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ABSTRACT

Deep neural networks are powerful parametric models that can be trained effi-
ciently using the backpropagation algorithm. Stochastic neural networks com-
bine the power of large parametric functions with that of graphical models, which
makes it possible to learn very complex distributions. However, as backpropaga-
tion is not directly applicable to stochastic networks that include discrete sampling
operations within their computational graph, training such networks remains diffi-
cult. We present MuProp, an unbiased gradient estimator for stochastic networks,
designed to make this task easier. MuProp improves on the likelihood-ratio esti-
mator by reducing its variance using a control variate based on the first-order Tay-
lor expansion of a mean-field network. Crucially, unlike prior attempts at using
backpropagation for training stochastic networks, the resulting estimator is unbi-
ased and well behaved. Our experiments on structured output prediction and dis-
crete latent variable modeling demonstrate that MuProp yields consistently good
performance across a range of difficult tasks.

1 INTRODUCTION

Deep neural networks (Krizhevsky et al., 2012; Hinton et al., 2012; Sutskever et al., 2014) are re-
sponsible for numerous state-of-the-art results in a variety of domains, including computer vision,
speech recognition, and natural language processing. The cornerstone of their success has been the
simple and scalable backpropagation algorithm (Rumelhart et al., 1986). Backpropagation provides
an efficient way of computing the derivatives of the error with respect to the model parameters. The
key to the applicability of backpropagation is to utilize deterministic, differentiable activation func-
tions, such as sigmoidal and softmax units, to make the model differentiable. However, in certain
real-world scenarios, it is more suitable to learn a model that can carry out a sequence of stochastic
operations internally, in order to represent a complex stochastic process. Such stochastic networks
are studied in policy gradient reinforcement learning methods (Williams, 1992; Weaver & Tao, 2001;
Peters & Schaal, 2006), probabilistic latent variable models for structured prediction, unsupervised
learning of generative models (Tang & Salakhutdinov, 2013; Kingma & Welling, 2014), and most
recently, attention and memory networks (Mnih et al., 2014; Zaremba & Sutskever, 2015).

The versatility of stochastic neural networks motivates research into more effective algorithms for
training them. Models with continuous latent variables and simple approximate posteriors can al-
ready be trained efficiently using the variational lower bound along with the reparameterization trick,
which makes it possible to train both the model and the inference network using backpropagation
(Kingma & Welling, 2014; Rezende et al., 2014). Training models with discrete latent variable dis-
tributions, such as Bernoulli or multinomial, is considerably more difficult. Unbiased estimators
based on the likelihood-ratio method tend to be significantly less effective than biased estimators,
such as the straight-through method (Bengio et al., 2013; Raiko et al., 2015) and the estimator pro-
posed by Gregor et al. (2014). We hypothesize that this is due to the fact that, unlike the biased
estimators, the unbiased ones do not take advantage of the gradient information provided by the
backpropagation algorithm. However, the biased estimators are heuristic and not well understood,
which means that it is difficult to enumerate the situations in which these estimators will work well.
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We posit that an effective method for training stochastic neural networks should take advantage of
the highly efficient backpropagation algorithm, while still providing the convergence guarantees of
an unbiased estimator.

To that end, we derive MuProp, an unbiased gradient estimator for deep stochastic neural networks
that is based on backpropagation. To the best of our knowledge, it is the first unbiased estimator that
can handle both continuous and discrete stochastic variables while taking advantage of analytic gra-
dient information. MuProp’s simple and general formulation allows a straightforward derivation of
unbiased gradient estimators for arbitrary stochastic computational graphs – directed acyclic graph
(DAG) with a mix of stochastic and deterministic computational nodes (see, e.g., Schulman et al.
(2015)). While the algorithm is applicable to both continuous and discrete distributions, we used
only discrete models in our experiments, since the reparameterization trick (Kingma & Welling,
2014) already provides an effective method for handling continuous variables. We present exper-
imental results for training neural networks with discrete Bernoulli and multinomial variables for
both supervised and unsupervised learning tasks. With these models, which are notoriously diffi-
cult to train, biased methods often significantly outperform the unbiased ones (Dayan et al., 1995;
Gregor et al., 2014; Raiko et al., 2015), except in certain cases (Mnih & Gregor, 2014). Our results
indicate that MuProp’s performance is more consistent and often superior to that of the competing
estimators. It is the first time that a well-grounded, unbiased estimator consistently performs as well
or better than the biased gradient estimators across a range of difficult tasks.

