across the sample. The specimen is a three cm thick cylinder with a 

diameter of 11 cm. The solution sampling is performed in the cathodic chamber of the test cell 

rather than in the anodic compartment. This is done in order to avoid the effects of the 

chemical reactions, which cause a loss of chlorides at the anode [TRU 00]. The flux of 

chloride for the case of a solution with unit activity by the Nernst-Planck equation is given as 

follows: 
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Here in LMDC test, the flux of chloride is presented by a simplified version of equation [4.3], 

in which several hypotheses are made. First, it is assumed that the effect of the concentration 

gradient is negligible in comparison with the electrical term (first term on the right-hand side 

of equation [4.3]). The electrical potential is due to the contribution of two terms, namely the 

membrane potential (electrical interactions between the ionic species) and the external 

current.  
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The latter is assumed to be preponderant and this justifies the assumption that the electrical 

potential is constant. As a consequence, the method proposed allows measuring the chloride 

diffusion coefficient through materials already contaminated with chloride. The chloride flux 

by the simplified version is quoted as equation [4.4]. 

Ec
RT
FDJ NPSup 0=                     [ 4.4] 

where c0 is the chloride concentration in the cathodic compartment, E is the external electrical 

field and DNPS represent the diffusion coefficient determined by the Simplified Nernst-Planck 

equation. While the parameters F, R, T, c0 and E are known, the effective chloride diffusion 

coefficient can be determined if the flux of chlorides Jup, entering the material is known. In 

the following paragraph, the determination of Jup is presented. 

It is recommended to measure the specimen diameter at two different directions, 

perpendicular to each other and the specimen thickness at four different points. The initial 

chloride content in cathodic chamber is determined prior to the start of the test. During the 

Specimen 

Anodic chamber 

Cathodic
chamber 

- 

+ 

Figure  4.1 LMDC Test-setup 
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test, solution samples are taken from cathodic chamber at specified intervals from the 

beginning to the end of the test. The chloride content in these samples is determined. The 

chloride content in moles, entering the concrete material at an instant t, is the difference of 

initial chloride content of cathodic chamber and its chloride content at instant t plus the 

chloride content of the solution samples taken up to instant t. A curve is drawn with chloride 

content entered the material at each instant t as the ordinate and the instant t as the abscissa. 

One such curve is shown in the Figure 4.2. The slope of the linear part of this curve divided 

by the material area exposed to chloride environment is the chloride flux, entered into the 

material or in other words, this is the value of parameter Jup encountered in relation [4.4]. 

Having known all the parameters of equation [4.4], the corresponding chloride effective 

diffusion coefficient can be determined.  

One must keep in mind that the chloride diffusivity is linked to the hypothesis of a constant 

boundary condition, c0. Therefore, particular attention has to be attached to the volume of 

electrolyte in the cathodic chamber. If nm is the number of chloride moles leaving the cathodic 

chamber and diffusing though the concrete sample during a certain time t, then n and t are 

related by: 

AtJn upm =                      [ 4.5] 

where A is the cross-sectional area of the concrete specimen, exposed to cathodic chamber 

solution. Let the initial number of moles in cathodic chamber is represented by n0. If we 

suppose that a certain percentage X (or tolerance) of n0 enters the material up to instant t, the 

number of moles entering the material up to this time period, n can be written as:  

0Xnnm =                      [ 4.6] 

with the insertion of nm from equation [4.5] into [4.6], we have the following relation for 

chloride flux Jup: 

At
Xn

J up
0=                      [ 4.7] 

If we put the value of Jup from relation [4.7] in [4.4] with c0 = Vn0, we have: 

X
DAt

RT
FEV =                      [ 4.8] 
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where V is the volume of cathodic chamber solution. Equation [4.8] demonstrates that a zero 

tolerance X would lead to an infinite volume of solution in the cathodic chamber. Note that 

the needed volume is totally independent of the chloride content. The volume of the 

electrolyte must be the result of a trade off between the duration of the test and the tolerance 

X. For example, if a 5% decrease in chloride concentration is accepted for a 2.5-day test at 

400 V/m (12V across a 3cm thick concrete specimen), a volume of at least 650 ml is needed 

for a chloride coefficient of the order of 10-12 m²/s.  
 

 

The advantage with this method is that a concrete specimen, already polluted with chlorides 

can be re-employed in this method without subjecting to electrochemical extraction (to 

remove the chlorides from the specimen) and also the same specimen can be used again and 

again at different times if a time dependency of the diffusion coefficient is envisaged.  

4.5 Binding isotherm 

A binding isotherm is necessary as an input to the model. It is of highly importance because 

among the total chlorides in a concrete specimen, these are only the free contents, which 

participate in the corrosion of steel in reinforced concrete structures. Several techniques exist 

in order to determine the bound amount of chloride ions. Here we discuss two techniques, 

which were used during this work i.e. equilibrium method developed by Tang [TAN 96] and 

Figure  4.2 Evolution of chloride moles entering the material during LMDC test 

 

0.000 

0.004 

0.008 

0.012 

0.016 

0.020 

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Time (s)

n  c  
(m

ol
)  

CHAPTER 4 : EXPERIMENTAL METHODS



 78

the immersion tests [NOR 95]. Note that the immersion tests are not meant to produce binding 

isotherms. Rather they are used to obtain chloride concentration profiles, yet these profiles 

can be used to acquire binding isotherms, which will be discussed in the coming pages. 

4.5.1 Equilibrium method 

In this method, the material is reduced to powder. The crushed powder is exposed to a 

chloride containing solution of known initial concentration. The exposure is continued until 

equilibrium is reached. The chloride concentration of the solution at equilibrium is treated as 

the free concentration. The difference between the initial concentration and the concentration 

at equilibrium is attributed to bound chloride concentration.   

According to the methodology of this experiment, the central regions of the 6-weeks cured 

specimens are wet crushed and water-sieved into 0.25-2 mm particulates. The particulate 

samples are vacuum dried in a desiccator filled with silica gel at room temperature for about 3 

days at room temperature. Next, the samples are stored in a desiccator with de-carbonized air 

at 11%RH kept by saturated LiCl solution for at least 7 days. About 25 g of this sample are 

exposed to a known volume of a chloride containing solution, whose initial chloride 

concentration has already been determined. Approximately two weeks time is considered to 

be enough for the sample to reach equilibrium [TAN 96]. However, we used a three weeks 

period in order to confirm that the equilibrium has been achieved. The chloride concentration 

of the solution at equilibrium is determined, which corresponds to free chloride concentration. 

The bound chloride content in % mass of the material is determined by equation [4.9]: 
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⎠
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e
bm M

ccV
c                   [ 4.9] 

where cm,b is the bound chloride concentration in %mass of the material, V is the volume of 

exposure solution in cubic meter, c0 is the initial and ce is the equilibrium chloride 

concentration of the exposure solution in moles per cubic meter and Mm is the mass of the 

crushed powder in grams.  
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4.5.2 Immersion test 

Usually these test methods are used to acquire water and acid-soluble chloride profiles. The 

idea of obtaining a binding isotherm from immersion tests came from the fact that in 

literature, the water-soluble chlorides are termed as the free while the acid-soluble chlorides 

are designated as total chlorides [BYU 04]. It is based on the view that during an immersion 

test a local equilibrium is reached between the chloride in the pore solution, the bound 

chloride on the solid phase at any distance from the exposure solution regardless of 

immersion time. The experimental data published by Mohammed and Hamada [MOH 03] 

show indeed no time effect on the chloride binding on concrete samples exposed to a marine 

environment for 10 to 30 years. Figure 4.3 illustrates our view. 

 

 

 

 

For the sake of simplicity, non-dimensional variables are chosen. Plotted in Figure 4.3 are the 

free chloride concentration profiles in the pore solution after two different exposure periods, t1 

and t2 with t1 < t2. Also total chloride concentration profiles are shown in this figure. After an 

immersion time t1, the difference between the total and the free concentration c at x1 yields the 

bound amount of chloride cb, which corresponds to the concentration c. At t2, the free chloride 
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Figure  4.3 Illustration of chloride binding in concrete pores 
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at x1 has increased due to the diffusion of the ionic species. Yet, there exists an abscissa x2 in 

Figure 4.3 where the free chloride concentration has the same value c as before. This 

concentration c corresponds to the same bound amount of chlorides, cb. This is true because 

chloride interactions with the solid phase are almost instantaneous. Indeed, Tang [TAN 96] 

noticed that equilibrium is reached after approximately two weeks, which is negligible relative to 

the scale of a diffusion process.  

Once the acid and water-soluble chlorides at various depths from the exposed surface have been 

determined, the amount of bound chloride is calculated as the difference between the acid and 

water-soluble chlorides at each depth. In order to obtain the binding isotherm, the amount of 

bound chlorides is plotted on the ordinate against their water-soluble concentrations on the 

abscissa.  

For this, only one sample of material is required. The main objective is to obtain the acid and 

water-soluble chloride profiles. This objective has two consequences: the direct is to generate 

experimental data with which numerical results could be compared, while the indirect is to 

determine the binding isotherm. In this sense, the proposed method of obtaining the binding 

isotherm belongs to the category of inverse methods.  

In order to achieve these objectives, the standard bulk diffusion NT BUILD 443 method [NOR 

95] was selected as the immersion test. In this method, the core concrete specimens are saturated 

with saturated Ca(OH)2 solution (the pre-saturation method can be found in [NOR 95]) in order to 

minimize the sorption effects. The pre-saturated specimens are sealed on all of its sides with an 

appropriate sealing material except the one, which is exposed to chloride solution. Once the 

sealing gets dried, the specimen saturation is once again checked before putting them in the 

immersion cells. The specimens are exposed to a 165g/l NaCl solution prepared with distilled 

water. One such immersion cell is shown in Figure 4.4. The solution volume is so selected that 

the ratio of concrete exposed surface in cm² and solution volume in liters should be between 20 

and 80. The specimens are kept in immersion for 35 days according to the specifications of this 

test. In case, the immersion period is increased, the existing solution should be replaced 

periodically (in accordance with the immersion period) by a fresh 165g/l NaCl solution in order 

to conserve the boundary conditions. During the test, the solution should be agitated from time to 

time. 
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At the end of the immersion period, the concrete specimens are removed from the immersion 

cells. The specimens are ground with a grinding machine. One such machine used for the said 

purpose is shown in Figure 4.5. The specimens are ground in increasing depth intervals from 

the exposed surface and the powder corresponding to the intervals is carefully collected. 

From these powder samples, the acid and water-soluble chlorides are extracted. The standard 

AFREM method [AFP 97] is applied to extract the acid-soluble chloride content from 

powdered samples. According to this method, about 5 g of homogenized dry powder are 

taken. Approximately 50 ml of distilled water are added and the solution is allowed to agitate 

for 2 minutes by means of a magnetic agitator. Then approximately 100 ml of 20% diluted 

nitric acid (68% concentrated) are added to this solution. The acidic solution is allowed to 

agitate for half an hour at 80°C. The hot solution is allowed to cool down to 20°C. The cold 

mix up is vacuum filtered. Approximately 250 ml of the filtrate is prepared for further 

analysis in potentiometric titration in order to determine the acid-chloride concentration. 

The water-soluble chloride content is determined using the standard AFREM / RILEM 

method [RIL 02]. Approximately 5 g of homogenized dry powder are mixed with 150 ml 

distilled water and the solution is allowed to agitate on a magnetic agitator for 3 minutes. The 

mixed solution is further vacuum filtered and a 250 ml filtrate is extracted. To this solution, 2 

ml of 60% concentrated nitric acid are added so as to stabilize the chlorides in the solution. 

  

  

NaCl solution   

Concrete specimen   

Cl- 

Figure  4.4 An immersion test cell 
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The resulted solution is then further analyzed in order to determine the water-soluble chloride 

concentration by potentiometric titration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The chloride concentrations in the present study were always determined experimentally with 

potentiometric titration. In the following, an introduction of the technique used in this study is 

presented.  

4.6 Potentiometric titration 

Titration is defined as the dissolving of an analyte and making it to react with another species 

in solution (titrant) of known concentration. Titrimetric analysis consists in determining the 

number of moles of reagent (titrant), required to react quantitatively with the substance being 

determined. The titrant can be added volumetrically, with a glass or automatic burette or with 

a low flow-rate pump. 

 

 

Figure  4.5 Grinding machine 
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The aim is to determine the point at which titrant amount is equivalent to the analyte amount. 

Once the reaction between the analyte and the titrant is perfectly characterized, the exact 

quantity of the analyte can be determined by simple calculations.  

Potentiometric titration measures the potential of an indicator electrode as function of the 

titrating volume.   

4.6.1 Precipitation reactions 

Insoluble salts are common in nature and the most frequent use of precipitation reactions in 

analytical chemistry is the titration of halides in particular Cl- by Ag+. One of the most famous 

applications is the determination of chlorides in water. Precipitation reactions take place at a 

slightly acidic pH (~ 4.5). The precipitation of hydroxides is more delicate as their solubility 

can vary according to the pH of the medium. 

4.6.2 Standard solution or titrant 

This is a reagent of known concentration implied to make a volumetric analysis. During 

titration, this solution is mixed with the analyte up to a point when the reaction between the 

analyte and the titrant is complete.  

4.6.3 Equivalence point 

This is a point, which cannot be determined experimentally. We can estimate this point by 

observing a physical change associated with the equivalence conditions. The change during a 

titration is called as the "end point". The difference between the equivalence point and the end 

point is called the "titration error".  

4.6.4 Indicator electrode 

This measures an increasing or decreasing concentration of the analyte/titrant or both. This 

electrode is placed in the solution to observe a change (the end point) near to the equivalence 

point.  

Reference electrode 

A reference electrode contains a filling solution which does not interfere with the medium. 

The two electrodes, mentioned above can either be used separately or in combined form. If a 

combined electrode is used, an Ag/AgCl reference element is suitable for most applications.  
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♦ Silver electrodes only require rinsing in distilled water after titration. 

♦ The titrant addition speed is expressed in ml/min. 

♦ When using titrant with a concentration of less than 0.1 mole/l, it is essential to work with 

low maximum speeds (3 to 5 ml/min). When working with a low concentration, a 

precipitate is formed at low rate and too fast a titration speed could lead to an "over 

titration".  

♦ Precipitation reaction: 1Ag+ + 1X- → 1 AgX 

♦ Precipitation standards: 

Silver Nitrate (AgNO3):  MW = 169.87 g/mole 

Sodium Chloride (NaCl): MW = 58.44 g/mole. 

♦ The degree of the delay of the end point depends on the concentration of analyte, the 

composition of the solution, the concentration of titrant and the rate of the titrant adding. 

The larger the concentration of the analyte, the smaller the delay. The larger the amount of 

titrant added per unit of time, the larger the delay. 

4.6.5 Instruments in the chemical laboratory (LMDC) 

Electrode: METTLER TOLEDO, DM 141-SC, 0-70°C, 1mol/l KNO3 .  

Dosimat: 685 (Metrohm) 

Controller: 730 SC (Metrohm) 

Titrino keyboard: 736 GP 

The idea behind a titration is that a reagent of precisely known concentration (the titrant) is 

slowly added to a known amount of an analyte until some event occurs which signals the end 

of the reaction. A species, which is deliberately added to produce such a signal, is called an 

indicator. When the signal occurs, the volume of added titrant is recorded. Knowing the 

stoichiometry of the reaction, and both the volume and concentration of titrant, the 

composition of the analyte can be found. 

There are four type of equilibria used in titrimetry. 

1. Acid-base, 

2. Solubility, 

3. Complexation,  

4. Redox reactions. 
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In a strong acid-strong base titration for example, phenolphthalein is used as an indicator. The 

signal, which accompanies the end of the reaction, in this case is a change from a colorless to 

a pink solution. This signal known as the end point takes place at the same time that the 

stoichiometry of the reaction is satisfied, i.e. at the equivalence point. Similarly there are other 

titration techniques in which an electrode is used as an indicator. 

Electrodes can be made to be sensitive to one species only 

An Ag/AgCl electrode is a simple chloride ion-selective electrode, constructed by coating a 

silver wire with a layer of silver chloride.  

Ag+ (aq) + e- = Ag (s); E° = 0.8 V 

AgCl (s) = Ag+ (aq) + Cl- (aq); Ksp = 1.78 * 10-10 

These two equations can be combined to yield a third half-reaction: 

AgCl (s) + e- = Ag (s) + Cl- (aq); E° = 0.222 V 

The Nernst equation for this half-reaction is as follows: 

E = 0.222V - 0.059 log[Cl-] 

Thus this electrode potential will be determined by the amount of chlorides in solution. This 

electrode can be used as an indicator electrode in a titration. The largest change in the 

potential and the equivalence point are determined from the data.  

