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Abstract

We characterize decision rules which are implementable in mechanism design set-

tings when, after the play of a mechanism, the uninformed party can propose a new

mechanism to the informed party. The necessary and sufficient conditions are, es-

sentially, that the rule be implementable with commitment, that for each type the

decision is at least as high as if there were no mechanism, and that the slope of the

decision function is not too high. The direct mechanism which implements such a rule

with commitment will also implement it in any equilibrium without commitment, so

the standard mechanism is robust to renegotiation.
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1 Introduction

Suppose that the interaction between a number of asymmetrically informed parties

is governed by a mechanism which is designed by an outside agency, or planner, in

accordance with his objectives. However, the planner is not able to commit the

parties fully to the outcome of his mechanism - once the outcome is known, it may

be renegotiated by the parties. What is the set of allocations which the planner is

able to achieve in this environment and how can they be achieved?

We address these questions in the context of a model with two players and one-

sided asymmetric information: one player’s (the principal’s) payoff function is com-

mon knowledge, but the other’s (the agent’s) is private information. A third party

designs a mechanism to govern their relationship. We have in mind situations in

which this designer (the planner) is a regulator or a higher level of authority in the

organization to which the principal belongs. An alternative application is the design

of a trading platform or a market where sellers and buyers who do not know each

other are matched. In each of these cases, the planner may have an objective func-

tion which differs from those of the players, though the arguments of the function

may include the principal’s expected payoff and/or the distribution of utilities and

decisions across the various types of agent.

The planner puts in place a mechanism in which the agent sends a message to the

principal, determining some contracted decision and money payment. However, the

two players cannot be obliged to stick to this decision. We assume that, at this point,

the principal is able to design a second-stage mechanism to determine the actual deci-

sion and transfer. Her optimal mechanism will depend on what she has learned from

her interaction with the agent in the planner’s mechanism. Consequently, we cannot

assume that the agent’s message in the planner’s mechanism reveals his type be-

cause the principal, knowing the truth, would subsequently extract all the remaining

surplus. This in turn would give the agent an incentive to understate his type.

To determine what the planner can achieve in this setting we characterize the

implementable decision and utility schedules: that is, functions mapping the agent’s
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type to, respectively, decision and expected utility, taking renegotiation into account.

As in the commitment case, once the implementable decision schedules have been de-

termined, the implementable expected utility schedules can be derived by integration.

If a decision schedule (mapping types of agent to decisions) is renegotiation-

implementable (i.e., implementable taking into account renegotiation as described

above) then it is easy to see that it must, as in the commitment case, be an increas-

ing function. It must also give the efficient decision to the top type and a weakly

lower-than-efficient decision to all types. We derive (in Proposition 3) two further

conditions which a strictly increasing, differentiable decision schedule must satisfy if

it is renegotiation-implementable. One puts an upper bound on the slope of the func-

tion, which depends on the prior distribution over types. The second condition is that,

for every type, the decision must be at least as high as it would be if there were no

planner’s mechanism and the principal simply offered her prior optimal mechanism.

Moreover, one mechanism which implements a particular implementable schedule

is simply the same truth-telling direct revelation mechanism which would implement

it in the commitment case, although the equilibrium is very different. In equilibrium,

rather than tell the truth with probability 1, the agent uses a mixed strategy - a

type θ of the agent randomizes over messages below θ, so that the principal, given

announcement θ′, has a posterior belief distributed over types θ′ and above. The

principal’s equilibrium strategy is to offer the planner’s mechanism again after any

message. The agent then selects the decision and transfer which he would have chosen

had the two players been committed to the mechanism in the first place.

In Proposition 4 we show, by construction, that any decision schedule which satis-

fies the necessary conditions can be renegotiation-implemented in this way. In Propo-

sition 5, we show that the equilibrium is unique. In other words, we have the striking

result that, for a large class of decision rules, the standard incentive-compatible mech-

anism has a strong renegotiation-proofness property - after any message, the principal

never wants to offer a new mechanism. The planner does not have to be concerned

about whether renegotiation might be possible - the same mechanism delivers the

desired outcome for every type whether it is possible or not. A further appealing fea-
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ture is that the planner does not need to know the prior distribution over the agent’s

types, the principal’s prior belief.

These results can be regarded as contributing to the bargaining literature as well

as to the mechanism design literature. Given a fixed bargaining game of incomplete

information, one can ask: in what ways is it possible for an uninformed outsider to

alter the outcome of the game by obliging the parties to sign a contract beforehand?

Our framework can also be interpreted from this point of view.

Related Literature

Various notions of renegotiation-proofness for mechanisms have been proposed.

In the incomplete information case, much of the literature concerns interim rene-

gotiation, i.e., the parties have an opportunity to renegotiate before they play the

mechanism. For example, Holmström and Myerson (1983) define a decision rule (or

mechanism) M as durable if, given any type profile, and any alternative mechanism

M̃ , the players would not vote unanimously to replace M by M̃ if a neutral third

party were to propose it to them (see also Crawford (1985), Palfrey and Srivastava

(1991) and Lagunoff (1995)). Ex post renegotiation has been studied by Green and

Laffont (1987), Forges (1994), and Neeman and Pavlov (2013). In these contributions

the concepts employed are variations on the principle that a mechanism is (ex post)

renegotiation-proof if, for any outcome x of the mechanism and any alternative out-

come y, the players would not vote unanimously for y in preference to x if a neutral

third party were to propose it to them. Such definitions of renegotiation-proofness

have the merit that, if a given mechanism satisfies it, the mechanism is robust against

all possible alternative outcomes. However, it also has the drawback that the implied

renegotiation process does not have a non-cooperative character. Under an alterna-

tive modeling of this process, a renegotiation proposal would be made by one of the

parties to the mechanism.

In this paper we use the latter notion of renegotiation. This is closer to the

one generally used for the complete information case (Maskin and Moore (1999), Se-

gal and Whinston (2002)), in which, for any inefficient outcome of the mechanism,
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there is a single renegotiation outcome, which can be predicted by the players. It

also corresponds to the approach used in the literature on contract renegotiation

(e.g. Dewatripont and Maskin (1990), Hart and Tirole (1988), Laffont and Tirole

(1988,1990)) in which a trading opportunity is repeated a number of times and the

focus is on comparing the outcomes of long-term contracts, sequences of short-term

contracts, and long-term contracts which can be renegotiated (i.e., in the two-period

case, the parties are committed for one period, but in the second period there is an

opportunity to change the contract). The contract renegotiation literature is con-

cerned with analyzing the optimal mechanism from the point of view of the principal

(one of the two parties to the contract). The same applies to Skreta (2006), who

considers a buyer-seller model similar in some ways to ours, but with T periods and

discounting, and shows that it is optimal for the principal to offer a price in each

period. Our paper is different in that we are concerned with characterizing the set

of outcome functions which could in principle be implemented by a third party, the

planner, whose objectives differ from those of the insiders.