2 RELATED WORK

Probabilistic latent variable models described by neural networks date back to pioneering early work
on sigmoidal belief networks and Helmholtz machines (Neal, 1992; Dayan et al., 1995). However,
their adoption has been hindered by the lack of training methods that are both efficient and theoreti-
cally sound. Algorithms based on Markov chain Monte Carlo (Neal, 1992) and mean-field inference
(Saul et al., 1996) are theoretically well-grounded, but do not scale well to large models. The wake-
sleep algorithm (Hinton et al., 1995) scales to large models, but does not optimize a well defined-
objective function, and therefore does not provide convergence guarantees. Recently, several new
scalable methods have been proposed for training such models. A number of these algorithms use
likelihood ratio estimators with variance reduction techniques (Ranganath et al., 2014; Mnih & Gre-
gor, 2014; Gregor et al., 2014), inspired by methods from reinforcement learning (Williams, 1992;
Weaver & Tao, 2001; Peters & Schaal, 2006). Another group of algorithms specifically addresses
structured predictions tasks involving binary latent variables. Instead of performing inference using
an inference network, these algorithms either use importance sampling to reweight samples from
the prior (Tang & Salakhutdinov, 2013; Raiko et al., 2015), or rely on heuristics for approximate
backpropagation through the stochastic units (Bengio et al., 2013; Raiko et al., 2015; Gregor et al.,
2014).

2.1 LIKELIHOOD-RATIO GRADIENT ESTIMATION

Consider a simple stochastic system with discrete random variable x whose probability is given by
pθ(x), and a loss function f(x). This formulation subsumes the training objectives of popular gen-
erative models such as sigmoid belief networks, with or without inference networks. The objective
of training is to minimize the expected cost L(θ) = Epθ(x)[f(x)]. The gradient g = ∂L/∂θ is
usually intractable to compute exactly, and must therefore be estimated using an estimator ĝ(x), i.e.
g ≈

∑m
i=1 ĝ(xi)/m, where xi ∼ pθ(x) and m is the number of Monte Carlo samples.

The likelihood-ratio (LR) estimator, of which the popular REINFORCE algorithm is a special
case (Williams, 1992; Peters & Schaal, 2006), provides a convenient method for estimating this
gradient, and serves as the basis for all of the unbiased estimators discussed in this paper, including
MuProp. The LR method only requires that pθ(x) is differentiable with respect to θ:

g(LR) = ∇θEpθ(x)[f(x)] =
∑
x

∇θpθ(x)f(x)

=
∑
x

pθ(x)∇θ log pθ(x) · f(x) = Epθ(x)[∇θ log pθ · f(x)]

ĝ(LR) = ∇θ log pθ(x) · f(x) where x ∼ pθ

(1)
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In its basic form, this estimator is unbiased, but tends to have high variance, and variance reduction
techniques are typically required to make it practical (Williams, 1992; Peters & Schaal, 2006). A
major deficiency of the LR estimator is that it fails to utilize information about the derivative of
the cost function, unlike the most successful biased estimators. We will show that MuProp, which
combines the derivative information with the LR estimator, can outperform these biased estimators,
as well as the standard LR method.

2.2 VARIANCE REDUCTION WITH THE LIKELIHOOD-RATIO ESTIMATOR

High variance of LR estimators can make convergence very slow or impossible. This is further
exacerbated by the fact that LR estimators for minibatch training of neural networks typically use
m = 1, in order to maximize the variety of examples seen by the network (Kingma & Welling,
2014; Gregor et al., 2014; Rezende et al., 2014; Mnih & Gregor, 2014). The simplest way to reduce
variance is to increase m, but this is computationally expensive. Efficient and effective variance
reduction techniques are therefore crucial for the LR estimator to be practical.

