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FULL CRITICAL REVIEW

High-entropy alloys: a critical assessment of
their founding principles and future prospects
E. J. Pickering1∗ and N. G. Jones2

High-entropy alloys (HEAs) are a relatively new class of materials that have gained considerable
attention from the metallurgical research community over recent years. They are characterised
by their unconventional compositions, in that they are not based around a single major
component, but rather comprise multiple principal alloying elements. Four core effects have
been proposed in HEAs: (1) the entropic stabilisation of solid solutions, (2) the severe distortion
of their lattices, (3) sluggish diffusion kinetics and (4) that properties are derived from a cocktail
effect. By assessing these claims on the basis of existing experimental evidence in the literature,
as well as classical metallurgical understanding, it is concluded that the significance of these
effects may not be as great as initially believed. The effect of entropic stabilisation does not
appear to be overarching, insufficient evidence exists to establish the strain in the lattices of
HEAs, and rapid precipitation observed in some HEAs suggests their diffusion kinetics are not
necessarily anomalously slow in comparison to conventional alloys. The meaning and influence
of the cocktail effect is also a matter for debate. Nevertheless, it is clear that HEAs represent a
stimulating opportunity for the metallurgical research community. The complex nature of their
compositions means that the discovery of alloys with unusual and attractive properties is
inevitable. It is suggested that future activity regarding these alloys seeks to establish the nature
of their physical metallurgy, and develop them for practical applications. Their use as structural
materials is one of the most promising and exciting opportunities. To realise this ambition,
methods to rapidly predict phase equilibria and select suitable HEA compositions are needed,
and this constitutes a significant challenge. However, while this obstacle might be considerable,
the rewards associated with its conquest are even more substantial. Similarly, the challenges
associated with comprehending the behaviour of alloys with complex compositions are great,
but the potential to enhance our fundamental metallurgical understanding is more remarkable.
Consequently, HEAs represent one of the most stimulating and promising research fields in
materials science at present.
Keywords: High-entropy alloys, Alloys, Alloy design, Structural materials, Thermodynamics, Atomic diffusion, Lattice strain

1. Introduction
High-entropy alloys (HEAs) are alloys that contain mul-
tiple principal alloying elements, often in near-equiatomic
ratios. They are, therefore, compositionally very different
from classical engineering alloys, in that they are not
based on one majority component into which minority
additions are made. First brought to the attention of the
academic community in 2004 through the work of Yeh
et al.1 and Cantor et al.,2 their design is based around

the concept that their high configurational entropies of
mixing should stabilise solid-solution phases relative to
the formation of potentially-embrittling intermetallic
phases. As a result, HEAs should exhibit special micro-
structural stability, as well as a variety of other unique
and unusual properties arising from their complex
compositions.
The majority of the HEA research and discourse has

been influenced notably by the original and subsequent
publications of Yeh and co-workers.1,3–8 From their work,
four core effects have been proposed, which are as follows:
(i) The high configurational entropy of HEA solid sol-
utions has a dominant effect on phase Gibb’s energy,
and stabilises solid solutions relative to intermetallic
phases.
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(ii) The lattices of HEAs are severely strained, because
of the size mismatch between alloying elements. This, in
turn, has a range of different effects on the physical and
mechanical properties of HEAs.
(iii) HEAs exhibit sluggish diffusion kinetics since
atomic diffusion is more difficult through solid sol-
utionswith high concentrations of many elements, prin-
cipally due to fluctuations in the bonding environment
through their lattices.
(iv) The complexity of HEA compositions gives rise to
a so-called ‘cocktail effect’ in which inter-element inter-
actions give rise to unusual behaviours, as well as aver-
age composite properties (rule-of-mixtures).
The importance of these core effects has since been

echoed by numerous HEA studies, and they have played
a significant role in instigating and directing a great deal
of HEA research.
Interest in HEAs is increasing dramatically at present,

see Fig. 1, and a number of reviews of the HEA litera-
ture have been made over the past 5 years.5,6,8,10–13

These have been in the form of comprehensive and
detailed summaries, such as the review by Zhang
et al.,14 as well as shorter critical assessments, such as
the recent work of Miracle.15 However, none of these
have critically assessed the evidence for the four core
effects described above – this is one, and the most
important, of the three key aims of this review, and is
tackled to begin with. The second aim of this review
is to examine the opportunities and challenges associ-
ated with developing HEAs for use as new structural
materials. Particular focus will be given to the develop-
ment of methods that can be used to rapidly predict
HEA microstructures and select alloys for experimental
evaluation. The final aim is to highlight the exciting
opportunity that the study of HEAs represents in
terms of progressing our fundamental understanding
of the behaviours of alloys. It should be noted that
this review does not seek to detail the particular micro-
structures, processing and properties of each HEA sys-
tem that has been explored – this has been achieved to
a significant extent through some of the previous
reviews.

2. Entropic stabilisation
The original and most commonly reported compositional
definition of HEAs is that they contain at least five alloy-
ing elements with concentrations in the range 5–35 at.-%.1

These criteria were chosen as they were considered to
define the compositional range in which the configura-
tional entropies of alloys would be high enough to over-
come the enthalpies of formation of intermetallic
phases, resulting in stable solid solutions.4 For a solution
comprising n components, each with mole fractions Xi,
the configurational entropy, DSconfig, is as follows:

DSconfig = −R
∑n
i=1

Xi lnXi.

An alternative definition, which draws on the same prin-
ciple of maximising configurational entropy, is that
HEAs have a configurational entropy of mixing,
DSconfig . 1.5R.5,16 For equiatomic alloys, this is only
achievable for alloys with five or more components, and
the two definitions coincide for majority of HEAs con-
sidered to date.
The entropic stabilisation of solid solutions in HEAs is

fundamental to their design philosophy, and many reports
have championed its effectiveness, particularly early HEA
studies and reviews.1,3,4 However, recently there have been
a number of challenges to the notion that configurational
entropy has such an overarching influence on phase stab-
ility in HEAs.17–26 Importantly, these challenges have
been supported by experimental experience – there appear
to be very few HEAs that are stable as solid solutions at
all temperatures up to melting. At present the only
HEAs thought to be stable as a single solid-solution
phase are the equiatomic refractory body-centred cubic
(bcc) HEA VNbMoTaW,27,28 and perhaps members of
the TiVxZrNbMoy

29 and AlxCrFeCoNi30–32 systems for
low values x and y. To the authors’ knowledge, all other
HEAs investigated have been found to decompose into
more than one solid phase given the correct heat
treatment.
A recent prominent example of phase instability

reported in HEAs is that seen in the equiatomic HEA
CrMnFeCoNi.33–35 CrMnFeCoNi is widely considered
to be the examplar HEA; first studied by Cantor et al.2

in their pioneering work on equiatomic multicomponent
alloys, it has been the focus of numerous investigations,
with a particular focus on its mechanical properties and
processing.33,36–57 Reports have often upheld CrMnFe-
CoNi as being stable as a single solid-solution phase, a
characteristic that has made its mechanical properties of
great interest, and a number of studies with a focus on
phase stability have confirmed this.19,22,58–60 However, it
has recently been shown that exposures below 800WC trig-
ger precipitation in the alloy, most notably of the Cr-rich σ
phase.33–35 Hence, CrMnFeCoNi can no longer be
thought of as stable as a single face-centred cubic ( fcc)
phase below its solidus.
A similar story has emerged for the HEA Al0.5CrFeCo-