Our analysis is also related to the literature on incomplete information bargaining

beginning with Fudenberg and Tirole (1983). Firstly, one interpretation of a mecha-

nism is that it is a device for understanding what can be achieved by non-cooperative

bargaining games and secondly, as noted above, our analysis can be understood as a

characterization of what can be achieved by imposing a contract on two bargainers

before they begin an exogenous non-cooperative bargaining game.

Another strand of literature to which the paper is related is recent work in organi-

zational theory, stemming from Crawford and Sobel (1982). In Krishna and Morgan

(2008), the uninformed decision maker can commit to a contract which pays the in-

formed sender a monetary transfer which depends on the message sent, but cannot

commit to the action which she then takes. In our setting the sender is the buyer

and the decision maker is the seller, who can only partially commit to her action

(the renegotiation price offer). See also Ottaviani (2000) for a model with informed

senders, monetary transfers and lack of commitment by the receiver.
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Outline

Section 2 sets out the model. Section 3 contains the analysis and results. Subsec-

tion 3.1 proves a modified revelation principle which is helpful in deriving the neces-

sary conditions. It shows that without loss of generality we can consider equilibria

of the form which we construct later. Subsection 3.2 derives necessary conditions

for implementation. In Subsection 3.3 we construct an equilibrium for an arbitrary

decision schedule which satisfies the necessary conditions and proves the strong im-

plementation (uniqueness) result. Section 4 concludes. Some of the proofs are in the

Appendix.

2 The Model

A principal (P ) and an agent (A) must choose a decision x from the set X =

[x, x̄] ⊆ ℜ+, and a money transfer t. The agent has a privately known type θ which

follows a distribution F , with differentiable density f > 0, on the interval Θ = [θ, θ̄],

where θ > 0. Both players are expected utility maximizers and have quasi-linear

utility for money. If the decision is x ∈ X and A transfers t to P , then P ’s payoff is

V (x, t) = t − cx, where c > 0, and A’s payoff is U(x, t, θ) = u(x, θ) − t, where u is

a thrice-differentiable function satisfying the conditions ux > 0, uxx < 0, uxθ > 0 and

uxxθ > 0, with subscripts denoting derivatives. We make the following assumption

about u.

Assumption 1 ux(x, θ̄) < c < ux(x̄, θ).

We denote by ∆(Θ) the set of distribution functions on Θ. The reservation utility

for P and for each type of A is zero.

A third party (the planner) chooses a mechanism to govern the choice of decision

and transfer. A mechanism γ is a triple (M,x, t) consisting of a set of messages

M , where M is a metric space, and (abusing notation slightly) a pair of functions

x : M → X and t : M → ℜ. A chooses a message m ∈ M . When message m is sent,
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x(m) is the contracted decision and t(m) is the contracted payment to be paid by

A to P . We assume throughout that communication is direct (there is no mediator)

and that mechanisms are non-stochastic. Denote the set of possible mechanisms by

Γ.

The planner, however, is not fully able to commit the parties to the mechanism.

Although A and P are obliged to play the planner’s mechanism if they want to

interact, after the play of the mechanism they have the option of choosing a further

mechanism to play in order to arrive at an outcome which they both prefer. We

assume that at this renegotiation stage all of the bargaining power lies with the

principal, the uninformed party3. In other words, once the outcome of the planner’s

mechanism, (x̃, t̃), is known, the principal chooses a mechanism to offer to the agent.

A can either play this new mechanism or obtain the outcome (x̃, t̃). Clearly P ’s

optimal mechanism at the renegotiation stage will depend on her updated belief

about A which the play of the planner’s mechanism has generated.

Discussion

If the planner cared only about maximizing the expected payoff of the principal

then he could simply choose a null mechanism (no decision and no payment). At the

second stage P would then select a mechanism which is optimal for herself, hence for

the planner. More generally, however, the planner, in designing the mechanism, cares

about the distribution of utilities and/or decisions across the different types of agent,

rather than solely the principal’s expected payoff.

For example, consider a case in which A is a buyer, P is a division of a firm,

the planner is the headquarters of the firm and the decision x is the quantity of

production of a good to be sold to A. The division aims to maximize its own profits;

the headquarters, however, is interested both in the profit which the division makes

from a particular buyer but also in the profits to be made from this buyer by its

other divisions in the future. This profit may depend both on the type of the buyer

and, because, say, of learning effects, on the quantity consumed by the buyer, which

3If the agent had the bargaining power results analogous to ours would trivially hold.
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affects future willingness-to-pay. The planner, in order to further its wider objectives,

chooses a mechanism (price schedule) for all its retailers to employ. When a customer

arrives at a shop and places an order which is not optimal from the salesperson’s

perspective, i.e. not profit-maximizing given her updated beliefs, the salesperson

may have an incentive to offer to sell more at a discounted price.

For another example, the planner may be a government which is regulating the

firm (P ). The government’s objective function is increasing in the firm’s profit but it is

also interested in the distribution of consumers’ utilities, perhaps because willingness-

to-pay for the good in question is related to income.

An alternative formulation is that the mechanism designer is the principal, who

is interested only in her own expected profit, but expected profit is a function of the

distribution of utilities across agent types. For example, as in the hold-up literature,

there may be a prior investment stage. Suppose, for example, that the agent first

chooses a level of costly unverifiable investment and that higher investment will lead,

on average, to a higher marginal utility of x for the agent. P chooses a mechanism

which determines a utility schedule (mapping agent type to utility). This determines

the agent’s prior investment which in turn determines the distribution of types and

hence P ’s expected profit.

In all of the above cases, the first step is to characterize the set of utility schedules

which can be implemented by some mechanism. This implementation problem, for

the case in which the planner cannot prevent the parties from renegotiating the mech-

anism ex post, is the subject of this paper. The main complication, of course, arises

from the fact that the agent, anticipating the renegotiation, will alter his behavior

when he plays the planner’s mechanism.

Our formulation assumes that the principal is able to commit to her second-stage

mechanism. One possible reason for this is that from the point at which P and Ameet

there is, for exogenous reasons such as perishability, a finite time available in which

to complete the transaction. The planner, on the other hand, is not able to exploit

this deadline because he cannot observe the precise times at which principals and

agents meet, or their horizons. More generally, there are many settings in which it is
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harder for a third party to commit other agents than it is for those agents to commit

themselves. We conjecture that our results would generalize to other extensive forms,

such as bargaining games in which both players discount the future and the principal

makes offers at each discrete period over an infinite horizon. We include some remarks

on this in subsection 3.5 below.

