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Abstract

This paper proposes a novel regularisation method for the estimation of large covariance
matrices, which makes use of insights from the multiple testing literature. The method tests the
statistical significance of individual pair-wise correlations and sets to zero those elements that
are not statistically significant, taking account of the multiple testing nature of the problem.
The procedure is straightforward to implement, and does not require cross validation. By using
the inverse of the normal distribution at a predetermined significance level, it circumvents the
challenge of evaluating the theoretical constant arising in the rate of convergence of existing
thresholding estimators. We compare the performance of our multiple testing (MT ) estimator
to a number of thresholding and shrinkage estimators in the literature in a detailed Monte
Carlo simulation study. Results show that our MT estimator performs well in a number of
different settings and tends to outperform other estimators, particularly when the cross-sectional
dimension, N , is larger than the time series dimension, T. If the inverse covariance matrix is
of interest then we recommend a shrinkage version of the MT estimator that ensures positive
definiteness.
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1 Introduction

Robust estimation of large covariance matrices is a problem that features prominently in a number
of areas of multivariate statistical analysis (Anderson (2003)). In finance it arises in portfolio selec-
tion and optimisation (Ledoit and Wolf (2003)), risk management (Fan et al. (2008)) and testing
of capital asset pricing models (Sentana (2009); Pesaran and Yamagata (2012)) when the number
of assets is large. In global macro-econometric modelling with many domestic and foreign channels
of interaction, large error covariance matrices must be estimated for impulse response analysis and
bootstrapping (Pesaran et al. (2004); Dees et al. (2007)). In the area of bio-informatics, high-
dimensional covariance matrices are required when inferring large-scale gene association networks
(Carroll (2003); Schäfer and Strimmer (2005)). Large covariance matrices are further encoun-
tered in fields including meteorology, climate research, spectroscopy, signal processing and pattern
recognition.

Assuming that the N ×N dimensional population covariance matrix, Σ, is invertible, one way
of obtaining a suitable estimator is to appropriately restrict the off-diagonal elements of its sample
equivalence denoted by Σ̂. Numerous methods have been developed to address this challenge,
predominantly in the statistics literature. Some approaches are regression-based and make use of
suitable decompositions of Σ such as the Cholesky decomposition (see Pourahmadi (1999, 2000),
Rothman et al. (2010), Abadir et al. (2014), among others). Others include banding or tapering
methods as proposed for example by Bickel and Levina (2004, 2008a) and Wu and Pourahmadi
(2009), which rely on a natural ordering among variables and are thus better suited to the analysis
of certain types of data. Two popular approaches in the literature that do not make use of any
ordering assumptions include those of shrinkage and thresholding. See also Pourahmadi (2011) for
an extensive review of general linear models (GLS) and regularisation based methods for estimation
of the covariance matrix.

The idea of shrinkage dates back to the seminal work of Stein (1956) who proposed the shrinkage
approach in the context of regression models so as to minimize the mean square error of the
regression coeffi cients. The method intentionally introduces a bias in the estimates with the aim of
reducing the variance. In the context of covariance matrix estimation the estimated covariances are
shrunk towards zero element-wise. More formally, the shrinkage estimator is defined as a weighted
average of the sample covariance matrix and an invertible covariance matrix estimator known as
the shrinkage target. A number of shrinkage targets have been considered in the literature that
take advantage of a priori knowledge of the data characteristics under investigation. For example,
Ledoit and Wolf (2003) in a study of stock market returns consider Sharpe (1963) and Fama
and French (1997) market based covariance matrix specifications as targets.1 Ledoit and Wolf
(2004, LW) suggest a modified shrinkage estimator that involves a convex linear combination of
the unrestricted sample covariance matrix with the identity matrix. This is recommended by the
authors for more general situations where no natural shrinking target exists. Numerous other
estimators based on the same concept but using different shrinkage targets are proposed in the
literature such as by Haff (1980, 1991), Lin and Perlam (1985), Dey and Srinivasan (1985), and
Donoho et al. (1995). On the whole, shrinkage estimators are considered to be stable, robust and
produce positive definite covariance matrices by construction.