NiCu.3,21,61–74 Part of the AlxCrFeCoNiCu series of
alloys, which have received a great deal of atten-
tion,1,64,73,75–86 initial reports appeared to suggest that
Al0.5CrFeCoNiCu was stable as a single face-centred
cubic ( fcc) solid-solution phase.3,62–64,75,76,78 Subsequent
studies, however, found that this not the case, and have

1 The publication rate for HEA literature since 2004. Data
gathered from Scopus9 by searching for ‘HEAs’ in the key-
words field and limiting the subject area to ‘Materials
Science’
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shown that it decomposes into multiple phases, including
intermetallic Ni–Al-based B2, Ni–Al-based L12 and Cr-
Co-Fe-based σ precipitates.21,70–74,86 Indeed, a survey of
the literature suggests that the addition of significant
amounts of Al, Ti and/or Cu (> 5 at.-%) almost always
results in the formation of more than one phase in
HEAs,18,21,30,69–72,77–83,87–133 and that the incorporation
of significant amounts of Cr increases the likelihood of
σ phase formation in non-refractory
alloys.17,31,35,62,69,73,85–87,97,107,113,125,128,134–143

One of the most persuasive studies demonstrating the
limited influence of configurational entropy on the phase
stability of HEAs was that of Otto et al.19 In this work,
elements were substituted into CrMnFeCoNi that had
the same crystal structure and a comparable size and
electronegativity as the atoms they replaced, in an
attempt to maximise the chance of solubility through
the Hume-Rothery rules.144,145 Critically, this study
found that in every case of substitution, the resulting
alloy was not stable as a single solid-solution phase.
Other compelling results were presented by Senkov
et al. 24,25 and Troparevsky et al.,26 who have predicted,
contrary to the HEA design philosophy, that the for-
mation of intermetallic phases becomes more likely as
the number of alloying elements increases, see Fig. 2.
This conclusion is supported by the original work by
Cantor et al.,2 in which it was found that equiatomic
alloys with 16 and 20 alloying elements were not stable
as single phases (although these alloys were only assessed
in the as-cast state).
It has been suggested that because HEAs typically

appear to comprise far fewer phases than the Gibb’s
phase rule would allow, configurational entropy is pro-
viding a significant stabilising effect even in multiphase
alloys. However, when assessing this statement, the fol-
lowing three points must be considered. First, it must
be recognised that Gibb’s phase rule states the maximum
number of equilibrium phases that can be present at any
one point in a phase diagram, not the number that can
be expected in general. For example, for binary combi-
nations of elements at ambient pressure, the maximum
of phases that can co-exist at any temperature is three.
However, only at invariant reaction points, such as
eutectic or peritectic points, are the maximum number
of phases observed. Furthermore, in systems which
show complete miscibility in both the liquid and solid

state, such as the Ag–Cu system, three phases do not
co-exist at any point. Second, it is clear that enthalpic
factors have overcome entropic effects in multiphase
HEAs, and that there is no guarantee that any solid sol-
utions remaining after decomposition contain significant
fractions of many components (i.e. have high DSconfig
values). Third, very careful assessment of HEA stability
is required before claims are made about the particular
number of phases present, and this has not been
achieved in many studies.
Experimentally proving the absolute thermodynamic

stability of an alloy is, of course, an impossible task, but
there are two salient features that studies assessing HEA
stability should include. First, appropriate heat treatments
must be selected to homogenise as-cast material, and then
promote phase decomposition. Focus should be away from
as-cast microstructures, which have received a great deal
of attention in many HEA studies,1–3,27,30,61–64,76,79,87–
91,94,96,102,109,111,113,120,122,123,126,130,133–136,141,146–165 since
although their examination is useful to assess elemental
partitioning tendencies (microsegregation), their analysis
is not appropriate for assessment of phase stability. The
importance of heat-treating as-cast HEAs to produce
nearer-equilibrium microstructures has been highlighted,
see for instance [166] and [167]. Following homogenisation,
precipitation and phase separation should be probed by
using low homologous temperatures that might typically
be expected to act as aging treatments, where the effect
of entropy on Gibb’s free energy is less pronounced. The
high temperatures used to homogenise materials following
casting are not suitable for this purpose. Many HEA
studies have used aging heat treatments effectively to
induce precipitation, see for instance.34,35,65,66,69,93,101,103–
105,110,168,169

Second, high-resolution techniques should be used to
determine whether phase decomposition has occurred at
the small scale. Straightforward low-resolution SEM
analysis is not usually sufficient to achieve this, since
nanoscale precipitation and phase separations have often
been reported.1,18,20,21,34,62,72,73,75,86,91,93,99,104,114,123,127,
131,133,160,170–174 Techniques such as atom-probe tomogra-
phy (APT) or scanning transmission electron microscopy
(STEM) are required, see, for example, Fig. 3. The use of
X-ray diffraction (XRD) in HEA studies is commonplace.
However, caremust be taken as the presence of phaseswith
low volume fractions may not be detected using this

2 The fraction of alloys with N components predicted to exist as solid solutions (SS), as intermetallics (IM), and as mixtures of
solid solutions and intermetallics (SS+ IM) at (a) T = Tm and (b) T = 600WC. Reprinted from25 with permission from Elsevier
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technique. For example, SEM analysis revealed the pres-
ence of σ precipitates in Al0.5CrFeCoNiCu at significantly
shorter thermal exposure times than XRD,74 highlighting
the need to combine a number of techniques when charac-
terising HEA microstructures. Careful consideration of
diffraction peak profiles is also required, since what may
at first appear to be a single peak could in fact be a result
of multiple phases with similar structures and lattice par-
ameters, see Fig. 4.21,72 Such assessments need to be
made at high diffraction angles, where there is greater sen-
sitivity to small variations in lattice spacing.
In summary, there is limited evidence to suggest that

entropic stabilisation has an overarching effect on the
microstructural stability of HEAs. It can be proposed
that in the rare cases that HEAs have been found to be
stable as a single solid-solution phase, it is not the effect
of high configurational entropy that leads to their stability
per se, since so many HEAs are evidently unstable. Rather,
it seems that the enthalpy term associated with solution
separation or intermetallic formation has not been signifi-
cant in these cases. The influence of enthalpy, not entropy,
is predominant. Evidence has yet to be presented that
demonstrates configurational entropy can play a signifi-
cant role in the stabilisation of solid solutions in multi-
phase HEAs, and that it does so to a greater extent than
for conventional alloys, including concentrated alloys
like Ni-base superalloys and twinning-induced plasticity
(TWIP) steels. Careful experimental characterisation of
HEAs is necessary before statements can be made about
their stabilities.