The derivation of MuProp in Section 3 uses a variance reduction technique known as control variates
(Paisley et al., 2012). The main idea is to subtract an analytically tractable term from the LR esti-
mate in order to reduce the variance of the Monte Carlo estimate, and then add back the analytical
expectation of this term to recover an unbiased estimator:

Epθ(x)[∇θ log pθ(x) · f(x)] = Epθ(x)[∇θ log pθ(x) · (f(x)− b− h(x))] + µ (2)

In this example, b+ h(x) is a control variate, which is also known as a sample-dependent baseline.
The expectation of the baseline needs to be added to the expression to make the resulting estimator
unbiased. If the baseline is constant (i.e. h(x) = 0), its contribution to the gradient estimate
is always zero in expectation, since

∑
x pθ(x)∇θ log pθ(x) =

∑
x∇θpθ(x) = ∇θ

∑
x pθ(x) =

∇θ1 = 0. Otherwise, we must compute the expectation of the baseline (b + h(x))∇ log pθ(x)
analytically, as µ = Epθ(x)[∇θ log pθ(x) · h(x)]. In our experiments, we utilize three types of
variance reduction techniques for the estimators that include the same term as Eq. 2. While these
techniques, proposed in a similar context in (Mnih & Gregor, 2014), do not result in the optimal
variance reduction, they work well enough to make LR estimators useful in practice.1 For the
precise details of these variance reduction techniques, please refer to Mnih & Gregor (2014). For
reference, the techniques are:

• Centering the learning signal (C), which involves subtracting from the learning signal its
moving average (corresponding to b in Eq. 2).

• Input-dependent baseline (IDB), which allows baseline b to depend on the input or the
sample from the previous layer (x0). This baseline is a neural network parameterized by
ψ, and is trained jointly with the model to minimize the expected square of the centered
learning signal Epθ(x|x0)[(l(x)− b−Bψ(x0))2].

• Variance normalization (VN), which keeps track of the moving average of the signal
variance v, and divides the learning signal by max(1,

√
v). Unlike the other two techniques,

this does not correspond to a baseline, and is a type of adaptive gradient.

3 MUPROP

The MuProp estimator has two components: a deterministic term ĝMF , which is computed by back-
propagation through a mean-field network that we describe in Section 3.1, and a LR term ĝR, which
accounts for the residuals to produce an unbiased gradient estimate. In the following, let µx(θ) be
Epθ(x)[x] and x̄ be any value that does not depend on x. The key idea of MuProp is summarized in
the following equation:

ĝ(µ) = ∇θ log pθ(x) · [f(x)− f(x̄)− f ′(x̄)(x− x̄)]︸ ︷︷ ︸
ĝR

+ f ′(x̄)∇θµx(θ)︸ ︷︷ ︸
ĝMF

(3)

1Optimal baselines are somewhat involved, as they take into account the magnitude of∇θ log pθ(x) and are
different for each parameter (Weaver & Tao, 2001).
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Figure 1: Standard MuProp (left) and MuProp with rollout (right). Circles indicate stochastic nodes.
Blue, black, and red arrows indicate stochastic forward pass, deterministic mean-field forward pass,
and gradient flow in backward pass respectively. f̄ indicates mean-field evaluation of f .

where x ∼ pθ, and ĝ(µ) is an unbiased estimate of the gradient. The derivation follows directly from
the baseline technique described in Section 2.2: MuProp uses a control variate that corresponds to
the first-order Taylor expansion of f around some fixed value x̄, i.e., h(x) = f(x̄) + f ′(x̄)(x− x̄).
The idea of using Taylor expansion as a baseline is also explored by (Paisley et al., 2012) and
(Gregor et al., 2014); however, (Paisley et al., 2012) does not explore the estimator in the context
of arbitrary stochastic computational graphs, and (Gregor et al., 2014) chooses a different form of
Taylor expansion that makes the estimator biased. The latter approach also does not generalize to
multi-layer graphs.

Our contribution with MuProp is to extend the idea of Taylor expansions as baselines and make
them applicable to arbitrary stochastic computational graphs. We will describe our derivation and
design choices, as well as possible extensions to the standard form of MuProp that can enhance the
statistical efficiency of the method. In the appendix, we also present a simple algorithm to compute
the MuProp estimator using automatic differentiation, which makes it easy to integrate into any
existing automatic differentiation library.