In case, when the chloride ion concentration is determined by potentiometric titration, a 

known volume of the unknown (analyte) is titrated against a solution of Ag+ (aq). The 

electrode potential is plotted against the volume of the titrant added and the endpoint is 

determined, as demonstrated in Figure 4.6. In Figure 4.7, the titration set-up, being used in 

LMDC laboratory is presented. 
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Figure  4.6 Titration curve 

Figure  4.7 Titration set-up in LMDC 
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4.7 Conclusions 

 The experimental test methods have been dealt with in this chapter. These experimental 

methods were chosen in accordance with the input and output data of MsDiff. While the 

classical methods for porosity, density and composition of ionic solution have been described 

briefly, the importance of LMDC test and immersion tests has been highlighted. Although, 

immersion test reduces the number of experiments to acquire the input data, an additional test 

i.e. equilibrium method was also inducted to remain on safe side.  
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5 CHAPTER 5 
 
EXPERIMENTAL PROGRAM AND CONCRETE SPECIMENS 
 
 

5.1 Introduction 

In this chapter, an introduction to experimental program is presented, followed by the 

description of concrete material used during this work. An experimental program was 

unavoidable primarily to acquire input data for the model MsDiff (package of input data for 

MsDiff as discussed in chapter 3) and secondarily to validate modeling by MsDiff. This 

diverse experimental program begins with the fabrication of concrete material specimens. 

Next plan is to subject material specimens to standard experimental test setups described in 

chapter 4 in order to obtain input data to be inserted in MsDiff. At the end the modeling done 

with MsDiff is compared with experimental chloride profiles obtained by exposing concrete 

specimens to salt solutions (chapter 6).  

5.2 Experimental program 

Let us recall the input data package for MsDiff. It consists of five principal parameters. For 

the purpose of consistency these parameters are re-listed: 

1. Material porosity  

2. Material density 

3. Material pore solution composition 

4. Ionic effective diffusion coefficients 

5. Chloride binding isotherm 

Once this data has been achieved and inserted in MsDiff, the desired outcomes can be found 

out. Now the next step should be to validate these outputs experimentally. It was decided to 

compare free and total chloride profiles modeled with MsDiff through experimental water and 

acid soluble chloride profiles for the purpose of modeling validation. In order to accomplish 

this entire task, an experimental program was organized. The stepwise presentation of this 

program is given in the following few lines.  

1. Fabrication of concrete specimens 

2. Determination of concrete characteristics as depicted above (porosity, density and 

composition of pore solution) 

3. Determination of chloride effective diffusion coefficient 
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4. Exposure of concrete specimens to immersion cells in order to obtain water and acid 

soluble chloride profiles  

5. Determination of chloride binding isotherm 

First of all concrete specimens were fabricated according to our needs keeping in view all the 

previewed experimentation. Its characteristics were determined with experimental methods as 

described in the previous chapter. The concrete porosity and density were measured at two 

different concrete ages following methods illustrated in chapter 4 with first measurement at 28 

days and the second at 330 days in order to see a variation in these parameters with concrete 

age.  

 

In the beginning when experimental program was positioned it was decided to use the 

composition of pore solution as determined by Nugue [NUG 02] in a concrete material similar 

to the one used during this work (i.e. the same cement, same aggregates and the same water to 

cement ratio). This composition was determined with pressure-extraction technique described 

in chapter 4.  

 

The chloride effective diffusion coefficient was determined with LMDC test. Since MsDiff 

takes into account the variation of effective diffusion coefficient with concrete age, it was 

decided to execute this test more than once (at different concrete ages) so as to have a time-

dependent effective diffusion coefficient. The test was carried out with the same three 

specimens throughout. For this purpose, in the interval between two conducted tests the 

specimens were conserved in a humid room (100 % humidity) under the same conditions as 

were kept for material curing. Additionally, the test over three specimens provides an average 

diffusion coefficient over all the three specimens. The accuracy of chloride diffusion 

coefficient was also important because the effective diffusion coefficients of other three ions 

(Na+, K+ and OH-) are dependent upon the value of that of chloride ion. It should also be kept 

in mind that the least material age at exposure was 28 days. It is for this reason that the 

variability of DNPS was watched over with effect from 28 days onward. Classically it is a 

normal routine to determine concrete properties at 28 days of concrete age. In addition to 28 

days, the chloride diffusivity was also measured 330 and 615 days after casting. 

 

For chloride binding isotherm, following two methods were previewed.  

1. Equilibrium method  

2. Immersion tests 
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Equilibrium method test was carried out with the material at its age of 1 year and chloride 

concentrations given in Table 5.1 were chosen with keeping in view the range of chloride 

concentrations exercised and obtained in immersion tests. Note that up to 1 year of concrete 

age when equilibrium method test was carried out, we had obtained experimental results of 

certain immersion tests.  

 
Table 5.1 NaCl concentrations in g/l used for equilibrium method 

6 13.2 20 33 60 100 120 165 200 

 

In the case of immersion tests, water and acid soluble chloride concentration profiles were 

extracted from experimental data. Bound chlorides were calculated as the difference between 

corresponding water and acid soluble chlorides. It should be noted that immersion tests were 

meant mainly to acquire chloride profiles to be compared with the modeled ones with MsDiff. 

Secondarily, the calculated bound chlorides from these experimental profiles also served to 

provide binding isotherm. Additionally some experimentation was also dedicated to certain 

other factors like the influence of curing period and concentration of environmental solution 

upon chloride ingress. At last but not least it was also previewed to determine certain 

parameters which were required as input data for models other than MsDiff. In brief, 

immersion tests were conducted in order to: 

1. Acquire experimental water and acid soluble chloride profiles with different exposure 

periods, 

2. Acquire chloride binding isotherm, 

3. See the influence of curing period, 

4. Observe the influence of different environmental loads, 

5. Compare modeling with chloride ingress models other than MsDiff. 

 

Firstly, immersion tests were conducted following NTBUILD 443 standard specifications 

[NOR 95]. The standard method takes into account 165 g/l NaCl solution as environmental 

load for a period of 35 days. In order to obtain chloride profiles with different exposure 

periods, the concrete specimens cured for 28 days were exposed to immersion durations 

longer than 35 days. But for that, special care was paid to the conservation of boundary 

conditions. The environmental solution was periodically renewed and at each renewal the 

concentration of old solution was checked out. Practically, the environmental solution was 

changed every 35 days for exposure periods longer than 35 days. Following table gives the 
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exposure periods exercised to carry out immersion tests with 28 days curing age and 165 g/l 

NaCl concentration in environmental solution. Three specimens were placed in an immersion 

cell per exposure period in order to obtain results averaged over 3 specimens as shown in 

Figure 5.1.  

 
Table 5.2 Exposure periods in days for 28 days-cured concrete specimens subjected to 165g/l NaCl 

35 100 200 330 

 

In order to determine the effect of material age upon chloride penetration, certain concrete 

specimens were cured for prolonged durations i.e. 420 days. The exposure periods taken into 

account for concrete specimens cured for a longer period were 100 and 200 days. 

The purpose was to compare chloride profiles with the same exposure period but with a 

different age at immersion. Again three concrete specimens were kept per immersion cell. 

In order to observe the influence of concentration in environmental solution, certain concrete 

specimens with 28 days of curing were subjected to 33g/l NaCl. But for the lower 

concentration, the exposure periods were enhanced i.e. 180, 365 and 540 days (6, 12 and 18 

months respectively). Here two concrete specimens were kept in one immersion cell keeping 

in view the workload. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1 Sketch of an immersion test cell used during this work 

Cl- Cl- Cl- 

NaCl solution

Concrete specimens 
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One additional purpose of using 33g/l was to compare the experimental results with models 

other than MsDiff as certain chloride ingress models are based on empirical coefficients 

extracted from structures exposed to seawater. 

A summery of the experimental program is presented in Table 5.3. 

 
Table 5.3 A summery of experimental program 

Exposure solution 165 g/l NaCl 33 g/l NaCl 

35 180 

100 365 

200 540 

Immersion test duration (days), 28 days of material age at 

exposure  

330  

100  Immersion test duration (days), 420 days of material age at 

exposure  200  

 

Once the whole experimental program has been finalized, the very next step was to have 

concrete specimens in hand. Following part of current chapter is dedicated to the presentation 

of concrete material used in this work. 

5.3 Choice of material for the present work: Concrete specimens 

For the concrete specimen, cement CEM I 52.5 R CP2, Garonne sand (0/4 mm) and rolled 

gravels (3/8 mm) were selected as the constituents.   

5.3.1 Chemical composition of concrete constituents 

The chemical composition of cement used in concrete specimens is given in Table 5.4 while 

those of sand and coarse aggregates can be found out in Appendix 1 of this work. 
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Table 5.4 Chemical composition of cement 

Constituents Percent mass 

CaO 60.63 % 

MgO 4.52 % 

SiO2 19.90 % 

Al2O3 4.04 % 

Fe2O3 2.81 % 

Na2O 0.28 % 

K2O 1.00 % 

SO3 3.81 % 

Ignition loss 1.24 % 

 

5.3.2  Bogue's phase composition 

Table 5.5 gives the calculated Bogue's phase composition [BOG 50]. 

Table 5.5 Cement Bogue composition 

Compound Mass of each compound in Portland cement (% of cement) 

C3S 54 

C2S 22 

C3A 6 

C4AF 9 

 

5.3.3  Concrete fabrication 

Before fabrication, the following initial characteristics of concrete were envisaged [NUG 02]. 

 
Table 5.6 Concrete initial characteristics 

Consistency Slump value (cm) 

Plastic 5-9 

 

In order to obtain a concrete of plastic consistency, the following quantities of water and air were 

recommended in literature [BAR 96]: 
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Table 5.7 Water and air quantities for concrete 

Water (l/m3) Air (l/m3) 

190 20 

 

The maximum diameter of the gravel is 8 mm. For this gravel size, calculations allowed us to 

conclude the following concrete composition. 

 
Table 5.8 Concrete composition per cubic meter of concrete 

Water (l) WC Cement (kg) Total aggregate volume (l) 

224 0.4 560 574 

 

A high percentage of cement content resulted due to the use of small size coarse aggregates (Dmax 

= 8 mm.). In order to calculate the percentage share of sand and coarse aggregates in concrete 

specimens, a manual sieve analysis according to French specifications NF P 18-304 was 

conducted. 

5.3.4  Sieve analysis for fine and coarse aggregates 

The Granolumetry curve is shown in Figure 5.2. As shown the fine and coarse aggregates were 

found to be 46 and 54 % by volume of the total amount of aggregates to be used in the 

formulation of concrete.  

5.3.5  Mass density of aggregates 

The mass density of fine aggregates was determined experimentally following the French 

specifications NF P 18-555, while that of coarse aggregates was obtained with NF P 18-554. 

Their values are found to be 2630 and 2660 kg/m3 respectively. 

5.3.6  Concrete composition 

Once the volume percentages and densities of sand and gravel have been determined, their dry 

masses in kg per cubic meter of concrete were calculated and the final concrete composition is 

summarized in Table 5.9. 
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Table 5.9 Final concrete composition per cubic meter of concrete 

Cement (kg) Sand (kg) Gravel (kg) Water (liters) 

560 695 825 224 

 

5.3.7 Concrete preparation and curing 

The slump value of fresh concrete was measured according to French specifications NF P 18-

451 and its value was found out to be 9 cm. The air content of fresh concrete was found out to 

be 2% according to NF EN 12350-7 standard specifications. The concrete specimens were 

molded following French specifications NF P18-421. The fresh concrete was poured in 

moulds 11 cm in diameter and 22 cm high. The cylindrical cardboard moulds were half filled 

with freshly prepared concrete and well shuddered with a vibrator so as to spread it uniformly 

within the mould. The vibration time was taken according to French specifications NF P 18-

422. Next the remaining half was filled and the same vibrations were applied so as the whole 

mould is well packed with fresh concrete. The spilling-over concrete was removed with 

spatula. The moulds were covered with plastic caps. Afterwards the moulds were moved to a 

humid room for curing. After 24 hours the specimen were de-molded and allowed to cure for 

Figure 5.2 Granolumetry curve 
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27 days in the same wet room. After 28 days water porosity, apparent mass density and 

compressive strength of concrete were determined experimentally.   

5.3.8 Concrete compressive strength at 28 days 

For the sake of controlling the homogeneity of material, the compressive strength of three 

specimens after a curing period of 28 days was determined according to the French 

specifications NF P 18-406. The cylindrical specimens 11 cm in diameter and 22 cm in length 

were used for testing. The experimental values are quoted in Table 5.10.  

 
Table 5.10 Experimental compressive strength at 28 days of material age 

 Specimen 1 Specimen 2 Specimen 3 Average 

Compressive 

strength (Mpa) 

 

50.7 

 

49.1 

 

48.7 

 

49.5 

 

5.3.9 Concrete sawing to required dimensions 

Prior to be used in different experimental set-ups, the concrete specimens were sawn to 

dimensions as per requirement for each test. The dimensions of these specimens will be 

discussed in the coming pages.  

5.4 Conclusions 

In this chapter, firstly experimental program envisaged to accomplish the task carried out 

during this work is illustrated. In addition, the concrete formulation, its composition and 

method of preparation are also demonstrated. Moreover, its properties at an age of 28 days in 

accordance with the version package of MsDiff have also been presented. In order to 

determine the variation of certain parameters with time, certain experiments were repeated at 

higher concrete ages.  
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6 CHAPTER 6 
 
EXPERIMENTAL AND NUMERICAL OUTCOMES 
 
 

6.1 Introduction 

This chapter is intended to present experimental results along with their analysis and 

numerical outcomes of MsDiff. Experimental results were obtained following the program 

described in chapter 5. These results will be presented in a sequential order in which primarily 

the input data obtained will be described followed by the chloride profiles obtained in 

immersion tests and at the end, the comparison of experimental chloride profiles with MsDiff 

modeling will be stated. In addition, the results of the tests carried out to determine the 

influence of chloride concentration in environmental solution and material age at immersion 

on chloride ingress will also be presented and discussed. This chapter will also cover some 

additional data extracted from immersion tests, needed as input data for chloride ingress 

models other than MsDiff.  

6.2 Part 1: Experimental results 

6.2.1 Material specification 

Although the material has been already discussed in detail in chapter 5, for the purpose of 

consistency the important points are re-collected. The concrete composition, its porosity, 

density and composition of interstitial solution are given in Table 6.1, Table 6.2 and Table 6.3 

respectively. 

Table  6.1 Concrete composition. All quantities are expressed as per m3 of concrete 

Constituents Cement (kg) Water (l) Sand (kg) Gravel (l) 

Composition 560 224 695 825 

 

Table 6.2 Material porosity and density at 28 and 330 days of concrete age 

Water porosity (%) Density (kg/m3) 

Age (28 days)  Age (330 days) Age (28 days)  Age (330 days) 

15.9 15.5 2281 2252 
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Table 6.3 Composition of concrete pore solution in moles/m3 

Ionic entity Na+ K+ Cl- OH- 

Composition 23 156 1 178 
 

Recall that the pore solution composition as described in Table 6.3 was acquired from the work 

of NUGUE [NUG 02] in which pore pressing technique was applied on a similar material in 

order to determine the ionic composition of the concrete pore solution. The obtained values 

were 23 and 156 mol/m3 respectively for Na+ and K+. Calcium was also detected but its 

concentration was lower than 0.1 mol/m3. The average measured pH value was 12.8. 

Therefore the hydroxyl ion concentration was adjusted in order to conserve the 

electroneutrality condition. For modelisation a value of [OH-] equal to 179 mol/m3 was 

decided which corresponds to a pH of 13.25.  

6.2.2 Ionic diffusion coefficients 

The first step towards the determination of ionic diffusion coefficients begins with that of 

chloride ions, which was obtained through LMDC test. This method has been described in 

chapter 4. The material diameter and thickness were measured as already described prior to 

testing. The average diameter of all the three cylindrical specimens was same i.e. 11.17 cm (as 

they were sawn off from the same concrete sample (11x22 cm)) while the average thicknesses 

of the three specimens are quoted in Table 6.4. 

 
Table 6.4 Average thickness of three specimens used for LMDC test 

Specimen 1 2 3 
Thickness (cm) 3.04 3.05 3.05 
 

Recall that LMDC method involves the extraction of solution from the upstream compartment 

at various intervals during the test. At each interval, three 1 ml samples are collected from the 

cell.  

In order to calculate the DNPS, primarily the average chloride content in moles of all the three 

samples taken at instant t was calculated. From this average value and all those, calculated at 

time ts<t, the chloride content entered the material up to instant t was determined. A curve 

was drawn with cumulated chloride content in moles as ordinate and time t in seconds as 

abscissa. The curves obtained are shown in Figures 6.1, 6.2 and 6.3 respectively for the three 

conducted LMDC tests. 

CHAPTER 6 : EXPERIMENTAL AND NUMERICAL OUTCOMES



 103

 

 

   

 

Figure 6.1 Cummulative chloride content nc as a function of time obtained in 

LMDC test carried out at 28 days of material age 

Figure 6.2 Cummulative chloride content nc as a function of time obtained in 

LMDC test carried out at 330 days of material age 
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 the slopes of the curves, shown in Figures 6.1, 6.2 and 6.3 and the 

able 6.5 Chloride fluxes Jup (moles/m2.s) obtained from linear trend lines and concrete x-sectional areas 
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 The fluxes as calculated from

Figure 6.3 Cummulative chloride content nc as a function of time obtained in 

LMDC test carried out at 615 days of material age 

corresponding cross-sectional areas of the specimens are provided in Table 6.5. 

 
T

Material age (days) 28 330 615 

Specimen 1 8.34E-06 -06 -06 4.76E 4.6E

Specimen 2 9.07E-06 4.93E-06 3.77E-06 

Specimen 3 9.02E-06 5.34E-06 4.38E-06 

Average 8.42E-06 4.76E-06 4.10E-06 

 

he flux values were inserted in equation [6.1] in order to calculate DNPS.  T

FE
JRTD up=         

cNPS
0

                  [6.1] 

Recall that in relation [6.1] c0 is the initial chloride concentration in moles/m  determined 

experimentally. The values of DNPS  so calculated are given in Table 6.6. 