Thresholding is an alternative regularisation technique that involves setting off-diagonal el-
ements of the sample covariance matrix that are in absolute terms below a certain ‘threshold’
value(s), to zero. This approach includes ‘universal’thresholding put forward by El Karoui (2008)
and Bickel and Levina (2008b), and ‘adaptive’thresholding proposed by Cai and Liu (2011). Uni-
versal thresholding applies the same thresholding parameter to all off-diagonal elements of the
unconstrained sample covariance matrix, while adaptive thresholding allows the threshold value to

1Other shrinkage targets include the ‘diagonal common variance’, the ‘common covariance’, the ‘diagonal unequal
variance’, the ‘perfect positive correlation’and the ‘constant correlation’target. Examples of structured covariance
matrix targets can be found in Daniels and Kass (1999, 2001), Fan et al. (2008) and Hoff (2009), among others.
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vary across the different off-diagonal elements of the matrix. Furthermore, the selected non-zero
elements of Σ̂ can either be set at their sample estimates or can be somewhat adjusted down-
ward. This relates to the concepts of ‘hard’and ‘soft’thresholding, respectively. The thresholding
approach traditionally assumes that the underlying (true) covariance matrix is sparse, where sparse-
ness is loosely defined as the presence of a suffi cient number of zeros on each row of Σ such that
it is absolute summable row (column)-wise. However, Fan, Liao and Mincheva (2011, 2013) show
that such regularization techniques can be applied to Σ̂ even if the underlying population covari-
ance matrix is not sparse, so long as the non-sparseness is characterised by an approximate factor
structure.2 The thresholding method retains symmetry of the sample covariance matrix but does
not necessarily deliver a positive definite estimate of Σ if N is large relative to T . The main diffi -
culty in applying this approach lies in the estimation of the thresholding parameter. The method
of cross-validation is primarily used for this purpose which is rather convoluted, computationally
intensive and not appropriate for all applications. Indeed, cross-validation assumes stability of
the underlying covariance matrix over time which may not be the case in many applications in
economics and finance.3

In this paper, we propose an alternative thresholding procedure using a multiple testing (MT )
estimator which is simple and practical to implement. As suggested by its name, it makes use
of insights from the multiple testing literature to test the statistical significance of all pair-wise
covariances or correlations, and is invariant to the ordering of the underlying variables. It sets
the elements associated with the statistically insignificant correlations to zero, and retains the
significant ones. We apply the multiple testing procedure to the sample correlation matrix denoted
by R̂, rather than Σ̂, so as to preserve the variance components of Σ̂. Further, we counteract the
problem of size distortions due to the nature of multiple testing by use of Bonferroni (1935, 1936)
and Holm (1979) corrections. We compare the absolute values of the non-diagonal entries of R̂
with a parameter determined by the inverse of the normal distribution at a prespecified significance
level, p. The MT estimator is shown to be reasonably robust to the typical choices of p used
in the literature (10% or 5%), and converges to the population correlation matrix R at a rate of

Op

(√
mNN
T

)
under the Frobenius norm, where mN is bounded in N , and could represent the

number of non-zero off-diagonal elements in each row of R.
In many applications, an estimate of the inverse covariance matrix Σ−1 is required. Since

traditional thresholding, including our multiple testing approach, does not necessarily lead to a
positive definite matrix, we recommend supplementary shrinkage applied to our regularised MT
correlation matrix when required. To this end, we propose a LW type shrinkage approach where
the associated shrinkage parameter is derived from the minimisation of the squared Frobenius norm
of the difference between two inverse matrices: an estimate of the inverse matrix of interest (our
MT estimator), and the inverse of a suitable reference matrix. We denote this shrinkage version
of the MT estimator by S-MT . We also consider a LW type shrinkage estimator applied directly
to the sample correlation matrix R̂, when the inverse covariance matrix Σ−1 is of interest. This
shrinkage estimator is denoted by R̂LW .

