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1 Introduction

Conflict remains a central element in human interaction. Networks – social, economic and

infrastructure – are a defining feature of society. So it is natural that the two should intersect

in a wide range of empirical contexts. This motivates the recent interest on conflict and

networks. The aim of the paper is to provide a survey of this research.

We find it useful to start with specific empirical phenomena involving conflict and networks.

1. Robustness of Infrastructure Networks: Highways, aviation, shipping, pipelines, train

systems, and telecommunication networks are central to a modern economy. These net-

works face a variety of threats ranging from natural disasters to human attacks. The

latter may take a violent form (guerrilla attacks, attacks by an enemy country, and ter-

rorism) or a non-violent form (as in political protest that blocks transport services).1 A

network can be made robust to such threats through additional investments in equip-

ment and in personnel. As networks are pervasive, the investments needed could be

very large; this motivates the study of targeted defence. What are the ‘key’ parts of the

network that should be protected to ensure maximal functionality? Moreover, taking

a longer term view, how should networks be designed to enhance their robustness to

threats?

2. Cybersecurity: As energy, communication, travel, consumer interaction increasingly

adopt digital networks, cybersecurity has emerged as a major priority. In the United

States, this is a responsibility of the Department of Homeland Security (DHS). Its mis-

sion statement reads,“Our daily life, economic vitality, and national security depend

on a stable, safe, and resilient cyberspace. We rely on this vast array of networks to

communicate and travel, power our homes, run our economy, and provide government

services.”2 At the heart of these developments is the question of how to design networks

1The US Office of Infrastructure Protection says, “Our nation’s critical infrastructure is crucial to the
functioning of the American economy... (It) is increasingly connected and interdependent and protecting it
and enhancing its resilience is an economic and national security imperative Department of Homeland Security
(2012). For an introduction to network based conflict, see Arquilla and Ronfeldt (2001) and Zhu and Levinson
(2011); for news coverage of the effects of natural disasters and human attacks on infrastructure networks,
see Eun (2010), Kliesen (1995), India Today (2011) and Luft (2005).

2In 2009, roughly 10 million computers were infected with malware designed to steal online credentials.
The annual damages caused by malware is of the order of 9.3 billion Euros in Europe, while in the US the
annual costs of identity theft are estimated at 2.8 billion USD (Moore, Clayton and Anderson (2009)). One
indicator of the economic magnitude of the problem is the valuation of security firms: Intel bought McAfee
in 2010, for 7.68 billion USD (bbc.co.uk; 19 August 2010).
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so that they are robust to attacks.

3. Criminal networks: Criminal activity, being illegal, it is especially difficult for partici-

pants to enforce formal contracts. Trust and networks of favor exchange are especially

important in crime. This suggests that personal connections may be important for crime;

however, the investigation and capture of one agent by police can expose connected oth-

ers. What is the best way to organize criminal network?

4. Civil wars and armed conflict: Conflict takes place between countries or communities

that are geographically contiguous (Caselli et al. (2014)). Conflict between two entities

however typically has spillovers on neighboring third parties, which is turn may travel

through the network of relations. We wish to understand how the network structure

shapes conflict and determines the winners and losers.

5. Strategic alliances: A common feature of civil unrest and international conflict is the

salience of networks of alliances. For example, through the 19th century and the early

part of the 20th century, shifting strategic alliances were a salient feature of European

politics.3 Empirical research shows that violent international conflict was more common

in the hundred years prior to 1950 as compared to the years after that. The stability

of alliances exhibits a corresponding time line: alliances were much less stable in the

period prior to 1950 than in the period since. Finally, we know that international trade

has grown steadily since the 1950’s (Jackson et al., 2014). Is there a systematic relation

between these stylized facts?

Inspired by applications 1, 2 and 3, we start with a discussion of the design and defence

of networks that face threats. As networks carry out a variety of functions, different aspects

of networks generate value depending on the context. Similarly, threats come in different

forms: in some cases, the threat is posed by an intelligent adversary (such as the police or

investigating agency, terrorists or political protestors), while in others it comes from nature (in

the form of floods and earthquakes). Similarly, the dynamics of the threat also vary. Viruses

and worms spread through computer connections; contagion is an important aspect of these

threats. On the other hand, an earthquake or a storm damages a specific port or an airport

or a railway station. By varying these different dimensions of the problem we generate an

ensemble of different scenarios. The key question here is: how should networks be designed

3The Triple Alliance between Germany, Austria-Hungary and Italy and the Triple Entente involving Britain,
France and Russia played a key role in shaping World War 1.
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and defended in the face of threats? Section 2 provides a survey of the existing research and

concludes with the discussion of a number of open questions.4

Motivated by application 4, we then turn to the study of conflict between nodes located in a

network. Section 3 takes up the case of conflict in fixed networks. Connections between nodes

determine who is in conflict with whom. The nodes choose how much to invest in conflict and

the conflicts yield prizes to winners. We study both static models and also the dynamics of

resource accumulation through war and conquest. The section ends with a discussion of open

problems.

The study of war naturally leads us to the study of alliances in conflict: in application 5,

a salient feature of civil and international conflict is the existence of alliances among warring

parties. As the example of World War 1 illustrates, these alliances can have a decisive influence

on the shape of conflict. Section 4 starts with the study the nature of conflict under given

alliance structures and then moves on to the formation and stability of alliances.

Section 5 contains concluding remarks.

2 Network Design and Defence

The examples in the introduction illustrate a range of empirical contexts where networks face

threats. The key question in this field is how to design and defend networks against these

threats. The research on this question is at an early stage. We provide a survey of this work

and point to a number of interesting open problems.

While there are different aspects of networks that create value, in the literature to date

much attention has centered on the setting where network connectivity is central to value.

Thus network value is increasing and convex in its size (i.e., the number of nodes). The threat

to the network is modeled as a game of conflict between a Designer (and the nodes in the

network) and an Adversary. The Designer chooses a network. The Designer (or the nodes) and

the adversary then allocate their resources across the network. There is conflict between the

attack and defence resources. In the infrastructure example, attack or damage of a specific

part of the network (a node or a link) compromises the network by disrupting flows along

paths. We study this disruption in terms of break down in connectivity of the network. In

4The problem of network design and defence has been extensively studied in electrical engineering and
computer science; for an overview of this work, see Alpcan and Başar (2011), Anderson (2001) and Roy et al.
(2010). The economics literature surveyed below contributes to this field by developing a general framework
that combines strategic interaction with a rich formulation of network value.
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the cybersecurity example, the spread of worms and viruses through the network connections

is central to the damage. We develop a model of contagion through networks. The literature

has focused on zero-sum games. We shall follow the literature in this regard.

We start with the problem of contagion in networks. We first set up and solve the first best

solution. There are two players, a Designer and an Adversary. The Designer chooses both the

design of the network and the allocation of defence resources. The Adversary observes these

choices and then attacks particular nodes of the network. We then move to a discussion of the

game where the Designer creates the network, but the nodes in the network choose defence

allocations. This is motivated by applications in cybersecurity where individual computer

users generally choose their own security.

We then turns to infrastructure robustness. We will first discuss optimal design and

defence. Finally, motivated by the interest in the robustness of infrastructure networks, we

will study optimal defence of a given network. As networks are pervasive, the investments

needed to protect them can be very large; this motivates the study of targeted defence.

What are the ‘key’ nodes to defend to maximize functionality of the network? We also study

how networks affect the intensity of conflict, a question that will reappear in the subsequent

sections, when we study conflict among nodes located in networks.

2.1 Connectivity and Network Value

We now introduce some terminology and notation. There is a set of nodes N = {1, . . . , n},
n ≥ 2. A link between two nodes i and j is represented by gij ∈ {0, 1}: we set gij = 1 if there

is a link between i and j, and gij = 0 otherwise. Links are undirected, i.e. gij = gji. The

nodes and the links together define a network g.