We assume above that the principal and agent have to choose between taking their

zero-utility outside option and, at least initially, using the planner’s mechanism. This

is appropriate to the examples described above and also to many others: for example,

the case in which the planner is a market designer who constructs an environment

in which buyers and sellers meet and interact. Our assumption that the principal,

at the second stage, can choose any mechanism that the planner could have chosen

seems strong, but, as will become clear, our results will apply as long as the set of

mechanisms from which the principal can choose includes the mechanism which the

planner has given them - i.e., it is always an option for the principal to offer the same

mechanism again.

Strategies and Equilibrium

A planner’s mechanism (M,x, t) and the post-mechanism stage together define a

game of incomplete information. Call this game Φ(M,x, t).

Given an outcome (x̃, t̃) of the planner’s mechanism, and a mechanism γ ∈ Γ

offered by P , A chooses either the default outcome (x̃, t̃) or plays the mechanism γ.

In a perfect Bayesian equilibrium A will choose optimally given his type, i.e., will

either play the mechanism optimally or, if the default gives a higher payoff, choose

the latter.

Given her belief G ∈ ∆(Θ) over A’s types, P will, at the preceding stage, choose

a mechanism to offer to A which is optimal for P .

Let DIC(x̃, t̃) be the set of incentive-compatible direct revelation mechanisms

which dominate the default outcome (x̃, t̃) for all types, i.e., mechanisms (Θ, x, t)
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such that, for all θ, θ′ ∈ Θ,

u(x(θ), θ)− t(θ) ≥ u(x(θ′), θ)− t(θ′)

and

u(x(θ), θ)− t(θ) ≥ u(x̃, θ)− t̃.

By the revelation principle, we can assume without loss of generality that P

chooses a mechanism in DIC(x̃, t̃) and that, for all θ ∈ Θ, type θ of A accepts the

mechanism and tells the truth.

Given the above, we can take a pure strategy for P in Φ(M,x, t) to be a function

sP : M → Γ such that, for m ∈ M , sP (m) ∈ DIC(x(m), t(m)). We only consider

equilibria in which P ’s strategy is pure. Denote by SP the set of P ’s pure strategies.

Similarly, we can take a pure strategy for A in Φ(M,x, t) to be a function which

maps Θ to M . We take a mixed strategy for A to specify a mixed strategy for each

type of A where a mixed strategy4 for type θ of A is a distribution function sA(.|θ)
on M . Let the set of these strategies be denoted by SA.

If P ’s strategy is sP ∈ SP and A is type θ ∈ Θ and sends m ∈ M , let the post-

renegotiation decision and transfer be denoted by (x(m, sP , θ), t(m, sP , θ)); that is,

the mechanism sP (m) gives this outcome. Then the expected payoff of type θ if he

sends message m is U(m, sP , θ) = u(x(m, sP , θ), θ)− t(m, sP , θ).

For (x̃, t̃) ∈ X × ℜ and G ∈ ∆(Θ), let P ((x̃, t̃), G) ⊆ DIC(x̃, t̃) be the set of

solutions to the problem

max(Θ,x,t)∈DIC(x̃,t̃)

∫ θ̄

θ

t(θ)− cx(θ)dG(θ),

in which x(.) is a right-continuous function5.

4It is possible to define a continuum of mixed strategies over M via a distributional strategy
as in Milgrom and Weber (1985), i.e., a joint distribution on M × Θ for which the marginal on Θ
corresponds to the prior F . sA(.|θ) is then the distribution on M conditional on θ. See also Crawford
and Sobel (1982).

5For any solution in which x(.) is not right-continuous, there is a payoff-equivalent one in which
it is.
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Definition 1: A renegotiation equilibrium (or r-equilibrium) of Φ(M,x, t) is a pro-

file of strategies (sP , sA) ∈ SP × SA, and, for each m ∈ M , a belief G(.|m) ∈ ∆(Θ)

such that

(i) for each θ ∈ Θ sA(θ) puts probability 1 on messages which maximize U(m, sP , θ);

(ii) for each m ∈ M , sP (m) ∈ P ((x(m), t(m)), G(.|m));

and

(iii) for each m ∈ M , G(.|m) is the conditional distribution over Θ given F and

sA.

If the strategy profile is (sA, sP ) then the expected payoff of type θ of A is

U(sA, sP , θ) =
∫
m
U(m, sP , θ)dsA(m|θ). Let the random variable x(sA, sP , θ) be the

final decision if the strategy profile is (sA, sP ).

Definition 2: (i) A function U : Θ → ℜ+ is a r-implementable utility schedule

if there exists a mechanism (M,x, t) ∈ Γ such that Φ(M,x, t) has a renegotiation

equilibrium (sA, sP , {G(.|m)}m∈M) for which, for all θ ∈ Θ, U(θ) = U(sA, sP , θ).

(ii) A function U : Θ → ℜ+ is strongly r-implementable if there exists a mecha-

nism (M,x, t) such that, for all θ ∈ Θ, U(θ) = U(sA, sP , θ) for every renegotiation

equilibrium (sA, sB, {G(.|m)}m∈M) of Φ(M,x, t).

Definition 3: A function x : Θ → X is a r-implementable decision schedule if there

exists a mechanism (M, x̂, t) and a renegotiation equilibrium (sA, sP , {G(.|m)}m∈M)

of Φ(M, x̂, t) such that, for all θ ∈ Θ, x(θ) = x̂(sA, sP , θ) with probability 1.

The fact that U must be non-negative reflects the fact that A’s outside utility

has been normalized to zero and we allow him not to participate in the mechanism.

We refer to a utility schedule or decision schedule as c-implementable if it can be

implemented in the case in which the players can be committed to the mechanism.

By standard results (see Fudenberg and Tirole (1993), Milgrom and Segal (2002)) x is

c-implementable if and only if x(·) is non-decreasing, and U ≥ 0 is c-implementable if

and only if, for all θ ∈ Θ, U(θ)−U(θ) =
∫ θ

θ
uθ(x(θ̃), θ̃)dθ̃ for some non-decreasing func-
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tion x : Θ → X. A c-implementable U is absolutely continuous and a.e. differentiable.

It is easy to show, using revelation principle arguments, that r-implementability and

c-implementability are related as follows.

Proposition 1 If U (resp. x) is r-implementable then U (resp. x) is c-implementable.

The first-best decision for θ solves the problem

maxx∈Xu(x, θ)− cx.

By our assumptions this has a unique solution which we denote by x∗(θ). Further-

more, x∗(.) is strictly increasing in θ.

3 Analysis

3.1 A Revelation Principle

It is easy to show that the efficient decision schedule x∗(.) is r-implementable.