2.1. Aside: naming conventions
Given the conclusions reached above, it is debatable
whether the name ‘HEAs’ remains appropriate, particu-
larly given the inherent association with the concept of
entropic stabilisation. Recently, there have been some dis-
cussions of alternative naming conventions, for instance
in the critical assessment by Miracle.15 ‘Compositionally
complex alloys’ has found some support, but in our
opinion this is not ideal as many existing materials, such

3 STEM energy-dispersive X-ray (EDX) elemental compositionmaps of dendritic material in the HEAAl0.5CrFeCoNiCu in the as-
cast state, showing a spinodally-decomposed structure, and Ni–Al-rich L12 phase precipitates. Reprinted from 72

4 XRD peak profile analysis for the HEA Al0.5CrFeCoNiCu, in
which three separate phases with similar lattice par-
ameters were shown to be present. Reprinted from 72
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as Ni-base superalloys, are arguably more composition-
ally complex than many HEAs. ‘Multi-principal element’
or ‘complex concentrated alloys’ are perhaps more suit-
able in this respect. However, the authors believe that
since the ‘HEA’ terminology is so embedded in the dis-
course, that a change in the naming convention would
only lead to confusion. What is important is that the
underlying metallurgical characteristics of HEAs are
addressed and clarified, and that these principles are
associated appropriately with the HEA designation.
At this point, it is also worth discussing the convention,

or lack thereof, for describing HEA compositions. For
instance, the same alloy has been studied in refer-
ences33–35,37–39,51,57 and described in no fewer than eight
different ways: FeCoNiCrMn,33 FeCoCrNiMn,38 FeCr-
NiCoMn,39 FeNiCoCrMn,57 CrMnFeCoNi,35 CoCr-
FeMnNi,34 CoCrFeNiMn,51 and NiFeCrCoMn.37 This
makes searching for a particular alloy composition
unnecessarily difficult, and also increases the likelihood
of confusion and mistaken identification. Although
alphabetical order represents a possible solution to this
problem, the authors believe that ordering by atomic
number is the most suitable option when expressing
HEA compositions as atomic ratios. In addition, we
believe that the order should not be influenced by the par-
ticular concentrations of the elements, for example,
CrMnFeCoNi and Al0.5CrFeCoNiCu. Importantly, this
convention transcends potential language barriers and,
therefore, is likely to prove the most consistent interna-
tionally. We believe that establishing a systematic conven-
tion for naming different HEAs is far more important
than renaming the whole alloy field.

3. Severely distorted lattices
It is well known that the introduction of substitutional
solute atoms into a solvent matrix causes the displace-
ment of neighbouring atoms from their ideal lattice pos-
itions, generating a strain field, and that it also induces
a change in bulk lattice parameter. The localised distor-
tions around the solute atom will interact elastically
with dislocations moving through the material, resulting
in solid-solution strengthening.175,176 Well-established
models for solution strengthening have been produced
for both dilute and concentrated alloys,177–179 and their
modification for HEAs is discussed in Section 8 of this
article. A number of studies have suggested that severe lat-
tice distortion contributes significantly to HEA proper-
ties,3,65,75,84,85,97,165,180–186 most notably with respect to
increasing alloy strength, see for instance165,187. Impor-
tantly, however, it is apparent that the strengthening effect
of precipitates may have been overlooked in some cases.
A schematic of the proposed localised lattice distortion

effect in HEAs is reproduced in Fig. 5. It has been
suggested that these distortions arise not only from
atomic size misfit, but also differences in the crystal struc-
ture and bonding preferences of alloying elements pre-
sent.8 It has been proposed that decreased XRD peak
intensity in HEAs is evidence of lattice straining of this
type,3,8,65,75,97,180 since it should result in increased diffuse
scattering. It is true that diffraction peak intensity should
decrease with increasing lattice strain around solute
atoms, and that these localised static displacements have
a similar effect on intensity as thermal vibrations.188–193

Typical lattice strains from solute atoms are not thought

to generate significant levels of peak broadening,190,191

as is observed in alloys with high dislocation densities or
small crystallite sizes. However, it should be noted that
a number of effects can influence the peak intensity and
diffuse scattering observed in a diffraction pattern, includ-
ing crystallographic texture, thermal vibrations and fluor-
escence. Hence, attentive assessment of high-quality
experimental data is needed before any comment can be
made on the magnitude of lattice distortions.189–194 In
addition, the levels of strain considered historically have
been small, allowing for particular estimations to be
made, and the effects of severe lattice distortions may be
different.
Attempts have been made to assess the lattice distortion

effect in HEAs by using pair distribution function (PDF)
analysis. A PDF studyof Al1.3CrFeCoNiCu has been con-
ducted using neutron scattering data, and it was proposed
that evidence of lattice distortion was found.85 Neverthe-
less, Al1.3CrFeCoNiCu comprises at least three phases at
low temperatures, and a complex analysis would have
been necessary to account for the effect of this in PDF
measurements. A separate study used both neutrons and
X-rays to produce PDFs of the ternary alloy ZrNbHf,
which was described as being predominantly a single
phase.183 However, ZrNbHf is not an HEA by definition,
and significant discrepancies between X-ray and neutron
PDFs were recorded.
One might assume that evidence of severe lattice distor-

tion could be found using high-resolution STEM – look-
ing in cross section, atomic columns might look more
blurred in a highly strained lattice than in an unstrained
one, and atomic planes may also look distorted in the
image plane. However, careful analysis accounting for
phonon effects and other artefacts would be necessary
before such conclusions were reached. Although it has
been suggested that high-resolution TEM (HRTEM)
images can show lattice distortion,195 the gentle long-
range distortions due to the presence of defects such as

5 Schematic representation of strained lattices in HEAs.
Reprinted from5 with permission from Springer
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dislocations are not consistent with the localised strain
proposed by Yeh et al.3,8,65,75,97,180

Toda-Caraballo and Rivera-Diáz-del-Castillo185 have
recently predicted lattice strains in HEAs using both a
density function theory (DFT) approach, and a spring
model based on quadratic potentials. Their article pro-
vides details of useful models for the prediction of lattice
parameters and lattice strain in HEAs. Critically, how-
ever, their study predicted localised strains in nearest-
neighbour bonds in bcc HEAVNbMoTaW of no more
than +5% of lattice parameter. This level of strain is
no greater than those predicted and measured in both
dilute and concentrated binary alloys.189,190,196–201

Indeed, the displacements are of similar size to those
expected from thermal vibrations around room tempera-
ture185,190,196 and, therefore, cannot be described
assevere.
Besides assessment of experimental evidence and pre-

diction results, qualitative arguments based on the phase
energetics can be made to explain why severely distorted
lattices are not likely to exist. As noted by Hume-Rothery,
solid solutions tend to be unstable if the mismatch in size
between solvent and solute atoms is large enough.144,202

Studies that have assessed the effect of atomic size mis-
match, for example by the inclusion of Al in alloys, have
indeed found that a larger mismatch makes the formation
of solid solutions in HEAs less likely,152,203–208 as will be
discussed in more detail in Section 7. It seems clear that
even in HEAs, any strains would inherently increase the
free energy of the lattice, at least partially offsetting any
stabilisation to solid solutions delivered by increasing
configurational entropy. One can argue that it is possible
to have a severely strained lattice that is unstable, or have
a stable solid solution that is not very strained, but it
seems unlike that both stability and severe strain can be
achieved simultaneously. There are, of course, many
reasons besides strain that solid solutions decompose to
mixtures of phases, but it is clear that strain would only
decrease stability. In summary, there is no clear evidence
to date that demonstrates that lattice distortions in
HEAs are much greater than 5% of the lattice parameter,
although there is some uncertainty as to how severe dis-
tortions would manifest themselves in diffraction data.
This topic requires further investigation, and is likely to
contribute significantly to our understanding of concen-
trated alloys.