A path between two nodes i and j in network g is a sequence of nodes i1, . . . , ik such that

gii1 = gi1i2 = ... = gik−1ik = gikj = 1. Two nodes are said to be connected if there exists

a path between them. A component of the network g is a maximal set of nodes such that

any two elements in it are connected. C(g) is the set of components of g and Ci(g) is the

component containing node i. We let |C| indicate the cardinality (or size) of the component

C. A maximum component of g is a component with maximal cardinality in C(g). A network

with a single component is said to be connected.5 A network g′ on N ′ is a sub-network of g

5The complete network, or a clique, gc, has gij = 1, for all pairs (i, j). The empty network, ge, has gij = 0
for all pairs (i, j). A core-periphery network has two types of nodes, N1 and N2. Nodes in N1 constitute the
periphery and have a single link each and this link is with a node in N2; nodes in N2 constitute the core and
are fully linked with each other and with a subset of nodes in N1. When the core contains a single node, we
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if and only if N ′ ⊆ N , and g′ij = 1⇒ gij = 1 and i, j ∈ N ′. We let G(g) denote the set of all

sub-networks of g.

Following Myerson (1977), we assume that the value of a network is the sum of the value

of the different components and that the value of any component is a function of its size only.

Let the function f : N → R+ specify a value to component size. Our interest is in network

generated value and so we assume increasing and convex returns to size of component.

Assumption A.1: The value of network g is given by

Π(g) =
∑
C∈C(g)

f(|C|). (1)

where f is (strictly) increasing, (strictly) convex and f(0) = 0.

Increasing and convex network value functions arise naturally in the large literature on

network externalities (see e.g. Katz and Shapiro (1985) and Farrell and Saloner (1986)). In

that literature, the value to a consumer from buying a product is related to the number of

other consumers who buy the same product, i.e., belong to the same network. In its simplest

form this gives rise to the quadratic form f(n) = n2. This functional form also arises in the

communications model in the literature on network economics (see e.g. Goyal (1993) and Bala

and Goyal (2000)) and is consistent with Metcalfe’s Law, concerning the nature of value in

telecommunication networks.

On the other hand, suppose that subsets of nodes perform various tasks, each task being of

equal value normalized to 1. A task is carried out if and only if the subset of nodes performing

that task is connected. The value of the network is the total value of tasks performed. A

component with m nodes thus generates value 2m − 1 (as there are exactly 2m − 1 tasks

which m nodes can perform). This yields a network value that is exponential in the size of

components; it is consistent with Reed’s law (Reed, 2001) on value of networked systems.

Conflict and contagion: In this section we will study the optimal defence and design of net-

works that face contagious attacks. In their influential paper on computer security, Staniford

et al. (2002) identify stealth worms and viruses as the main threats to security in computer

networks. Using data from actual attacks, they argue that adversaries scan the network to

explore its topology and the vulnerabilities of nodes, prior to attack. In the first instance,

have a star network. For a general introduction to networks concepts and terminology, see Goyal (2007).
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the objective is to deploy a worm on selected nodes in the network. Deployed worms then

exploit communication between nodes to progressively take control of neighboring nodes in

the network. The likelihood of capture of a node and the spread of the worm in a network

depends on the strength of the worm, the topology of connections and on vulnerabilities of

individual nodes. These considerations motivate the following theoretical model, due to Goyal

and Vigier (2014).

They consider a setting with two players: a Designer and an Adversary. The Designer

moves first and chooses a network and an allocation of defense resources. The Adversary then

allocates attack resources on nodes; if an attack succeeds then the Adversary decides on how

successful resources should navigate the network. The model has three important ingredients:

the value of the network (summarized in assumption (A.1) above), the technology of conflict

between defense and attack resources, and the spread of successful attack resources through

the network.

They assume that the value of a network is increasing and convex in the number of in-

terconnected nodes (Assumption A.1 above). They model the conflict between defense and

attack resources on a network node as a Tullock contest.6 The contest defines the probability

of a win for Designer and Adversary, as a function of their respective resources. The resources

of the loser of the contest are eliminated, the winner retains his resources. In case the Adver-

sary wins a contest on a node, the winning attack resources can move and attack neighboring

nodes. The dynamics of conflict continue as long as both defense and attack resources co-

exist. The initial network design and the conflict dynamics yield a probability distribution

on surviving nodes, i.e., nodes that have not been captured by the Adversary. The Designer

and Adversary are engaged in a zero sum game; so, given a defended network, we consider

the minimum payoff of the Designer given all possible attacks. An optimal defended network

maximizes this (minimum) payoff.

We let d ∈ N (resp. a ∈ N) denote the total resources of the Designer (resp. Adversary).

A strategy for the Designer is a pair (g,d), where g is a network defined on nodes in N and

d is a vector specifying the defense resources allocated at each node such that
∑
di = n. A

strategy for the Adversary is a pair (a,∆). The vector a specifies the attack resources initially

allocated at each node. The matrix δ = (δij)i,j∈N , on the other hand, describes the spread of

attack resources during the course of time.

Given a defended network (g,d), let K denote the subset of protected nodes and O the

6Here we build on the rich literature on rent seeking and conflict, see Garfinkel and Skaperdas (2012),
Tullock (1980) and Hirshleifer (1995).
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subset of unprotected nodes. Further, for i ∈ N let Oi ⊆ O denote the subset of unprotected

nodes which can be reached from i through some path such that each node on that path lies

in O. The set Oi will sometimes be called the unprotected neighbourhood of i. Similarly, let

Ki ⊆ K denote the subset of protected nodes which can be reached from i through some path

such that each node on that path lies in O.

Attack resources ai and defense resources di located on a node i engage in a contest for

control of the node. If ai + di > 0 then, following Tullock (1980):

probability of successful attack =
aγi

aγi + dγi
, (2)

where γ > 0. If ai is 0 then the probability of successful attack is 0, irrespective of the value

of di: a node is safe if it is not under attack.

We will provide an informal sketch of the dynamics; for details refer to Goyal and Vigier

(2014). At the start, the Adversary captures all nodes that are attacked and unprotected.

After that the Adversary captures Oi. He then reallocates ai attack resources to an un-

captured and protected node. The result below holds for a range of spread matrices. A

defended network will be called optimal if it maximizes the minimum expected network value

from all attacks possible.

The key to the analysis is whether or not a few nodes are ‘essential’ to the network value

given by assumption A.1. In the case where f(x) = x2, as n grows, the impact of eliminating

a few nodes vanishes. On the other hand, if f(x) = 2x − 1, the impact does not vanish:

limn→∞(n − a)2/n2 = 1, whereas limn→∞(2n−a − 1)/(2n − 1) = 1/2a < 1. The methods of

analysis for the two cases involve different arguments.

We will henceforth assume that the following limit exists, and define:

` = lim
n→∞

f(n− 1)

f(n)
.

A defended network (g, d) is optimal if Π
e
(g, d) ≥ Π

e
(g′, d′) for all defended networks

(g′, d′).

Given ε > 0, a defended network (g, d) is ε-optimal if Π
e
(g, d) ≥ (1 − ε)Π

e
(g′, d′) for all

defended networks (g′, d′). A star network in which all defence resources are allocated to the

central node is referred to as a Center-Protected (CP) Star.

We are now ready to state the main result from Goyal and Vigier (2014).
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Theorem 1 Assume that (A.1) holds, a/d ∈ N and n > a + 1. Let ε > 0 and consider the

class of connected networks. There exists n0 such that, for all n > n0:

1. If ` < 1 the CP-star is uniquely optimal.

2. If ` = 1 the CP-star is ε-optimal.

We illustrate the general line of argument with an example, by comparing the expected

network value achieved with a CP-star to the value achieved with a symmetric 2-hubs network

as illustrated in Figure 2.1. The defended network has |K| = 2 protected nodes, with one link

between them, and each protected node has n− 2/2 nodes in its unprotected neighbourhood.