We compare the small sample performance of the MT , S-MT and R̂LW estimators with a
number of extant regularised estimators in the literature for large-dimensional covariance matrices
in an extended Monte Carlo simulation study. We consider two approximately sparse and two exactly
sparse covariance structures. The simulation results show that the proposed multiple testing and
shrinkage based estimators are robust to the different covariance matrix specifications employed,
and perform favourably when compared with the widely used regularisation methods considered in

2Earlier work by Fan, Fan and Lv (2008) use a strict factor model to impose sparseness on the covariance matrix.
Friedman, Hastie and Tibshirani (2008) apply the lasso penalty to loadings in principal component analysis to achieve
a sparse representation.

3Other contributions to the thresholding literature include the work of Huang et al. (2006), Rothman et al. (2009),
Cai and Zou (2011, 2012), and Wang and Zou (2010), among others.
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our study, especially when N is large relative to T.
The rest of the paper is organised as follows: Section 2 outlines some preliminaries and de-

finitions. Section 3 introduces our multiple testing (MT ) procedure and presents its theoretical
properties. Section 4 discusses issues of invertibility of the MT estimator in finite samples and
advances our recommended S-MT and R̂LW estimators. Section 5 provides an overview of a num-
ber of existing key regularisation techniques. The small sample properties of the MT estimator,
its adjusted shrinkage version (S-MT ) and R̂LW are investigated in Section 6. Finally Section 7
concludes.

The largest and the smallest eigenvalues of the N×N matrixA = (aij) are denoted by λmax (A)

and λmin (A) respectively, tr (A) =
∑N

i=1 aii is its trace, ‖A‖1 = max1≤j≤N
{∑N

i=1 |aij |
}
is its

maximum absolute column sum norm, ‖A‖∞ = max1≤i≤N
{∑N

j=1 |aij |
}
is its maximum absolute

row sum norm, ‖A‖F =
√
tr (A′A) is its Frobrenius norm, and ‖A‖ = λ

1/2
max (A′A) is its spectral

(or operator) norm. When A is a vector, both ‖A‖F and ‖A‖ are equal to the Euclidean norm.

2 Large covariance matrix estimation: Some preliminaries

Let {xit, i ∈ N, t ∈ T}, N ⊆ N, T ⊆ Z, be a double index process where xit is defined on a suitable
probability space (Ω, F, P ). i can rise indefinitely (i→∞) and denotes units of an unordered
population. Conversely, the time dimension t explicitly refers to an ordered set, and can too tend
to infinity (t→∞). We assume that for each t ∈ T , xit is cross-sectionally weakly dependent
(CWD), as defined in Chudik et al. (2011). The covariance matrix of xt = (x1t, ..., xNt)

′ is given
by

V ar (xt) = E
(
xtx

′
t

)
= (σij,t) = Σt, (1)

where, for simplicity of exposition and without loss of generality it is assumed that E(xt) = 0, Σt

is an N ×N symmetric, positive definite real matrix with its (i, j)th element, σij,t, given by

σii,t = E [xit − E (xit)]
2 < K, (2)

σij,t = E [(xit − E (xit)) (xjt − E (xjt))] ,

for i, j = 1, ..., N , t = 1, ..., T , σii,t > 0 and K is a finite generic constant independent of N . The
diagonal elements of Σt are represented by the N ×N diagonal matrix Dt, such that

Dt = diag(σ11,t, σ22,t, ..., σNN,t). (3)

Following the literature we now introduce the concepts of approximate and exact sparseness of
a matrix.

Definition 1 The N ×N matrix A = (aij) is approximately sparse if, for some q ∈ [0, 1) ,

mN = max
i≤N

∑
j≤N
|aij |q ≤ c0 (N) , N →∞.