3
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Table 6.6 DNPS  values in m²/s 

Material age (days) 28 330 615 

Specimen 1 1.58E-12 0.89E-12 0.77E-12 

Specimen 2 1.72E-12 0.93E-12 0.71E-12 

Specimen 3 1.71E-12 1E-12 0.8E-12 

Average 1.6E-12 0.89E-12 0.77E-12 

 

The next step after determining DNPS was to develop a time dependent diffusion coefficient 

relation as described by relations [3.10] and [3.11] (page 62) in chapter 3. In order to achieve 

that, DNPS so obtained were drawn against the concrete age in days at which the corresponding 

coefficients were determined as shown in Figure 6.4. 

 

 

The modeled curve (D(t), W/C =0.4), shown in Figure 6.4 represents the following time 

dependent relationship for effective diffusion coefficient of chlorides. 

( )
5.0

13 7010.8 ⎟
⎠
⎞

⎜
⎝
⎛= −

t
tDe                    [ 6.2] 

 

Figure 6.4 Variation of DNPS with concrete age  
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In equation [6.2], De quoted is actually the DNPS previously described. The value of DNPS so 

calculated was used as effective diffusion coefficient. This equation was used as modeling 

input for MsDiff.  

Equation [6.2] suggests that the diffusion coefficient becomes constant beyond a certain 

material age. The age at which the effective diffusivity is no more time-dependent varies with 

the type of binder [TAN 96]. For CEM I type cement, this age has been found out to be 70 

days [TRU 00 KHI 05]. 

 

Up to this point, all the input data except binding isotherm has been determined. In order to 

acquire binding isotherm, two techniques were used i.e. equilibrium method and immersion 

tests and in the latter case that was achieved from experimental water and acid-soluble 

chloride profiles, hence its illustration will be given after the description of experimental 

chloride profiles obtained in immersion tests.  

6.2.3   Experimental chloride profiles 

In order to validate MsDiff modeling with experimental results, immersion test method NT 

BUILD 443 was selected. Additionally from this test, binding isotherms were acquired as 

discussed earlier. Recall that MsDiff calculates free and total chloride profiles, while through 

immersion tests we can get acid and water-soluble chloride profiles. In literature, acid-

chlorides are termed as total chlorides while the extraction of chlorides through water is one of 

the methods used to determine the free chloride content. Thus the experimental water and 

acid-soluble chloride profiles can be used to validate the free and total chloride profiles 

calculated with MsDiff. 

Immersion tests were conducted in accordance with the experimental program illustrated in 

chapter 5. We will discuss the experimental results in the following chronological order. 

1. NaCl concentration of 165 g/l with concrete age of 28 days at exposure 

2. NaCl concentration of 165 g/l with concrete age of 420 days at exposure 

3. NaCl concentration of 33 g/l with concrete age of 28 days at exposure 

It should be noted that the chloride profiles in the next pages are presented with chloride 

concentrations in units of % mass of concrete whereas the captions of the figures and tables 

demonstrate the concentrations in g/l. The table and figure captions are given in g/l because the 

conducted  experiments  are the  standard tests  in which  concentrations are usually given 

either  in g/l or  moles/m3 of NaCl. The  experimental  chloride  concentrations  are  given in % 
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mass of concrete for the sake of consistency with the data published in literature and also 

because the chloride threshold values for the initiation of corrosion of steel bars are given in 

% mass of the material. However for convenience to the readers, the equivalent surface free 

concentrations in different units are presented in Table 6.7. 

 
Table 6.7 Environmental concentrations in equivalent values 

NaCl concentration (g/l) Cl- (moles/m3) Cl- (g/l) Cl- (% mass of concrete) 

165 2824 100 0.7 

33 564 20 0.14 

 

 

6.2.3.1 NaCl concentration of 165 g/l with concrete age of 28 days at exposure 

The chloride penetration in concrete has been presented in the form of chloride penetration 

profiles, where the ordinate represents acid and water-soluble chloride concentrations and the 

abscissa demonstrates the depth from exposed surface. Except for 35 days (where two 

specimens were analyzed) three specimens were put in an immersion cell for one exposure 

period. Moreover, we were unable to determine the penetration depth for specimen 3 in the 

case of 100 days of immersion due to loss of material. In Table 6.8, the penetration depths 

achieved during each immersion test are given. Note that these penetration depths correspond 

to the distance of the center of the concrete slice, whose average chloride concentration 

reached a background value (Appendix 4). This background value or concrete initial chloride 

concentration (as is termed in literature) may be determined from a virgin concrete specimen 

powder. The precision in each penetration depth corresponds to half of the thickness of slice, 

as the chloride concentrations correspond to an average value over whole of the slice. The 

penetration depth slightly varies from one to the other experimental profile, as is obvious from 

Table 6.8. 

  

Table 6.8 Achieved penetration depths (xp) in mm for 165 g/l NaCl and 28 days of concrete age at exposure 

Exposure period (days) 35 100 200 330 

Specimen 1 14.4 ± 1 18.4 ± 1.5 21.9 ± 1.5 24.8 ± 2 

Specimen 2 14.6 ± 1 18.3 ± 1.5 21.9 ± 1.5 26 ± 2 

Specimen 3 --------- --------- 21.1± 1.5 25.9± 2 
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If the penetration depths, xp are plotted against the square root of exposure time, Figure 6.5 

results. In this figure, the Y-error bars correspond to the precision described in Table 6.8. The 

obtained curve shows that the penetration depth follows a non-linear path with increase of 

exposure period. If a linear-trend line is drawn, the following equation results: 

( ) 801.1 +−= exp ttx                    [ 6.3] 

where xp is the penetration depth in mm, t is the materials age and tex is materials age at 

exposure in days. Equation [6.3] is quoted here just to make a comparison with the 

penetration depths, achieved in the case of 33 g/l NaCl. This comparison will be discussed in 

the coming pages. If the reinforcement bars are located at a distance of 40 mm from the 

concrete surface facing salt solution, the first chlorides should reach it in approximately 1003 

days. Figure 6.5 also suggests that the rate of penetration should be higher during the earlier 

period of exposure than in the later stage.  

  

The water and acid-soluble chloride profiles from immersion tests, carried out with 165 

g/lNaCl and 28 days of concrete age at exposure are shown in Figures 6.6 to 6.9 for 35, 100, 

200 and 330 days of immersion respectively. The chloride concentrations are represented by 

different shapes, both hollow and filled ones, as a function of distance from the exposed 

surface. Recall that the chloride concentrations were obtained from concrete powders, 

Figure  6.5 Variation of penetration depth with exposure period corresponding to 

28 days-aged concrete with 165 g/l NaCl in exposure solution 
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collected from slices at increasing depth from the exposed surface. The chloride 

concentrations determined in this way actually represent the average chloride concentration of 

the concrete slice and albeit it would be more appropriate to present the abscissa values with 

rectangular bars representing the whole slice thickness instead of individual points, yet for the 

purpose of simplicity and convenience, these concentrations are plotted against the distance of 

the center point of these slices from exposed surface. Note that in these figures, the large 

hollow shapes represent the acid-soluble chloride concentrations and the small filled shapes 

represent the water-soluble ones. The surface free chloride concentration, represented by Cf,s, 

corresponds to the chloride concentration in the exposure solution. Also in these figures, the 

chloride profile for each specimen is specified so that the difference of a pair of water and 

acid-soluble chloride profile relative to one specimen with respect to the other specimen could 

be easily observed.  
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Figure 6.6 Water and acid-soluble chloride profiles obtained from immersion test with 

165 g/l NaCl for an exposure period of 35 days and 28 days of concrete age at exposure 
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Figure 6.7 Water and acid-soluble chloride profiles obtained from immersion test with 

165 g/l NaCl for an exposure period of 100 days and 28 days of concrete age at exposure 
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Figure 6.8 Water and acid-soluble chloride profiles obtained from immersion test 

with 165 g/l NaCl for an exposure period of 200 days and 28 days of concrete age 

at exposure 
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Figure 6.9 Water and acid-soluble chloride profiles obtained from immersion 

test with 165 g/l NaCl for an exposure period of 330 days and 28 days of 

concrete age at exposure 

Cf,s = 0.7 (% mass of concrete)
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In Figure 6.10, the acid-soluble chloride concentrations as obtained in the four immersion 

tests (35, 100, 200 and 330 days), described above, are plotted on ordinate against the 

corresponding water-soluble chloride concentrations on absissa. This figure shows that the 

total chloride concentration for a given chloride concentration in pore solution does not 

depend on the immersion time or in other words, the acid-soluble concentration was 

approximately same for one value of water-soluble one whatsoever was the immersion period, 

this at least for the exposure times chosen in this study. Since total chlorides are the sum of 

free and bound contents, it can be concluded that the chloride binding was independent of the 

time of exposure. And if such is the case, the binding isotherm determined from one 

immersion test (e.g. 35 days standard NT BUILD 443 test) could be utilized to extrapolate 

results for higher immersion periods.  
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Figure  6.10 Acid-soluble chlorides versus water-soluble chloride for immersion 

tests of 165 g/l NaCl with 28 days of concrete age at exposure 
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6.2.3.2 NaCl concentration of 165 g/l with concrete age of 420 days at exposure 

As described earlier, these tests were carried out in order to watch the effect of concrete age at 

exposure on chloride ingress. For that some specimens were cured for a much longer period of 

420 days instead of 28 days. While all the other conditions were kept identical (as for 28 days-

cured specimens), three specimens were exposed to 165 g/l NaCl for a period of 100 days and 

the other three for 200 days in order to compare with the results of 28 days-aged concrete 

having the same immersion period. The acid and water-soluble chloride profiles are shown in 

Figures 6.11 and 6.12 respectively for 100 and 200 days of immersion. 

Note that in Figure 6.12, the water-soluble chloride concentrations corresponding to specimen 

3 have not been shown. This is because the measured values were not compatible with the 

values obtained with the other 2 specimens. Rather significantly dispersed values were 

obtained. So it was decided to discard these values [NOR 95]. In Figures 6.13 and 6.14, the 

water-soluble chloride profiles obtained with 28 and 420 days of concrete age at exposure are 

presented for the sake of comparison. While the acid-soluble concentrations versus water-

soluble ones obtained in the two cases are demonstrated in Figures 6.15 and 6.16.  

The penetration depths were obtained in the same way as in the case of specimens with 28 

days of age at exposure. These depths are quoted in Table 6.9.  

 

Table 6.9 Achieved penetration depths in mm for 165 g/l NaCl and 420 days of concrete age at exposure 

Exposure period (days) 100 200 

Specimen 1 16.4 ± 1 19.5 ± 1.5 

Specimen 2 18.4 ± 1 22 ± 1.5 

Specimen 3 16.2 ± 1 22.6± 1.5 

 

If we compare the penetration depths in the 2 cases i.e. 28 and 420 days of concrete age at 

immersion, given in Tables 6.8 and 6.9, we come to observe that they are in quite fair 

agreement with each other.  

The conclusions about the effect of exposure period upon chloride ingress are presented in 

section 6.4.2 of this chapter. 
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Figure 6.11 Water and acid-soluble chloride profiles obtained from immersion 

test with 165 g/l NaCl for an exposure period of 100 days and 420 days of 

concrete age at exposure 
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Figure 6.12 Water and acid-soluble chloride profiles obtained from immersion 

test with 165 g/l NaCl for an exposure period of 200 days and 420 days of 

concrete age at exposure 
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Figure 6.13 Comparison of water-soluble chloride profiles for 100 days of 

exposure but with different age (28 and 420 days) at exposure 
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Figure 6.14 Comparison of water-soluble chloride profiles for 200 days of 

exposure but with different age (28 and 420 days) at exposure 
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Figure  6.15 Acid versus water-soluble chloride after 100 days of immersion for 

concrete with 28 and 420 days of age at exposure  
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Figure  6.16 Acid versus water-soluble chloride after 200 days of immersion for 

concrete with 28 and 420 days of age at exposure 
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6.2.3.3 NaCl concentration of 33 g/l  

Only 28 days-cured concrete specimens were exposed to this concentration. But where 

concentration of environmental solution was lowered the exposure periods were accordingly 

enhanced in order to obtain significant chloride penetrations after immersion. The exposure 

periods exercised were 180, 365 and 540 days (or 6, 12 and 18 months respectively). The 

observed acid and water-soluble chloride profiles are shown in Figures 6.18, 6.19 and 6.20 

respectively. 

From the plotted chloride profiles, the penetration depths for each exposure period were 

obtained in the similar way as described above. These penetration depths are shown in Table 

6.10.  

Table 6.10 Penetration depths in mm obtained in case of 33 g/l NaCl concentration 

Exposure period (days) 180 365 540 

Specimen 1 14.9 ± 1 19.9 ± 1 24.7 ± 1 

Specimen 2 14.6 ± 1 19.7 ± 1 24.8 ± 1 

 
If the penetration depths, xp are plotted against the square root of exposure time in a similar 

way as above, Figure 6.17 results. The obtained curve shows that the penetration depth 

follows a non-linear path with increase of exposure period. If a power-trend line is drawn, the 

following equation results: 

( )exp ttx −= 01.1                     [ 6.4] 

where xp is the penetration depth in mm, t is the materials age and tex is the materials age at 

exposure in days. Equation [6.4] indicates that the penetration depth is due to only diffusive 

process if the problem is described by the Fick’s second law of diffusion, assuming a constant 

apparent diffusion coefficient Da. Results are different with 165 g/l NaCl concentration as 

shown by equation [6.3]. After 35 days, the slope of the curve is the same as in equation [6.4]. 

However that is not the case during the very first days of immersion (< 35 days). If the 

reinforcement bars are located at a distance of 40 mm, the first chlorides should reach it in 

approximately 1570 days. If we compare this value of 1570 days with 1003 days, obtained in 

the previous case, we come to know that this is approximately 50% less than the time, 

obtained in the case of 165 g/l NaCl. Note that the NT BUILD 443 method implies a chloride 

concentration of 100 g/l of chlorides (165 g/l NaCl), which is more than 5 times the one, 

usually found in marine environment (14 ± 4 g/l of chlorides). The exposure solution 
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concentration (33 g/l NaCl) here is 5 times lesser than implied in NT BUILD 443 test (165 g/l 

NaCl). In that sense, NT BUILD 443 test is an accelerated immersion test, giving the same 

advantage as can be achieved with diffusion tests under an electrical current.  

 

Look at the penetration depths, achieved in the case of 35 days of immersion with 165 g/l 

NaCl and 180 days of immersion with 33 g/l NaCl. Both these tests provided approximately 

the same chloride penetration depth. Thus a 5 times increment in exposure solution 

concentration led to achieve a penetration depth, which could be achieved with an exposure 

period 5 times more large. 
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Figure  6.17 Variation of penetration depth with exposure time in 33 g/l NaCl 
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Cf,s =0.14 (% mass of concrete)

Cf,s =0.14 (% mass of concrete)

Figure  6.19 Water and acid-soluble chloride profiles obtained from immersion 

test with 33 g/l NaCl for an exposure period of 365 days and 28 days of concrete 

at exposure age 

Figure 6.18 Water and acid-soluble chloride profiles obtained from immersion 

test with 33 g/l NaCl for an exposure period of 180 days and 28 days of concrete 

age at exposure 
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6.2.3.4 Some comments about water-soluble chloride concentrations obtained in case of 

33 g/l NaCl 

With reference to Figures 6.18, 6.19 and 6.20, where the concentration of environmental 

solution is 33 g/l NaCl or 0.14 chlorides (% mass of our concrete), if we look at the water-

soluble chlorides, we come to observe higher values at locations, near to the exposed surface. 

Logically, we should have values a little bit smaller than 0.14 (% mass of concrete) chlorides 

(environmental load) but we find values from 50% to more than 100% in addition to 0.14 (% 

mass of concrete). That is for this reason that no binding isotherm was tried with experimental 

data obtained in the case 33 g/l NaCl and rather the binding isotherm as obtained with 165 g/l 

or 0.70 (% mass of concrete) was taken as the reference-binding isotherm for 33 g/l NaCl. 

This binding isotherm was later on utilized while modeling chloride ingress with MsDiff. The 

modeled profiles are presented in second part of present chapter. 

Now let us look into the possibility of having larger free chloride values than expected. The 

greater chloride ion solubility in water may cause loosely bound chloride ions to release into 

the pore solution. Therefore, the so-called free chlorides have been found more than expected. 

Figure 6.20 Water and acid-soluble chloride profiles obtained from immersion 

test with 33 g/l NaCl for an exposure period of 545 days and 28 days of concrete 

age at exposure 
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Some researchers have argued that it is the total chloride content which should dictate the 

value of free content [RAM] and that the water-soluble chlorides do not represent exactly the 

free chlorides. Keeping that in view, other solvents with similar properties as that of water 

(but with lesser solubility for chlorides) were tried to extract free chlorides for example 

ethanol and methanol [ARY 90]. Ramachandran [RAM] washed the same powder samples 

with water and ethanol. As discussed above, the water-washed samples gave greater values of 

chlorides as compared to the ethanol-washed samples. He contributed the difference to the 

loosely bound chloride ions on CSH phase of the material. But while trying solvents other 

than water, it was also observed that the extracted chlorides are significantly less than what 

should actually be. So the idea was abandoned.  