We assume that d is even and each protected node has d/2 defence units allocated to it. To

simplify the exposition, we also assume a = d. The aim is again to find a way to attack this

network and leave the Designer with expected network value less than d
d+a

f(n− a); this will

show that the CP-star performs best in this case too.

Consider the following attack strategy, where the Adversary allocates 1 unit of resource to

exactly a/2 nodes of the periphery of each protected node. There are four possible outcomes

of the two contests on the hubs: either both hubs survive, both hubs are captured or one hub

survives and the other is captured. Given the equal resources engaged in contests, it follows

that the first two outcomes each arise with probability 1/4. The two outcomes define terminal

states of the dynamics, represented at the top and the bottom end of Figure 2.1. There is a

probability 1/2 that one of the hubs survives and the other is captured. This is represented in

the middle of the Figure 2.1. Capture of a hub triggers the capture of its respective peripheral

nodes. All attack resources then target the surviving hub, inducing a second round of contests.

With probability 1/2 the hub survives the attack, and with probability 1/2 it is captured. If

the hub is captured then this triggers the capture of the remaining peripheral nodes. This

brings to an end the dynamics of conflict.

The probability density P on surviving nodes is: with probability 1/2 all nodes are cap-

tured, with probability 1/4 half the nodes survive and with probability 1/4 all nodes survive.

Observe that this distribution is first order stochastically dominated by the distribution P ′

such that with probability 1/4 all nodes are captured, with probability 1/2 half the nodes sur-

vive and with probability 1/4 all nodes survive. But P ′ is in turn second order stochastically

dominated by the distribution P ′′ in which all nodes are captured with probability 1/2, and

all nodes survive with probability 1/2. Noting that P ′′ is the distribution facing the Designer
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Figure 1: Mimic attack on two-hub network: n = 12, a = d = 4.
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if he chooses a CP-star finishes to show that the CP-star dominates the 2-hubs network ex-

amined here, given that f is increasing and convex. Goyal and Vigier (2014) generalize these

ideas to cover all connected networks and establish:

Theorem 1 is a powerful result. It holds for all payoff functions which satisfy (A.1): so

the result does not depend on the curvature (i.e. the extent of convexity) of f . The result

holds for all γ in the Tullock contest function: so the conclusion is robust with respect to the

technology of conflict. The result holds for all resource configurations between the Designer

and the Adversary such that a/d ∈ N.

Empirical work on networks draws attention to the prominence of the hub-spoke network

architecture (see e.g., Goyal (2007); Newman (2010)). In an influential paper, Albert et al.

(2000) argue that these architectures are vulnerable to strategic attacks since potential ad-

versaries can significantly reduce their functionality by removing only a few hub nodes. By

contrast, the above analysis highlights the attractiveness of these architectures in a setting

where defence resources are scarce and network value is convex.

Decentralized defence: Theorem 1 provides us a result on the optimal defence and design of

a network facing an intelligent adversary threat. In the context of cybersecurity, investments

in protection are typically made by individual nodes. Heterogeneities in the network structure

create corresponding differences in individual incentives and in externalities. Thus Theorem

1 provides us a benchmark. We now turn to the question of how network design should

address the variety of network externalities? In this context, the standard understanding of

externalities is that individual returns to security may be lower than collective returns, due

to the risks of contagion. However, in a setting where the Adversary chooses targets, there is

an additional and novel consideration: investing in security diverts the attack to other nodes.

This potentially negative externality brings a new set of considerations into play. We follow

Cerdeiro et al. (2015) in this discussion.7

The Designer first chooses the network over the n nodes. Given this network, each of

the n nodes (simultaneously) chooses whether to protect or not; protection carries a fixed

cost. Finally, the Adversary chooses a node to attack. If the attacked node is protected, then

all nodes survive the attack. If the attacked node is not protected, then this node and all

nodes with a path to the attacked node through unprotected nodes are eliminated. Nodes are

assumed to derive benefits from their connectivity: the payoff of a node is increasing in the

7For a general survey of games played on networks, see chapter XX by Bramoulle and Kranton (2015).
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size of its surviving component. A node’s net payoffs are equal to its connectivity payoffs less

the amount spent on protection. The Designer is utilitarian: he seeks to maximize the sum

of nodes’ payoffs. The Adversary is intelligent, purposefully choosing the attacked node so as

to minimize connectivity-related payoffs.

We start with a study of the first best design and defence profile. We show that for low

protection costs, all nodes should be protected and any connected network is optimal. For

intermediate costs of protection, the Designer chooses a star network and protects its center

only. The Adversary then eliminates a single spoke of the star. If protection costs are high,

the Designer splits the network into equal size components and leaves all nodes unprotected.

The Adversary eliminates one of these components.

This sets the stage for the decentralized problem. Observe that if defence is sufficiently

expensive (so that no protection is first best), no protection is the unique equilibrium defence

of any first best network. At the other extreme, if protection is sufficiently cheap (so that full

protection is first best), there exist networks that implement the first best in every equilibrium.

Departures from first best welfare will therefore arise only for intermediate costs of protection;

that is, when a center protected star is optimal. The Designer cannot attain first best payoffs

in equilibrium, as the only equilibria on star networks are those where either all or no node

protects.

We now examine the optimal design problem in greater detail. When a center protected

star is first best but all nodes protect in equilibrium, protection decisions involve negative

externalities and exhibit strategic complementarities. Nodes have incentives to protect and

divert the Adversary’s attack to other parts of the network. How can the Designer induce

some nodes to be eliminated in equilibrium? Connected networks are not the best way to

address the over-protection problem. When a connected network has an equilibrium achieving

higher welfare than full protection, there always exists a disconnected network that welfare-

dominates it. Thus, if the Designer is to avoid the over-protection problem, he must disconnect

the network and sacrifice some nodes.

The analysis summarized so far assumes that individual coordinate on equilibria that

achieve maximum equilibrium welfare. In general, however, some of these networks may

feature multiple equilibria that achieve vastly different welfare levels. How can the Designer

tackle potential coordination problems? To illustrate the issue, suppose that the costs of

protection are such that maximum equilibrium welfare is achieved via full protection on a

connected network. The network where nodes are arranged on a cycle has a full protection

equilibrium. However, if the cost of protection outweighs the benefits of surviving in isolation,
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there is another equilibrium on this network where no node protects and the Adversary brings

down the entire network. Cerdeiro et al. (2015) provide a necessary and a sufficient condition

for a network to induce full protection in any equilibrium. Such networks are sparse in the

following sense: they must feature a node that can block the Adversary’s attack, thus saving

a large part of the network.

The contribution of the paper lies at the intersection of economics and computer science

literature. For an early contribution in the study of decentralized defence, see Kunreuther

and Heal (2004). Aspnes et al. (2006) studies security choices by nodes in a fixed network

when nodes only care about their own survival, attack is random, and both protection as well

as contagion are perfect. The focus is on computing the Nash equilibria of the game. They

provide approximation algorithms for finding the equilibria. In a recent paper, Acemoglu et al.

(2013) study the incentives for protection in a setting when both defence and contagion are

imperfect.8

The relationship with Goyal and Vigier (2014) is worth discussing as they highlight the

large effects of decentralized defence for optimal network design. In Goyal and Vigier (2014)

the optimal design is a star network and optimal allocation of resources is exclusively on the

central node. By contrast, when individual nodes choose security, the optimal design has

to address problems of too much as well as too little protection. This best way to tackle

over-protection is by disconnecting the network and sacrificing some nodes. Potential under-

protection problems are addressed by creating equal components. Finally, coordination prob-

lems in security are mitigated through the creation of ‘sparse’ networks that contain critical

nodes.