Take an incentive-compatible direct revelation mechanism which implements it in the

commitment case. There is an equilibrium in which each type tells the truth in this

mechanism and, after any message θ, leading to default (x∗(θ), t∗(θ)), the principal

offers the default again, as a fixed outcome. This is an optimal offer because A’s

type is common knowledge and so the default is known to be efficient. Equally, as we

noted in the Discussion above, it is easy to implement P ’s ex ante optimal mechanism

(i.e., given belief F ), which we denote by (xF (.), tF (.)), using a null mechanism. The

questions we ask are: what other schedules are r-implementable, and how can they

be implemented?

Consider P ’s optimal decision given belief G ∈ ∆(Θ) and default outcome (x̃, t̃).

Denote the minimum and maximum of supp(G) by θ(G) and θ̄(G) respectively. If an
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incentive-compatible direct revelation mechanism {x(θ), t(θ)}θ∈Θ satisfies

u(x(θ(G)), θ(G))− t(θ(G)) ≥ u(x̃, θ(G))− t̃

then, for all θ > θ(G),

u(x(θ), θ)− t(θ) ≥ u(x̃, θ)− t̃.

It follows that choosing P ’s optimal (Θ, x, t) ∈ DIC(x̃, t̃) is payoff-equivalent to

choosing P ’s optimal incentive-compatible direct revelation mechanism for type space

supp(G) subject to the constraint that the payoff of type θ(G) is at least u(x̃, θ(G))−t̃.

Therefore, by standard results, an optimal mechanism {x(θ), t(θ)}θ∈Θ satisfies

x(θ̄(G)) = x∗(θ̄(G)),

x(θ) < x∗(θ) ∀θ ∈ supp(G)/θ∗,

and

u(x(θ(G)), θ(G))− t(θ(G)) = u(x̃, θ(G))− t̃.

Furthermore, the downward incentive constraints bind. Therefore, if θ ∈ supp(G)

and θ′ ∈ supp(G) for θ′ > θ but (θ, θ′) ⊆ (supp(G))C then u(x(θ′), θ′) − t(θ′) =

u(x(θ), θ′)− t(θ).

The Lemma below establishes that, in any r-equilibrium of any mechanism, the

final (post-renegotiation) decisions satisfy the usual monotonicity property (message

by message) and are less than or equal to the efficient decisions. It also establishes,

using these two properties, that decisions are deterministic - although a given type of

A may randomize over messages, each message in the support of his strategy will lead

to the same final decision (and transfer). This Lemma, and all subsequent Lemmas

and Propositions, are to be understood as referring to almost all θ.

Lemma 1 Suppose that (sA, sP , {G(.|m)}m∈M) is a r-equilibrium of Φ(M,x, t),

where (M,x, t) ∈ Γ.

(i) Take any θ and θ′ > θ. If m ∈ supp(sA(.|θ)) and m′ ∈ supp(sA(.|θ′)) then
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x(m, sP , θ) ≤ x(m′, sP , θ
′);

(ii) x(sA, sP , θ) ≤ x∗(θ) w.pr.1;

(iii) Suppose m and m′ are both in supp(sA(.|θ)). Then x(m, sP , θ) = x(m′, sP , θ)

and t(m, sP , θ) = t(m′, sP , θ).

Fix a mechanism (M, x̃, t̃) and a r-equilibrium (s̃A, s̃P , {G̃(.|m)}m∈M) of Φ(M, x̃, t̃).

Lemma 1 implies that for each θ this equilibrium has a deterministic final outcome

(x(s̃A, s̃P , θ), t(s̃A, s̃P , θ)). Abusing notation slightly, denote this outcome function

by {(x(θ), t(θ))}θ∈Θ. This is an incentive-compatible schedule, otherwise some type

could profitably deviate by imitating another type over the two-stage game. So, for

any m, P ’s proposed mechanism coincides with {(x(θ), t(θ))}θ∈supp(G̃(.|m)) for types in

supp(G̃(.|m)).

The next proposition gives a modified revelation principle. It shows that the same

outcome as is achieved in the given equilibrium (namely ({x(θ), t(θ)}θ∈Θ)) can also

be achieved by giving the parties the direct revelation mechanism (Θ, x, t). It is clear

that in the equilibrium of Φ(Θ, x, t) which achieves this the agent will not tell the

truth, as he would in the commitment case. Instead, he randomizes over messages

below his true type and, whatever message he sends, the principal will always offer

the planner’s mechanism again.

Proposition 2 For any r-implementable outcome function (x(.), t(.)) it is possible

to implement it by means of the direct revelation mechanism (Θ, x, t) and an equilib-

rium in which, for each type θ of A the support of the mixed strategy is a subset of

[θ, θ], and, after any message, P offers the same mechanism, (Θ, x, t).

Proof As above, let (s̃A, s̃P , {G̃(.|m)}m∈M) be an r-equilibrium of Φ(M, x̃, t̃)

which r-implements the given outcome function (x, t). It is convenient to construct

the argument in two steps: first define a mechanism (M̃, x̂, t̂) which r-implements

(x, t) and then construct the required direct revelation mechanism.

Let M̃ =
∪

Θ supp(s̃A(.|θ)). Define mechanism (M̃, x̂, t̂) by x̂(m) = x(θ(G̃(.|m)))

and t̂(m) = t(θ(G̃(.|m))). That is, the new mechanism, for message m, gives as

14



default the final outcome in the original mechanism and equilibrium for the lowest

type which sends that message. Then (s̃A, sP , G̃(.|m)m∈M̃) is an r-equilibrium of

Φ(M̃, x̂, t̂), where, for all m ∈ M̃ , sP (m) is the direct revelation mechanism (Θ, x, t).

To see this, note first that, since A’s strategy is the same as in the first equilibrium,

(s̃A, s̃P ) and so are P ’s beliefs, the beliefs satisfy Bayesian updating. For any message,

the offered menu is the same, and all possible defaults belong to this menu, so any

type of A is indifferent between all messages. Therefore A’s strategy is optimal. To

see that P ’s strategy is optimal, consider a message m ∈ M̃ . In the first equilibrium,

P chooses an optimal incentive-compatible direct revelation mechanism (IC-DRM)

subject to the constraint that the lowest type, θ(G(.|m)), gets at least

u(x̃(m), θ(G̃(.|m)))− t̃(m).

In the new game, P chooses an optimal IC-DRM such that the lowest type gets at

least

u(x(θ(G̃(.|m))), θ(G̃(.|m)))− t(θ(G̃(.|m))).

Since, in the first problem, the lowest type gets zero rent, these two expressions are

equal. Also, the beliefs are the same, so the two problems have the same set of

solutions. For types outside supp(G̃(.|m) the offered schedule is arbitrary, as long as

overall incentive-compatibility is satisfied. Therefore P ’s strategy is optimal.

Now suppose, for the second step, that the first-stage mechanism is (Θ, x, t). There

is an equilibrium of Φ(Θ, x, t) in which, for any message θ′ ∈ Θ, sP (θ
′) = (Θ, x, t).