Another possibility was also sorted out for increased water-soluble chlorides in the case of 33 

g/l NaCl. These samples were placed in ambient temperature for some time before placing in 

oven for drying. It was thought that the diffusion of CO2 from ambient environment might be 

the cause of increased water-soluble content as carbonation leads to reduced chloride binding 

or increased free chlorides [LAR 03]. In order to verify whether this was due to carbonation 

effect, experimentation was conducted as described below.  

 

6.2.3.5 Study for carbonation effect on chloride concentrations 

A concrete specimen, 11 cm in diameter and 6 cm in height was exposed to a salt solution of 

165 g/l NaCl for a period of 14 months. The specimen was reduced to powder and was dried. 

From the homogenized dry samples, 5 grams each were taken and analyzed to determine the 

water-soluble chloride content. The first two samples were placed in an oven at 50°C, 

immediately after grinding, then a series of two were placed after 2, 5, 8, 31 and 62 days 

respectively. In the period between reducing the samples to powder and introduction in oven, 

the samples were placed in ambient atmosphere. The samples were analyzed by 

potentiometric titration during the same day. An increase of 10% in the chloride content was 

observed between the values for non-carbonated specimens and the ones placed in ambient 

environment for two months as shown in Table 6.11. 

The following table suggests that the powdered concrete should be immediately analyzed after 

grinding. A long time exposure to air might cause an increase of chloride content. In other 

words, carbonation may reduce chloride binding, leading to increased water-soluble chloride 

content. 
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Table 6.11 Effect of carbonation on water-soluble chloride content 

Time after grinding (days) Sample mass (grams) Water-soluble chloride content 

(% mass of concrete) 

0 (Immediately after grinding) 5.0008 0.5728 

 5.0017 0.5797 

2 5.0018 0.5865 

 5.0015 0.5821 

5 5.0018 0.5877 

 5.0016 0.5883 

8 5.0013 0.6048 

 5.0012 0.6074 

31 5.0001 0.6105 

 5.0005 0.6134 

62 5.001 0.6229 

 5.0009 0.6269 

 
If a curve is drawn with time after grinding during which a concrete powder specimen was 

placed in ambient atmosphere, on abscissa and chloride content as ordinate, the Figure 6.21 

results. 
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Figure  6.21 Effect of carbonation on water-soluble chloride content 
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Figure 6.21 suggests that the water-soluble chloride content increases with increase of time 

period, during which a chloride containing concrete powder is placed in contact with ambient 

atmosphere. However, it seems that the increasing chloride content assumes an asymptotic 

behavior. This might be either due to a saturation capacity of powder to absorb CO2 from 

atmosphere or a saturation capacity of 150 ml distilled water to extract chlorides from powder 

or a combination of two. In no way, a 10 % increase in chloride content justifies the higher 

experimentally found water-soluble chloride concentrations (which in certain cases are more 

than 100 % of the expected values) in regions near the exposed surface. In other words, the 

increased water-soluble concentrations are not exclusively due to carbonation effect as 

assumed earlier.  

In our case, although we have the same problem with 33 g/l NaCl as the extracted values are 

greater, however that was not encountered significantly while working with higher 

concentration of 165 g/l NaCl. It should be noted that in all the two cases, the reduced 

concrete powder was washed with the same quantity of distilled water i.e. 150 ml. For higher 

concentration, it is possible that water is not able to extract chlorides beyond a certain limit or 

in other words, 150 ml distilled water quantity was saturated with a chloride concentration in 

the vicinity of environmental solution concentration (slightly more or less than 0.7 % mass of 

concrete) and it was not possible to extract additional loosely bound chlorides as it did in the 

case of 33 g/l chloride concentration. 

This might also be due the difference of scale between 165 g/l NaCl and 33 g/l NaCl, where a 

certain increment, which is more significant in the case of lower concentration, is no more 

important while dealing with higher concentrations. But there should be more loosely bound 

chlorides at higher concentrations as Arya et al. [ARY 90] have reported leading to more 

increment in water-soluble concentrations, present in regions near to the exposed surface.  

6.2.4 Binding isotherm 

As stated before, in order to acquire binding isotherm, two methods were implied i.e. 

equilibrium method and immersion tests.  

6.2.4.1 Equilibrium method 

The method adopted has been described in chapter 4. The initial chloride concentrations used 

have also been illustrated in chapter 5. Here in Table 6.12, these initial concentrations are 

reminded along with the equilibrium concentrations found out at the end of the test, which 

lasted for three weeks.  
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Table 6.12 Initial and equilibrium concentrations in Equilibrium test 

Initial NaCl (g/l) Initial Cl- (g/l) Equilibrium Cl- (g/l) 

186.49 113.11 112.45 

156.3 94.8 94.36 

113.79 69.02 68.47 

97.4 59.08 58.76 

59.9 36.32 36.07 

33.06 20.05 19.79 

20.86 12.65 12.47 

14.06 8.53 8.4 

6.58 4 3.85 
 

Bound chloride concentrations in g/l were calculated as the difference of initial and 

equilibrium concentrations, which were later converted to mol/kg of dry concrete by using 

measured water porosity and concrete density.  

The binding isotherm was drawn with free chloride concentrations at equilibrium as abscissa 

and calculated bound concentrations as ordinate. The experimental points are shown as filled 

squares in Figure 6.22.  

6.2.4.2 Immersion tests 

 Once the total and water soluble chloride concentrations at various points for one exposure 

period have been determined, their corresponding difference at each point was calculated. 

This difference was attributed to bound chloride concentration as described in relation [1.9] 

(page 7) which narrates that the total chloride content is the sum of free and bound contents. 

Recall that this method presents the advantage to limit the number of different experimental 

procedure for obtaining input data for modeling, by giving on one hand the chloride profiles 

for modeling validation and on the other hand the binding isotherm. A binding isotherm was 

obtained when the calculated bound chloride concentrations were drawn on ordinate with 

water-soluble chloride concentrations on abscissa. This binding isotherm is shown in Figure 

6.22 (hollow shapes). Note that in this binding isotherm, the water-soluble chloride 

concentration is expressed in moles per cubic meter of porous solution and the bound chloride 

concentration is expressed in moles per kilogram of dry concrete. For this purpose, the water 

porosity and concrete mass density were utilized. Note that this binding isotherm was drawn 
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with all points obtained corresponding to 4 exposure periods i.e. 35, 100, 200 and 330 days 

with 28 days of concrete age at exposure. 

The binding isotherm was modeled with Langmuir equation corrected by power law as 

described before. The representative equation is given as relation [6.5]. 

( )
2

2
1

11
, 1

βα
β
βα

c
c
c

c bm +
+

=                    [6.5] 

In relation [6.5], cm,b is the bound chloride concentration in moles per kg of dry concrete and c 

is the free one in moles per m3 of solution. The modeled values of coefficients of α1, β1, α2 

and β2 are 0.03, 0.003, 0.00106 and 0.526 respectively.  

6.2.4.3 Comparison between Equilibrium and immersion methods 

With reference to Figure 6.22, the experimental points obtained from 2 methods seem to be in 

good agreement with each other except for the three last higher bound chloride concentrations  

 

 

 

obtained in equilibrium method. Additionally the last three lower concentrations obtained 

from equilibrium method seem to exist at the lower  exterior boundary of the cluster made  by 

Figure  6.22 Free and bound chloride concentrations obtained from immersion 

and equilibrium methods  
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 immersion test. Although we are unable to comment on this difference, the binding isotherm 

as obtained from immersion test was preferred to insert as input data for MsDiff because it 

was considered to be relatively true representative of reality. 

Figure 6.23 Experimental and simulated binding isotherms obtained with 

experimental chloride profiles of 165 g/l NaCl and 28 days of age at exposure 
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Up to this points if we look back at the experimental data obtained, we come to conclusion 

that all the necessary data set as input for MsDiff has been achieved. Before going further, let 

us conclude all the data in a tabular form (Table 6.13) for the sake of convenience.  

 
Table 6.13 Input data for MsDiff 

Concrete composition (per m3 of concrete) 

Cement (kg) Water (l) Sand (kg) Gravel (kg) Air (% volume of concrete) 

560 224 695 825 2 

Cement Bogue’s composition (% mass of cement) 

C3S C2S C3A C4AF 

54 22 6 9 

Porosity (% age) 16 Mass density (kg/m3) 2281 

Composition of pore solution (moles/m3) 

Na+ K+ 
Cl- OH- 

23 156 1 178 

Chloride effective diffusion coefficient 

Reference age (days) Reference De (m²/s) Reference age (days) Reference De (m²/s) 

28 18E-13 70 8E-13 

Ratio k (De,i/De,Cl
-) ; note that it represents the corresponding ratio in infinitely diluted solution.  

kNa+ kK+ kCl- kOH- 

0.65 0.96 1 2.6 

Coefficients of binding isotherm 

α1 β1 α2 β2 

0.03 0.003 0.00106 0.526 

 

It should be noted that in model MsDiff, porosity could also be put in as user data else wise 

model itself calculates the porosity varying over material age. Therefore the inclusion of a 

porosity value as input data should not be confused with. It is presented here just for reference 

purposes. 

In Figure 6.24, the evolution of porosity with concrete age using Avrami-Powers model and 

the experimentally measured values are shown.  
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Figure  6.24 Comparison between the experimental and modeled porosity values 

6.3 Part 2: Numerical modeling with MsDiff 

Once we started getting experimental feedback, modeling with MsDiff was on track. The 

input data was used as described in Table 6.13, while the numerical scheme as described in 

section 3.4 (page 52) was followed. Currently MsDiff does not take into account the effect of 

temperature on chloride ingress however a temperature of 20°C was used wherever needed 

(can be seen in the governing equations given in chapter 3), as all the experimentation was 

performed at local laboratory temperature (20 ± 2°C). Additionally the parameters, presented 

in Table 6.14 were used while running MsDiff for different exposure periods and 

environmental concentrations.  

 
Table 6.14 Additional parameters for MsDiff 

Mat. thickness L (mm) Time step ∆t (s) Number of nodes (N) Inter-nodal distance ∆x 

50 2000 50 L/(N+1) 

 

Grid independence tests were performed. We also checked the dependence of the results on 

the time step. Both the grid spacing and the time step were made small enough to ensure a 

solution that is independent of the grid size and time step. Specifically, if the time step is ∆t, 
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then from one test to the next the ∆t value was divided by two until the criterion 

%1.0
2/,

2/,, ≤
−

∆

∆∆

ti

titi

c
cc

 was satisfied. 

As discussed before, for modeling with MsDiff, we need a package of input data at a certain 

materials age. While all the other four parameters could be satisfactorily used in modeling if 

measured at a classical age of 28 days, the chloride effective diffusion coefficient is a 

parameter that needs special attention.  

The chloride diffusivity of the material can be calculated from the chloride diffusion 

coefficient measured at 28 days after casting. But is it really necessary to account for the 

diffusion coefficient variation with time during the early age of the material? In other words, 

why not keep constant the diffusion coefficient of chloride (measured at 28 days) for 

predicting the chloride penetration as can be done with the other four parameters? The data 

available on the material may not be for a 28-day old concrete but rather for an older material: 

from an in-situ sample of material, a slice may be used to measure the chloride diffusivity. So, 

is it necessary to account for the diffusion coefficient decrease during the first 2 months after 

casting? 

In order to answer to these questions three kinds of simulations were made. First the chloride 

diffusion coefficient was the one measured 28 days after casting. Second, its value was chosen 

to be the ‘mature’ value and third the chloride diffusivity followed equation [6.2] (page 85). 

The concentration profiles were calculated for 35, 100 and 200 days of immersion for 

demonstration purposes in order to compare with our experimental data. The input data has 

been illustrated in Table 6.13.   

Figures 6.25, 6.26 and 6.27 show the numerical results obtained with the 3 different chloride 

diffusion coefficients (i.e. a constant De (measured at an age of 28 days), a varying De (t) and 

a constant De (concrete age = 330 days i.e. a mature concrete)) after 35, 100 and 200 days of 

immersion respectively. When the chloride diffusion coefficient is the one measured with the 

mature concrete, the chloride concentration is very close to the concentration profile 

computed with a time-dependent diffusion coefficient. After 35 days of immersion, a 

difference exists between the results obtained with age-dependent chloride diffusivity and a 

diffusion coefficient measured on a mature concrete. After 35 days of immersion, the concrete 

is still not mature. To compute the chloride profiles with a diffusion coefficient corresponding 

to a mature material tends to underestimate the chloride content in the sample (Figure 6.25), 
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because of the actual higher diffusivity during the early age. The difference between the two 

profiles decreases when increasing the immersion time (Figure 6.26) and becomes zero after 

200 days when the chloride profiles become identical (Figure 6.27). 

Results are different with the chloride diffusivity measured at 28 days. The chloride 

penetration depth is 1.7 cm after 35 days, 2.8 cm after 100 days and 3.9 cm after 200 days. 

This means an over-estimation of 16%, 53% and 77% respectively for 35, 100 and 200 days. 

Furthermore, the over-estimation increases with the time of exposure, leading to dramatically 

wrong chloride contents predictions. 

Because the chloride diffusion coefficient is higher at 28 days, the chloride ingress is higher, 

keeping the diffusivity constant. Recall that the diffusion coefficients of other species are 

linked to the chloride diffusion coefficient as has been described earlier in chapter 3 and also 

depicted in Table 6.13. Therefore the choice of chloride diffusion coefficient has impact not 

only on the chloride concentration profile itself but also on the other species concentrations. 

This is illustrated in Figure 6.28, where the concentration profiles of sodium, potassium and 

hydroxide are plotted with constant chloride diffusivity (i.e. measured at 28 days) or 

depending on time. The results presented in Figure 6.28 correspond to 200  days of  exposure, 
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Figure  6.25 Effect of time dependency of De on chloride penetration, 35 days of 

immersion 
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Figure  6.26 Effect of time dependency of De on chloride penetration, 100 days of 

immersion 
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Figure  6.28 Effect of time dependency of De on ionic penetration, 200 days of 

immersion 

Figure  6.29 Effect of time dependency of De on corrosion initiation criterion [Cl-
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yet the trend remains the same for other exposure period. (Please note that the ordinate 

graduation on left hand side corresponds to only Na+ ions). When the effective diffusion 

coefficients are linked to the constant value of the chloride diffusivity measured at the age of 

28 days, the numerical results show higher sodium content in the material. At the same time, 

the leaching of potassium and hydroxide is lower because their concentration gradients are 

lower in comparison with the chloride and sodium. Note the peak on the hydrxyl ions profiles 

due to the desorption of hydroxides. 

Assuming that the initiation of corrosion occurs when the ratio [Cl-/OH-] is 0.6, Figure 6.29 

shows that the results computed with the chloride diffusivity at 28 days tend to over-estimate 

the abscissa where the limit is 0.6 is reached, this in the vicinity of 31% after 100 days of 

immersion and 33% after 200 days. Note that the ordinate scale has been intentionally 

enlarged.  

The experimental results obtained after 35, 100 and 200 days of immersion have already been 

presented in Figures 6.6, 6.7 and 6.8. Recall that in all these cases, the concrete was placed in 

contact with the NaCl solution after a 28-days cure. Thus in the case when the immersion time 

is 35 days the material is still not mature, which means that the time-dependence of the 

diffusion coefficients has to be accounted for. The simulations were made with a time-

dependent diffusion coefficient following equation [6.2]. The shape of the numerical 

concentrations profiles follows with a good accuracy the experimental data. The penetration 

depths, which increase with the time of exposure, are also in good agreement with the 

experimental results. Therefore, if the objective is to study the chloride penetration before the 

material reaches maturity, the effective diffusion coefficients of the species of interest have to 

be time-dependent. If not, the time-dependence of the diffusivities is not necessary and the 

diffusivities can be the ones that correspond to the mature material.  

 

6.3.1 NaCl concentration of 165 g/l with concrete age of 28 days at exposure 

From Figures 6.30 to 7.33, the comparison of experimental water and acid-soluble chloride 

profiles with respective modeled free and total chloride profiles from MsDiff is presented. 
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Figure 6.30 Comparison between experimental and modeled chloride profiles for 

immersion test of 35 days duration with 165 g/l NaCl environmental load and 28 

days-cured concrete specimens 

Figure 6.31 Comparison between experimental and modeled chloride profiles for 

immersion test of 100 days duration with 165 g/l NaCl environmental load and 28 

days-cured concrete specimens 
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Figure 6.32 Comparison between experimental and modeled chloride profiles for 

immersion test of 200 days duration with 165 g/l NaCl environmental load and 28 

days-cured concrete specimens 

Figure 6.33 Comparison between experimental and modeled chloride profiles for 

immersion test of 330 days duration with 165 g/l NaCl environmental load and 28 

days-cured concrete specimens 
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It would be well to notify that the chloride profiles presented here are in different units than 

the input data presented in Table 6.13. The experimental chlorides are described in mass 

percentage of concrete. These are the concentrations obtained directly from potentiometric 

titration.  