4. Sluggish diffusion kinetics
Closely associated with the severely distorted lattice effect
is the proposal that diffusion kinetics in HEAs are
anomalously slow or sluggish.4–6,8,209 This has been used
to explain particular experimental observations in a
number of studies.1,52,53,55,65,69,75,100,124,166,181,205,210–214

Yeh et al.5,6,8,209 have suggested that anomalously slow
diffusion in HEAs originates from fluctuations in the
potential energies of lattice sites that are met by diffusing
species, Fig. 6. In a pure element or dilute solid solution,
the potential energy associated with each lattice site is
approximately equal, whereas in an HEA there will be
sites in which the bonding configuration will be more pre-
ferable for a diffusing species than others, and these act as
temporary traps, slowing the rate of diffusion. Others
have suggested that lattice distortions are also associated
with slow diffusion in HEAs,69,181 and it seems reasonable

to expect fluctuations in the potential energies of sites in a
distorted lattice.
To date, only one study has published measured values

for self-diffusion coefficients in HEAs, that by Tsai
et al.209 They examined the diffusion of each constituent
element in the equiatomic HEA CrMnFeCoNi, and
found that values for the scaled activation energy, Q/Tm

(Q being the activation energy and Tm the alloy melting
point), were universally higher in the HEA than in
selected fcc binary alloys and austenitic steels. Indeed,
the values for Q/Tm are also higher than any of those pre-
sented by Brown and Ashby215 for fcc binary alloys – Tsai
et al.209 measured avalue of 0.1975 kJ mol−1 K−1 for Ni in
CrMnFeCoNi, Fig. 7, while the maximum value found by
Brown and Ashby215 was 0.1933 kJ mol−1 K−1, and on
average it was0.1500+ 0.0015 kJ mol−1 K−1. Of course,
diffusivity (D) depends exponentially on Q/Tm, and
hence even small variations in Q/Tm can lead to order-
of-magnitude changes in D. However, it must be recog-
nised that D also depends on the value of the pre-expo-
nential factor (D0), and this can vary significantly, more
than compensating for changes in Q/Tm. For instance,
the melting-point D values for Pt diffusion in Cu and W
diffusion in Ni recorded by Brown and Ashby215 are
below the lowest values measured for D in CrMnFeCoNi
by Tsai et al.209

Aside from direct measurements of diffusivities,
there is a great deal of experimental evidence
that implies that atomic movement in HEAs is not
unusually sluggish. Of particular prominence are
observations of precipitation in many as-cast HEA
samples,1,21,62,70–72,75,91,99,100,114,121,123,127,147,172 including
those subjected to very rapid cooling,73,132,170,171 as well
as in those quenched from high temperature heat treat-
ments.31,72,174 Indeed, it has recently been revealed that
Ni–Al-based B2 precipitates are able to form on air cooling
the HEA Al0.5CrFeCoNiCu74 from high temperatures.
These results are in direct contrast to the suggestion that,
because diffusion is so slow in HEAs, furnace cooling can
be equated to a rapid quenching operations.69,124

It should be recognised that care must be taken when
relating rates of precipitation to values for D, since
atomic fluxes are not only influenced by D, but also

6 Schematic representation of the proposed difference
in lattice potential energy profile along an atomic diffu-
sion path in a pure element or dilute solid solution
(top) and an HEA lattice (bottom). Note it is assumed
that the distance between atomic sites is constant. A
similar schematic for the HEA energy profile was given
in reference 8
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by gradients in concentration and chemical potential.
Nevertheless, it is atomic fluxes that are the principal
concern for metallurgists in practice, and rapid precipi-
tation suggests that these fluxes are high. If we consider
the possibility that the D values are abnormally low in
HEAs, then in cases of rapid precipitation it must be
that gradients in chemical potential are remarkably
severe. Such cases could then be seen as confirmation
of the fluctuations in lattice potential energy proposed
by Yeh et al. 5,6,8,209 – the changes in energy are simply
so large that the ordering or clustering of species is una-
voidable. Observations of rapid precipitation cannot be
aligned with both the entropic stabilisation and sluggish
diffusion effects simultaneously.
It has also been suggested that the recrystallisation

resistance observed in some HEAs provides evidence for
their sluggish diffusion kinetics.52,53,55,65,212,214 It is true
that slow atomic diffusion does inhibit recrystallisation,
but rates will also depend on other variables such as dis-
location concentrations and distributions, prior grain
size, and the presence of second phases or other inhomo-
geneities.216 Hence, careful investigation is needed before
recrystallisation kinetics are related to diffusion kinetics.
In summary, the evidence considered here suggests that
atomic diffusion in HEAs is unlikely to beanomalously
slow, and that it is certainly not so in a generalised sense
across all HEAs.

5. The cocktail effect
The cocktail effect is perhaps the most abstract of the core
HEA effects, and it is difficult to determine precisely what
is meant by it and what makes it particularly special. It
appears to have been derived from the piece by Ranga-
nathan217 entitled ‘Alloyed pleasures: Multimetallic cock-
tails’, which describes the mixing of elements in a ‘muti-
metallic cocktail’ to produce HEAs. Recently, Lu et al.
have described it as the ‘overall effect resulted from
mutual interactions among composing elements, which
would bring excess quantities to the average values simply
predicted by the mixture rule’, while Yeh8 has described it
as ‘the overall effect from composition, structure, and
microstructure’. The authors of this review assume that
an example of a property derived from the rule of mix-
tures might be the lattice parameter (e.g. Vegard’s
law,218 at least at low concentrations), while an ‘excess’
property might be increased wear resistance due to the
development of a hard microstructure through
precipitation.
It is not clear from the descriptions of the cocktail effect

in what way it is unique to HEAs. Rules of mixtures apply
to conventional alloys, and special properties can be
obtained through elemental additions – this is fundamen-
tally why so many elements are added into engineering
alloys such as steels and Ni-base superalloys. The proper-
ties of all alloys, not just HEAs, depend critically on com-
position and microstructure. Perhaps it is best to use this
term in relation to the surprising and exotic properties
than can arise in HEAs due to their complex compo-
sitions. Otherwise, it could be argued that this effect
should be dismissed.