Exact sparseness is established when setting q = 0. Then, mN = maxi≤N
∑

j≤N I (aij 6= 0) is the
maximum number of non-zero elements in each row and is bounded in N , where I (.) denotes the
indicator function.

Given the above definition and following Remark 2.2 and Proposition 2.1(a) of Chudik et al.
(2011), it follows that under the assumption that xit is CWD, then each row/column of Σt can only
have a finite number of non-zero elements, namely ‖Σt‖1 = O (1). See also Bailey et al. (2013)
and Pesaran (2013).
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The estimation of Σt gives rise to three main challenges: the sample covariance matrix Σ̂t

becomes firstly ill-conditioned and secondly non-invertible as N increases relative to T , and thirdly
Σt is likely to become unstable for T suffi ciently large. The statistics literature thus far has
predominantly focused on tackling the first two problems while largely neglecting the third. On
the other hand, in the finance literature time variations in Σt are allowed when using conditionally
heteroskedastic models such as the Dynamic Conditional Correlation (DCC) model of Engle (2002)
or its generalization in Pesaran and Pesaran (2010). However, the DCC approach still requires
T > N and it is not applicable when N is large relative to T . This is because the sample correlation
matrix is used as the estimator of the unconditional correlation matrix which is assumed to be time
invariant.

One can adopt a non-parametric approach to time variations in variances (volatilities) and
covariances and base the sample estimate of the covariance matrix on high frequency observations.
As measures of volatility (often referred to as realized volatility) intra-day log price changes are
used in the finance literature. See, for example, Andersen et al. (2003), and Barndorff-Nielsen
and Shephard (2002, 2004). The idea of realized volatility can be adapted easily for use in macro-
econometric models by summing squares of daily returns within a given quarter to construct a
quarterly measure of market volatility. Also, a similar approach can be used to compute realized
measures of correlations, thus yielding a realized correlation matrix. However, such measures are
based on a relatively small number of time periods. For example, under the best case scenario
where intra-daily observations are available, weekly estimates of realized variance and covariances
are based typically on 48 intra-daily price changes and 5 trading days, namely T = 240, which is
less than the number of securities often considered in practice in portfolio optimisation problems.
T can be increased by using rolling windows of observations over a number of weeks or months,
but there is a trade off between maintaining stability of the covariance matrix and the size of the
time series observations. As T is increased, by considering longer time spans, the probability of the
covariance matrix remaining stable over that time span is accordingly reduced.

In this paper we assume that T is suffi ciently small so that Σt remains constant over the selected
time horizon and we concentrate on addressing the remaining two challenges in the estimation of
Σt. We suppress subscript t in Σt and Dt and evaluate the sample covariance matrix estimator of
Σ, denoted by Σ̂, with elements

σ̂ij = T−1
T∑
t=1

(xit − x̄i) (xjt − x̄j) , for i, j = 1, ..., N (4)

where x̄i = T−1
∑T

t=1 xit. The diagonal elements of Σ̂ are collected in D̂ = diag(σ̂ii, i = 1, 2, ..., N).

3 Regularising the sample correlation matrix: A multiple testing
(MT) approach

We propose a regularisation method that follows the thresholding literature, where typically, as
mentioned in the introduction, non-diagonal elements of the sample covariance matrix that fall
below a certain level or ‘threshold’in absolute terms are set to zero. Our method tests the statistical
significance of all distinct pair-wise covariances or correlations of the sample covariance matrix Σ̂,
N (N − 1) /2 in total. As such, this family of tests is prone to size distortions arising from possible
dependence across the individual pair-wise tests. We take into account these ‘multiple testing’
problems in estimation, in an effort to improve support recovery of the true covariance matrix. Our
multiple testing (MT ) approach is applied to the sample correlation matrix which is arguably more
appropriate than the sample covariance matrix, is invariant to the ordering of the variables under
consideration, and it is computationally simple to implement.