3.1 GENERALIZED BACKPROPAGATION WITH MEAN-FIELD NETWORKS

It is not always possible to directly apply Eq. 3 to an arbitrary computation graph because of the
f ′(x̄) terms. If the computation graph includes a discrete sampling operation as in Figure 1, then
one cannot directly define continuous gradient through such an operation. As a solution, we use a
deterministic mean-field network, which ignores the sampling operations in the original graph and
propagates the mean values instead of the samples. Figure 1 shows how the backward pass computes
the gradient with respect to θ. MuProp computes the Taylor expansion using the mean-field network,
which is fully differentiable, and uses these terms to reduce the variance. While the choice to use
the mean-field network seems arbitrary, we show that a proper recursive derivation of Eq. 3 for deep
networks naturally leads to recursive Taylor expansions around the mean functions. Furthermore,
if x̄ coincides with the mean-field forward pass, the gradient estimator simplifies to Eq. 3. The full
derivation is given in the appendix.

4 COMPARISON WITH OTHER GRADIENT ESTIMATORS

While MuProp is derived from the LR estimator, which is also unbiased, it is closely related to
two biased estimators commonly used to train stochastic binary networks. In this section we will
describe these two estimators, the Straight-Through estimator and the 1/2 estimator. To simplify
notation, we describe the estimators assuming one stochastic variable x. The provided estimator
expressions however generalize easily to arbitrary stochastic computational graphs.2 The estimators
mentioned above are summarized in Table 1 for completeness.

2Only the LR and MuProp estimators have a principled extension to deep networks. The other methods can
be extended to deep networks heuristically.
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We do not consider the importance-sampling based approaches (Raiko et al., 2015; Tang & Salakhut-
dinov, 2013; Bornschein & Bengio, 2015; Burda et al., 2015) as these can be interpreted as optimiz-
ing a different objective (Burda et al., 2015) that requires sampling the latent variables multiple
times. The resulting estimators are more specialized than the ones considered in this paper, which
are agnostic to the objective being optimized. As a result, MuProp and the other general estimators
can be applied to the objective optimized by the importance-sampling based methods. We leave
exploring this direction as future work.

4.1 THE STRAIGHT-THROUGH ESTIMATOR

The straight-through estimator (ST) (Bengio et al., 2013; Raiko et al., 2015) is a biased but low-
variance estimator, devised primarily for binary stochastic neurons3. The idea is to backpropagate
through the thresholding function as if it were the identity function. The estimator is given below:

ĝ(ST ) = f ′(x)∇θµx(θ) (4)

The estimator resembles the ĝMF term in our estimator in Eq. 3, since for a stochastic binary net-
work the activation function is the mean function. The difference is that this estimator depends on
sampled xi during backpropagation, while our formulation backpropagates the gradient through the
mean-field activations. Despite the heuristic derivation, this simple biased estimator works well in
practice, most likely due to its overall similarity to the backpropagation algorithm. However, we
show that MuProp significantly outperforms ST estimators on certain tasks, which suggests that
unbiased estimators are more reliable.

4.2 THE 1/2 ESTIMATOR

Gregor et al. (2014) proposed a biased estimator for the Deep AutoRegressive Network (DARN),
which we refer to as the “1/2” estimator due to its particular choice of the baseline. Like the Straight-
Through estimator, the 1/2 estimator is also specialized for stochastic binary networks. For models
with only one stochastic unit, the 1/2 estimator corresponds to using the Taylor expansion around
the sample x, evaluated at a fixed point x̄, as the baseline, such that h(x) = f(x) + f ′(x)(x̄ − x).
Since the expectation over h(x) cannot be computed analytically and x̄ cannot be chosen to make
the baseline mean 0 for any arbitrary function f , this estimator is biased. Critically, the 1/2 estimator
is derived for models with only one unit but is applied to large models by treating each unit as the
sole unit of the model. Furthermore, the 1/2 estimator is not well-justified in the multi-layer case.
However, backpropagating the gradient estimator derived in the single-layer case is shown to work
well for stochastic binary neurons. The basic form of the estimator is given by

ĝ(1/2) = ∇θ log pθ(x) · (f ′(x)T · (x− x̄)) (5)

If x consists of binary random variables, the expression can be further simplified by using x̄ = 1/2
(see (Gregor et al., 2014) for justification); however, for non-quadratic f , the estimator is biased:

ĝ(1/2) =
f ′(x)∇θµx(θ)