6. A route for alloy development
To the authors’ knowledge, HEAs have yet to be exploited
commercially. However, a number of potential appli-
cations have been highlighted in the literature. These
include their use as protective coatings owing to their
good corrosion and wear resistance1,80,84,115,170,171,219–
231 (see review of laser-deposited HEA coatings by
Zhang et al.232), as alloys for bulk metallic
glasses,11,233–236 and even as materials for hydrogen sto-
rage237 and diffusion barriers.1,181,182 There has also
been interest in their magnetic1,10,97,238–243 and thermo-
electric properties.244 These properties and applications,
and others, are discussed in more detail in the reviews
by Zhang et al.14 and Tsai et al.6 The authors consider
one of the most promising potential applications for
HEAs is as structural materials, and this is addressed
specifically in the following text.
It has been suggested that specific HEAs demonstrate

some exceptional mechanical properties in comparison
to conventional alloys, which might make them attractive
in structural applications. Examples include the impress-
ive fatigue resistance of Al0.5CrFeCoNiCu,67,68,174 the
wear resistance of AlxCrFe1.5MnNi0.5,

92,245 Al0.5CrFeCo-
NiCu,246 AlxTiyCrFeCo1.5Ni1.5

106 and derivatives,61–63

as well as the exceptional toughness and strength of
CrFeMnCoNi at cryogenic temperatures,36,40,41 which
will be examined in particular detail below. It is not
appropriate to talk about the properties of HEAs in gen-
eral terms, since their different compositions can deliver
very different properties, arguably to an greater extent

7 Normalized activation energies of diffusion for Cr, Mn, Fe,
Co and Ni in different matrices. Reprinted from209 with per-
mission from Elsevier

Pickering and Jones High-entropy alloys

International Materials Reviews 2016 VOL 61 NO 3 189



than that which can be expected across alloys systems like
steels. However, what does seem to be clear is that a great
number of the HEAs examined to date are simply too
brittle to be considered useful as engineering materials.
While low ductility is certainly not desirable for struc-

tural alloys, neither is the low yield strength observed in
alloys comprising simple solid solutions, particularly
when service conditions involve high temperatures.
Almost all successful engineering alloys are based upon
strengthening precipitates or interfaces that act as strong
athermal obstacles to dislocation motion. This fact was
highlighted by Miracle,16 who proposed to switch the
focus of HEA research away from achieving single-
phase microstructures, to developing mixed solid-sol-
ution/intermetallic microstructures akin to those found
in Ni-base superalloys. We would certainly advocate this
approach. However, as Miracle highlighted, this rep-
resents a significant challenge, since careful control of
the sizes and volume fractions of strengthening interme-
tallic phases is required to achieve the correct balance
of properties. The idea of a balance in properties is a
key one – it has been suggested that HEA studies have
too often focussed on one property of interest, rather
than the combination of properties required for most
applications.15,247 Typically, good corrosion resistance,
toughness and microstructural stability will be required
alongside strength. With respect to corrosion resistance
in particular, it can be foreseen that HEAs could offer a
potential advantage over conventional alloys – if their
solid solutions are even marginally stabilised by entropic
effects, then higher additions of protective elements like
Al and Cr into solution may be possible, boosting the like-
lihood of forming protective oxide layers.
The scale of the challenge of developing HEAs for

structural applications is realised when we account for
the enormous range of possible HEA alloy compositions.
The number of equiatomic compositions alone is vast, but
when non-equatomic compositions are considered,211,248

as well as the possibility of incorporating minor alloying
additions,128 then the potential compositional space
becomes extraordinarily large. It must be recognised
that the selection of promising alloy compositions is a for-
midable obstacle, which is at least partly responsible for
the lack of compositional variety across many HEA
studies.
Experimental exploration of the entire HEA composi-

tonal space, whether it be in a random or ill-guided sys-
tematic fashion, is simply inconceivable. Decisions must
be made about potential systems of interest, and they
must be educated and well-informed. Too often, HEA
studies have related the addition of an element directly
to the resulting mechanical properties – an example
might be the idea that the addition of Al improves
strength. Without qualifying this statement using knowl-
edge of how Al influences the microstructure of the
material, little progress can be made. Some useful under-
standing of this type has already been developed through
HEA studies – for instance, it is well known that the
addition of increased levels of Al to AlxCrFeCoNiCu,
AlxCrFeCoNi and similar derivatives leads to the for-
mation of bcc (and related ordered variants) over fcc
structures,30,75,76,78,79,95–97,99,102,112,129,130,160,249,250 which
boosts the hardness of these alloys, but makes them
more brittle.96,117,246,251 However, laborious experimental
characterisation cannot be relied upon in the face of

overwhelming compositional possibility. Powerful predic-
tive methods are required.

7. Phase prediction and alloy selection
in HEAs
The prediction of the stability of solid solutions in HEAs
has been a key area of interest to the HEA community,
and is a topic of great importance with respect to the
direction of future HEA studies. A common approach
has been to utilise the empirical rules of Hume-Roth-
ery144,145 and/or accessible thermodynamic quantities to
form parametric criteria for the stability of HEA solid sol-
utions, which are fitted to experimental
results.152,159,163,173,203–205,207,252–267 These phase-selec-
tion rules for as-cast HEAs were recently reviewed by
Wang et al.258 and Guo,208 and are discussed briefly here.
The most common thermodynamic quantities used

have been DSmix and DHmix. DSmix is evaluated through
equation 1 given above (i.e. is approximated as DSconfig),
and DHmix through the following expression:

DHmix =
∑
i,j i=j

Vijcicj

where Vij = 4DHAB
mix and DHAB

mix are the mixing enthalpies
of binary A–B alloys, as calculated usingMiedema’s semi-
empirical model.268,269 The Hume-Rothery rules for the
stability of alloy solid solutions are based around three
parameters: (1) the atomic size misfit between solvent
and solute, δ, which tends not to exceed ≈15% for stable
solid solutions (this is known as the 15% rule, the argu-
ment being based on strain energy), (2) the electronegativ-
ity difference between two alloy components, Dx, which
tends to be larger in alloys that contain intermetallic com-
pounds and (3) the electron concentration, which is often
taken to be the valence electron concentration (VEC). For
HEAs, in which there are no clear solvent or solute com-
ponents, the formulation of the Hume-Rothery par-
ameters requires modification. For δ, the following
expression has been employed:203,270

d =
�����������������∑n
i=1

ci 1− ri
�r

( )2√

where n is the total number of components i, each which
have concentration ci (atomic percentage) and atomic
radius ri. �r is the average atomic radius of the alloy:
�r = ∑n

i=1 ciri.
203,270 ForDx:152,270

Dx =
����������������∑n
i=1

ci(xi − �x)2
√

where the average electronegativity �x = ∑n
i=1 cixi. Finally,

the VEC is as follows:152

VEC =
∑n
i=1

ci(VECi)

Zhang et al.203 were the first to produce a parametric
study of HEA stability. They plotted HEAs of known
stability in the 3D space defined by DSmix, DHmix and δ,
and hence defined regimes of this space where stable
solid solutions were expected to form, see Fig. 8. Many
others have since followed this methodology, using the

Pickering and Jones High-entropy alloys

190 International Materials Reviews 2016 VOL 61 NO 3



same parameters or others that provide measures of the
same key effects.163,204,252,253,255,258,263–266,271 Studies
have indicated that plots of DHmix vs. δ204–206,255,258

and DHmix vs d2 256 are most useful. Others have used
alternative means of comparison – for instance, Singh
et al.173 have suggested the use the parameter
L = DSmix/d

2, while Wang et al.266,271 replaced δ with a
new parameter for the measure of atomic size mismatch,
arguing that δ does not distinguish effectively enough
between systems that form only solid solutions and
those that decompose to give intermetallic compounds.
Yang et al.252 introduced a new parameter incorporating
both DSmix and DHmix, and used this in conjunction with
δ to form a predictive criterion.
It has been argued that DHmix and δ are the critical par-

ameters of interest with respect to solid-solution stab-
ility,20,204–206,257 which has been reflected in the form of
most of the criteria used. VEC appears to correlate well
with the crystal structures of HEAs, with fcc structures
consistently associated with high VEC values, and low
VEC values delivering bcc structures.152,159,258–260 Tsai
et al.138,272 have used VEC alongside compositional con-
siderations to predict σ formation in HEAs, while others
have compared instances of ordered phase formation
(including topologically close-packed phases, TCPs)
against the average value of the d-orbital energy
level262,273 and Dx.274 It has been suggested that Dx it is
also an indicator of elemental segregation on casting.257