Suppose that xit, i = 1, ..., N, t = 1, ..., T, are cross-sectionally weakly correlated with a sparse
covariance matrix Σ defined in (1), and with diagonal elements collected in (3), where subscript t
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has been suppressed. Consider the N ×N correlation matrix corresponding to Σ given by

R = D−1/2ΣD−1/2 = (ρij), where D = diag (Σ) ,

with
ρij = ρji =

σij√
σiiσjj

, i, j = 1, ..., N

where σij is given in (2). We base our thresholding procedure on the correlation matrix. The
reasons for opting to work with the correlation matrix rather than its covariance counterpart are
twofold. First, the transformation from R to Σ leaves the diagonal elements of Σ unaffected which
is a desirable property in many financial applications. Second, given that all entries in R are
bounded from above and below (−1 ≤ ρij ≤ 1, i, j = 1, ..., N), potentially one can use a so called
‘universal’parameter to identify the non-zero elements in R rather than making entry-dependent
adjustments which in turn need to be estimated. This feature is in line with the method of Bickel
and Levina (2008b) but shares the properties of the adaptive thresholding estimator developed by
Cai and Lui (2011). Both of these approaches are outlined below in Section 5.

The sample correlation matrix, R̂ = (ρ̂ij), is given by

R̂ = D̂
−1/2

Σ̂D̂
−1/2

,

with elements

ρ̂ij = ρ̂ji =
σ̂ij√
σ̂iiσ̂jj

=

∑T
t=1 (xit − x̄i) (xjt − x̄j)(∑T

t=1 (xit − x̄i)2
)1/2 (∑T

t=1 (xjt − x̄j)2
)1/2

, i = 1, 2, ..., N, t = 1, 2, ..., T.

Now for a suffi ciently large T, the correlation coeffi cients ρ̂ij are approximately normally distributed
as4

ρ̂ij ∼ N
(
µij , ω

2
ij

)
, (5)

where (using Fisher’s (1915) bias correction - see also Soper (1913)) we have

µij = ρij −
ρij(1− ρ2

ij)

2T
and ω2

ij =
(1− ρ2

ij)
2

T
.

Joint tests of ρij = 0 for i = 1, 2, ..., N − 1, j = i+ 1, ..., N can now be carried out, allowing for the
cross dependence of the individual tests using a suitable multiple testing (MT ) procedure. This
yields the following MT estimator of R,

R̃MT =
(
ρ̃ij
)

=
[
ρ̂ijI(

√
T
∣∣ρ̂ij∣∣ > bN )

]
, i = 1, 2, ..., N − 1, j = i+ 1, ..., N. (6)

where

bN = Φ−1

(
1− p

2f(N)

)
. (7)

The indicator function I(.) used in (6), is in line with the concept of ‘hard’thresholding whereby
all elements of Σ̂ or R̂ that drop below a certain level in absolute terms are set to zero. The
remaining ones are equated to their original sample covariance or correlation coeffi cients. Multiple
testing (MT ) does not consider functions used in the ‘soft’thresholding literature (see for example
Antoniadis and Fan (2001), Rothman et al. (2009), and Cai and Liu (2011)).

Parameter bN is of special importance. It is determined by the inverse of the cumulative
distribution function of the standard normal variate, Φ−1 (.) , using a prespecified overall test size,

4Other functions of ρ̂ij , such as the Fisher’s transformation can also be used. But our simulation exercises
suggested that there is little to choose between ρ̂ij or its Fisher transform.
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p, selected for the joint testing problem. The size of the test is normalised by f (N), which controls
for the multiple testing nature of the testing problem in (6). As mentioned above, testing the
null hypothesis that ρij = 0 for i = 1, 2, ..., N − 1, j = i+ 1, ..., N can result in spurious outcomes,
especially when N is larger than T , due to the multiple tests being conducted across the N(N−1)/2
distinct elements of R̂.