That is, after any message, P offers the same mechanism again, and so the decision

schedule is x, as in the given equilibrium of Φ(M, x̃, t̃). A’s strategy sA in this

equilibrium is given by

µA(B|θ) = µ̃A({m ∈ M̃ |θ(G̃(.|m)) ∈ B}|θ),

for all θ ∈ Θ and B ⊆ Θ, where µA(.|θ) is the measure over Θ corresponding to sA

and µ̃(.|θ) corresponds similarly to s̃A. In effect, type θ of A randomizes over M̃
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according to s̃A(.|θ) and then, given m, reports θ(G̃(.|m)), the lowest type who would

send m, according to s̃A. To see that this is an equilibrium, observe first that A’s

strategy is optimal because he is indifferent between all messages. To see that P ’s

strategy is optimal, take θ ∈ supp(sA). Let m(θ) = {m ∈ M̃ |θ(G̃(.|m)) = θ}. For any
m ∈ m(θ), we know that P finds it optimal to offer (Θ, x, t) given default (x(θ), t(θ))

when A’s strategy is s̃A and A has sent message m. Hence, given default (x(θ), t(θ))

and announcement θ (which is equivalent to the knowledge that m = m(θ)), P still

finds (Θ, x, t) optimal.

Note that for any m ∈ supp(s̃A(.|θ)), θ(G̃(.|m)) ≤ θ, so in this equilibrium type θ

only randomizes over types weakly below his true type. QED.

3.2 Necessary Conditions for r-implementability

Proposition 2 enables us to establish conditions which r-implementable decision

(and hence utility) schedules must satisfy, since the form of the equilibrium described

in the Proposition restricts the possible second-stage beliefs.

Together with Lemma 1, Proposition 2 implies that if (x, t) is r-implementable

then x(θ̄) = x∗(θ̄) and x(θ) ≤ x∗(θ) for all θ ∈ Θ. Furthermore, since (x, t) must

be incentive-compatible x must be non-decreasing. We restrict attention to decision

schedules x(.) which are strictly increasing, differentiable and satisfy x(θ) < x∗(θ) for

all θ < θ̄. The next Lemma shows that, for such schedules, any message θ which is

sent in the equilibrium described in Proposition 2 is sent by all types above the lowest

type which sends θ - after any message, the support of P ’s belief is of the form [θ′, θ̄].

Lemma 2 Suppose (x, t) is r-implementable and x is strictly increasing and sat-

isfies x(θ) < x∗(θ) for all θ < θ̄. Then (x, t) is r-implemented by an equilibrium

(sA, sP , {G(.|θ)}θ∈Θ) of Φ(Θ, x, t) in which, for all θ ∈ supp(sA), supp(G(.|θ)) =

[θ(G(.|θ), θ̄] and, if θ′ ∈ supp(sA(θ1)) then θ′ ∈ supp(sA(θ2)) for all θ2 > θ1.

Proof In the equilibrium described in Proposition 2, after message θ, P will opti-

mally offer a mechanism which gives the efficient outcome for θ̄(G) = max(supp(G(.|θ))),
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by efficiency at the top. If θ̄(G(.|θ))) < θ̄ this implies that she doesn’t offer (Θ, x, t).

Contradiction. Therefore θ̄(G(.|θ))) = θ̄ for any message θ in the support of A’s

strategy.

Suppose that θ1 ∈ supp(G(.|θ)), θ2 ∈ supp(G(.|θ)), where θ2 > θ1 but (θ1, θ2) ∩
supp(G(.|θ)) = ∅. Then, since downward incentive constraints bind in sP (θ), type θ2

is indifferent between (x(θ1), t(θ1)) and (x(θ2), t(θ2)). But this contradicts the fact

that (x, t) is IC for the type set Θ and x is strictly increasing. Hence, the support of

P ’s posterior belief is an interval. QED

Consider a schedule (x, t) which satisfies the assumptions of Lemma 2, and such

that x is differentiable. (Θ, x, t) r-implements this outcome by means of an equilib-

rium (sA, sP , {G(.|θ)}θ∈Θ), as in Proposition 2. Since no type puts positive probability

on messages above their true type, θ must put probability 1 on θ, i.e., tell the truth,

so θ is in the support of A’s strategy sA. Denote G(.|θ) by Gx. Then Lemma 2 im-

plies that supp(Gx) = Θ. Furthermore, (x, t) is optimal for P given belief Gx, so (see

Myerson (1981), Fudenberg and Tirole (1991)) x must point-wise maximize virtual

surplus

u(x(θ), θ)− 1−Gx(θ)

gx(θ)
uθ(x(θ), θ)− cx,

where gx is the density of Gx (it can be shown, using a sequence of approximating

models with finitely many types, that Gx has a density, and so that, if Gx has an

atom, it must be at θ). Therefore, for all θ > θ,

1−Gx(θ)

gx(θ)
=

(ux(x(θ), θ)− c)

uxθ(x(θ), θ)
. (1)

Since x(.) is differentiable, this implies that gx is differentiable.

Furthermore, take any other message θ1 in the support of A’s strategy. Let the

support of P ’s belief G(.|θ1) be [θ1, θ̄]. Then it is again optimal for P to offer (Θ, x, t),

so G(.|θ1) must be the same as Gx, scaled to the support [θ1, θ̄], i.e., for θ
′ ∈ [θ1, θ̄],

G(θ′|θ1) =
Gx(θ

′)−Gx(θ1)

1−Gx(θ1)
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and
1−G(θ′|θ1)
g(θ′|θ1)

=
1−Gx(θ

′)

gx(θ′)
.

This, together with the fact that each type only sends messages below his true

type, implies that the hazard rate of Gx is everywhere greater than that of the prior

F and that the proportional growth rate of gx is everywhere less than that of f .

Essentially, all types must randomize in a proportionally similar way, in order for P

to want to offer the same mechanism no matter what message she receives. However,

lower types randomize over a smaller set of messages, so any message θ′ is more likely

to have been sent by lower types in [θ′, θ̄] than by higher ones.

Lemma 3 Let Gx and gx be defined as above. For all θ ∈ Θ, (i)

1−Gx(θ)

gx(θ
≤ 1− F (θ)

f(θ)

and (ii)
g′x(θ)

gx(θ)
≤ f ′(θ)

f(θ)
.

The next proposition gives necessary conditions for x(θ) to be r-implementable.

Recall that xF is P ’s optimal decision schedule given belief F .