DSmix is not particularly useful differentiator, since it is
uniformly high for HEAs.208

Despite the widespread use of parametric studies, there
are some significant limitations that must be recognised.
First, their particular forms do not necessarily have a
sound physical basis – there is no fundamental expla-
nation for why specific ranges of particular parameters
have been chosen or plotted against each other, aside
from their correlation with experimental results. Singh

et al.20 have suggested that the limits for the various par-
ameters set in the literature are somewhat unsatisfactory
for the understanding of the formation of solid solutions.
Second, there is significant difficulty associated with
accounting for the tendency of an HEA to form interme-
tallic phases. As has been highlighted by a number of
authors, the estimation of the formation enthalpies of
intermetallic compounds, DHf , is inherently important
for this,16,19,267,275 and it is clear that the use of δ and
Dx as proxies for DHf is limited. The regular use of
DHmix as an indicator of DHf can be criticised. It is under-
standable that DHf and DHmix will be related in some way,
since both involve the favourability of bonding between
alloying elements, but the formation of intermetallic com-
pounds an alloy typically involves bonding between par-
ticular subset of species, and this effect may be lost by
estimating the magnitude of DHf using DHmix values cal-
culated for bulk compositions. Several studies have recog-
nised this, and instead of calculating DHmix for full alloy
compositions; they have evaluated it for binary combi-
nations known or suspected to form intermetallics, used
other methods to evaluate DHf directly, or used exper-
imentally measured DHf values.

16,26,267,275 For instance,
King et al.275 estimated DHf using binary Miedema
data to generate a parameter comparing the maximum
Gibb’s free energy change obtained from any clustering
or intermetallic formation to the free energy change for
the formation of a disordered solid solution. They
assessed over 180 000 candidate HEAs to find compo-
sitions which were predicted to exist as single solid-sol-
ution phases. Notably, however, they found significant
discrepancies between predictions using Miedema’s
model (which has been widely used in parametric studies)
and DFT calculations and experimental results. This
further highlights the uncertainty associated with para-
metric studies due to their use of certain assumptions
and semi-empirical models to calculate thermodynamic
quantities. Another example of such difficulties is that
associated with evaluating the influence of the entropic
term on the Gibb’s free energies of solid solutions –
which temperature should be used to compute
TDSconfig? The melting point of the alloy? The tempera-
ture of service? Or a wider temperature range indicative
of that which an alloy might conceivably experience
during its lifetime?
Perhaps the most critical weakness of the parametric

approaches, however, is that almost all are fitted to exper-
imentally obtained data. This is an issue since, as high-
lighted in previous sections, a significant proportion of
the data used for validation have been taken from as-cast
microstructures. These non-equilibrium microstructures
are not indicative of phase stability, not least because
their constituents can change with cooling rate. Even
the use of as-homogenised results, which were exclusively
assessed by Wang et al. recently,258 is not ideal, since they
also do no adequately inform us of alloy stabilities, see
Fig. 9. Essentially, the parametric criteria are only as
good as the data that are used to generate them, and
they continue to predict stable solid solutions in CrMnFe-
CoNi and other non-refractory HEAs, which are now
known to be unstable.
In theory, first-principle prediction techniques like

DFT should be more robust than empirical or semi-
empirical approaches, since they have a more solid
grounding in physics and are less reliant on experimental

8 A plot of DHmix vs. δ showing the distribution of HEAs that
form only solid solutions, that contain intermetallic com-
pounds (alongside solid solutions), and that are amor-
phous. According to this treatment, only solid solutions
form when 5 kJmol−1 ≤ DHmix ≤ 15 kJmol−1 and
d ≤ 6.6.258 The red and blue areas represent the regions
in which amorphous phases and solid solutions are
found, respectively. The green oval encompasses the
HEAs comprising intermetallic compounds. Reprinted
from258 with permission from Springer
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inputs and empirical approximations. A number of studies
have applied such techniques to the prediction of phase
stability and ordering in HEAs,23,250,275–283 as well as
magnetic properties.242 See the review by Troparevsky
et al.284 for further discussions of applying ab initio
methods to predict HEA properties. Troparevsky et al.26

themselves assessed HEA stability using DHf values for
binary compounds computed through DFT. Stable solid
solutions were assumed to exist where DHf was neither
too negative (intermetallic formation) or too positive
(indicating incompatibility of constituent elements).
Excellent agreement with experiment was claimed, but
the range of DHf used was influenced by experimental
results, and hence their model cannot be viewed as truly
independent. In general, the effectiveness of first-principal
models in predicting the formation of complex multi-
component TCP phases and other intricate features of
HEA microstructures has yet to be demonstrated, and is
likely be limited by the number of atoms such models
can assess.
The CALPHAD method285 is a well-utilised approach

to predict phase equilibria in alloys, which does not suffer
from limitations associated with the size of the system
being modelled like first-principle methods do (although
they arguably suffer from system complexity). However,
CALPHAD methods should be applied to HEAs with
caution, since extrapolation from our knowledge of com-
mon binary and ternary systems cannot be realised with
great confidence. Studies that have used CALPHAD for
direct phase predictions have often met with rather lim-
ited success.118,253,286–288 The challenges associated with
using CALPHAD for HEAs have been discussed in
Refs. [166] and [167]. They have used CALPHAD by
examining binary databases for ‘matching elements’ that
could then be combined to predict phases in HEAs.
They were able to successfully predict the major phases
in three HEAs, but it was acknowledged that CALPHAD
cannot be used to predict the formation of new unknown
phases in the high-order HEA systems. Their approach
did not predict the formation of σ in CrMnFeCoNi at

the temperatures at which it has been observed. The for-
mation of σ in CrMnFeCoCu, VCrMnCoNi and VMnFe-
CoNi is also not well predicted by CALPHAD.19,167,213