6.3.2 NaCl concentration of 33 g/l with concrete age of 28 days at exposure 

In Figures 6.34 to 6.36, the comparison between experimental water and acid-soluble chloride 

profiles and numerical modeling with MsDiff is presented. Again recall that the effective 

diffusion coefficient was allowed to vary from 28 days to 70 days of concrete age. 

Additionally the boundary conditions were changed from 165 g/l  NaCl to 33 g/l NaCl. 
 

Figure 6.34 Comparison between experimental and modeled chloride profiles for 

immersion test of 180 days duration with 33 g/l NaCl environmental load and 28 

days-cured concrete specimens 
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Figure 6.35 Comparison between experimental and modeled chloride profiles for 

immersion test of 365 days duration with 33 g/l NaCl environmental load and 28 

days-cured concrete specimens 

Figure 6.36 Comparison between experimental and modeled chloride profiles for 

immersion test of 545 days duration with 33 g/l NaCl environmental load and 28 

days-cured concrete specimens 
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From Figures 6.34 to 6.36, it seems that the modeled chloride profiles do not catch well the 

experimental profiles, as was observed for higher concentrations of 165 g/l NaCl. So far the 

acid-soluble chlorides are concerned, the comparison between the modeling and experience is 

acceptable for 6 months immersion period (Figure 6.34). However, due to increase in surface 

chloride concentration with exposure time, the discrepancy between the experience and 

modeling also increased specially at regions near the exposed surface. This point will be 

clarified in section 6.4.2.2. At least the penetration depths from modeling match well with the 

experience.  

 The binding isotherm was obtained from experiments with 165 g/l NaCl [KHI 05]. It was 

chosen so as to fit the range of concentrations 0-2800 moles/m3. The objective was to 

represent the average interactions at best. Note that the resulting binding isotherm (equation 

[6.5]) does not account binding in the range 0-570 moles/m3 with high accuracy. A slight 

difference in the bound amount of chlorides leads to a large discrepancy in total chlorides. 

Thus the difference of modeling with experimental results for 33 g/l NaCl must not be 

surprising. In order to ameliorate the modeling for this range, another alternative was thought 

over. The idea was to employ a new binding isotherm for the region 0-570 moles/m3 which 

should better match the experimental data in this range in comparison with the present 

isotherm. As earlier discussed, the difference of modeling with the experimental data of 33 g/l 

NaCl is due to the divergence of modeled binding isotherm with respect to experimental data 

in the range of lower concentrations. While this difference was acceptable for larger 

concentrations, this led to significant deviation of modeling with respect to experience.  

Further it was decided that in the range of 0-570 moles/m3 a Langmuir type binding isotherm 

should be fitted. The experimental binding isotherm of Figure 6.22 in the region 0-570 

moles/m3 is shown in Figure 6.37. In addition to the experimental data shown in Figure 6.37, 

we have also a set of some other bound chloride values obtained from the experimental acid-

soluble chloride profiles (Figures 6.18 to 6.20) and the surface free chloride concentrations 

i.e. 570 moles/m3 Cl-. More clearly, corresponding to each acid-soluble chloride profile we 

have a set of two points i.e. the surface acid-soluble chlorides (Figures 6.18 to 6.20) and the 

surface free chloride concentration which is off course the environmental chloride load or 570 

moles/m3 and thus the bound chlorides at the surface can be determined while deducting the 

environmental load from surface acid-soluble content. These data points are presented in 

addition to experimental points of Figure 6.37 in Figure 6.38. Now the surface points reveal 

(shown by the symbol + in Figure 6.38) that the surface bound concentration increased from a 

value of approximately 0.06 to 0.09 mol/kg of concrete from 180 to 545 days of immersion 
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respectively. Keeping that in view, three binding isotherms were thought to fit the 

experimental data. The first isotherm covering the highest bound chlorides observed in this 

domain, the second the lowest bound chlorides and the third one a weighted average of the 

two former isotherms. These three modeled binding isotherms in addition to experimental data 

are shown in Figure 6.39.   

The coefficients of these three binding isotherm are given in Table 6.14. As discussed earlier a 

Langmuir type binding isotherm was chosen for the modeled binding isotherm for this region 

as given by the following equation.  

( )c
cC bm β

αβ
+

=
1,                     [ 6.6] 

 

 

  

 
 

Figure  6.37 Experimental binding isotherm (165 g/l NaCl) in the range of 0-570     

moles/m3 Chlorides 
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Figure  6.38 Experimental binding isotherm (165 g/l NaCl) in the range of 0-570     

moles/m3 Chlorides plus surface points 
 

 
Figure  6.39 Experimental data and simulated binding isotherms for the region 0-

570 mol/m3 free chlorides 
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Table 6.14 Coefficients of modeled isotherm for the region 0-570 mol/m3 Cl-

 α β 

Upper isotherm 0.104 0.01 

Lower isotherm 0.084 0.005 

Average isotherm 0.094 0.007 

 

Out of these three isotherms, the average one was chosen to further modelise the total chloride 

profiles obtained while using the 33 g/l NaCl. The results are shown in Figures 6.40, 6.41 and 

6.42 for 180, 365 and 545 days of immersion respectively.  
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Figure 6.40 Comparison between the experimental data and modeling with MsDiff for 

immersion test employing 33 g/l NaCl for a period of 180 days using a binding isotherm 

by exploiting the 0-570 mol/m3 region 
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Figure  6.41 Comparison between the experimental data and modeling with 

MsDiff for immersion test employing 33 g/l NaCl for a period of 365 days using a 

binding isotherm by exploiting the 0-570 mol/m3 region 
 

 
Figure  6.42 Comparison between the experimental data and modeling with 

MsDiff for immersion test employing 33 g/l NaCl for a period of 545 days using a 

binding isotherm by exploiting the 0-570 mol/m3 region 
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The above three figures (6.40 to 6.42) reveal that while modeling, the range of the 

concentrations also plays an important role. While a certain divergence from the experience is 

acceptable at higher values, the same might not be acceptable at lower values or in other 

words, the role of scale is equally important.  

6.3.3 Conclusions-MsDiff modeling 

MsDiff modeling including for a variable effective diffusion coefficient and a non linear 

binding based on Langmuir modified with a power law isotherm showed good agreement with 

experimental acid and water soluble chloride concentrations for the case of 165 g/l NaCl in 

environmental solution and to some extent with only acid soluble chloride concentrations in 

the case of 33 g/l NaCl. Its validation for free chloride profiles in the case of 33g/l NaCl could 

not be verified experimentally due to the reasons stated before.  

Recall that MsDiff requires a package of five input data; out of these five, porosity, mass 

density and composition of pore solution are pure material properties whereas coefficients of 

binding isotherm and chloride effective diffusion represent materials properties vis-à-vis 

chloride ingress. Porosity can either be entered as user data or the model itself can calculate it 

whereas all the other four are user data. Anyway a correct estimation of these data is 

necessary to acquire good results from the model. In this work, all these properties were 

known in one or the other way.  

The first three input data i.e. porosity, density and composition of pore solution can be 

determined by well known classical methods as discussed in chapter 4. The chloride 

diffusivity is supposed to vary up to 70 days of material age after which this parameter is no 

more treated as a variable (refer to Figures 3.1 and 6.4). Simulations with constant effective 

diffusion coefficient (measured at 28 days of concrete age by LMDC test) led to over-

estimated chloride concentrations. So while simulating results for materials having higher 

curing periods with 165g/l NaCl in environmental solution, a constant De was introduced for 

example in the case of 420 days (>70 days) old material at exposure. Due to similarity of 

results with 28 days-aged concrete and 165 g/l NaCl, these simulations have not been 

presented here.  

For 33 g/l NaCl, total chloride profile for 6 months is somewhat in good agreement with all 

the experimental points, while for 1 year and 18 months the predicted total chloride profiles 

deviate not only from the experimental data at points near the exposed surface but also 

penetration depths are different which if not the worst is also not acceptable enough. Perhaps, 

it is due to the accumulation of chlorides: this accumulation increases with exposure time. 
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Currently MsDiff model does not take into account the increase of surface chloride content 

with increase in exposure period as observed and shown in the current chapter. Moreover the 

binding isotherm deviates from the bound concentrations at small water-soluble chlorides (in 

the pore solution). This deviation while satisfactory for the case of 165 g/l NaCl seems not to 

be suitable for the smaller water-soluble chloride concentrations.  

Therefore the idea of using the same isotherm for smaller concentrations was abandoned and 

the modeling was executed with a new binding isotherm for the range of chlorides from 0-570 

moles/m3. The simulations with this new binding isotherm led to acceptable modeled total 

chloride profiles. The modeling is at best with an average binding isotherm. For lower 

immersion time of 180 days, the total chloride concentrations in the region near to the surface 

are somewhat lower than the modeled values. Similarly for higher immersion time of 545 

days, the modeled values are lower than the experience. This is due to increased surface 

concentration values of total chlorides with immersion time. Yet the better matching of total 

chloride concentrations in the interior of the material (at increasing depths from exposed 

surface) and more importantly the penetration depth are very satisfactory.  

 

6.4 Extraction of some additional parameters of interest from experimental 

chloride profiles 

From experimental chloride profiles, some other parameters were also calculated. These 

parameters were needed as input data for models based on Fick’s second law of diffusion.  

6.4.1 Apparent diffusion coefficient and surface concentration 

The purpose to determine apparent diffusion coefficient and surface concentration was to 

deduce total chloride profiles from models based on the error function solution of Fick’s 

second law of diffusion. With the obtained total chloride profiles, a curve was fitted with 

analytical solution of the Fick’s second law as described in chapters 1 and 2. It should be 

noted that the curve fitting with only total chloride profiles was exercised in accordance with 

the standard models, which take into account only the total chloride profiles. Recall relation 

[1.33] in chapter 1. For the sake of consistency this relation is re-quoted here as equation 

[6.7]. While using this relation, due attention was paid to the units of parameters comprising 

this relation. Look at the Table 6.15. For demonstration purposes, one such curve fitting is 

shown in Figure 6.43. The recommendations, which were followed while curve fitting are 

described in Appendix 4 of this work. 
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In the above relation, the parameter Da is known as the apparent diffusion coefficient and Cs is 

called as the chloride surface concentration. 

 
Table 6.15 Units of parameters used in curve fitting with error function solution of Fick’s second law 

Parameters C(x,t), Ci, Cs x Da t 

Units % mass of concrete m m²/s s 

 

6.4.1.1 NaCl concentration of 165 g/l with concrete age of 28 days at exposure 

The values of apparent diffusion coefficient and surface concentrations are quoted in Tables 

6.16, 6.17, 6.18 and 6.19.  

 
Table 6.16 Curve fitting data obtained from total chloride profiles of 35 days exposure period 

 Specimen 1 Specimen 2 

Da (1E12- m²/s) 5.56 6.11 

Cs (% mass of concrete) 1.13 1.2 

 
 
Table 6.17 Curve fitting data obtained from total chloride profiles of 100 days exposure period 

 Specimen 1 Specimen 2 Specimen 3 

Da (1E12- m²/s) 3.98 4.31 3.63 

Cs (% mass of concrete) 1.17 1.12 1.16 

 
 
Table 6.18 Curve fitting data obtained from total chloride profiles of 200 days exposure period 

 Specimen 1 Specimen 2 Specimen 3 

Da (1E12- m²/s) 3.09 2.95 3.17 

Cs (% mass of concrete) 1.11 1.06 1.26 
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Table 6.19 Curve fitting data obtained from total chloride profiles of 330 days exposure period 

 Specimen 1 Specimen 2 Specimen 3 

Da (1E12- m²/s) 2.63 2.36 2.9 

Cs (% mass of concrete) 1.21 1.21 1.26 

 

 

 

 

  

 

Figures 6.44 and 6.45 demonstrate the variation of apparent diffusion coefficient and surface 

chloride concentration as a function of concrete age and exposure period for the same 

concrete age (28 days) at exposure respectively. 

The time dependent apparent diffusion coefficient was deduced in the form of power law as 

follows: 

( ) 46.01253.2 −−= tEtDa                    [6.8] 

In equation [6.8] t represents the material age in years. 

The following logarithmic relation was observed with the experimental surface chloride 

concentration. 

24.1)ln(053.0)( +−=− exexs ttttC                    [6.9]

         

Figure 6.43 Curve fitting with error function solution of Fick’s second law of 

diffusion over total chloride profile (specimen 1) obtained with 165 g/l NaCl and 35 

days of exposure period 
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Where tex is the age of material at exposure in years and Cs is the chloride surface 

concentration in % mass of concrete. 

 

Figure 6.44 Variation of apparent diffusion coefficient with concrete age for 165 

g/l NaCl and 28 days of age at exposure 
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Figure 6.45 Variation of chloride surface concentration with concrete age for 165 

g/l NaCl and 28 days of age at exposure 
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Equation [6.8] demonstrates that the apparent diffusion coefficient decreases with an increase 

in materials age. Similarly chloride surface concentration increases with increase in exposure 

period.  

Equations [6.7] and [6.8] are useful relations for certain chloride ingress models based on 

error function solution of Fick’s second law of diffusion. Availability of several total chloride 

profiles also makes possible to run error function solution of Fick’s second law of diffusion 

with a variable apparent diffusion coefficient instead of a constant one: recall relation [2.56]. 

Additionally an average diffusion coefficient from the beginning to the end of immersion 

period can also be calculated for use in error function solution: recall relation [2.57]. All the 

two parameters are varying continuously still at the end of one year of concrete age, which is 

in agreement with literature.  

Note that here years has been selected as the time unit against days approximately everywhere 

else. This is for the purpose of coherence with the models based on error function solution of 

Fick’s second law of diffusion where these units are generally used so as to do predictions 

over very long periods, which are of the order of tens of years. Additionally the variation of 

Da is presented with concrete age whereas that of Cs is shown with exposure period in 

accordance with these models. 

6.4.1.2 NaCl concentration of 165 g/l with concrete age of 420 days at exposure  

The two parameters Da and Cs determined in the same way as above are demonstrated in 

Tables 6.20 and 6.21 respectively for 100 and 200 days of exposure.  

 
Table 6.20 Curve fitting data obtained from total chloride profiles of 100 days exposure period 

 Specimen 1 Specimen 2 Specimen 3 

Da (1E12- m²/s) 2.8 3.43 3.13 

Cs (% mass of concrete) 0.9 0.9 0.97 

 
 
Table 6.21 Curve fitting data obtained from total chloride profiles of 200 days exposure period 

 Specimen 1 Specimen 2 Specimen 3 

Da (1E12- m²/s) 2.78 2.21 3 

Cs (% mass of concrete) 1.06 1 0.85 
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The evolution of Da with concrete age and Cs with exposure period, both in years is shown in 

Figures 6.46 and 6.47.  

 

 

Note that Figure 6.46 is based upon values of Da with 165 g/l of NaCl regardless of concrete 

age at exposure. 

In Figure 6.46, the last 6 hollow circles correspond to 100 and 200 days of exposure with 420 

days of curing. The time dependent apparent diffusion coefficient relation was changed as 

follows. 

( ) 3.01298.2 −−= tEtDa                  [6.10] 

 

While the following logarithmic relation for Cs was observed with the experimental data for 

420 days of curing as shown in Figure 6.47. 

( ) ( ) 01.1ln0673.0 +−=− exexs ttttC                 [6.11]

         

The logarithmic trend line shows that the surface chloride concentration has slightly increased 

but visually a horizontal line is also possible in between the points (even a decreasing trend is 

Figure 6.46 Variation of apparent diffusion coefficient with concrete age for 165 

g/l NaCl for 28 and 420 days of age at exposure 
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can also be found). Anyway there is no harm in assuming that the surface chloride 

concentration is constant between the two series of points.  

 

6.4.1.3 NaCl concentration of 33 g/l with concrete age of 28 days at exposure 

With the obtained total chloride profiles, the values of apparent diffusion coefficient and 

surface concentrations, determined in the same way, are quoted in Tables 6.22, 6.23 and 6.24.  

 
Table 6.22 Curve fitting data for 180 days exposure period 

 Specimen 1 Specimen 2 Average 

Da (1E12- m²/s) 1.97 2.73 2.32 

Cs (% mass of concrete) 0.44 0.4 0.42 

 
Table 6.23 Curve fitting data for 365 days exposure period 

 Specimen 1 Specimen 2 Average 

Da (1E12- m²/s) 2.44 2.43 2.44 

Cs (% mass of concrete) 0.45 0.42 0.44 

 

 

Figure 6.47 Variation of chloride surface concentration with concrete age for 165 

g/l NaCl and 420 days of age at exposure 
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Table 6.24 Curve fitting data for 540 days exposure period 

 Specimen 1 Specimen 2 Average 

Da (1E12- m²/s) 2.11 2.21 2.17 

Cs (% mass of concrete) 0.5 0.51 0.51 

 

The following time dependency relation was obtained with the experimental data obtained 

while working with 33 g/l NaCl. 
24.01243.2)( −−= tEtDa                                                      [ 6.12] 

Where t is the concrete age in years and Da is the apparent diffusion coefficient in m²/s. 

 The following logarithmic relation was observed with the experimental data. 

45.0)ln(097.0)( +−=− exexs ttttC                                                                 [6.13] 

Where tex is the age at exposur in years and Cs is the chloride surface concentration in % mass 

of dry concrete. 

The evolutions of Da and Cs are shown in Figures 6.48 and 6.49 respectively. Although two 

specimens per exposure period, the first point at 180 days (0.5 years) of exposure period was 

discarded due to its large divergence with the rest of the data. Note that in Figure 6.48, the 

two points at 1 year exposure period superpose each other. 