2.1.1 Non-contagious threats

In its strategy statement, the US Office of Infrastructure Protection says, “Our nation’s critical

infrastructure is crucial to the functioning of the American economy... (It) is increasingly

connected and interdependent and protecting it and enhancing its resilience is an economic

and national security imperative Department of Homeland Security (2012).” In these contexts

the primary cost of an attack is in terms of nodes (and links) that are eliminated and the

consequent loss in the connectivity of the network. This motivates the study of networks in

a setting with non-contagious attacks. In parallel with our discussion of contagious risk we

8There is also a very active research programme in financial contagion, see e.g., Blume et al. (2011),
Acemoglu et al. (2015) Cabrales et al. (2010), and Elliot et al. (2014)). For a survey of this issues see Chapter
XX by Cabrales et al. (2015).
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start with a study of optimal defence and design.

The presentation here draws on Dziubiński and Goyal (2013). There is a Designer and

an Adversary. The Designer moves first and chooses a network and defence allocation. The

Adversary moves next. Costs of attack are sunk; the Adversary can choose up to k ≤ n − 2

nodes to eiminate/remove. The costs of the Designer are linear: there is a cost cl > 0 for every

link, and a cost cd > 0, for defending a node. Defence is perfectly reliable. Given network g,

the set of defended nodes, ∆, the set of attacked nodes, X ⊆ N , the payoff to the defender

and Adversary, are respectively:

ΠD(g,∆, X; cd, cl) =Φ(g − (X \∆))− cd|∆| − cl|g|

ΠA(g,∆, X) =− Φ(g − (X \∆)).

It is useful to consider the connectivity based value function; for the analysis of general

value functions that satisfy assumption A.1 see Dziubiński and Goyal (2013). In this case

the residual network has value 1 if it is connected and 0 otherwise. Now the equilibrium has

a simple structure. One of the following three possible outcomes arises: one, the network is

empty and there is no defence; two, there is no defence, the network involves redundant links,

and three, the star network with protected center.

The exact levels of costs for each of the above outcomes can be derived by applying a result

due to Harary (1962). Harary (1962) showed that a network that cannot be disconnected by

removal of k nodes requires exactly dn(k+1)
2
e links. Moreover any such network is regular of

degree (k+ 1), or almost regular, having one node of degree (k+ 2) (if both n and k are odd).

The set of these graphs is denoted by M(n, k).9 Dziubiński and Goyal (2013) establish the

following result.

Proposition 1 Consider the Designer-Adversary game under connectivity based value func-

tion and suppose that k ≤ n− 2. In equilibrium

1. The Designer chooses network g and defence ∆:

• If cl < 1/
⌈
n(k+1)

2

⌉
and cd > cl

(⌈
n(k−1)

2

⌉
+ 1
)

, then g ∈M(k, n) and ∆ = ∅.

• If cl(n − 1) + cd < 1 and cd < cl

(⌈
n(k−1)

2

⌉
+ 1
)

, then g is a star and the central

node is defended.

9The set M(n, k) is not empty, as it includes Harary graphs defined by Harary to obtain the upper bound
on the number of links.

13



• Otherwise g is empty and ∆ = ∅.

2. The Adversary chooses: a separating cut for g and ∆, if it exists; if it does not exist

then all cuts yield the same payoff.

The proposition above illustrates the trade off faced by the Designer. If costs of defence

are high relative to the costs of linking the Designer chooses a regular and dense network. On

the other hand, when costs of defence are relatively low the Designer chooses the star network

and defends the hub node.

A comparison between Goyal and Vigier (2014) and Dziubiński and Goyal (2013) helps

us to understand the role of contagion in the optimal defence and design. In the latter paper,

when defence units are 0, the Designer defends the network by adding more links and so the

optimal network is (k + 1)-connected. By contrast, in Goyal and Vigier (2014), when there is

no defence, the Designer defends the network by separating it into distinct components. This

is due to the implicit cost to linking introduced by the possibility of contagion.

Finally, in Dziubiński and Goyal (2014), the equilibrium will typically involve protection

of multiple nodes. By contrast, Goyal and Vigier (2014) show that under a wide variety of

circumstances, the Designer will assign all resources to the central node of a star.

The defence of a network: In some contexts – such as trains or roads or telecommunications

– the network involves very large and time consuming investments. So it is important to

study the problem of defending a given network. The focus is on where to allocate resources

to maintain the network in the face of threats that potentially damage or knock out nodes.

The presentation draws on Dziubiński and Goyal (2014).

They consider a two-player sequential move game with a Defender and an Adversary. In

the first stage, the Defender chooses an allocation of defence resources. In the second stage,

given a defended network, the Adversary chooses the nodes to attack. Successfully attacked

nodes (and their links) are removed from the network, yielding a residual network. The goal of

the Defender is to maximize the value of the residual network, while the goal of the Adversary

is to minimize this value.

Fix a network g on a set of nodes N = {1, . . . , n}, where n ≥ 3. A defence is a set of

nodes ∆ ⊆ N . The set of attacked nodes X ∈⊆ N chosen by the Adversary is called a cut.

Removing a set of nodes X ⊆ N from the network creates residual network g − X. It is

assumed that that the defence is perfect: a protected node cannot be removed by an attack,
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while any attacked unprotected node is removed with certainty. Given a defence ∆ and a cut

X, a set Y = X \∆ will be removed from the network.

Defence resources are costly: the cost of defending a node is cd > 0. Given network g,

defender’s payoff from strategy ∆ ⊆ N , when faced with opponent strategy X ⊆ N , is

ΠD(∆, X; g, cd) = Φ(g − (X \∆))− cd|∆|. (3)

where Φ(·) satisfies assumption (A.1).

Attack resources are costly: the cost of attacking a node is given by ca > 0. Given defended

network (g,∆), payoff to the Adversary from strategy X ⊆ N is

ΠA(∆, X; g, ca) = −Φ(g − (X \∆))− ca|X|. (4)

They study the (sub-game perfect) equilibrium of this game.

Dziubiński and Goyal (2014) show that the Adversary should target nodes that separate

the network, while the defender must protect nodes that block these separators, i.e., their

transversal. They then study the relation between network architecture and the intensity of

conflict (the sum of resources allocated to attack and defence) and the prospects of active

conflict (when some nodes are defended while some are attacked). To get a sense of the issues,

it is useful to begin with a simple example.

Example 1 Defending a star network

Consider the star network with n = 4 and {a} as central node (as in Figure 1). The value

function is f(x) = x2. As is standard, we solve the game by working backward. For every

defended network (g,∆) we characterize the optimal response of the Adversary. We then

compare the payoffs to the defender from different (g, δ) profiles and compute the optimal

defence strategy. Equilibrium outcomes are summarized in Figure 2.

A number of points are worth noting.

1. Observe that removing node a disconnects the network; this node is a separator. More-

over, there is a threshold level of cost of attack (7) such that the Adversary either attacks

a or does not attack at all when ca > 7. Protecting this node is also central to network

defence.

2. The intensity of conflict exhibits rich patterns: when costs of attack are very large there

is no threat to the network and no need for defence. If the costs of attack are small,
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Figure 2: Equilibrium outcomes: star network (n = 4) and f(x) = x2.

intensity of conflict hinges on the level of defence costs. When they are low all nodes are

protected and there is no attack (the costs of conflict are ncd), if they are high then there

is no defence but all nodes are eliminated (the costs of conflict are nca). For intermediate

costs of attack and defence, both defence and attack are seen in equilibrium.

3. The size of the defence may be non-monotonic in the cost of attack. Fix the cost of

defence at cd = 3.5. At a low cost of attack (ca < 1) the defender protects all nodes,

in the range ca ∈ (1, 5) he protects 0 nodes, in the range ca ∈ (5, 13) he protects {a},
and then in the range ca > 13, he stops all protection activity. Similarly, the size of the

attack strategy may be non-monotonic in the cost of attack.