Suppose that we are interested in a family of null hypotheses, H01, H02, ...,H0r, and we are
provided with corresponding test statistics, Z1T ,Z2T , ...., ZrT , with separate rejection rules given
by (using a two sided alternative)

Pr (|ZiT | > CViT |H0i ) ≤ piT ,

where CViT is some suitably chosen critical value of the test, and piT is the observed p-value for
H0i. Consider now the family-wise error rate (FWER) defined by

FWERT = Pr [∪ri=1 (|ZiT | > CViT |H0i )] ,

and suppose that we wish to control FWERT to lie below a pre-determined value, p. Bonferroni
(1935, 1936) provides a general solution, which holds for all possible degrees of dependence across
the separate tests. By Boole’s inequality we have

Pr [∪ri=1 (|ZiT | > CViT |H0i )] ≤
r∑
i=1

Pr (|ZiT | > CViT |H0i )

≤
r∑
i=1

piT .

Hence to achieve FWERT ≤ p, it is suffi cient to set piT ≤ p/r.
However, as is known Bonferroni’s procedure can be quite conservative and a number of alter-

native multiple testing procedures have been proposed in the literature. One prominent example is
the step-down procedure proposed by Holm (1979) which is less conservative than the Bonferroni
procedure, and does not impose any further restrictions on the degree to which the underlying tests
depend on each other. If we abstract from the T subscript and order the p-values of the tests so
that

p(1) ≤ p(2) ≤ .... ≤ p(r)

are associated with the null hypotheses, H(01), H(02), ...,H(0r), respectively, Holm’s procedure rejects
H(01) if p(1) ≤ p/r, rejects H(01) and H(02) if p(2) ≤ p/(r − 1), rejects H(01), H(02) and H(03) if
p(3) ≤ p/(r−2), and so on. Returning to (6) we observe that under the null i and j are unconnected,
and ρ̂ij is approximately distributed as N

(
0, T−1

)
. Therefore, the p-values of the individual tests

are (approximately) given by pij = 2
[
1− Φ

(√
T
∣∣ρ̂ij∣∣)] for i = 1, 2, ..., N − 1, j = i + 1, ..., N ,

with the total number of tests being carried out given by r = N(N − 1)/2. To apply the Holm
procedure we need to order these p-values in an ascending manner, which is equivalent to ordering∣∣ρ̂ij∣∣ in a descending manner. Denote the largest value of ∣∣ρ̂ij∣∣ over all i 6= j, by

∣∣∣ρ̂(1)

∣∣∣, the second
largest value by

∣∣∣ρ̂(2)

∣∣∣, and so on, to obtain the ordered sequence ∣∣∣ρ̂(s)

∣∣∣, for s = 1, 2, ..., r. Then the

(i, j) pair associated with
∣∣∣ρ̂(s)

∣∣∣ are connected if ∣∣∣ρ̂(s)

∣∣∣ > T−1/2Φ−1
(

1− p/2
N(N−1)/2−s+1

)
, otherwise

disconnected, for s = 1, 2, ..., N(N − 1)/2 , where p is the pre-specified overall size of the test. Note
that if the Bonferroni approach is implemented no such ordering is required and to see if the (i, j)

pair is connected it suffi ces to assess whether
∣∣ρ̂ij∣∣ > T−1/2Φ−1

(
1− p/2

N(N−1)/2

)
.

There is also the issue of whether to apply the multiple testing procedure to all distinct N(N −
1)/2 non-diagonal elements of R̂ = (ρ̂ij) simultaneously, or to apply the procedure row-wise, by
considering N separate families of N − 1 tests defined by ρi0j = 0, for a given i0, and j = 1, 2, .., N ,
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j 6= i0. The theoretical results derived in (3.1) show that using f (N) = N(N − 1)/2 in (7) rather
than f (N) = (N − 1) provides a faster rate of convergence towards R under the Frobenius norm.
However, simulation results of Section 6 indicate that in finite samples f (N) = N − 1 can provide
R̃MT estimates that perform equally well and even better than when f (N) = N(N − 1)/2 is
considered, depending on the setting. Note that multiple testing using the Holm approach can
lead to contradictions if applied row-wise. To see this consider the simple case where N = 3 and p
values for the three rows of R̂ are given by − p1 p2

p1 − p3

p2 p3 −

 .