 

Figure 6.48 Variation of apparent diffusion coefficient with concrete age for 33 

g/l NaCl and 28 days of age at exposure 
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6.4.2 Conclusions-effect of exposure period on chloride penetration 

6.4.2.1 Experimental chloride profiles 

From experimental chloride profiles, whether water or acid-soluble, it is clear that: 

1. The penetration depth increases with an increase in exposure period for the same age 

of concrete at exposure. However the penetration rate is non linear with respect to 

exposure period. The experimental data has shown that the penetration depth curve 

follows the same slope in square root of immersion time regardless of the exposure 

solution concentration.  

2. The immersion test NT BUILD 443 is a good tool, where significant chloride 

penetrations are required in a minimum possible time frame by employing a larger 

concentration of 165g/l NaCl.  

3. The average water-soluble chloride concentrations are mostly 40-70% of the average 

acid-soluble chloride concentration in a concrete slice. This result highlights the 

importance of chloride interactions with the solid phase of cement-based materials. 

Binding deserves a lot of interest because bound chlorides are not available for 

diffusion and therefore reduce the risk of corrosion of the reinforcement bars. 

Figure 6.49 Variation of surface concentration with concrete age for 33 g/l NaCl and 

28 days of age at exposure 
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4. Figure 6.10 demonstrates that chloride binding is independent of immersion time, thus 

only one binding isotherm is needed if simulation is needed for a higher immersion 

period. However to remain on safe side, it is recommended that this binding isotherm 

should correspond to a mature concrete for the reasons similar to those, described in 

the case of chloride diffusion coefficient in section 6.3.  

6.4.2.2 Surface chloride content 

Surface chloride content herein is defined as the total chloride load accumulated at the 

materials surface. In all the cases, it is evident that this parameter increases with increase in 

exposure period for the same environmental solution and same material age at exposure. If the 

extracted trend lines are given significance, its evolution could be seen in Figure 6.50. From 

this figure, it seems that Cs should assume an asymptotic value after a certain time of 

exposure. Hence on the basis of this, it would not be inappropriate to think of a constant Cs for 

older structures. But for very younger concrete specimens as the one used during this work, 

this parameter has some significance.  

With increase in acid-soluble surface content, it was also observed that the corresponding 

water-soluble surface content also increases. This could be easily observed in Figures 6.6 to 

6.9 (pages 110 and 111). The near surface water-soluble chloride concentration in Figure 6.6 

is below Cf,s but with increase in exposure period, its value exceeds Cf,s. One reason could be 

the carbonation effect described in section 6.2.3.5. The other possible reason could be that 

described in section 6.2.3.4 i.e. while more total chloride content was present in a concrete 

powder, more chlorides were extracted while filtering powder with distilled water or in other 

words, some loosely bound chlorides were also snatched by water leading to higher water-

soluble chlorides. 
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6.4.2.3 Apparent diffusion coefficient 

The general trend shows that apparent diffusion coefficient reduces with increase in exposure 

period for the same concrete age at exposure and for the same environmental concentration.  

Similar to Figure 6.50, if a similar figure is drawn to watch the evolution of Da with concrete 

age, an asymptotic value for Da is achieved at longer periods. Which means that similarly a 

constant Da for old structures would not be a bad option while using models based on error 

function solution of Fick’s second law of diffusion. 

  

6.4.3 Conclusions-effect of age at exposure on chloride penetration 

6.4.3.1 Comparison of experimental chloride profiles 

From Figures 6.13 to 6.16 (pages 115 and 116), it seems that an approximately one year 

difference in the age of concrete has no impact on the chloride penetration both for chloride in 

the pore solution and total chloride. The penetration depths, which increase with the time of 

exposure, are also in good agreement with the experimental results.  

 
 

Figure 6.50 Evolution of Cs with exposure period 
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6.4.3.2 Surface chloride content 

The parameter Cs decreases with increase in curing period before exposure to chlorides if we 

compare relations [6.9] (page 146) and [6.11] (page 149) in the case of 165g/l NaCl. This 

parameter is significant in the sense that concrete structures with smaller curing period at 

exposure to sea water will be subjected to a higher accumulated surface content as compared 

to the structures with larger curing periods before exposure and according to error function 

solution of Fick’s second law of diffusion should lead to higher concentrations and probably 

to shorter structures life [EUR 99]. From Figure 6.47, it is also obvious that a constant Cs 

with effect from 420 days of concrete age is possible noting that the curing conditions itself 

acted as a continuous exposure but without chlorides [EUR 99].  

 

6.4.3.3 Apparent diffusion coefficient 

As evident from Figure 6.46, Da appears to follow the same trend line regardless of materials 

age at the time of exposure. In the same manner as Cs, at higher curing period before exposure 

Da should be smaller as it follows the age dependency and thus should lead to smaller 

penetrations compared to lower curing periods before exposure. If we compare the profiles 

with 28 days of curing with those with 420 days of curing with respect to models based on 

Fick’s second law of diffusion, a lower Da at higher curing period should lead to smaller 

chloride penetrations at respective depths. This might lead to smaller total surface 

concentration and vice versa. 

6.4.3.4 Parameter σ 
This is a parameter that denotes the time dependency of apparent diffusion coefficient with 

concrete age i.e. how fast the diffusion coefficient decreases when exposed to saline 

environment. The time-dependent apparent diffusion coefficient relationship has been 

discussed in chapter 2 and is here given for reminder as relation [6.14]. The values obtained 

for higher concentration with two concrete ages at exposure and lower concentration can be 

summarized in the Table 6.25. 

( )
σ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

t
t

DtD ref
refaa ,                                                  [6.14] 
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Table 6.25 Time dependency parameter for Da 

Concentration NaCl (g/l) 165 33 

Curing time (days) 28 and 420  28 

σ 0.30 0.24 

 

The above table demonstrates that σ value is insignificantly affected by curing period before 

exposure.  

 

6.4.4 Conclusions-effect of exposure NaCl concentration on chloride penetration 

6.4.4.1 Apparent diffusion coefficient 

If we compare Da values for 165 g/l NaCl and 33 g/l NaCl, no significant difference for 

difference of concentrations was observed i.e. Da seems to be independent of environmental 

concentration. For example if we look at the Da values for higher concentration with 330 days 

of exposure period, it varies between 2.36E-12 to 2.9E-12 m²/s, while for lower concentration 

with 365 days of exposure period, its value is around 2.44E-12 m²/s. 

6.4.4.2 Parameter σ 

Table 6.25 suggests that σ values are higher for higher concentrations. The possible reason 

could be that the interactions between the chloride ions are enhanced due to higher 

concentrations or in other word the chloride ions are more tightened which leads to higher σ 

at higher concentrations as compared to lower concentrations. 

6.5 General conclusions 

This chapter consists of two main parts: Part 1 deals with experimental data while part 2 

comprises numerical modeling conducted with MsDiff. Experimental part is mainly dedicated 

to water and acid-soluble chloride profiles along with input data, determined experimentally. 

The experimental profiles were meant to validate modeled free and total chloride profiles with 

MsDiff. These experimental profiles also served to provide binding isotherm needed as input 

data for MsDiff. In addition, some other data was also deduced from chloride profiles, which 

was either necessary to run certain chloride ingress models other than MsDiff or to explain 

certain experimental results with respect to error function solution of Fick’s second law of 

diffusion. The induction of this data to run the error-function models will be discussed in the 
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next chapter. Comparison between the experimental and data simulated with MsDiff is also 

discussed. Here in this chapter a new idea has been given to determine the chloride binding 

isotherm. Where the binding isotherm used for modeling 165 g/l NaCl test results was 

obtained from experimental chloride profiles (NT BUILD 443 method with prolonged 

immersion times) in the range 0-2800 moles-m-3, the binding isotherm for simulating 33 g/l 

NaCl conditions was obtained with the same profiles but in the range of 0-570 moles-m-3 

along with the assistance of surface bound amounts obtained from 33 g/l NaCl tests profiles. 

The simulated results seem to be satisfactory for all the two environmental concentrations 

tested i.e. 165 g/l and 33 g/l NaCl both in terms of concentrations at different levels and the 

penetration depth. The experimental results have revealed a large amount of total chlorides as 

compared to the free quantities. This is perhaps due to a higher cement content, which should 

result in a larger amount of bound chlorides and consequently more total chlorides. More 

cement content will lead to more hydrated CSH phase so more space will be available for 

chloride ion adsorption than in case of lower cement content.  
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0 CHAPTER 7 
 
CHLORIDE INGRESS MODELING WITH MODELS OTHER THAN 
MSDIFF 
 
 

7.1    Introduction 
This chapter deals with modeling through chloride ingress models other than MsDiff for the 

sake of comparison. All these models have already been described in chapter 2 of present 

work. Here only governing equations are recollected along with description of input 

parameters. The simulated profiles are compared with experimental data concerning 33 g/l 

NaCl in the exposure solution.  

7.2    Error function model 

Recall equation [2.1]. The equation is quoted again here as relation [7.1]. 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

tD
xerfcCCCtxC

a
isi 4

,                   [7.1]

         

The input data for the model is quoted in Table 7.1. 
 
Table 7.1 Input data for Erf model, constant Da and constant Cs

Parameters Ci Cs Da

Units % concrete mass % concrete mass m²/s 

Values 0 0.1123 2.73E-12 

 

Note that these values were obtained from curve fitting of total chloride profile with 33g/l 

NaCl solution and 6 months of exposure period using error function solution of Fick’s second 

law of diffusion. The results from 6 month long immersion test were used as input data to 

simulate chloride profiles for 12 and 18 months immersion periods as this model treats Da and 

Cs as invariable parameters over time. The total chloride profiles obtained are compared with 

experimental profiles in Figures 7.1 and 7.2. 

7.3   False error function model 

Remind that this model takes into consideration a variable Da and a variable Cs. The model is 

described by the following equations while the input data is arranged in Table 7.2. 
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Figure  7.1 Comparison of total chloride profile simulated with Erfc model and 

experimental data for one year of immersion and 33 g/l NaCl 

Figure  7.2 Comparison of total chloride profile simulated with Erfc model and 

experimental data for 18 months of immersion and 33 g/l NaCl 
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Figure  7.3 Comparison of total chloride profile simulated with False-Erfc model 

and experimental data for one year of immersion and 33g/l NaCl 

Figure  7.4 Comparison of total chloride profile simulated with False-Erfc model 

and experimental data for 18 months of immersion and 33g/l NaCl 
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Table  7.2 Input data used for False Erfc model 

Parameters Da,r tr σ A B 

Units m²/s years ------ ------ ------ 

Values 2.43E-12 0.5 0.24 0.097 0.45 

 

 

7.4 Duracrete model  

The constitutive equation for Duracrete model is quoted as follows: 
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1                 [ 7.5]

       

While all the other parameters were used as quoted in literature, the value for DRCM,r was used 

as obtained by means of LMDC test for concrete age of 28 days with σ as obtained from a 

series of 3 LMDC tests conducted during the present work. All the input data is illustrated in 

Table 7.3. 
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Figure  7.5 Comparison of total chloride profile simulated with Duracrete model 

and experimental data for one year of immersion and 33g/l NaCl 

Figure  7.6 Comparison of total chloride profile simulated with Duracrete model 

and experimental data for 18 months of immersion and 33g/l NaCl 
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Table  7.3 Input data for Duracrete model [BE 00] 

Parameters Cs kc ke kt DRCM,r tr σ 

Units % mass of concrete ------ ------ ------ m²/s days ------ 

Values 0.1123 1 1 1 18E-13 28 0.89 

 

Note that in the above table kc is unity as the material with which DLMDC,r was measured and 

the one subjected to immersion test were from the same lot of materials undergone curing for 

28 days under exactly the same conditions. The parameter ke is also unity as the material was 

fully saturated. Also it was decided to take a unity value for kt in conjunction with modeling 

through MsDiff, where DLMDC,r was taken as the effective diffusion coefficient. The results of 

modeling with Duracrete model are shown in Figures 7.5 and 7.6. 

7.5 Modified Duracrete model 

This version of Duracrete consists of modifications proposed by Gehlen. The governing 

equations are again presented as [7.6] and [7.7]. 
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Since Tr and T are same, the value of kT turns out to be unity. The values for other parameters 

are specified in Table 7.4. 

Table  7.4 Input data for modified Duracrete model 

Parameters  Ci ∆x KRH kT 

Units % concrete mass m ------ ------ 

Values 0 0.04 1 1 
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Although all the data to run this model is available, the thickness of ∆x, i.e. the convection 

zone depth is incompatible with our experimental results. During this work, the maximum 

penetration depth achieved is approximately 3 cm, while a test value of 4 cm has been given 

as the thickness of this zone, due to which it is not possible to compare the simulations made 

with model with our experimental data.  

7.6 JSCE model   

The governing equations are given below: 

i
d

Cl C
tD

xerfCs)t,x(C +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

2
1γ                  [ 7.8]

        

kcd DD γ=                       [ 7.9]

            

PPk DD γ=                               [ 7.10]

            

47.8)/(145.0)²/(5.4log 10 −+= CWCWDP               [ 7.11]

        
 

While Cs and Ci values have already been summarized, the other 4 unit less parameters are 

described in Table 7.5. 

Table  7.5 Input parameters for JSCE model 

Parameters γCl γc γp W/C 

Values 1.3 1.0 1.0 0.4 

 

In Table 7.5, γp is the safety factor taking into account the errors for predicted coefficient. 

Recall that during this work, no experimental value has been adjusted for MsDiff modeling. 

All the values are outcome of experiments. Therefore, it was decided to take the value of γp as 

unity because never the effective diffusion coefficient as determined from LMDC test was 

multiplied with a safety factor at the time of modeling. The value of Cs was taken as tabulated 

in Table 7.1 i.e. 0.1123 (% mass of concrete) as the model takes no Cs evolution in exposure 

time, rather Cs has been considered a function of distance from coastline. 
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Figure  7.7 Comparison of total chloride profile simulated with JSCE model and 

experimental data for one year of immersion and 33g/l NaCl 

Figure  7.8 Comparison of total chloride profile simulated with JSCE model and 

experimental data for 18 months of immersion and 33g/l NaCl 
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7.7 Life-365 model-Base 

The governing equations are quoted as follows: 

2
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( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

TTR
UexpDTD

r
ra

11                 [ 7.13]

         

( ) ( )
σ

⎟
⎠
⎞

⎜
⎝
⎛=

t
t

TDtD r
aa                   [ 7.14]

          

 10 )(40.206.12
28

WC
rDD +−

==                  [ 7.15]

          
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7 : CHLORIDE INGRESS MODELING WITH MODELS OTHER THAN MSDIFF



 169

 

 

Figure  7.9 Comparison of total chloride profile simulated with Life-365 model 

with experimental data for one year of immersion and 33g/l NaCl 

Figure  7.10 Comparison of total chloride profile simulated with Life-365 model 

with experimental data for 18 months of immersion and 33g/l NaCl 
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7.8 LEO model 

Following are the equations structuring LEO model. 
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Since all the tests were performed at local laboratory temperature (20±2°C), the equation 

[7.19] can be re-written as follows: 

( ) Caa DTD °= 20,                   [ 7.20]

           
Table  7.6 Input data for LEO model for 12 and 18 months of immersion 

Parameters Wgel w Cl- k η 

Units kg/m3concrete kg/m3concrete moles/l ---- ---- 

Values 149 160 0.564 1.44 0.68 

 

With the induction of input parameters in relation [7.16] we have the following equation. Note 

that no significant difference was observed for equation [7.21] between the calculated values 

for 12 and 18 months of exposure periods. 
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Figure  7.11 Comparison of total chloride profile simulated with LEO model with 

experimental data for one year of immersion and 33g/l NaCl 

Figure  7.12 Comparison of total chloride profile simulated with LEO model with 

experimental data for 18 months of immersion and 33g/l NaCl 
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7.9 HETEK model 

The empirical model in the form of sequence of equations is written as follows. Keeping in 

view these equations, it was decided to carry out simulations using experimental data of 12 

and 18 months of immersion period with concrete age at exposure of  tex = 28 days or 0.0767 

years in the following equations. 
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( )bindermasskCC envC −= %,1001100                 [ 7.30]

           

( ) ( )yearmmk
WC

BD envDH /²10exp ,1 1⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=                [ 7.31]

        
σ

⎟
⎠
⎞

⎜
⎝
⎛=
100

1
1100 DD                   [ 7.32]

           

The input data for 18 months of exposure period is described in the following tables just for 

the sake of demonstration. It should be kept in mind that these empirical values correspond to 

the case of structures submerged in seawater. 

 
Table  7.7 Input parameters for diffusion coefficient in HETEK model [FRE 97] 

Parameters A B kc1,env kc100,env kσ,env kD1,env U V 

Values 3.7 25000 1.4 1.8 0.3 1 1.5 1 

 

With the above coefficients, one year and 100 years diffusion coefficients were calculated, the 

corresponding values are quoted in Table 7.8. 