4

Turning now to the analysis for general networks, we note first that given the convexity in

the value function of networks, disconnecting a network is especially damaging. A cut X ⊆ N

is a separator if |C(g)| < |C(g − X)|. However, a network will normally possess multiple

separators and the Adversary should target the most effective ones. A separator S ⊆ N is

essential for network g ∈ G(N), if for every separator S ′ ( S, |C(g−S)| > |C(g−S ′)|. The set

16



of all essential separators of a network g is denoted by E(g). Figures 3-4 illustrates essential

separators in some well known networks.

(a) (b) (c)

PDFill PDF Editor with Free Writer and Tools

Figure 3: (a) Tree network, (b) essential separators, (c) minimum transversal.

(a) (b) (c)

PDFill PDF Editor with Free Writer and Tools

Figure 4: (a) Core-periphery network, (b) essential separators, (c) minimum transversal

The second element is the level of costs. As illustrated by Example 1, the network defence

problem can be divided into two parts, depending on the cost of attack. Given x ∈ N,

∆f(x) = f(x + 1) − f(x) is the marginal gain to a node in the value of a component of size

x. Under Assumption A.1, ∆f(x) is strictly increasing. It is useful to separate two levels of

costs: one, high costs with ca > ∆f(n− 1), and two, low costs with ca < ∆f(n− 1).

We present the case of high cost as it brings out some of the main insights in a straight-

forward way. Facing a high cost, the Adversary must disconnect the network, i.e., choose a

separator or not attack the network at all. Clearly, the Adversary would never use an essential
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separator that yields a lower payoff than the empty cut. Given cost of attack ca and network g,

the set of individually rational separators is E(g, ca) = {X ∈ E(g) : Φ(g)−Φ(g−X) ≥ ca|X|}.
We now turn to equilibrium strategies of the Designer. Again, it is instructive to start with

the setting where cost of attack is high. An optimal strategy of the defender should block a

subset of individually rational essential separators in the most economical way. Given a family

of sets of nodes, F , and a set of nodes M , D(M,F) = {X ∈ F : X∩M 6= ∅} are the sets in F
that are blocked (or covered) by M . The set M is called a transversal of F , if D(M,F) = F .

The set of all transversals of F is denoted by T (F). Elements of T (F) with the smallest size

are called minimum transversals of F . Let τ(F) denote the transversal number of F , i.e., the

size of a minimum transversal of F . Figures 3-4 illustrates the transversal in some well known

networks.

Dziubiński and Goyal (2014) develop the following result on optimal defence and attack.

Proposition 2 Consider a connected network g ∈ G(N) and suppose ca > ∆f(n − 1). Let

(∆∗, X∗) be an equilibrium.

• |∆∗| ≤ τ(E(g, ca)) and ∆∗ is a minimum transversal of D(∆∗, E(g, ca)).

• X∗(∆) = ∅, if ∆ ∈ T (E(g, ca)); X∗(∆) ∈ E(g, ca) with X∗(∆) ∩∆ = ∅, otherwise.

Optimal defence is characterized in terms of minimal transversal of the appropriate hyper-

graph of separators (or defence covers all nodes). If cost of attack is such that elimination of

single nodes is not worthwhile, optimal attack is bounded above by the transversal number of

the graph. Optimal attack is either empty or targets essential separators.

Example 1 above suggests that defence size is falling in defence costs and is non-monotonic

in attack cost. The attack size is non-monotonic in both attack cost and defence cost. Dzi-

ubiński and Goyal (2014) show that these patterns are true more generally. The authors then

study the relation between the network architecture and the intensity of conflict : this is the

sum of expenditures of defence and attack. Their analysis characterizes minimal intensity

of conflict and the corresponding networks that sustain it. This allows them to show how

network architecture matter for the intensity of conflict.

They then turn to the problem of defence when nodes makes security choices: they show

that the equilibrium in this decentralized defence game can also be characterized in terms

of transversals and separators of the underlying network. Second, they find that defence

exhibits properties of strategic substitutes and a threshold public good. Three, they show
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that the welfare gap between decentralized equilibrium and first best outcomes is unbounded:

interestingly, individual choice may lead to too little and to too much protection, relative to

the choice of a single (centralized) defender.

2.2 The design of criminal networks

Illegal organizations, like other institutions, rely on cooperation and coordination among their

members. As legal enforcement of formal contracts is problematic, such organizations are

especially reliant on trust among members. Information sharing on identity and personal

information may be an important factor in building internal trust and cohesion: but it can

leave the organization vulnerable to ‘serial’ exposure. How does this trade-off affect the

design of a criminal organization? In an early paper, Baccara and Bar-Isaac (2008) study this

question.

The first point to note is that there is significant heterogeneity across the information

structures of different criminal/illegal organizations. On the one hand there is the view that

these organizations have a centralized information and enforcement structure. In the Mafia,

there is the so-called Cupola that holds large amounts of information about the organization

itself and carry out the enforcement needed for the organization to function. These crucial

agents are shielded from the authorities since they are typically not directly involved in crim-

inal activities. On the other hand, recent studies on modern terrorism suggest a decentralized

organization characterized by the presence of independent “cells”. These cells consist of agents

who know each other and enforce each others actions but who have a very vague idea of how

the organization looks outside the cell boundaries. Thus, even if authorities detect a cell, it

is difficult to expand the detection further. This structure is similar to other organizations

observed in history, including the anarchist and the revolutionary organizations in the late

19th century in Europe.

These empirical observations motivate a model with the following ingredients. Individuals

are engaged in an infinitely repeated multi-person prisoners dilemma, augmented with the

possibility of additional punishment, which can help encourage “good” behavior. The addi-

tional punishment of a player requires personal information about this specific person; this

information makes the person vulnerable. Examples of this kind of information include iden-

tity, whereabouts, or some incriminating evidence about a person. They explore the trade-off

between the enhancement in internal cohesion derived by exchanging internal information and

the increase in vulnerability to detection that this exchange implies.
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The model has N = {1, 2..., n}, n ≥ 2 agents. Agents are engaged in an infinitely repeated

prisoner’s dilemma. A Designer attempts to sustain cooperation among the n agents. Links

are directed, and if i is linked to j then he can inflict an additional punishment on j in case the

latter fails to cooperate. This implies that the returns from connectedness are positive for the

first link, but zero afterwards (as an agent cannot be punished more than once). Observe that

in the absence of an Adversary a network made up of paired nodes is the optimal architecture.

The external authority, or the Adversary, attempts to inflict the most disruption possible on

the network by allocating attack resources across the nodes. Contagion follows the direction

of the link and is assumed to be unidirectional. The timing of the game is such that the

Adversary moves first. The Designer observes the allocation of attack resources, and chooses

links between the nodes.

Note that if nodes are sufficiently patient then cooperation can be sustained even without

links between nodes. The empty network is in that case the optimal organization. If nodes

are impatient, on the other hand, then even adding links between nodes will not suffice to

induce cooperation. Again, the empty network is in that case the optimal organization. The

case of interest is therefore that of intermediary values of the nodes’ impatience. Let us now

turn to this case.

Generally speaking, the agents probability of getting detected directly depends on the re-

sources allocated on him and on his activity status. Baccara and Bar-Isaac (2008) study two

polar cases, one, where detection probability is independent of activity in the organization and

two, where detection is only possible if the agent is cooperating with the criminal organiza-

tion. They provide characterize the optimal information structure within the organization. In

the independent detection case, they find that if the probabilities of detection are sufficiently

similar, either it is optimal to create no information links or the optimal structure consists

of binary cells (pairs of agents with information about each other but with no information

links with other members of the organization). Given this characterization, they then consider

the optimal budget allocation for the Adversary. They show that there are circumstances in

which allocating the budget symmetrically induces the organization to exchange no informa-

tion. In these cases, a symmetric allocation is optimal. However, sometimes a symmetric

allocation induces the agents to form a binary cell structure. Baccara and Bar-Isaac (2008)

show that in this case, the authority optimizes by not investigating one of the agents at all

while investigating the others equally.