Suppose that p1 < p2 < p3. Then ρ13 = 0 is rejected if p2 < p when Holm’s procedure is applied
to the first row, and rejects ρ13 = 0 if p2 < p/2 when the procedure is applied to the third row. To
circumvent this problem in practice, if one of the ρ13 hypotheses is rejected but the other is accepted
then we set both relevant elements in R̃MT to ρ̂13 using this example. The row-wise application of
Bonferroni’s procedure is not subject to this problem since it applies the same p-value of p/(N −1)
to all elements of R̂.5

After applying multiple testing to the unconditional sample correlation matrix, we recover the
corresponding covariance matrix Σ̃MT by pre- and post-multiplying R̃MT by the square root of the
diagonal elements of Σ̂, so that

Σ̃MT=D̂
1/2
R̃MT D̂

1/2
. (8)

It is evident that since bN is given and does not need to be estimated, the multiple testing
procedure in (6) is also computationally simple to implement. This contrasts with traditional
thresholding approaches which face the challenge of evaluating the theoretical constant, C, arising
in the rate of convergence of their estimators. The computationally intensive cross validation
procedure is typically employed for the estimation of C, which is further discussed in Section 5.

Finally, in the presence of factors in the data set xt (as in the setting used in Fan, Liao and
Mincheva (2011, 2013 - FLM)), we proceed as shown in FLM by estimating the covariance matrix of
the residuals ût = (û1t, ..., ûNt)

′ obtained from defactoring the data, Σ̂û, and applying the multiple
testing approach to Σ̂û.6 In this case, (6) is modified to correct for the degrees of freedom, m,
associated with the defactoring regression:

ρ̃û,ij = ρ̂û,ijI(
√
T −m

∣∣ρ̂û,ij∣∣ > bN ), i = 1, 2, ..., N − 1, j = i+ 1, ..., N (9)

where

ρ̂û,ij = ρ̂û,ji =

∑T
t=1

(
ûit − ̂̄ui) (ûjt − ̂̄uj)[∑T

t=1

(
ûit − ̂̄ui)2]1/2 [∑T

t=1

(
ûjt − ̂̄uj)2]1/2

, i = 1, 2, ..., N, t = 1, 2, ..., T.

An example of multiple testing applied to regression residuals is considered in our simulation
study of Section 6. See also Bailey et al. (2013).

5Other multiple testing procedures can also be considered (see Efron (2010) for a recent review). But most of
these methods tend to place undue prior restrictions on the dependence of the underlying test statistics while the
Bonferroni and Holm methods are not subject to this problem.

6Assume a factor model:
yit = γ′i f̂t + uit, i = 1, 2, ..., N ; t = 2, ..., T,

where, f̂t is an m×1 vector of factors estimated through principal components (Bai (2003)) or cross-sectional averages
(Pesaran (2006)), and γi = (γi1, γi2, ..., γi`)

′ is the associated vector of factor loadings. Then, the defactoring analysis
entails running the above regressions and extracting the residuals:

ûit = yit − γ̂′i f̂t, i = 1, 2, ..., N ; t = 2, ..., T.
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3.1 Theoretical properties of the MT estimator

In this subsection we investigate the asymptotic properties of theMT estimator defined in (6). We
establish its rate of convergence under the Frobenius norm as well as the conditions for consistent
support recovery via the true positive rate (TPR) and the false positive rate (FPR), to be defined
below. We begin by stating a couple of assumptions that will be used in our proofs.