Indeed, the accurate prediction of intermetallic phases,
the formation of which is of great importance to engineer-
ing alloys, appears to be problematic for CALPHAD
methods in general.
Although CALPHAD methods are by no means ideal

candidates for the phase prediction in HEAs at present,
there is arguably a lot of merit in using them to rationalise
the results obtained from experimental investi-
gations.19,213 There is even more potential in using it as
a guide for alloy selection,16,213 particularly when the
parametric criteria discussed above are the only alterna-
tive option. Perhaps the most important work on the
topic of HEA selection has been carried out by Miracle,
Senkov and co-workers.16,24,25 Their seminal work has
evolved around the recognition that the compositional
space of HEAs is essentially limitless, and hence there
must be a focus on the rapid selection and evaluation of
alloying elements and HEA compositions if progress is
to be made. The methodology, detailed in their 2014
article,16 begins with the selection of a ‘palette’ of poten-
tial alloying elements based on fundamental properties
such as melting point, elastic modulus and density – the
justification being that an alloy tends to take on the prop-
erties of their constituent elements (the cocktail effect). A
three-stage process is then initiated: The first stage (‘Stage
0’) is a screening assessment using CALPHAD to elimin-
ate alloys that do not meet specific criteria, and hence
select promising equimolar alloys. For instance, alloys
with solidus temperatures below the temperature of
intended use should be eliminated, as will those predicted
to exhibited a first-order phase transition that could result
in property changes during service. Alternatively, alloys
could be eliminated if their matrices do not include the
required levels of Cr, Al or Si for oxidation resistance.
As with all alloy design, the criteria imposed at this
first screening stage will be dependent on the intended
application. The second stage involves rapid experimen-
tal evaluation of microstructure and elementary mech-
anical and environmental properties, using samples
containing gradients in composition such that chem-
istries around the equimolar one selected can be sampled
– the importance of sampling such space has been
stressed recently by Pradeep et al.,211 who have also
examined rapid-through-put screening of HEAs. The
production of compositionally gradiented samples can
be achieved, for example, by the use of physical vapour
deposition (see work of Ludwig et al.289,290), and micro-
structural characterisation can be accomplished through
the use of simultaneous EDX analysis and electron back-
scatter diffraction (EBSD) in the SEM. The third stage
involves rapid experimental evaluation of the mechan-
ical properties of candidate alloys using samples con-
taining gradients in microstructure (for instance, grain
size).
However, it should be stressed that rapid-through-put

screening methods for both microstructure and mechan-
ical property selection are not without their limitations at
present. The sample preparation and measurement tech-
niques have yet to be fully developed. The heat treatment
of samples can be difficult, and can result in the debonding
of the films from their substrates, or film-substrate reac-
tions. Measured mechanical properties can be influenced

9 A plot of DHmix vs. δ in the same style as Fig. 8, but this
time plotted using results from alloys heat treated in the
range 0.5 < T/Tm < 0.9. The red and blue areas represent
the regions in which intermetallic phases and solid sol-
utions are found, respectively. The green oval encom-
passes the HEAs comprising an addition of Al. Reprinted
from258 with permission from Springer
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by substrate interactions and residual stresses. Further-
more, the complexities of the heat treatments and their
influence on microstructure and mechanical properties
means there is a danger that promising alloys could be
too easily dismissed. The link between heat treatment,
microstructure and properties can be very complex and
is not readily predictable, particularly for unknown sys-
tems. One can envisage that rapid approaches might dis-
miss most steels (had they not yet been discovered), due
to their polymorphism and tendency to form brittle mar-
tensite when cooled quickly. Given these issues, care
must be taken to validate the results of rapid-through-
put methods against those obtained from conventional
‘bulk’ samples.
One of the key features of Miracle et al.’s16 approach is

that experimental results are fed back into the CAL-
PHAD stage to improve predictive capability. Critically,
at no point does the design process eliminate alloys that
are predicted to form intermetallic compounds alongside
a solid-solution phase. Instead, a special effort has been
made to try and identify such systems, in recognition
that the microstructures of most successful engineering
alloys comprise a hard obstacle phase. In a recent
paper,24 they reported that they had evaluated 130 000
alloy systems using the CALPHAD stage of their meth-
odology, and have identified 51 new equimolar alloy sys-
tems comprising between three and six base elements as
candidates for experimental assessment. The ultimate suc-
cess of their scheme has yet to be proven, and there are
various obstacles to overcome (not least the issues with
rapid-through-put techniques described above), but it cur-
rently represents one of the most progressive and promis-
ing activities in the HEA field. It would be interesting to
critically compare the results of the high-throughput
methods produced using CALPHAD, Miedema’s
model, and DFT to high-quality experimental obser-
vations. As yet, practical issues such as cost,128,248 as
well as issues associated with the production of alloys,
have not played a strong role in alloy selection. However,
they will need to accounted for if HEAs are to be com-
mercially successful.
It has been suggested that much of the experimental

HEA research to date has focussed on too a narrow
range of alloy compositions (typically using Al, Ti, Cr,
Mn, Fe, Co, Ni and Cu), when in fact a major attraction
of HEAs should be the scope for developing novel alloys
with many different compositions.1,2,5,15,16 Perhaps only
the introduction of HEAs based on refractory
metals,29,118–120,156,158,163,164,281,287,291–301 instigated by
Senkov, Miracle et al.27,28,302 have provided a notable
step change in this respect. The alloying screening
methods discussed above are not limited in terms of
potential alloying elements, and are hence to be viewed
favourably in this respect. However, it can also be argued
that the number of HEAs that have been assessed histori-
cally has in fact been too great, given the accuracy of
characterisation that has been carried out. There have
been too many alloys produced through too many pro-
cesses leading to too many different conditions, such
that we have not gained very much useful information,
i.e. the sort of information that can be fed back into CAL-
PHAD models. The challenge, then, is not just to predict
alloy compositions with high potential, but also exper-
imentally characterise candidate alloys to the extent that
useful data are produced and promising alloys are not

dismissed. The search for alloys should not be limited in
terms of its scope, but it may be wise to restrict the num-
ber of candidate HEAs that are examined if the quality
data gathered from large numbers of alloys is somewhat
lacking. Quality should take some precedent over
quantity.

8. Improved understanding
It is undoubtable that the task of HEA selection will add
immeasurably to our understanding of phase formation in
exotic systems, and to our ability to predict complex
microstructures in multicomponent systems. Outside of
this pursuit, however, the study of HEA behaviours also
has the potential to contribute significantly to our funda-
mental understanding of alloys. It has often been claimed
that HEAs display unusual characteristics, and while in
some cases these may have been observed in other systems
of alloys, they have yet to be fully understood.
Perhaps the most prominent example of an HEA dis-

playing rather unique behaviour is CrMnFeCoNi. It has
already been discussed that CrMnFeCoNi is not thermo-
dynamically stable as a single phase at all temperatures.
However, it can be readily heat treated to exist as a single
fcc solid solution, and when tested in this condition it
demonstrates some remarkable properties. Its yield
strength is a strong function of temperature, increasing
markedly with decreasing temperature.36,38,40,41,303 This
in itself is not unexpected, since although such tempera-
ture dependence is rare in pure fcc metals, it is observed
in a number of fcc alloy solid solutions.179,304–309 What
is unusual, however, is that this increase in yield stress at
lower temperatures is accompanied by significant increases
in ductility, toughness and ultimate-tensile strength (UTS).
Indeed, at cryogenic temperatures, the ductility and tough-
ness values attainable are quite exceptional: εf,eng > 0.7,
KJIc > 200 MPa m1/2 and σUTS > 1GPa,36,40,41 see Fig. 10.
The impressive ductility and toughness is thought to be

due to a high work-hardening rate, which is facilitated by
high levels of deformation-induced nanotwinning at very
low temperatures.36,40,41,46 The prevalence of this twin-
ning can be attributed to a particularly low stacking-
fault energy.37,43,47,310 However, while the ductility
increase with decreasing temperature can be readily
interpreted, the temperature dependence of yield stress
in this compositionally complex alloy, and other HEAs
is less well understood. This point was highlighted
recently in the study by Wu et al.,42 which assessed the
temperature dependence of yield stress in a number of
equiatomic ternary and quaternary alloys based on
CrMnFeCoNi. They highlighted that a key issue associ-
atedwith modelling solute effects in HEAs is that there is
no clear distinction between solute and solvent species.
This is particularly pertinent for equiatomic HEAs like
CrMnFeCoNi.
It has been recommended that instead of envisaging

dislocations being impeded by discrete solute atoms in a
matrix, they should be viewed as moving through an effec-
tive medium in which the resistance is created by an aver-
age effect. To this end,Wu et al. 42 used a modified Peierls-
Nabarro lattice resistance to model the yield behaviour of
CrMnFeCoNi, which accounted for thermal activation
through the effect of temperature on dislocation
width.311–313 Recently, a more advanced Peierls-Nabarro
model, which accounted for segregation to stacking faults
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among other complexities, was successfully applied to
CrMnFeCoNi by Patriarca et al.57