In the latter cooperation-based detection case, since each agents probability of detection is

a function of the level of cooperation within the organization, an optimal information structure
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may require lower levels of cooperation from some of the agents to shield them from detection.

Even though agents are ex ante symmetric, they show that the optimal information structure

can be asymmetric, resembling a hierarchy with an agent who acts as an information hub,

does not cooperate at all, and thus remains undetected. If each individual agents contribution

to the organization is sufficiently high, the optimal organization can also be a binary cell

structure. Moreover, the optimal strategy of the external agent is different under cooperation-

based detection. For example, devoting considerable resources to scrutinizing a single agent

makes that agent relatively likely to be detected whether linked or not under the agent-based

cooperation model, thus making it cheap for the organization to link the agent and induce

him to cooperate. In contrast, under cooperation-based detection, it is costly to make such

a scrutinized agent cooperate (and thereby increase considerably the probability that he is

detected).

The driving forces in these two detection approaches are thus very different. In the in-

dependent detection model, the Adversary chooses a strategy that makes it unappealing for

agents to be vulnerable. In the cooperation-detection model, however, the external authoritys

strategy of targeting someone makes it less attractive to have him cooperate.

We now briefly relate the findings of Goyal and Vigier (2014) and Baccara and Bar-Isaac

(2008). In both papers there is trade-off between connections and vulnerability. However, the

models differ along a number of dimensions and these differences serve to highlight the rich

theoretical possibilities in this literature. In Goyal and Vigier (2014) the gains from large scale

connectivity are key; by contrast, in Baccara and Bar-Isaac (2008) the size of the network

plays no essential role in defining network value.10 Two, the former paper studies conflict

between defense and attack; by contrast, there are no defense resources in the latter. Three,

the Designer moves first in the former model, while the Adversary moves first in the latter

model. Four, links are undirected in the former, while they are directed in the latter. These

differences are substantive and taken together lead to very different insights.

2.3 Open questions

The design and defence of networks that face threats is an important practical problem.

Networks perform a variety of functions and this gives rise to different potential sources of

network value. The papers we have surveyed approach the network value question in different

10This is best seen by comparing optimal networks in the absence of an Adversary in the two settings: in
Baccara and Bar-Isaac (2008) linked pairs of players is an optimal criminal organization. By contrast, in Goyal
and Vigier (2014) any optimal network must be connected.
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ways, but connectivity and component size have been a prominent feature of many papers.

The discussion of Baccara and Bar-Isaac (2008) highlights the key role of the network value

function in shaping an answer to the design question. As research in this field matures we

believe that closer attention to the source of network value would be important. In this section,

we started with the first best scenario: where the design and defence are both controlled by

a single player. In applications, individual nodes often have control of these variables. Our

discussion of Cerdeiro et al. (2015) suggests that optimal networks with decentralized choice

may be very different from first best networks. In important contexts such as epidemiology

and cybersecurity, individuals choose links in addition to security. In future work, it would be

important to study the impact of these choices.11 Finally, we would like to comment on the

nature of defence. Following on the early work of Aspnes et al. (2006) and others, most of the

recent work surveyed in the section has assumed that defence is perfect. This is a natural first

step, but clearly it is a strong assumption. The dynamics of contests on networks remains a

poorly understood problem.

3 Resources, Conflict and Networks

In economics and in biology, we think of agents and organisms as seeking to expand their

influence and to capture territory. One possible avenue through which to obtain resources is

to appropriate them through conflict. However, agents may face constraints on whom they can

target for conflict. The extensive literature on wars shows that a significant majority of them

take place among physically proximate entities, Caselli et al. (2014). The traditional models

of conflict have focused on bilateral conflicts or on groups of countries in conflict (Garfinkel

and Skaperdas (2012)). As bilateral conflicts create spillovers to other conflicts and as the

spillovers are mediated by the pattern of neighborhood relations, it is important to develop

general models of conflict in networks. The literature surveyed below is a first step in this

direction.

We start with a static conflict game on a network. The presentation draws on Franke and

Öztürk (2009). There is a set N = {1, . . . , n}, where n ≥ 3 of agents that are located in an

undirected network g. The set of rivals of agent i is given by Ni(g), and so agent i is engaged

in ni(g) = |Ni(g)| conflicts. The outcome of each bilateral conflict is probabilistic and depends

on the investment in conflict by the respective rivals. For concreteness, we shall suppose that

11For a survey of the literature on co-evolution of networks and behavior, see chapter XX by Vega-Redondo
(2015).
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the conflict technology is the linear Tullock contest function. In a conflict between i and j,

and given investments eij and eji the probability of winning for agent i is given by

pij(eij, eji) =
eij

eij + eji
, (5)

so long as eij + eji > 0. In case eij + eji = 0, the probability of either player winning is

1/2. Each agent i chooses a investment for each of his conflict links ei = (eij)j∈Ni
. The

cost of investment in conflict is given by the function c(ei). For simplicity, we assume that

c(ei) = (
∑

j∈Ni
eij)

2. The reward from winning a conflict is V , while the cost of losing is −V .

We may now write the payoffs of agent i in network g, with investment profile e = (e1, . . . , en),

as

πi(e) = V
∑
j∈Ni

[pij(eij, eji)− pji(e)]− c(ei). (6)

The interest is in understanding how the network shapes conflict. We will focus on Nash

equilibrium in conflict investments.

Define e∗(g) to be an equilibrium for network g. Franke and Öztürk (2009) start by showing

that there exists a unique equilibrium in this model and that it is interior. Define E∗i (g) to

be the aggregate equilibrium investment by player i in network g. Equilibrium investments

satisfy the following property: for each i ∈ N and each k ∈ Ni ,

V
e∗ik

[eik + eki]2
= Ei(g). (7)

Let e∗(g) be the equilibrium profile of investments in network g and letE∗(g) =
∑

i∈N E
∗
i (g).

be an aggregate equilibrium investments or the conflict intensity.

Franke and Öztürk (2009) provide results on some well known special classes of networks.

We present their results on regular networks and the star network.

Proposition 3 Conflict equilibrium exhibit the following properties.

1. Regular networks: Conflict intensity is increasing in degree, d, and in number of agents

n. Conflict intensity is higher in g1 than in g2 if and only if n1

√
d1 > n2

√
d2. Individual

investment and expected payoff is decreasing in degree and does not depend on number

of agents. Expected equilibrium payoff is negative for all agents.

2. Star network: Conflict intensity is increasing in the number of peripheral agents. For
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the center agent, link specific (aggregate) investment is decreasing (increasing) and the

expected payoff is decreasing in number of peripheral agents. For the periphery agent,

conflict investment is declining and payoffs are increasing.

Franke and Öztürk (2009) offer us an interesting first look at conflict in networks. Their

results illustrate how the cost function and network creates spillovers and how these spillovers

in turn shape behavior by different agents in a network. As the authors note, the problem of

characterizing conflict in general networks remains an open problem.

In a recent paper, Konig et al. (2014) study conflict in a network setting where links may

be positive (as between allies) or negative (as between enemies). They provide a characteri-

zation of conflict investments as a function of the network: investments by allies are strategic

substitutes, while investments by enemies are strategic complements. They then show that

equilibrium investments are proportional to Bonacich centrality of the allies and enemies net-

works, respectively. They then apply these results to understanding the nature of conflict in

the Congo.

The authors assume a linear Tullock contest function and the conflict is static. In real

world conflicts dynamics play an important role, as winners of current conflicts acquire more

resources and power that they can use to subsequent conflicts. We examine the dynamics of

conflict in the next section.