2pθ(x)
(6)

If x consists of multinomial random variables with k categories, no sensible x̄ has been proposed.
Since 1/2 estimator is only tested on binary variables, we experimented with three choices of x̄:
1/2, 1/k, and µx(θ). Let µx(θ) = softmax(θ) be the mean of the multinomial units (θ ∈ Rk), and
x ∈ Rk is one-hot encoding of the categorical values. Then the 1/2 estimator for the multinomial
case becomes

ĝ(1/2) =
(f ′(x)T · (x− x̄))(xT · ∇θµx(θ))

µx(θ)
(7)

3The ST estimator was proposed by Hinton (2012) and named in Bengio et al. (2013). The ST estimator
can include the derivative of the sigmoid or not. Raiko et al. (2015) derive the version with the derivative of
the sigmoid using another interpretation and differentiate it from the original ST estimator in their work. For
simplicity, here we always assume that the ST estimator includes the derivative of the sigmoid, which is often
essential for achieving the best performance (Raiko et al., 2015).
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Estimator Unbiased? Require baseline? Use Cost Gradient?
LR Yes Yes No
ST No No Yes
1/2 No No Yes

MuProp Yes Yes Yes

Table 1: Summary of Gradient Estimators for Stochastic Discrete Variables
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Figure 2: Results for MNIST imputation dataset. MuProp is the only unbiased estimator that can
compete with the biased estimators such as ST and 1/2.

5 EXPERIMENTS

We compare the LR, ST, and 1/2 estimators with the MuProp estimator on tasks that use a diverse set
of network architectures. For the LR and the MuProp estimators, ‘-C’, ‘-VN’, and ‘-IDB’ indicate
constant mean baseline, variance normalization, and input-dependent baseline respectively. The first
task does not make use of an inference network and involves direct optimization of an approximation
to the expected objective. The second task involves training a sigmoid belief network jointly with
an inference network by maximizing the variational lower bound on the intractable log-likelihood.
MuProp performs consistently well at both tasks.

5.1 STRUCTURED OUTPUT PREDICTION

In this experiment, we follow the setup proposed by Raiko et al. (2015). The two tasks are to pre-
dict the lower half of an MNIST digit given the top half, and to predict multiple facial expressions
from an average face using Toronto Face dataset (TFD); the output distribution in both tasks exhibits
complex multi-modality. For MNIST, the output pixels are binarized using the same protocol as in
(Raiko et al., 2015). Given an input x, an output y, and stochastic hidden variables h, the objective
is to maximize Ehi∼pθ(h|x)

[
log
(

1
m

∑m
i=1 pθ(y|hi)

)]
, an importance-sampled estimate of the likeli-

hood objective (Raiko et al., 2015; Burda et al., 2015). We use m = 1 for training, and m = 100 for
validation and testing. For MNIST, a fixed learning rate is chosen from {0.003, 0.001, .., 0.00003},
and the best test result is reported for each method. For the TFD dataset, the learning rate is chosen
from the same list, but each learning rate is 10 times smaller. We used a momentum of 0.9 and
minibatches of size 100. The input-dependent baseline (IDB) of Mnih & Gregor (2014) uses both
the input and output as its input and has a single hidden-layer of 100 Tanh units.

Estimator LR-C-VN-IDB MuProp-C MuProp-C-VN ST 1/2
MNIST 392-200-200-392 63.2 57.7 56.7 56.1 57.2

MNIST 392-200-200-200-392 100.6 62.7 57.2 54.4 55.8
TFD 2034-200-200-2034 38.2 29.6 28.2 27.7 27.6

Table 2: Test negative log-likelihood on MNIST 392-200-200-392 model.
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Figure 3: Test negative variational lower-bound on 200-200-784 SBN model (left) and 200×10-784
categorical model (right). MuProp outperforms ST and 1/2 and converges faster than LR.