 

Table  7.8 Diffusion coefficients and surface concentrations 

σ D1 (m²/s) D100 (m²/s) C1 (% mass of concrete) C100 (% mass of concrete) 

0.48 5.34e-12 5.86e-13 0.5 0.92 
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Figure  7.13 Comparison of total chloride profile simulated with HETEK model 

with experimental data for one year of immersion and 33g/l NaCl 

Figure  7.14 Comparison of total chloride profile simulated with HETEK model 

with experimental data for 18 months of immersion and 33g/l NaCl 
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Table  7.9 Other model parameters 

λ q SP τ Cs (%mass of concrete) 

-0.0881 1.33 6.92 0.05 0.54 

 

The last parameter to resolve is the time dependent diffusion coefficient Da(t) which is 

determined in the following manner. 

( )
σ

⎟
⎠
⎞

⎜
⎝
⎛=

t
t

DtD ex
aexa                   [ 7.33] 

λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

100

1
1 D

D
DDaex                   [ 7.34] 

Solving equation [7.34] we have Daex= 1.83E-11 m²/s. Putting this value of Daex in relation 

[7.33] we have. 

( )
557.00767.01183.1 ⎟

⎠
⎞

⎜
⎝
⎛−=

t
EtDa                   [ 7.35] 

Where t is the materials age at the end of immersion period in years. Now the equation [7.22] 

can be used in order to have simulations with HETEK model. It may be worthy to note that 

the empirical coefficients were determined from structures exposed to marine environment of 

14 ± 4 g/l Cl- whereas specimens in the present work were exposed to 19.8 g/l Cl-. 

7.10 False-Erfc with modification proposed by Visser 

The governing equation is re-written as follows: 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
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⎝

⎛
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⎠
⎞

⎜
⎝
⎛

−

−+=

t
t
tD

xerfc)CC(C)t,x(C
rr

isi σ

σ1
4

              [ 7.36] 

The input parameters have already been defined in Table 7.2 and the comparison of this model 

with experimental data is shown in Figures 7.15 and 7.16. 

7.11 False-Erfc with modification proposed by Stanish  

The principle equation is re-quoted here as [7.37]. 
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Figure  7.15 Comparison of total chloride profile simulated with False-Erfc model 

with Visser modifications and experimental data for one year of exposure 

Figure  7.16 Comparison of total chloride profile simulated with False-Erfc model 

with Visser modifications and experimental data for 18 months of exposure 
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Figure  7.17 Comparison of total chloride profile simulated with False-Erfc model 

with Stanish modifications and experimental data for 12 months of exposure 

Figure  7.18 Comparison of total chloride profile simulated with False-Erfc model 

with Stanish modifications and experimental data for 18 months of exposure 
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In the above equations t2 is the concrete age at the end of immersion period while t1 is the 

concrete age at the start of immersion period. While simulating for 1 year of immersion, the 

taverage comes out to be 0.46 years with Daverage of 2.86E-12 m²/s. While 1.5 years of immersion 

period gives a Daverage of 2.67E-12 m²/s at taverage of 0.64 years. The chloride profiles are 

shown in Figures 7.17 and 7.18. 

7.12 Comparison of experimental data with the simulations from all models 

In this section, all the simulations presented previously in this chapter along with those made 

with the MsDiff in chapter 6 are presented for the sake of comparison in a single graphical 

area. Previously these simulations have been shown separately for each model so that they can 

be easily compared one by one with the experimental data for the sake of clarity. In Figures 

7.19 and 7.20, the experimental data obtained from one year and 18 months of immersion 

with 33 g/l NaCl are compared with the calculated profiles using different models. These two 

figures demonstrate that the HETEK model provides the largest while the Duracrete model 

offers the smallest total chloride concentrations at approximately all the depths from the 

exposed surface with respect to the experimentally observed values. We are unable to 

reproduce experimental depth with all the models except MsDiff. With the exception of 

Duracrete, we obtain higher penetration depths than experimentally observed. The 

determination a reasonable penetration depth is key to the calculation of the just life span of a 

reinforced concrete structure.  
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Figure  7.19 Comparison of modeling conducted with different models with 

experimental data for 1 year of immersion with 33 g/l NaCl 
 
 
It should be also noted that these comparisons are focused on a very small time span of up to 

18 months of immersion. While the greater penetration depths than the experimentally 

observed values obtained with all the models except two should lead also to shorter life span 

of a reinforced structure, one has also to keep in mind that in most of these models, the 

apparent diffusion coefficient previously discussed is assumed to decrease with the material 

age and the results calculated over larger time spans of the order of tens of years might present 

an inverse situation i.e. a longer life period of a structure. Therefore, it will be too irrational to 

predict on this stage that these models give an under estimated life period a reinforced 

structure. One such case where apparent diffusion coefficient is assumed to decrease with 

material age will be discussed in the next chapter.  
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Figure  7.20 Comparison of modeling conducted with different models with 

experimental data for 18 months of immersion with 33 g/l NaCl 
 
 

7.13 Conclusions 

In this chapter, the experimental data obtained during present work was compared with 

simulations performed using certain chloride ingress models. The input parameters were 

either extracted from experimental data obtained with our own experiments or from literature. 

If neither of the two was available, some existing model was utilized. Modifications proposed 

by Visser and Stanish et al. are new advances in Erfc-model. While Visser proposes a time 

dependent Da in expression [7.1], Stanish proposes an average Da for the whole immersion 

period. The simulations show little difference with respect to each other as can be observed 

from Figures 7.15 to 7.18. If we compare all the simulations, it appears that they are more or 

less similar. The experimental data obtained during this study corresponds to a time of less 

than two years of concrete age, where the things might not change much, resulting in similar 

simulations. Also the similarity of models might lead to similar simulations.  
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Furthermore the modeling done with MsDiff is more satisfying in the sense that not only the 

modeled profile meets well with most of the experimentally determined values at different 

depths from exposed surface, it also matches well with the penetration depth.   
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8 CHAPTER 8 
 
MSDIFF AND CORROSION INITIATION TIME 
 
 

8.1 Introduction 

This chapter envisages different possibilities of using MsDiff as a tool to determine the 

corrosion initiation time. Recall that at the moment MsDiff determines free concentration 

profiles of Na+, K+, Cl- and OH- ions. Additionally total chloride concentrations, ionic fluxes 

and electrical potential are also calculated. Keeping that in view, 3 different prospects were 

worked out. A threshold value for steel corrosion initiation was chosen in each case. 

Corrosion is supposed to initiate with effect from the moment when the so-called threshold 

value is crossed over.  

8.2 Threshold values for corrosion initiation 

As previously discussed, all the chloride ingress models dealing with the chloride-induced 

corrosion assume a threshold value that when exceeded by the chloride content or in some 

cases the hydroxyl content, leads to the initiation of corrosion. When it was decided to utilize 

MsDiff for chloride-induced corrosion studies, the ideas as adopted by the existing models 

were previewed. Different existing chloride-ingress models have been described in chapter 2 

of present work. In the following paragraphs, the criteria adopted by the different models are 

quoted.  

8.2.1 Life-365 model 

For a base case with no special corrosion protection applied the model Life-365 proposes a 

value of critical chloride content, Ccr of 0.05% mass of concrete. The critical chloride content 

increases with increase in CNI (Calcium Nitrate Inhibitor) in concrete. In the Table 8.1, the 

critical chloride contents as a function of CNI content in concrete are quoted. Since this model 

calculates the total chloride concentrations, the threshold is also a total one.  

Furthermore, it is assumed that grade 316 stainless steel has a corrosion threshold of Ccr of 

0.50% of concrete i.e. ten times that of black steel. 
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Table  8.1 The critical chloride values as a function of CNI dose in concrete, adopted by Life-365 model 

CNI Dose (liters /m3 concrete) Threshold Ccr (% concrete) 

0 0.05 

10 0.15 

15 0.24 

20 0.32 

25 0.37 

30 0.40 

 

8.2.2 JSCE specifications 

Threshold chloride content for corrosion initiation is 1.2 kg/m3 of concrete in atmospheric 

zone. For splash and submerged zones, higher values must be expected but they are not 

quoted in the JSCE specifications. 

8.2.3 HETEK  

Threshold values for submerged, splash and atmospheric zones are 1.45, 0.54 and 0.54 % 

mass of binder respectively.  

8.2.4 BRIME 

While HETEK model covers the marine environment, BRIME model was developed for road 

environment. For the case of road environment, the threshold values are 0.43, 0.35 and 0.35 % 

mass of binder for wet splash zone (WRS), dry splash (DRS) and distant road atmosphere 

(DRA) respectively. 

8.2.5 EuroLightCon 

EuroLightCon report addresses the SELMER model discussed in chapter 2. This report 

proposes nomogrammes where critical value can be determined if apparent diffusion 

coefficient Da, time-dependency factor σ of Da, concrete cover depth and concrete age are 

known. 
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Table 8.2 Threshold chloride contents as adopted by different organizations and personals [BYU 04] 

 Threshold chloride content, % mass of cement 

 Free (water-soluble) Total (acid-soluble) 

ACI 201 0.10-0.15  

ACI 222  0.20 

ACI 318 0.15-0.30 0.20 

BS 8110  0.40 

Australian codes  0.60 

RILEM  0.40 

Norweigian codes  0.60 

Hope and Ip  0.10-0.20 

Evertte and Treadaway  0.40 

Thomas  0.50 

Hussain et al.  0.8-1.2 

Page and Havdahl 0.54 1.00 

Strafull  0.15 

 

 

8.3   Corrosion initiation time with MsDiff 

For free and total chlorides, the threshold values at steel were set to be 0.15 % and 0.4 % by 

mass of cement were employed. These test values were set in accordance with the European 

and American standards [THO 96]. Thirdly a threshold value for [Cl-/OH-] ratio was set to be 

0.6 [HAU 67]. These threshold values are summed up in Table 8.3. 

 

Table 8.3 Threshold values intended for corrosion initiation in MsDiff 

Free chloride (% mass of cement) Total chloride (% mass of cement) [Cl-/OH-] 

0.15 0.4 0.6 

  

During all these simulations, a cover depth of 4 cm from exposed surface was supposed. Free 

and total chloride contents along with hydroxyl ion concentrations at this level were 

determined. From free chloride and hydroxyl ion contents, the ratio [Cl-/OH-] was calculated. 

All the three thresholds  were  compared  with  these  parameters at steel level. The moment, at 
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which the threshold values become equal or smaller than the three parameters values, was set 

to be equal to the time for initiation of corrosion.  

 

A maximum exposure period of 20 years was chosen for trial purposes in order to determine 

the time of exposure when the threshold value for corrosion (free chloride) at 4 cm from the 

exposure surface is reached. It is to be noted that all the other input data for MsDiff has 

already been narrated in previous chapter in Table 6.13. The simulations conducted in this 

chapter concern to 33 g/l NaCl solution.  

The free chloride content at steel bar as a function of exposure time is shown in Figure 8.1. In 

this figure, it is demonstrated that after an exposure period of 8.8 years, the free chloride 

content at steel rebar will exceed the threshold value set at 0.15 % mass of cement. Hence 8.8 

years is the corrosion initiation time in the present case. As discussed before, the current 

version of MsDiff considers 4 ionic species i.e. Na+, K+, Cl- and OH- ions. In Figure 8.2, the 

free ionic (Na+, K+, Cl- and OH-) and total chloride profiles corresponding to an exposure 

period of 8.8 years, previously determined are presented.  Note that in this figure, 0.57 free 

chlorides (% mass of cement) at surface are equivalent to 0.14 chlorides (% mass of concrete) 

or 33 g/l NaCl. At steel rebar, the total chloride content along with the free hydroxyl content 

and pH value was determined. These values are summarized in Table 8.4.  

 

Table  8.4 Other parameters obtained after 8.8 years of exposure 

Cl-
free (mol/m3) Cl-

free (% mass 

of cement) 

Ctotal (% mass of 

cement) 

OH- (mol/m3) [Cl-/OH-] pH 

144.7 0.15 0.5 156.6 0.9 13.2 
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Figure  8.1 Free chloride content at steel level after 20 years of exposure 
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Figure  8.2 Concentration profiles after an exposure period of 8.8 years calculated 

with MsDiff  

Steel rebar at 4 cm from exposed surface
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Note that the initial pH value of the pore solution is 13.25 (178 mol/m3). The ratio [Cl-/OH-] 

has been calculated with Cl- and OH- concentrations in mol/m3 of pore solution, as the 

corresponding ratio in the units of % mass of cement leads to a ratio of 2 due to different 

molar masses of chlorides and hydroxides. Table 8.4 suggests that if free chloride content is 

used as a criterion to determine the corrosion initiation time, it is not necessary that the other 

criteria be also met. Or in other words, different criteria, adopted for corrosion initiation 

would lead to different corrosion initiation times. 

Now let us move towards the determination of corrosion initiation period based upon a 

threshold total chloride content at steel rebar. As discussed above, the threshold value is set to 

be 0.4 % mass of cement. In the same way, a maximum exposure period of 20 years was 

chosen for trial purposes in order to calculate the time of exposure when the threshold value 

for corrosion (total chloride) at 4 cm from the exposure surface is reached. The total chloride 

content at steel bar as a function of exposure time is shown in Figure 8.3. In this figure, it is 

demonstrated that after an exposure period of 7 years, the total chloride content at steel rebar 

will exceed the threshold value set at 0.4 % mass of cement. Hence 7 years is the corrosion 

initiation time in the present case. In Figure 8.4, the free ionic (Na+, K+, Cl- and OH-) and 

total chloride profiles corresponding to an exposure period of 7 years are presented.  At steel 

rebar, the free chloride content along with the free hydroxyl content and pH value was 

determined. These values are summarized in Table 8.5.  
 

Table  8.5 Other parameters obtained after 7 years of exposure 

Cl-
free (mol/m3) Cl-

free (% mass 

of cement) 

Ctotal (% mass of 

cement) 

OH- (mol/m3) [Cl-/OH-] pH 

108.6 0.11 0.4 173 0.63 13.23 
 

Again if we compare the corrosion initiation time with that, previously determined with a free 

chloride threshold value, we obtain a difference of about 2 years. One interesting point is that 

the corrosion initiation time of 7 years has produced a value of [Cl-/OH-] of 0.63, which is 

very close to the threshold value set for the criterion, based upon this ratio i.e. 0.6. Next, the 

calculations performed with this ratio are presented.  
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Figure  8.3 Total chloride content at steel level after 20 years of exposure 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 40 80 120 160 200

x (mm)

C 
(%

 m
as

s 
of

 c
em

en
t)

Na+
K+
Cl-
OH-
total Cl-

Steel rebar at 4 cm from exposed surface

Figure  8.4 Concentration profiles after an exposure period of 7 years calculated 

with MsDiff 
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In the third case, the determination of corrosion initiation period is based upon a threshold 

value of [Cl-/OH-] at steel rebar. As discussed above, the threshold value is set to be 0.6. Here 

a maximum exposure period of 10 years was chosen for trial based on the value as determined 

from total chloride content. The [Cl-/OH-] ratio at steel bar as a function of exposure time is 

shown in Figure 8.5. In this figure, it is demonstrated that after an exposure period of 6.75 

years, the ratio at steel rebar will exceed the threshold value set at 0.6. Hence 6.75 years is the 

corrosion initiation time in the present case. Since this much time is very close to the one, as 

obtained in the previous case, no need was realized to present the tabulated values for other 

parameters. Anyway a [Cl-/OH-] ratio profile is presented in Figure 8.5.  
 

 

 

 

Model MsDiff concerns the evolution of [OH-] content in the pore solution of cementitious 

materials. If it is supposed that this content has a constant value of 178 mol/m3 (initial pore 

composition in the concrete under study during this work), the situation will be a little bit 

different. The result based on [Cl-/OH-] criterion is presented in Figures 8.6 and 8.7. 
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Figure  8.6 Effect of variability of OH- (4 cm) on initiation period 

Figure  8.7 Effect of variability of OH- (8 cm) on initiation period 
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In Figure 8.6, the simulations are made over a concrete cover depth of 4 cm. In this case, the 

value of [OH-] seems to put a very little influence on the corrosion initiation time. The 

corrosion initiation time is around 7 years. But in practice, in marine environment very huge 

structures might exist with very large cover depths. In Figure 8.7, 8 cm has been taken as the 

concrete cover depth. Now if it is supposed that the hydroxyl ion concentration remains 

constant in pore solution; the results might lead to over-estimated corrosion initiation times or 

in other words, over-estimated life spans. In Figure 8.7, the corrosion initiation time comes 

out to be 21.5 years if [OH-] content is allowed to vary, while in the opposite case, this has 

been calculated as approximately 28 years.  

Now if we compare the corrosion initiation times, meant for 4 cm cover depth both in the total 

chloride case and the [Cl-/OH-] one, we come to conclude that they are approximately same 

i.e. in the vicinity of 7 years.  
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8.4 Corrosion initiation by Erfc model 
A similar corrosion initiation time was also calculated using Erfc model for the sake of 

comparison. Since Erfc models are used to provide total chloride profiles, the calculations 

here are based on total chloride threshold content.  
 

 

Table  8.6 Summery of corrosion initiation times (years) in MsDiff and Erfc models 

MsDiff-free Cl
- MsDiff-total Cl

-
 MsDiff-[Cl

-
/OH

-
] Erfc False-Erfc 

8.8 7 6.75 7.57 17.2 

 

The False-Erfc mode gives much delayed corrosion initiation time as compared to Erfc model. 