3.1 Dynamics of conflict

We now take up the study of conflict as a dynamic process with resource accumulation for

the winner and elimination of the losers. By way of motivation, consider the example of a

kingdom or a country seeking to expand its territory by means of military conquest. This

drive toward expansion will typically be geographically constrained as it is difficult to conduct

military campaigns far away from established territory. Indeed, empirical research shows that

the vast majority of conflicts are amongst physically neighboring entities. Moreover, once a

particular territory has been conquered and integrated, new territories close to the conquered

territory become accessible. In addition, the resources of the newly acquired territory can be

used for further conquest. Historians use archaeological evidence to argue that the Roman

empire used resources from occupied territories around the Mediterranean to supply legions

during the invasion of Western Europe and Britain.

Conflict may also take non-military forms, such as a company seeking to expand into

new markets. It is easier for a company to expand into markets that are closely aligned to
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its current markets, either geographically or in terms of product lines. Once a foothold has

been established in a new market, this generates resources for further expansion. In addition,

markets closely aligned to the newly entered market become more accessible.

The presentation here draws on De Jong et al. (2014), who study a framework where a

number of agents seek to capture resources through conflict. At the start, individuals have

resources. Each individual is located at a node of a network. As time goes by, opportunities

arise for individuals to ‘fight’ and capture the resources of neighboring nodes. A conflict is

modeled as a Tullock contest. The conflict yields a winner and a loser. The winner captures

the resources of the loser and expands his influence in the network.

There are three ingredients in this framework: the initial resources of individuals, the net-

work structure, and the technology of conflict (the parameters of the Tullock contest function).

Their goal is to characterize the dynamics of conflict and the rise and fall of empires.

A set of players P = {1, 2, . . . n} engage in conflict over a network with nodes N =

{1, 2, . . . n}. Nodes have attached resources r = (r1, r2, . . . , rn). The set of all links form a

connected network g.

Each node is controlled by one of the players. Let Sti ∈ P denote the player in control

of node i in period t, with t = 0, 1, 2, ... Each player starts with ownership of their ‘own’

node, so that S0
i = i. Ownership of nodes may change during the game, depending on conflict

outcomes. Let Gt = {gij ∈ g | Sti 6= Stj}. This is a sub-network of g containing all the links

that connect nodes controlled by different players. Note that the value of G0 is g. At the

beginning of period t, a link Lt ∈ Gt is selected with equal probability.

The players who control the nodes at two ends of the link each use the combined resources

from their respective nodes. The winner of the contest gains control of the loser’s nodes. Define

Rt
u =

∑
St
k=u

rtk, the total resources available to player u in period t. Let gij = Lt be the selected

link in Gt at round t. Then players Sti and Stj engage in a Tullock contest. Suppose, without

loss of generality, that Sti < Stj. Then W t
i is defined to be the binary variable describing the

winner of the contest in period t, taking value 1 if player Sti wins and 0 if player Stj wins. The

distribution of this variable is

P (W t
i = 1) =

(Rt
i)
γ

(Rt
t)
γ + (Rt

j)
γ

where γ > 0 is the parameter of the Tullock contest function.
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The network is then updated depending on the value of W .

St+1
v = Stv for v 6= i, j

St+1
v = W tSti + (1−W t)Stj for v = i, j

The game ends when there is only player left, who is denoted the victor.

In this basic model, one player is eliminated in every period, so the dynamics must end in

period n − 1. Moreover, For γ < +∞ and r ∈ Nn, the game ends in n − 1 periods and the

probability for any player to win the game is strictly positive.

We now turn to how the probability of victory is affected by starting resources and network

position. To make progress, De Jong et al. (2014) specialize the model and consider the case

of linear Tullock function. Define R =
n∑
i=1

ri. They establish:

Proposition 4 Let γ = 1. Then the probability for player i to win the game is given by

P (i) = ri/R.

The intuition behind this result is as follows. In order to win the game, a player must

eventually capture all other resources. The player can do this in a single contest, fighting all

other resources at the same time, in which case the probability of winning is as above. If

the player engages in an intermediate contest, the increased probability of winning the final

contest compensates exactly for the probability of losing the intermediate contest for γ equal

to one. Network position influences the timing and frequency of contests, and therefore has

no effect on win probability. For γ < 1, the Tullock contest function is everywhere concave

in resources, and so resources gained in the intermediate contest do not compensate for the

chance of losing the intermediate contest. If γ > 1, then the Tullock contest function is convex

on part of its domain, so depending on resources, the resources gained from the intermediate

contest may compensate for the chance of losing. In order to illustrate the effects of interaction

between the technology of conflict and network structure, we consider a specific network, the

star.

Proposition 5 Let G be a star network with n peripheral nodes, and let resources be homoge-

neous among peripheral nodes, so that r = (rc, rp, ...rp). Then the win probabilities for central
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and peripheral nodes are given as follows.

Pc(rc, rp, γ) =
n−1∏
i=0

(rc + rp)
γ

(rc + irp)γ + rγp
(8)

Pp(rc, rp, γ) =
1

n
(1− Pc(rc, rp, γ)) (9)

It is important to explore the interaction between resources, network and technology of

conflict a bit more closely. To illustrate the richness of this relationship it is worth looking at

the limiting case when γ → +∞. When γ → +∞, the Tullock contest reduces to the all-pay

auction, where the player with higher resources wins with probability one. Consider a network

with three nodes in a line, with resources r1, r2 and r3. First, note that the player with the

lowest resources has negligible probability of winning, regardless of network position. If any

player has resources higher than the combined resources of the other two players, that player

will win with probability close to 1, regardless of network position. So, the network position

is irrelevant. Let r2 > r1 = r3 and r2 < r1 + r3. Then player 2 wins with probability one, and

the marginal effect of resources is zero for all players. Now switch the location of player 2 and

player 1. Then player 2 wins with probability 1
2
, and player 1 and 3 win with probability 1

4
.

For players 1 and 3, adding any amount of resources increases win probability by a further
1
4
. To summarize, the network position can have either no effect or a very large effect, and

a small amount of resources can have either no impact or a very large impact, depending on

the network and current resource allocation.

These results suggest a very rich interaction between resources, networks and the technol-

ogy of conflict in shaping conflict dynamics. A general analysis of this problem remains an

open problem.

The framework presented above raises a number of interesting further questions. The

network is taken as given. In a recent paper, Huremovic (2014) studies conflict in an evolving

network. We have assumed that nodes engage in conflict, but a natural question is whether

they have an incentive to engage in conflict. If the technology of conflict is very equalizing

(γ close to 0) then nodes would prefer to not fight, as there is no gain in terms of additional

resources, while there is a cost in terms of positive probability of elimination. Another issue

relates to alliances: so far we have assumed that nodes remain independent. But alliances are

a salient feature of international as well as civil conflict. We take up the role of alliances in

shaping conflict next.
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4 Alliances, networks and conflict

International and civil wars impose enormous direct costs on the parties involved and are

have large indirect costs on third parties. Empirical work shows that around 40% of the

wars with more than 1000 casualties involved more than 2 countries and large conflicts such

as the World Wars and the Vietnam War involved alliances with many nation states. More

generally, alliances have been a central element in violent conflict throughout history. These

considerations motivate a study of alliance formation and how it shapes the intensity of

conflict.12

We begin with a presentation of a recent paper by Jackson and Nei (2014).13 They develop

a model for the incentives of countries to attack each other, to form alliances, and to trade

with each other. There is a set N = {1, ...., n}, where n ≥ 3, of countries. Countries are linked

through alliances, represented by a network of alliances g. If two countries are linked then

they are allies. Let g − i denote the network obtained by deleting all alliances that involve

country i. Let CL(g) denote the set of cliques in network g. Each country i ∈ N is endowed

with a military strength Mi ∈ R+. For any subset of countries C ⊆ N , let M(C) =
∑

i∈CMi

be their collective military strength. If there is a war between C1 and C2, with C1 being

the aggressor, then C1 wins if M(C1) > ρM(C2). The parameter ρ > 1 reflects a relative

advantage of being the defender and ρ < 1 reflects a relative advantage of being the aggressor.