Proposition 3 Suppose that (x(.), t(.)) is r-implementable and x is strictly in-

creasing and differentiable and satisfies x(θ) < x∗(θ) for all θ < θ̄. Then (i)

f ′(θ)

f(θ)
+ A(x(θ), θ) + x′(θ)B(x(θ), θ) ≥ 0 (2)

for all θ ∈ Θ, where

A(x, θ) =
2uxθ(x, θ)

(ux(x, θ)− c)
− uxθθ(x, θ)

uxθ(x, θ)

18



and

B(x, θ) =
uxx(x, θ)

(ux(x, θ)− c)
− uxxθ(x, θ)

uxθ(x, θ)
;

and (ii) x(θ) ≥ xF (θ) for all θ.

Proof (i) By Lemma 3(ii),

f ′(θ)

f(θ)
− g′x(θ)

gx(θ)
≥ 0.

Since

g′x(θ)

gx(θ)
= − gx(θ)

1−Gx(θ)
−

d
dθ
(1−Gx(θ)

gx(θ)
)

1−Gx(θ)
gx(θ)

(3)

it follows, using (1), that

g′x(θ)

gx(θ)
= −A(x(θ), θ)− x′(θ)B(x(θ), θ).

(ii) follows from Lemma 3(i), (1), the corresponding equation for F and the fact that

ux(x, θ)− c

uxθ(x, θ)

is decreasing in x if x < x∗(θ). QED

The necessary condition in Proposition 3(i) places an upper bound on the slope

of x, the bound depending locally on the prior and on the level of x. For some priors,

this upper bound is negative at certain points; in that case an increasing x cannot be

implemented and so x would have to have a flat section there. Consider the case in

which u(x, θ) = θu(x). Then the condition becomes

x′(θ) ≤ −u′(x(θ))(θu′(x(θ))− c)

cu′′(x(θ))
[
f ′(θ)

f(θ)
+

2u′(x(θ))

(θu′(x(θ))− c)
].

u′ > 0, u′′ < 0 and, since x(θ) is strictly below the efficient level, θu′(x(θ)) − c > 0.
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Therefore the right hand side must be negative if

f ′(θ)

f(θ)
+

2u′(x(θ))

(θu′(x(θ))− c)
< 0,

so the necessary condition is harder to satisfy if f is falling fast.

In the linear case6, in which u(x, θ) = θx and the set of decisions X = [0, 1], then

B(x(θ), θ) = 0 and A(x(θ), θ) = 2(θ−c)−1. Therefore the necessary condition becomes

θf ′(θ) + 2f(θ) ≥ 0. Since this is independent of x′(θ), any increasing function which

is above xF can be implemented as long as the condition is satisfied. The condition

is equivalent to concavity of the revenue function R(θ) = θ(1− F (θ)), which in turn

is implied by the increasing hazard rate assumption on F .

3.3 Sufficient Conditions for r-implementability

Suppose that an incentive-compatible schedule (x, t) satisfies the conditions of

Proposition 3. Is it possible to r-implement it? In this subsection we show that it is.

We construct an equilibrium of the type described in Proposition 2. The planner’s

mechanism is (Θ, x, t). Each type θ has a mixed strategy with support [θ, θ] and a

mass point on θ. After any announcement, P offers (Θ, x, t) again.

Let z(θ) = A(x(θ), θ)+x′(θ)B(x(θ), θ). The mixed strategy of type θ of A, sA(.|θ),
is given by

sA(θ
′|θ) = f(θ′)

f(θ)
exp[−

∫ θ

θ′
z(u)du]

for θ′ ≤ θ and sA(θ
′|θ) = 1 for θ′ > θ. By (2) −z(θ) is bounded, so this integral is

well-defined. The density is then

σA(θ
′|θ) = 1

f(θ)
[exp(−

∫ θ

θ′
z(u)du)][f ′(θ′) + f(θ′)z(θ′)].

This distribution is well-defined because f ′(θ′) + f(θ′)z(θ′) > 0 by (2).

6We discuss the linear case in subsection 3.4 below.
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Given message θ ∈ Θ, P ’s belief is

G(θ′|θ) =
∫ θ′

θ
exp[−

∫ u

θ
z(w)dw]du∫ θ̄

θ
exp[−

∫ u

θ
z(w)dw]du

for θ′ ≥ θ and G(θ′|θ) = 0 for θ′ < θ.

By Bayes’ rule, the conditional density of type θ′ ≥ θ after message θ is

f(θ′)σA(θ|θ′)∫ θ̄

θ
f(u)σA(θ|u)du

=
exp[−

∫ θ′

θ
z(w)dw]∫ θ̄

θ
exp[−

∫ u

θ
z(w)dw]du

so P ’s beliefs are correct given A’s strategy. A’s strategy is optimal because every

message leads to the same offered schedule (x, t), so he is indifferent between all

messages. It remains to show that P ’s optimal mechanism is (Θ, x, t) after every

message, i.e., that
1−G(θ′|θ)
g(θ′|θ)

=
(ux(x(θ

′), θ′)− c)

uxθ(x(θ′), θ′)

for every message θ ∈ Θ and θ′ ≥ θ.

Let k(v) =
∫ v

θ
z(w)dw for v ≥ θ. Then

1−G(θ′|θ)
g(θ′|θ)

=

∫ θ̄

θ′
exp[−k(v)]dv

exp[−k(θ′)]

so we need to show that∫ θ̄

θ′
exp[−k(v)]dv = exp[−k(θ′)]

(ux(x(θ
′), θ′)− c)

uxθ(x(θ′), θ′)
. (4)

For θ′ = θ̄, the LHS of (4) is zero, and the RHS is also zero since ux(x(θ̄), θ̄)− c = 0

by efficiency at the top. The derivative of the LHS with respect to θ′ is −exp[−k(θ′)].

The derivative of the RHS is

(ux − c)

uxθ

e−k(θ′)(−k′(θ′)) + e−k(θ′)uxθ[uxxx
′(θ′) + uxθ]− (ux − c)[uxθθ + uxxθx

′(θ′)]

(uxθ)2

where arguments (x(θ′), θ′) have been omitted for brevity. Since k′(θ′) = z(θ′), this
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is equal to −exp[−k(θ′)] and so (4) is true for all θ′. This shows that P ’s strategy is

optimal. Therefore we have:

Proposition 4 Any incentive-compatible schedule (x, t) such that x is strictly

increasing and differentiable, satisfies xF (θ) ≤ x(θ) < x∗(θ) for θ < θ̄, x(θ̄) = x∗(θ)

and condition (2) is r-implementable.

Proposition 4 establishes that any schedule (x, t) which satisfies the necessary

conditions can be implemented by simply giving the parties the incentive-compatible

DRM which implements the schedule in the case when they can be committed to the

mechanism. The next Proposition shows that, in the game defined by this mechanism,

the equilibrium described above is essentially unique - in any equilibrium of the game,

the outcome is (x, t).