This is logical as apparent diffusion coefficient of chloride is continuously allowed to 

decrease. It also seems from the above table, that although the corrosion initiation time is 

different in each case, the values lie in the same order of magnitude for the primary three 

cases i.e. not too much different from each other.  

The corrosion initiation time, calculated from Erfc-model is based upon a total chloride 

content of 0.4 % mass of cement. A similar study is made with Erfc-model for a corrosion 

initiation criterion, based upon [Cl-/OH-] ratio. Since this model does not allow a variable 

OH- value, the study consists of a constant OH- value in the pore solution.  
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The corrosion studies, carried above correspond to a cover depth of 4 cm. This cover depth in 

actual marine structures might be many times the value, tested in the above case. One such 

case with an 8 cm cover depth is shown in Figure 8.7.  

 

8.5 Conclusions 

In this chapter, the description of MsDiff as a means to determine the corrosion initiation time 

is given. The physical and numerical structure allows calculating the chloride-induced 

corrosion initiation time by all the three means available to date, which could not be 

performed with the classical models (with the exception of ClinConc model which takes into 

account the leaching of hydroxyl ions) based on Fick’s laws of diffusion. The simulations give 

corrosion initiation times, which otherwise could be over-estimated if classical models are 

worked with. All the test simulations, presented in this chapter correspond to the concrete, 

which was in use during this work. Similar calculations could be performed for any concrete 

structures, provided their properties as mentioned in this work are known.  
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9 CHAPTER 9 

CONCLUDING REMARKS 

 
 
In this work the ionic transport in concrete has been presented. In this regard, two techniques 

have been discussed, one is the classical one or Fick’s laws of diffusion and the other is the 

Nernst-Planck technique. The drawback of classical technique to tackle ionic species as 

uncharged entities led towards the utilization of Nernst-Planck equation in which these 

species are considered to be charge-carrying bodies. Our own work consists of studying the 

ionic transport in concrete through Nernst-Planck equation.  

A numerical model MsDiff was developed by Truc et al in 2000. This model is based on the 

multi-species description of diffusion, meant for saturated porous media (both reactive and 

inert). This description explains that the ionic species are not the isolated bodies in the 

concrete medium. These ions influence the movement of one another. During this study, 

MsDiff was chosen as the target model. In this work, the modeling was performed with a 

modified version of MsDiff. The modified model consists of the same governing equations, 

but a more stable and accurate numerical scheme. A new model for porosity calculation has 

been included. Also with the newer version, the reinforcement-corrosion initiation time can be 

calculated based on a threshold value of corrosion initiation.  

MsDiff requires a package of five input data at any age of concrete. These input data are 

summarized in the following chronological order. 

1. The porosity of the material, 

2. The density of the material, 

3. The ionic composition of pore solution, 

4. The effective diffusion coefficient of chloride, 

5. The chloride-binding isotherm. 

Among these five input data, the material porosity (for cements CEM I only) is a parameter 

that the model itself can also calculate provided the material composition and the cement 

Bogue’s composition are known. The porosity calculations are based on the Avrami-Powers 

work, in which the degree of hydration of the material is calculated using the Avrami’s 

equation while the porosity is calculated on the basis of Powers model. It is further specified 

that the parameters, described above, as the input data should be preferably for a mature 

material if the simulations are meant for longer durations or older structures. Very often the 
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concrete properties are measured at its age of 28 days. Yet it is possible that the properties 

measured at this age are not just sufficient to account for predictions at later stages or in other 

words, the material at 28 days of the age is not mature enough and the corresponding 

parameter is still changing. For example, while using the model MsDiff for various immersion 

periods, materials age at exposure or different environmental chloride concentrations, the 

parameters 1 and 2 were those that were measured at 28 days of concrete age. The ionic 

composition of the pore solution was taken from the work of Nugue, which was also deduced 

from a mature material of the same characteristics as was used in this work. During this work, 

it was emphasized that if the chloride diffusion coefficient is measured at 28 days of the age 

and is then used for simulations for older age or longer durations, the results can lead to 

totally wrong predictions. Our work was carried out with CEM I cement for that it was 

observed that the diffusion coefficients generally vary up to an age of 70 days after which 

they are considered to be constant. This was what Truc et al. [TRU 00] quoted while working 

with this cement and which was also observed during this work.  

The effective diffusion coefficients of chloride was determined with LMDC test, developed in 

our laboratory while those of other ions (Na+, K+ and OH-) were determined by using the 

effective diffusion coefficient of chloride determined by LMDC test and the ratio of diffusion 

coefficients of chloride and the corresponding ion in water.  

The binding isotherm was obtained with immersion tests. While using this method, it was 

observed that with effect from 28 days of concrete age (165 g/l NaCl), the chloride binding 

phenomenon is independent of time at least for the durations exercised during this work. Yet 

it should be avoided to obtain a binding isotherm with a material that is not mature enough 

(less than 28 days of age) to be used in simulations meant for longer durations or older 

structures as is evident from the results of Sumranwanich et al. [SUM 04], where a time 

dependent chloride binding has been proposed with experiments on materials having different 

ages (much less than 28 days to more than 28 days). The experimental results reveal that since 

a binding isotherm independent of time was observed for a material that had a least age of 28 

days, an immersion test (NT BUILD 443) can be carried out to achieve this purpose for any 

duration like 35 days. It is recommended that if this method is chosen to obtain a binding 

isotherm, the duration of immersion should be higher than 35 days or at least the age at 

exposure should be more than 28 days. The reasonable results can be achieved with more 

points, which can be achieved if the duration of immersion is significant. Alternatively, more 

than one specimen should be used per test so as to achieve an average assessment. 
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Once the five input data as described above have been determined and inserted in MsDiff, the 

following parameters can be calculated. 

1. The free ionic concentrations of Na+, K+, Cl- and OH- ions, 

2. The total chloride concentrations, 

3. The ionic fluxes of all the four ions, 

4. The potential profiles. 

The modeling done with MsDiff was validated through experimental chloride profiles. This 

goal was achieved via immersion tests. It is of interest that all input data inserted while 

modeling with MsDiff was achieved through experiments and not a single value was adjusted 

in order to improve the comparison between experiments and modeling. The modeling was 

tested using two environmental solutions, one containing 165 g/l NaCl and the other 

containing 33 g/l NaCl. All the other four input data of MsDiff were kept the same along with 

a single binding isotherm for all the two cases. This isotherm was acquired from the results of 

immersion tests with 165 g/l NaCl and thus this isotherm covers a range of 0-165 g/l NaCl. 

Although that gives satisfactory results while comparing modeling with 165 g/l immersion 

test outcomes, the same was not achieved for 33 g/l NaCl test results. The differences between 

the experiments and modeling go on increasing with immersion time. Later on it was thought 

that the situation needs to be re-evaluated because there exists a difference of scale between 

165 g/l NaCl and 33 g/l NaCl (of the order of five times) i.e. while a certain variation 

(between simulated and experimental bound contents) is smaller for larger concentrations that 

might be significant for the lesser concentrations giving wrong predictions. In order to remove 

this discrepancy, the region 0-33 g/ NaCl of the previous isotherm was re-evaluated. A new 

binding isotherm was developed which runs much closer to experimental data in comparison 

to the primary isotherm. Further this isotherm was also provided a feedback of addition 

experimental points. These points were the bound chloride amount at the surface of the 

concrete which were exposed to 33 g/l NaCl. The acid soluble chlorides at the concrete 

surface for each 33 g/l NaCl test were known also the free chloride content at these surfaces 

was known which is obviously the environmental load. The difference of two results in bound 

chloride content at the surface. With that the 33 g/l NaCl total chlorides were re-modeled. The 

obtained results are satisfactory both in term of concentration profiles and penetration depth.  

Here in this work a new method to determine the binding isotherm is proposed which consists 

of exploiting the water and acid soluble chloride contents at different depths from exposed 

surface using an NT BUILD 443 method of standard 35 days duration as we found no change 
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in bound chlorides at different water soluble chloride content in pore solution with increasing 

immersion time (at least up to one year time). This isotherm was satisfactorily used for a 

different concentration of 33 g/l NaCl while exploiting only the region 0-33 g/l NaCl. This 

binding isotherm was also given a feedback of some additional points.  

In addition to the modeling by MsDiff, certain other areas of interest were also envisaged in 

this work. In order to watch the effect of concrete age while subjected to exposure solution, 

the concrete specimens with different ages were used in immersion tests. The results revealed 

that no effect was observed at least for the range of ages considered during this work. In 

addition, it was also thought to study the chloride ingress using models other than MsDiff. In 

this regard, certain models were chosen, which are based on Fick’s laws of diffusion. The 

input data for these models was either obtained from experiments or from literature. For that 

certain concrete specimens were subjected to seawater chloride concentration-containing 

solutions, because certain models are based on empirical coefficients which were derived by 

exposing the material to seawater e.g. HETEK, JSCE etc.. The simulated curves with these 

models are more or less identical.  

In the end, the corrosion initiation time was calculated with MsDiff. In this regard three 

possibilities were sorted out. These possibilities correspond to three criteria being used by 

different research organizations for the initiation of reinforcement corrosion. 

Although satisfactory modeling was performed during this work, yet there are some areas of 

interest that need to be taken into account by MsDiff. 

Recall that all the experimentation conducted throughout this work was done at the local 

laboratory temperature (20 ± 2°C). There are situations or circumstances where the 

temperatures are different; might be low (e.g. freezing temperatures) or high as in marine 

environments in Gulf countries in summer. It has been emphasized by different researchers 

that the temperature has a significant influence on ionic transport e.g. the chloride diffusion 

coefficient is large at higher temperatures and vice versa. Currently the work is going on in 

our group to watch the effects of temperature on ionic transport. Mr. Tanh Son Ngueyen, a 

PhD student is doing the job since 2003.  

It is a well known fact that the surface total chloride content increases with the exposure 

period, which was significant in the case of 33 g/l NaCl during the present study. This change 

is rapid during the early ages than in the later ones. It has also been shown that this parameter 

assumes an asymptotic value in the end. While the surface free chloride content being always 

the same (if the boundary conditions do not vary), a binding isotherm independent of time, 

should give a constant surface chloride content, which is not the case with33 g/l NaCl. Indeed 
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with the current version of MsDiff, a chloride-binding isotherm that varies over time can 

compensate for the discrepancies that might occur in the case of increasing surface chloride 

content with exposure period. Again the binding isotherm should consist of parameters that 

while varying with exposure time acquire stable values after certain time.  

The ionic composition of pore solution is an important parameter, which is usually determined 

by pore solution extraction technique, a cumbersome and costly method. Other ways (easy to 

conduct) should be searched so as to determine this parameter e.g. from the chemical 

compositions of the constituents (cement, sand, gravel, water etc.) comprising concrete. The 

ions in the concrete pore solution are charged particles, therefore the conductivity experiments 

can also be useful as the ions move towards the electrodes of opposite signs in case the 

concrete is applied with an electrical field via electrodes. If a significant quantity of these ions 

is forced to accumulate at the electrodes sites, the ionic composition can be determined to a 

fair extent.   

The work presented in this report is limited to experiments conducted in a laboratory 

controlled environment. It is further proposed to carry out experiments using in situ 

specimens. In uncontrolled in situ environments, the conditions are variable. The 

concentrations in the marine environment usually change throughout the year. There are 

different temperatures in different seasons. Furthermore the conducted tests were meant for 

submerged conditions. While in practice there are three well defined marine zones namely 

submerged, splash and tidal. The degree of saturation is different in each case. It is proposed 

to work for these practical cases in future. 

A uni-dimensional diffusion was studied during this work. Practically we may have multi-

dimensional diffusion for example in bridge pillars in marine environment. Marine water itself 

does not consist of NaCl only. There are also other species present. Some species like Mg ions 

in marine water are also found to create pore blocking at the concrete exposed surface. It will 

be worthwhile if a future work consists of an exposure to actual marine environment like in 

situ specimens as discussed earlier. At the same time the concrete specimens could be exposed 

to artificial sea water prepared in laboratory.   
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APPENDIX 1 CHEMICAL COMPOSITION OF SAND AND 
COARSE AGGREGATES 
 
Table A.1 Chemical composition of sand 

Constituents Percent mass 

CaO 1.38 % 

MgO 1.35 % 

SiO2 70.13 % 

Al2O3 11.45 % 

Fe2O3 4.22 % 

Na2O 1.49 % 

K2O 2.20 % 

SO3 0.05 % 

Ignition loss 3.08 % 

 
 
Table A.2 Chemical composition of coarse aggregates 

Constituents Percent mass 

CaO 36.12 % 

MgO 0.86 % 

SiO2 26.28 % 

Al2O3 2.47 % 

Fe2O3 1.09 % 

Na2O 0.57 % 

K2O 0.46 % 

SO3 0.05 % 

Ignition loss 30.25 % 
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APPENDIX 2 JENNINGS AND TENNIS MODEL FOR 
CALCULATING GEL CONTENT 
CHS gel content (γCSH) = CSH gel weight/ concrete weight = mCHS-gel/mconcrete 

concrete

pastecement
CSHsolidCSH

concrete

gelCSH
CSH m

m
V

m
m −

−
− == ργ        [1] 

( )2211 461.0347.0 ppcV solidCSH θθ +=−        [2] 

 

Where θ1 and θ2 are the degree of hydrations of C3S and C2S respectively, p1 and p2 are the 

proportions of C3S and C2S compounds in cement respectively. θ1 and θ2 can be calculated 

using Avrami equation while p1 and p2 can be determined from Bogue phase composition 

model. 

In equation [2], c is the cement content used in cement paste, which can be determined by 

relation [3] as follows: 

⎟
⎠
⎞

⎜
⎝
⎛ +

=

C
W

c
1

1            [3] 

Let us now determine the gel content of concrete used in present work. The calculated 

parameters are quoted in Table 2.1. Note that the calculation correspond to 28 days of curing 

period plus 1 year (365 days) of immersion time or a total of 393 days of concrete age.  

 
Table A.3 Calculated parameters to determine gel content for 393 days of concrete age 

Parameters θ1 θ2 p1 p2 ρCSH 

     Kg-m-3 

Values 1 0.61 54 22 2340 

 

The output can be quoted in Table 2.2.  

Table A.4 Calculated gel content for 393 days of concrete age 

Parameters c VCSH-solid γCSH 

   Kg-m-3 concrete 

Values 0.714 0.18 149 

 

In the following tables, the values corresponding to 18 months of exposure period are quoted. 
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Table A.5 Calculated parameters to determine gel content for 573 days of concrete age 

Parameters θ1 θ2 p1 p2 ρCSH 

      

Values 1 0.63 54 22 2340 

 

Table A.6 Calculated gel content for 573 days of concrete age 

Parameters c VCSH-solid γCSH 

   Kg-m-3 concrete 

Values 0.714 0.18 149 
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APPENDIX 3 LINEAR BINDING ISOTHERM 
A non linear binding isotherm between free chlorides and bound ones for the case of 165 g/l 

NaCl has already been presented. Here the same experimental data is used to extract a linear 

isotherm using water and acid soluble chloride concentrations. This binding isotherm is given 

just for demonstration purposes as there are chloride ingress models which propose a linear 

binding isotherm.  

 
 
 
 
 
While making simulations with the above isotherm, all negative free chloride values should be 

set  to zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Linear binding isotherm 
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APPENDIX 4 CURVE FITTING WITH ERFC MODEL OF 
CHLORIDE INGRESS IN CONCRETE 
Look at the Fick's second law of diffusion. 

)
4

().(),(
tD
xerfcCCCtxC isi −+=         [1] 

1. The above equation cannot handle a decrease in chloride content near the material surface, 

therefore all such points should be omitted while applying equation [1] to a chloride 

profile. Only those points should be selected which favor a natural fit with the above 

equation. A data point should not be considered, when it is located in the decreasing zone 

of chloride content near the surface as equation (1) cannot deal with this phenomenon (for 

example point 1 and 2 in the Figure 2).  

2. A chloride profile is obtained by determining chloride content over depth. Although such 

a profile is usually presented as a line graph, it should be kept in mind that the determined 

chloride content is the content of a slice (1 or 2 mm in depth) and therefore represents the 

mean chloride content over the width of the slice. Hence, a chloride profile presented as a 

bar diagram instead of a line graph would represent more closely the actual determination. 

3. For a chloride profile in bar diagram, it is understandable that the measured profile 

represents reality more closely when smaller slices are taken for the determination of the 

chloride content.  

4. For each point on a chloride profile, a minimum quantity of concrete powder is needed to 

carry out further analysis. In case smaller slices are selected, it should be assured that 

enough powder is obtained from each slice. Otherwise, the diameter of the sampling 

should be increased so as to obtain more powder from a smaller slice.  

5. Again look at Figure 3. Points 1, 2 and 3 do not coincide with the natural fit of 

experimental chloride profile and if such points are included, the results might lead to 

wrong conclusions. Such calculations were made for demonstration purposes. For 

example, if we include the points 1, 2 and 3 in curve fitting with equation [1], the results 

are as followed.     

Cs = 1.08 % mass of concrete, 

Da = 2.51E-12 m²/s. 

If these points are exempted, the following results are met with. 

Cs = 0.95 % mass of concrete, 

Da = 2.31E-12 m²/s. 
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It might seem to be little difference at this level but an under or over-estimation of these 

values might lead to severe mis-calculations, which are based on early age results.  
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Figure 3 A Chloride profile 
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