The notion of ‘vulnerability’ plays a key role in the analysis. A country i is vulnerable

at a network g if there exists a country j and a coalition C ⊆ Nj(g) ∪ {j} such that j ∈ C,

i /∈ C and M(C) > ρM(i ∪ (Ni(g) ∩ Cc)), where Cc is the complement of C. In this case,

country j is said to be a potential aggressor at a network g. Thus, no country is vulnerable

at a network g if for any coalition C of a potential aggressor j and any target country i /∈ C,

the aggressors cannot successfully attack the country. At this point, it is being assumed that

winning is desirable and that losing a war is undesirable.

Jackson and Nei (2014) introduce the notion of war-stable networks to study the incentives

of countries to form coalitions to defeat and conquer other countries. Define Eik(g, C) as the

net gains to country k if country i is conquered by coalition C (of which k is a member), when

country i is conquered by coalition given by C ′ = {i} ∪ (Ni(g)∩Cc). It is assumed that there

is a cost to maintaining a link cij > 0 between any pair of countries i, j. These costs will be

12There is an important body of research on groups in conflict, for a survey, see Garfinkel and Skaperdas
(2012). In this survey, due to space constraints, we do not cover conflict among groups.

13For an early paper on network formation with antagonistic links see Hiller (2012).
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taken to be small relative to the spoils from a successful war.

With this notation in place, a network g is war stable if the following conditions are

satisfied:

1. no country is vulnerable at g.

2. ∀gj,k /∈ g no country is vulnerable at g + jk,

3. ∀gjk ∈ g, both j and k are vulnerable at g − gjk.

Suppose that countries are ordered as follows: M1 ≥ M2 ≥ .... ≥ Mn. Jackson and Nei

(2014) establish the following result:

Proposition 6 Let n ≥ 3. There are no nonempty war-stable networks. The empty network

is war-stable if and only if ρMn ≥M1 +M2.

The intuition behind this result is as follows: For no country to be vulnerable and for every

alliance to be productive (in terms of condition 3) networks to be sparse. However, sparse

networks are susceptible to condition 2: allies of a country can join forces and defeat it. This

tension suggests suggests rapidly shifting alliances and is reminiscent of the empirical patterns

from the nineteenth century. Jackson and Nei (2014) report that during the nineteenth century

and the first half of the twentieth century, roughly one-third of the alliances present at any

time were dissolved within the next 5 years. By contrast, in the period from 1950 until 2000,

this probability was around 0.05!

This sharp difference in the performance of alliances motivates a closer examination of

other significant economic changes. Jackson and Nei (2014) focus on the changes in the size

of international trade. They report that international trade has had two major periods of

growth. The latter part of the nineteenth century and beginning of the twentieth saw a sharp

rise in international trade. This rising trend was disrupted by the world wars. International

trade picked up after the Second World War, recovering its pre-first world war level in the

1960’s and then continuing to grow at an increasing rate thereafter. In particular, in 1850

international trade amounted to 5.1% of total world output, this share rose to 11.9% in 1913.

It then remained below this level until the 1960’s, picking up thereafter and reaching 25% in

2012. These changes lead Jackson and Nei (2014) to propose a richer model of alliances and

wars, that incorporates the role of international trade.

They propose that a country gets a payoff ui(g) from network g, reflecting gains from trade.

The notion of vulnerability is now adapted to take into account this additional consideration.
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A country i is said to be vulnerable despite trade in a network g if there exists a country j and

a coalition C ⊆ Nj(g) ∪ {j} such that j ∈ C, i /∈ C and (i) M(C) > ρM(i ∪ (Ni(g) ∩ Cc)),

and (ii) uk(g − i) + Eik(g, C) ≥ uk(g), with some strict inequality.

The uk(g−i) reflects the trade implications of successful elimination of i: it is worth noting

that a country k may stand to benefit or to lose from such a conquest. Taking this general

effect into account, Jackson and Nei (2014) define network g to be war and trade stable if the

following three conditions are met:

1. no country is vulnerable despite trade at g;

2. ∀gjk = 0, if uj(g + gjk) > ui(g) then uk(g + gjk) < uk(g), and gjk is not war-beneficial.

3. ∀gjk = 1, either uj(g − gjk) ≤ uj(g) or j is vulnerable despite trade at g − gjk, and

similarly for k.

In other words, a network of alliances is war and trade stable if no country is vulnerable

despite trade, if no two countries can add an alliance that is mutually profitable (through

economic or through war means), and either economic or war considerations prevent every

country from severing any of its links.

For simplicity, suppose that

ui(g) = f(di(g))− cdi(g) (10)

where di(g) is the degree of i, f is concave, nondecreasing, and there is some d ≤ n−1 such

that f(d) < cd. Let d̄ maximize f(d)..cd. In addition, let Eij(g;C) = E(di(g))/|C|. Under

these simplifying assumptions, Jackson and Nei (2014) establish the following existence result.

Proposition 7 Consider the symmetric model with d ≥ 2.

• If E(d∗) ≤ 2[f(d∗)− f(d∗ − 1)− c], then any d-regular network (in any configuration),

is war and trade stable network if ρ ≥ d∗+1
d∗−1 .

The above proposition illustrates one route through which trade supports stable networks

and thereby contains conflict. The condition provides sufficient gains from trade such that

the potential spoils of a war are outweighed by the lost trade value: this in turns means that

a country is never attacked by one of its own trading partners. Each country then has enough
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alliances to protect itself against attacks from outside and this allows a wide range of networks

to be sustained.

To summarize, the discussion above develops a simple model of network formation that

yields two interesting insights. The first insight is that in a pure conflict setting individual

attempts to form alliances and attack opponents leads to shifting and unstable alliances: this

instability may make peace would be hard to sustain. The second insight is that the presence

of large gains from trade can sustain stable alliance structures where no country is vulnerable

to attack by a coalition of enemies.

In this model conflict is implicit: countries do not allocate resources and wage war on other

countries. Thus the impact of alliances on the incentives to allocate resources for conflict are

not explicitly considered. This public good aspect to individual contributions to a coalitional

conflict are potentially important. Investing in conflict within an alliance has public good

properties: the study of alliance formation in a setting where countries choose investments in

conflict remains an open problem.14

5 Concluding Remarks

In recent years, a new literature has begun to study of the relation between conflict and

networks. This paper provides a survey of this nascent literature.

In the first part, the focus was on settings where network connectivity is the key source of

value. Motivated by cybersecurity and infrastructure applications the aim was to study the

design and the defence of networks under threat. The basic framework involves two players:

an Adversary and a Designer/defender. The Adversary uses resources to target nodes that

maximize damage of the network, while the Designer/Defender uses defence resources and

links to maximize the value of the residual network. We presented a number of results on

optimal attack and defence targeting and on optimal design. The discussion reveals that the

technology of conflict, the respective resources of the Adversary and Designer, and the network

value function all play an important role in shaping conflict and in the design of the optimal

network.

The second part of survey is motivated by the observation that most international conflict

and civil unrest happens between physically proximate entities. Bilateral conflicts between

two neighbors have spillovers on the neighbors of the neighbors. This motivates a study of

14For a survey on free riding and coalition formation among agents in conflict, see Bloch (2012).
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conflict in networked environments. We started with a static model of conflicts and showed

that aggregate conflict intensity and individual investments in conflict vary in interesting ways

with the structure of the network. We then presented a model with a focus on the dynamics

of conflict and conquest where winners captured the resources of the losers. Here we derived

results on how the network and resources determine the winner for specific technologies of

conflict and for specific networks.

In the third part, we moved to a study of alliance formation among competing nodes. The

existing research provides us with insights into how gains from international trade are key to

understanding the structure of alliances and the decline of international conflict in the last 50

years.
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