Figure 2a shows the test cost versus the number of parameter update steps of a typical run, while
Table 2 summarizes the test performance for the different estimators. Convergence of the LR es-
timators is significantly slower than that of MuProp, ST, and 1/2. In fact, MuProp with simple
mean subtraction is consistently better than LR with all of the variance reduction techniques. For
MuProp, adding input-dependent baselines does not lead to any improvement over a simple constant
mean baseline and variance normalization, and it is interesting to observe that MuProp’s sample-
dependent-baseline reduces the variance significantly more than the input-dependent baseline that
also utilizes the output y. MuProp is slightly worse than ST and 1/2, and this performance gap
can be explained by the fact that standard MuProp only uses a single-trunk mean-field pass of the
network, making the “mean” values at higher layers less correlated with the true conditional distri-
bution. Section 6 discusses extensions to address this problem, at the cost of more computation or
training an auxiliary network.

Our results show that MuProp significantly outperforms LR and closely matches the performance of
ST and 1/2 in terms of both convergence speed and final accuracy, and is the only unbiased estimator
that can compete with the biased ST and 1/2 estimators on this task.

5.2 VARIATIONAL TRAINING OF GENERATIVE MODELS

In the second set of experiments, we apply MuProp to variational training of generative models. The
auto-encoding variational Bayes framework (Kingma & Welling, 2014), along with similar methods,
allows powerful generative models to be trained efficiently by replacing slow iterative inference
algorithms with fast feedforward approximate inference networks. The inference networks, which
map observations to samples from the variational posterior, are trained jointly with the model by
maximizing a common objective. This objective is a variational lower bound on the marginal log-
likelihood, and it is straight-forward to show that it is a stochastic computation graph with particular
choice of cost.

When the variational distributions over the latent variables have a specific form, such as conditional
Gaussian, such models can be trained easily by using the reparameterization trick to backpropagate
the gradient through the inference network (Kingma & Welling, 2014). However, Gaussian distribu-
tions are not appropriate for all types of data or all models. If we opt to use discrete latent variables,
we would have to choose between gradient estimators that are biased but have low variance (Gregor
et al., 2014) or are unbiased but higher variance (Mnih & Gregor, 2014). As MuProp is unbiased
and has relatively low variance due to its use of backpropagation for gradient estimation, we expect
it to be particularly well-suited for training such models.

We will concentrate on training layered belief networks with either Bernoulli or multinomial latent
variables. The model in question is equivalent to a sigmoid belief network if it does not have au-
toregressive connections, or to fDARN if it has autoregressive connections Gregor et al. (2014). The
multinomial model uses 200 latent variables with 10 categories each (k = 10), and thus is referred
to as the 200×10 model. We applied the models to the binarized MNIST dataset, which consists of
28×28 images of hand-written digits, and is commonly used for evaluating generative models. We
trained the models using stochastic gradient descent using momentum of 0.9. The learning rate was

7
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selected from {0.003, 0.001, .., 0.000003}, and the best test score is reported. For the 1/2 estimator
in the categorical model, we found that x̄=1/2 or 1/k worked best, and used the latter value for
the results reported. As we used the same experimental setup and SBN/fDARN models, our results
are directly comparable to those obtained using neural variational inference and learning (NVIL) in
(Mnih & Gregor, 2014). Note that LR-C-VN-IDB is our implementation of NVIL.

Estimator LR-C-VN-IDB MuProp-C MuProp-C-IDB ST 1/2
SBN 200-784 113.5 113.6 113.1 129.4 112.4

SBN 200-200-784 99.7 100.4 100.4 119.9 103.5
SBN 200-200-200-784 97.5 101.1 98.6 116.7 99.3

fDARN 200-784 92.1 92.9 92.7 110.2 94.2
Categorical (200×10)-784 107.7 108.6 107.8 114.5 120.5

Table 3: Negative variational lower-bound on MNIST test data

Figure 3 shows sample training curves for typical runs, and Table 3 summarizes the results. These re-
sults convincingly show that MuProp outperforms all the competing estimators. While the variance-
reduced LR estimator (NVIL) performs very well on this task and is on par with MuProp on the
final variational lower-bound, MuProp converges significantly faster (e.g. for the categorical model,
about 3-4 times faster). This suggests that MuProp (with only mean subtraction) still has signif-
icantly less variance than LR on this task, just as in Section 5.1. For the ST and 1/2 estimators,
the story is more interesting. First, their final variational lower-bounds are significantly worse than
MuProp or LR. More importantly, they exhibit little consistency in performance. On the SBN mod-
els, 1/2 typically outperforms ST, while on the categorical model, the reverse is true. This result,
along with the fluctuations observed in the categorical model training curve for 1/2, suggests that
such biased estimators can be unreliable for more complex models, and that their performance can
vary drastically based on the cost function and model architecture. MuProp, on the other hand, is
guaranteed to improve the desired objective because it is unbiased, while having much less variance
than LR due to the use of the gradient information from backpropagation.