This Peierls-Nabarro approach is in contrast to that
taken by Toda-Caraballo and Rivera-Diáz-del-Cas-
tillo,314 who modified Labusch’s model for solid-solution
strengthening in concentrated alloys.178,315 Labusch’s
treatment not only accounts for the effect of local strain
fields around solute atoms, but also local changes in elas-
tic modulus caused by their presence. This treatment was
extended to HEAs, despite there being no clear distinction
between solute or solvent, by estimating local changes in
lattice spacing using the multicomponent model proposed
by Moreen.316 Good agreement was claimed between
modelled and experimentally measured hardness values
for many HEAs. However, the analysis used to reach
this conclusion is questionable, since almost all the
HEAs that were considered do not appear to have been
measured in a single-phase solid-solution state. The diffi-
culty is that alloys with larger atomic size misfits, which
should in theory see increased solid-solution strengthen-
ing, tend to be unstable as single-phase solid solutions
(Hume-Rothery) and instead appear hard due to the for-
mation of extra phases. Hence, the lack of suitable case
studies for solute strengthening in concentrated alloys is
not surprising.
Even when suitable solid solutions can be made, the

effects of short-range ordering (SRO) on mechanical
behaviour could provide yet more complication.309,317,318

SRO is also of particular interest to those modelling ther-
modynamic stability, since any ordering or clustering in a
solid solution inherently reduces the configurational
entropy of the system – equation 1 is only valid for an
ideal solution, in which mixing is truly random. This
point was highlighted recently by Bhadeshia.247 Measur-
ing SRO involves complex analyses of neutron or X-ray
diffuse scattering data, as for the lattice strains discussed
above. It is unlikely that SRO can be probed easily
using atomic-probe tomography,247 since the resolution
of the technique is not sufficient.
Further interesting topics and questions have arisen

from observations of other phenomena in HEA studies.
For instance, a number of studies have observed serrations

in the stress–strain curves of HEAs,42,319,320 see Fig. 11.
Classically, such serrations have been associated with
dynamic strain aging (also known as the Portevin Le Cha-
tilier effect321,322), and it is not clear where they are
derived from in complex alloys like HEAs. It is possible
that the diffusion of one set of solute atoms is causing
this effect, but a more elaborate mechanism could also
be at work.

9. Concluding remarks
Based on the evidence that has been presented in the lit-
erature to date, it appears that the influence of the HEA
core effects associated with entropic stabilisation, lattice
distortion and sluggish diffusion may not be as significant
as was first proposed. There are very few examples of
HEAs that are believed to exist as entropically stablised
solid solutions, and both experiment and theory suggest

10 Engineering stress vs. strain curves of the HEA CoCrFeMnNi at different temperatures in the (a) fine-grained (grain size 4.4
μm) and (b) coarse-grained (grain size 155 μm) condition. The inset in (a) shows a small load drop after yielding for a fine-
grained sample tested at 473 K. Reprinted from36 with permission from Elsevier

11 Stress v. displacement curves of the HEA
Al5Cr12Fe35Mn28Ni20 in tension at temperatures of 573
and 673 K at a strain rate of 1× 10−4 s−1. Reprinted
from319 with permission from Springer
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that the addition of more components to an alloy is likely
to result in intermetallic formation or phase separation.
Limited evidence exists as to the extent of lattice strain
in the HEAs, and it can be argued that severe distortions
would lead to rapid intermetallic formation (Hulme-
Rothery). Normalised activation energies for diffusion
in CrMnFeCoNi do appear to be higher than in conven-
tional alloys, but the effect of variations inD0 values must
also be accounted for. In addition, there have been several
reports of rapid precipitation in HEAs, indicating that dif-
fusion kinetics in many HEAs are not slow. It is unclear
what precisely the so-called cocktail effect refers to, and
how it applies to HEAs to a greater extent than conven-
tional alloys.
Nevertheless, HEAs offer a new and exciting approach

to alloy design, with one of their most promising appli-
cations being structural materials. To this end, research
focus should move away from trying to obtain single-
phase HEAs, and instead develop alloys that posses the
correct balance of mechanical properties. The possible
number of candidate HEA compositions is huge, and edu-
cated sampling of compositional space is needed if
research effort is to be expended efficiently. While para-
metric studies may be able to give some indication of
the likelihood of solid-solution stability, and CALPHAD
can give reasonable predictions of the majority phases in
HEAs, both have limited success in predicting the for-
mation of intermetallic compounds, which are of critical
importance for the development of structural materials.
However, they can be cleverly exploited as first-approxi-
mation guides in frameworks for alloy selection.
Rapid-throughput screening methods will likely be

required to vet potential HEA compositions after predic-
tive screening, but there are significant issues associated
with their practical implementation. There is also a
danger that promising alloys could be dismissed too
early by these approaches, since they are less likely to
explore the complex links between heat treatment, micro-
structure and properties. Indeed, careful experimental
assessment of HEAs in general is necessary before con-
clusions are drawn about the characteristics and stabilities
of their microstructures. Nanoscale precipitates and phase
separations have often been observed, which necessitate
the use of high-resolution techniques. Accurate and
rapid microstructural measurement techniques are key if
alloy selection initiatives are to be successful. The data
they produced must be of sufficient quality to feed back
into selection models.
Despite the conclusions drawn with respect to the

founding principles of HEAs, we do not believe that chan-
ging the name of the research field would be helpful mov-
ing forwards. What is required is a change in the
underlying science associated with the name. In our
opinion a far more important matter is the adoption of
a consistent alloy naming convention within the commu-
nity. With that in mind, we suggest that when expressing
HEA compositions as atomic ratios, the elements are
listed by atomic number, and that the order is not influ-
enced by the relative concentrations of each species.
In a recent review,8 it was proposed that the traditional

principles of physical metallurgy that have been devel-
oped over the past century need to be modified in light
of HEA behaviour. We do not believe this is the case –
although some HEAs do exhibit unusual behaviour, it is
likely that this is derived from the same processes already

acting in conventional alloys. Nonetheless, the study of
HEAs does offer tremendous potential to improve our
fundamental understanding of the mechanical and ther-
modynamic behaviour of alloys, as well as develop useful
new materials.
HEAs have thrust us out of an age of limitation, where

alloys were designed around one principal element, and
into a new world of seemingly endless possibility. How-
ever, careful and educated alloying is required, such that
we focus our attention on key features of the compo-
sitional landscape presented by HEAs, rather than wan-
der somewhat aimlessly in its limitless expanse.
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