Proposition 5 Suppose given an incentive-compatible schedule (x, t) such that x

is strictly increasing and differentiable and satisfies xF (θ) ≤ x(θ) < x∗(θ) for θ < θ̄,

x(θ̄) = x∗(θ̄) and condition (2). Then the game Φ(Θ, x, t) has a unique equilibrium

outcome.

Proof Let U(θ) be the payoff schedule of the equilibrium described above.

By standard results,

U(θ) = U(θ) +

∫ θ

θ

uθ̃(x(θ̃), θ̃)dθ̃ (5)

Therefore, if every equilibrium of Φ(Θ, x, t) has the same utility schedule then it

gives the same outcome, namely (x(θ), t(θ)), to each type θ, since uxθ > 0. Suppose

then that there is an equilibrium with utility schedule Ũ ̸= U . Call this equilibrium

(s̃A, s̃P , G̃). Since any type θ is able to tell the truth in Φ(Θ, x, t) and decline to

renegotiate, giving u(x(θ), θ) − t(θ) = U(θ), it must be that Ũ(θ) ≥ U(θ) for all

θ ∈ Θ.

Given θ′ ∈ supp(s̃A), let θ′′ = min[supp(G̃(.|θ′)]. Suppose that θ′′ ̸= θ′. Since

the lowest type in the support gets zero surplus, the equilibrium payoff of type θ′′ is
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the default payoff u(x(θ′), θ′′) − t(θ′) < u(x(θ′′), θ′′) − t(θ′′) = U(θ′′). Contradiction.

Therefore the lowest type which sends message θ′ is θ′, and the equilibrium payoff

Ũ(θ′) = U(θ′). This implies that no type sends messages above their true type.

By Lemma 1(iii), we can assume without loss of generality that in the strategy

profile (s̃A, s̃P ) P offers (Θ, x̃, t̃) after any message.

Let θ1 = inf(θ|Ũ(θ) > U(θ)) and let θ2 = inf(θ|θ > θ1, Ũ(θ) = U(θ)) unless

Ũ(θ) > U(θ) for all θ > θ1, in which case let θ2 = θ̄.

(a) Assume that θ2 < θ̄.

Then Ũ(θ) > U(θ) for all θ ∈ (θ1, θ2), Ũ(θ1) = U(θ1) and Ũ(θ2) = U(θ2), by

continuity of Ũ and U . Since min(supp(G̃(·|θ))) = θ it follows that θ /∈ supp(s̃A) if

θ ∈ (θ1, θ2), otherwise θ would be the lowest type to send message θ, hence Ũ(θ) =

U(θ). So no type in (θ1, θ2) sends any message in (θ1, θ2).

Since P offers (Θ, x̃, t̃) after any message, (x̃, t̃) is optimal for P conditional on

the set of messages [θ, θ1]. Let P ’s probability distribution conditional on this set

be denoted by G̃1 with density g̃1. Then, for θ ∈ (θ1, θ2), g̃1(θ) = f(θ) since types

in (θ1, θ2) only send messages in [θ, θ1]. Hence, by the argument in the proof of

Proposition 3,
f ′(θ)

f(θ)
= −A(x̃(θ), θ)− x̃′(θ)B(x̃(θ), θ)

for θ ∈ (θ1, θ2), which also implies that x̃ is differentiable on (θ1, θ2).

By Lemma 3,
g′x(θ)

gx(θ)
≤ f ′(θ)

f(θ)
.

So

−A(x̃(θ), θ)− x̃′(θ)B(x̃(θ), θ) ≥ −A(x(θ), θ)− x′(θ)B(x(θ), θ)

for θ ∈ (θ1, θ2). Hence, if x̃(θ) = x(θ), x̃′(θ) ≥ x′(θ). For small enough ε > 0,

Ũ(θ) > U(θ) for θ ∈ (θ1, θ1 + ε). Therefore x̃(θ) > x(θ) for θ ∈ (θ1, θ1 + ε) by (5).

Therefore, since x̃′ ≥ x′ whenever x̃ = x,

∫ θ2

θ1

uθ(x̃(θ), θ)dθ >

∫ θ2

θ1

uθ(x(θ), θ)dθ
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which contradicts Ũ(θ2) > U(θ2).

(b) Now assume that θ2 = θ̄, so that Ũ(θ) > U(θ) for all θ ∈ (θ1, θ̄].

According to the equilibrium strategy s̃A, types in (θ1, θ̄] only send messages in

[θ, θ1], so, conditional on this set of messages, P ’s belief G̃1 satisfies

1− G̃1(θ)

g1(θ)
=

1− F (θ)

f(θ)

for θ > θ1. Also (x̃, t̃) is optimal for P given this belief so

1− F (θ)

f(θ)
=

ux(x̃(θ), θ)− c

uxθ(x̃(θ), θ)
.

From Lemma 3
1− F (θ)

f(θ)
≥ 1−Gx(θ)

gx(θ)
=

ux(x(θ), θ)− c

uxθ(x(θ), θ)

so x(θ) ≥ x̃(θ) for θ ∈ (θ1, θ̄) since uθx > 0. By (5) this contradicts the fact that

Ũ(θ) > U(θ) on this interval. QED

3.4 The Linear Case

One leading case, treated in the previous version of this paper, is the bilateral trade

model, in which the principal is a seller of a unit quantity of a divisible good and the

agent is a buyer, type θ of whom has utility θx for quantity x. So X = [0, 1] and

u(x, θ) = θx. xF is a step function corresponding to a posted price mechanism, equal

to zero below some θ̂ and equal to 1 above θ̂. The efficient quantity is 1 (assuming

c < 1), hence not strictly increasing as in our model above.

Our results above apply also to this case. The density of the mixed strategy defined

in the argument leading to Proposition 4 becomes in this case (f(θ′)(θ′)2)(f(θ)θ2)−1

for types θ below a critical value θ∗, and higher types have the same strategy as type
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θ∗. It is straightforward to show that the principal’s updated belief Gx is such that7

1−Gx(θ)

gx(θ)
= θ − c,

and so virtual utility is zero for all types. Therefore P is indifferent between all mech-

anisms and it is optimal for her to offer the planner’s mechanism again. Although,

for generic beliefs, only posted price mechanisms are optimal for P , the beliefs which

arise endogenously in equilibrium are the non-generic ones which justify the given

mechanism.

3.5 No Commitment by the Principal

In the model above we have assumed that the principal, at the second stage, is

able to make a take-it-or-leave-it offer of a mechanism to the agent. We conjecture

that our results will generalize in some form to other extensive forms, including those

in which the principal has much less, or no, commitment power.