6 DISCUSSION

In this paper, we presented MuProp, which is an unbiased estimator of derivatives in stochastic
computational graphs that combines the statistical efficiency of backpropagation with the correctness
of a likelihood ratio method.

MuProp has a number of natural extensions. First, we might consider using other functions for the
baseline rather than just the Taylor expansion, which could be learned in a manner that resembles
Q-learning (Watkins & Dayan, 1992) and target propagation (Lee et al., 2015). In reinforcement
learning, fitted Q-functions obtained by estimating the expected return of a given policy πθ sum-
marize all future costs, and a good Q-function can greatly simplify the temporal credit assignment
problem. Combining MuProp with such fitted Q-functions could greatly reduce the variance of the
estimator and make it better suited for very deep computational graphs, such as long recurrent neural
networks and applications in reinforcement learning.

The second extension is to make x̄ depend on samples of its parent nodes, as illustrated by rollout
procedure in Figure 1. This could substantially improve performance on deeper networks, where the
value from a single-trunk mean-field pass may diverge significantly from any samples drawn with
a fully stochastic pass. By drawing x̄ using mean-field passes originating at sampled values from
preceding layers would prevent such divergence, though at additional computational cost, since the
number of mean-field passes would depend on the depth n of the network, for a total ofO(n2) partial
passes through the network. Intuitively, the single mean-field “chain” would turn into a “tree,” with
a sampled trunk and a different mean-field branch at each layer.
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APPENDIX

7 RECURSIVE DERIVATION OF MUPROP

Given a model with multiple layers of discrete random variables x1...xn and input x0, the gen-
eral loss function can be written as L(x0, θ) = Ep(x1,...,xn|x0,θ)[fθ(x0:n)]. For simplicity, we
show derivation assuming that p(x1, ..., xn|x0, θ) =

∏n
i=1 p(xi|xi−1, θi−1) =

∏n
i=1 pi and

f(x1:n, θ) = f(xn, θn), where θ = {θ0, ..., θn}; however, the derivation is easy to extend to any
directed acyclic graph. We assume that there is a continuous and differentiable mean function for
each p(xi|xi−1, θi−1), denoted by µi(xi−1, θi−1) = Ep(xi|xi−1,θi−1)[xi]. The derivation is based on
the recursive first-order Taylor expansion around some arbitrary fixed points x̄1:n, which we detail
later. We use µ′i and f ′ to denote ∂µi

∂xi−1
and ∂f

∂xn
.

We first derive the gradient for ∂L
∂θn

and ∂L
∂θn−1

and then for { ∂L∂θi }i=0:n. The final expression for
the estimator resembles the classical backpropagation formulation, and allows efficient computation
through forward and backward passes. We intentionally avoid the standard matrix algebra notation
to provide clean derivations, as the extension is straight-forward.

∂L

∂θn
= Ep1:n [∇θnf(xn, θn)] (8)

∂L

∂θn−1
= Ep1:n−1

[∇θn−1
Epn [f(xn, θn)]]

= Ep1:n−1
[Epn [∇θn−1

log pn · f(xn, θn)]]

= Ep1:n−1 [Epn [∇θn−1 log pn · [f(xn, θn)− f(x̄n, θn)− f ′(x̄n, θn) · (xn − x̄n)]]

+ Epn [∇θn−1 log pn · [f(x̄n, θn) + f ′(x̄n, θn) · (xn − x̄n)]]]

= Ep1:n−1
[Epn [∇θn−1

log pn ·Rn] + f ′(x̄n, θn)∇θn−1
Epn [xN ]]

= Ep1:n−1
[Epn [∇θn−1

log pn ·Rn] + f ′(x̄n, θn)∇θn−1
µn(xn−1, θn−1)]

(9)

where we define the residuals Ri = µi+1(xi, θi) − µi+1(x̄i, θi) − µ′i+1(x̄i, θi) · (xi − x̄i) and let
µn+1(xn, θn) = f(xn, θn). Applying the same derivation recursively, we get:

∂L

∂θi
= Ep1:n [∇θi log pi+1 ·Rn] + f ′(x̄n, θn) · Ep1:n−1

[∇θi log pi+1 · µn(xn−1, θn−1)]

= Ep1:n [∇θi log pi+1 ·Rn] + f ′(x̄n, θn)[Ep1:n−1
[∇θi log pi+1 ·Rn−1]

+ µ′n(x̄n−1, θn−1)[Ep1:n−2
[∇θi log pi+1 ·Rn−2] + ...+ µ′i+2(x̄i+1, θi+1) · ∇θiµi+1(xi, θi)]]...]

= Ep1:n [∇θi log pi+1 · (
n∑

k=i+1

Rk

n+1∏
j=k+2

µ′j(x̄j−1, θj−1))]

+ Ep1:i [(
n+1∏
j=i+2

µ′j(x̄j−1, θj−1)) · ∇θiµi+1(xi, θi)]

(10)

where we slightly abuse the notation and assume
∏n+1
j=n+2(µ′j) = 1. The estimator expression is:

∂̂L

∂θi (µ)

= ∇θi log pi+1 · (
n∑

k=i+1

Rk

n+1∏
j=k+2

µ′j(x̄j−1, θj−1)) + (

n+1∏
j=i+2

µ′j(x̄j−1, θj−1)) · ∇θiµi+1(xi, θi)

(11)

The formulation assumes a set of fixed points x̄1:n, whose only requirements are that x̄i cannot
depend on xi. If we choose x̄1:n as given by deterministic mean-field forward pass, the gradient
estimator simplifies and recovers Eq. 3.
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8 MUPROP WITH AUTOMATIC DIFFERENTIATION

We present a simple algorithm to compute MuProp gradient, taking advantage of the automatic dif-
ferentiation functionalities. Algorithm 1 assumes that the automatic differentiation library provides
two functionalities: Gradients(cost, inputs) which computes derivatives of cost with
respect to inputs, and StopGradient(x) which returns a node with equal value with x but
stops gradient when Gradients is called. It assumes that the graph consists of n stochastic nodes
{xi}i=1:n and loss function f which can be the sum of multiple loss functions at different parts of the
graph. PARENTSxi denotes the stochastic parental nodes of xi. ForwardPass builds the sym-
bolic graph whose outputs can be differentiated using Gradients. When stochastic=true, each
stochastic node samples the value and wraps the value using StopGradient such that no gradient
is propagated through the stochastic operation. stochastic=false builds the mean-field network that
is fully differentiable. The algorithm also assumes it usesm = 1 sample, and in general the run time
of the algorithm is 1 deterministic pass + m stochastic passes through the network. In practice, we
augment the algorithm with the variance reduction techniques described in Section 2.2. Extensions
discussed in Section 6 are also easy to include.

Algorithm 1 Compute MuProp Gradient Estimator

Require: Input: x0, Parameters: θ
x̄1:n, f(x̄1:n)← ForwardPass(x0, stochastic=false)

{f ′(x̄i)}i=1:n ← Gradients(f(x̄1:n), x̄1:n)

x1:n, µ1:n, f(x1:n), {log pθ(xi|PARENTSxi)}i=1:n ← ForwardPass(x0, stochastic=true)

ci ← log pθ(xi|PARENTSxi)StopGradient(f(x1:n)− f(x̄1:n)− f ′(x̄i)T · (xi − x̄i)) + µT ·
StopGradient(f ′(x̄i))

c← f(x1:n) +
∑n
i=1 ci

ĝ(µ) ← Gradients(c, θ)

12


	1 Introduction
	2 Related Work
	2.1 Likelihood-Ratio Gradient Estimation
	2.2 Variance Reduction with the Likelihood-Ratio Estimator

	3 MuProp
	3.1 Generalized Backpropagation with Mean-Field Networks

	4 Comparison with Other Gradient Estimators
	4.1 The Straight-Through Estimator
	4.2 The 1/2 Estimator

	5 Experiments
	5.1 Structured Output Prediction
	5.2 Variational training of generative models

	6 Discussion
	7 Recursive Derivation of MuProp
	8 MuProp with Automatic Differentiation