One such extensive form, in the linear case of subsection 3.4, would be one in

which there is an infinite horizon, discrete time, and at each period, if trade has not

concluded, P offers a posted price for the whole amount of good available. Suppose

that in period 1 A plays the planner’s mechanism and, if some of the good remains

unsold, P then offers a price, which A either accepts or rejects. In subsequent periods

2,3,... P similarly makes an offer, and A responds. The parties both discount the

future. To each possible belief which P might have after the play of the planner’s

mechanism, we can associate an equilibrium of the bargaining game, and hence a

schedule of discounted expected utilities for the various types of buyer. Suppose that

the planner wants to implement one of these schedules. Our conjecture is that, as in

the model above, it is possible to do so in many cases by giving the parties the direct

revelation mechanism which corresponds to that schedule. This is left for future work.

7For θ ≤ θ∗: for higher types the game is over, since the planner’s mechanism has to give quantity
1 to them.
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4 Conclusion

In this paper we have analyzed the impact of non-cooperative ex-post renegotiation

on the set of implementable outcomes in a general mechanism design problem. When

full commitment is possible, any increasing decision rule can be implemented by

using a direct revelation mechanism that is designed to elicit the truth from privately

informed parties. When commitment is not possible, the set of implementable rules is

restricted because a direct revelation mechanism cannot fully extract all information

from the parties. Nevertheless, we have shown that the restriction takes a very simple

form - essentially, no type’s decision can be reduced by the mechanism, and the

slope of the decision function cannot be too high. Furthermore, the direct revelation

mechanism which is appropriate for the commitment case implements the desired

outcome in the non-commitment case too.

Appendix

Proof of Lemma 1 (i) Since m is optimal for θ and m′ is optimal for θ′,

u(x(m, sP , θ), θ)− t(m, sP , θ)) ≥ u(x(m′, sP , θ
′), θ)− t(m′, sP , θ

′)

and

u(x(m′, sP , θ
′), θ′)− t(m′, sP , θ

′) ≥ u(x(m, sP , θ), θ
′)− t(m, sP , θ).

Therefore, by supermodularity, x(m′, sP , θ
′) ≥ x(m, sP , θ).

(ii) LetM ′(θ) = {m ∈ M |x(m, sP , θ) > x∗(θ)}. Ifm ∈ M ′(θ) then θ /∈ supp(G(.|m)).

But

pr({(θ,m) ∈ Θ×M |θ /∈ supp (G(.|m))andm ∈ supp (sA(.|θ))} = 0.

Therefore pr{θ ∈ Θ|sA(M ′(θ)) > 0} = 0.

(iii) Suppose x(m, sP , θ) > x(m′, sP , θ). Then Lemma 1(ii) implies that x(m′, sP , θ) <
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x∗(θ), and so θ < θ̄(G(.|m′)). There are two cases to consider. (a) there exists θ1 =

min{θ̃ > θ|θ̃ ∈ supp(G(.|m′)}. (b) there exists a sequence {θi}∞i=1 ⊆ supp(G(.|m′))

and {θi}∞i=1 ↓ θ.

Case (a): downward incentive constraints bind for the mechanism sP (m
′) so

u(x(m′, sP , θ1), θ1)− t(m′, sP , θ1) = u(x(m′, sP , θ), θ1)− t(m′, sP , θ) (6)

But θ is indifferent between m and m′, so

u(x(m′, sP , θ), θ)− t(m′, sP , θ) = u(x(m, sP , θ), θ)− t(m, sP , θ).

Therefore, since θ1 > θ and x(m, sP , θ) > x(m′, sP , θ),

u(x(m, sP , θ), θ1)− t(m, sP , θ) > u(x(m′, sP , θ), θ1)− t(m′, sP , θ).

So, by (6),

u(x(m, sP , θ), θ1)− t(m, sP , θ) > u(x(m′, sP , θ1), θ1)− t(m′, sP , θ1)

which contradicts optimality of message m′ for θ1.

Case (b). By Lemma 1(i), x(m, sP , θ) ≤ x(m′, sP , θi) for all θi ∈ {θi}∞i=1. Right-

continuity of sP (m
′) implies x(m′, sP , θ) ≥ x(m, sP , θ). Contradiction. QED

Proof of Lemma 3 Since Gx has an atom only at θ, the same must be true of

sA(.|θ), which we can take to have a density on (θ, θ̄]. Denote this density by σA(.|θ).
Take any θ1 in the support of sA and any θ2 > θ1. By Bayes’ Rule,

[
1−G(θ2|θ1)
g(θ2|θ1)

] = [
1− F (θ2)

f(θ2)
]

∫ θ̄

θ2
σA(θ1|θ)h(θ)dθ
σA(θ1|θ2)

,

where

h(θ) =
f(θ)

1− F (θ2)
.
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Hence

σA(θ1|θ2)(
1−Gx(θ2)

gx(θ2)
) = (

1− F (θ2)

f(θ2)
)

∫ θ̄

θ2

σA(θ1|θ)h(θ)dθ.

If θ1 = θ, the same applies, with sA replacing σA, i.e. probability mass rather than

density. Integrating over θ1 ∈ [θ, θ2],

(
1−Gx(θ2)

gx(θ2)
)[sA(θ|θ2) +

∫ θ2

θ

σA(θ|θ2)dθ]

= (
1− F (θ2)

f(θ2)
)[

∫ θ̄

θ2

sA(θ|θ)h(θ)dθ +
∫ θ2

θ

∫ θ̄

θ2

σA(θ1|θ)h(θ)dθdθ1].

But

sA(θ|θ2) +
∫ θ2

θ

σA(θ|θ2)dθ = 1

and

sA(θ|θ) +
∫ θ2

θ

σA(θ1|θ)dθ1 ≤ 1

for θ ∈ (θ2, θ̄]. Hence
1−Gx(θ)

gx(θ
) ≤ 1−F (θ)

f(θ)
. This proves (i).

(ii) Take θ′ ≥ θ in the support of sA, θ > θ′ and δ > 0. Then

g(θ + δ|θ′)
g(θ|θ′)

=
f(θ + δ)

f(θ)

σA(θ
′|θ + δ)

σA(θ′|θ)
,

so
gx(θ + δ)

gx(θ)
=

f(θ + δ)

f(θ)

σA(θ
′|θ + δ)

σA(θ′|θ)
,

Therefore
σA(θ

′|θ + δ)

σA(θ′|θ)

is independent of θ′ and equal to, say, ν(θ, δ). Similarly,

sA(θ|θ + δ)

sA(θ|θ)
= ν(θ, δ).

However,

sA(θ|θ) +
∫ θ

θ

σA(θ
′|θ)dθ′ = 1

28



and

sA(θ|θ + δ) +

∫ θ

θ

σA(θ
′|θ + δ)dθ′ ≤ 1.

Hence
gx(θ + δ)

gx(θ)
≤ f(θ + δ)

f(θ)
.

Letting δ → 0, this implies
g′x(θ)

gx(θ)
≤ f ′(θ)

f(θ)
.

QED
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