Assumption 1 Let R̂= (ρ̂ij) be the sample correlation matrix, and suppose that (for suffi ciently
large T )

ρ̂ij ∼ N
(
µij , ω

2
ij

)
, (10)

where

µij = E(ρ̂ij) = ρij −
ρij(1− ρ2

ij)

2T
+
G(ρij)

T 2
, (11)

ω2
ij = V ar(ρ̂ij) =

(1− ρ2
ij)

2

T
+
K(ρij)

T 2
, (12)

and G(ρij) and K(ρij) are bounded in ρij and T , for all i and j = 1, 2, ..., N .

The analytical expressions for the mean and variance of ρ̂ij in (11) and (12) of Assumption 1 can
be found in Soper et al. (1917).

Assumption 2 The population correlation matrix, R = (ρij), is sparse according to Definition 1
such that only mN of its non-diagonal elements in each row are non-zero satisfying the condition

0 < ρmin <
∣∣ρij∣∣ < ρmax < 1,

with mN being bounded in N . The remaining N(N−mN −1) non-diagonal elements of R are zero.

Assumption 2 implies exact sparseness under Definition 1.

Theorem 1 (Rate of convergence) Denote the sample correlation coeffi cient of xit and xjt over
t = 1, 2, ..., T by ρ̂ij and the population correlation matrix by R = (ρij), which obey Assumptions 1
and 2 respectively. Also let f(N) be an increasing function of N , such that

ln [f(N)]

T
= o(1), as N and T →∞.

Then

E
∥∥∥R̃MT −R

∥∥∥2

F
=
∑∑
i 6=j

E(ρ̃ij − ρij)2 = O

(
mNN

T

)
, (13)

where R̃MT = (ρ̃ij)

ρ̃ij = ρ̂ijI

(∣∣ρ̂ij∣∣ > bN√
T

)
, with bN = Φ−1

(
1− p

2f(N)

)
> 0,

and p is a given overall Type I error.
Proof. See Appendix A.

Result (13) implies that N−1
∥∥∥R̃MT −R

∥∥∥2

F
= Op

(
mN
T

)
which is in line with the existing results in

the thresholding literature that use the Frobenius norm. See, for example, Theorem 2 with q = 0
in Bickel and Levina (2008b). The same rate of Op (mN/T ) is achieved in the shrinkage literature
if the assumption of sparseness is imposed. Here mN can also be assumed to rise with N in which
case the rate of convergence becomes slower. This compares with a rate of Op (N/T ) for the sample
covariance (correlation) matrix - see Theorem 3.1 in Ledoit and Wolf (2004). Note that LW use an
unconventional definition for the Frobenius norm (see their Definition 1). Similar results can also
be obtained for the spectral norm.
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Theorem 2 (Support Recovery) Consider the true positive rate (TPR) and the false positive
rate (FPR) statistics computed using the multiple testing estimator ρ̃ij = ρ̂ijI

(∣∣ρ̂ij∣∣ > bN√
T

)
, given

by

TPR =

∑∑
i 6=j

I(ρ̃ij 6= 0, and ρij 6= 0)∑∑
i 6=j

I(ρij 6= 0)
(14)

FPR =

∑∑
i 6=j

I(ρ̃ij 6= 0, and ρij = 0)∑∑
i 6=j

I(ρij = 0)
, (15)

respectively, where bN is defined as in Theorem 1, and ρ̂ij and ρij obey Assumptions 1 and 2,
respectively. Then with probability tending to 1, FRP = 0 and TPR = 1, if ρmin = min(ρij)

i 6=j
> bN√

T

as N,T →∞ in any order.
Proof. See Appendix A.

4 Positive definiteness of the covariance matrix estimator

As in the case of thresholding approaches, multiple testing preserves the symmetry of R̂ and is
invariant to the ordering of the variables. However, it does not ensure positive definiteness of
the estimated covariance matrix. Bickel and Levina (2008b) provide an asymptotic condition that
ensures positive definiteness, which is not met unless T is suffi ciently large relative to N . See
Section 5 for the exact specification of this condition. Guillot and Rajaratnam (2012) demonstrate
theoretically that retaining positive definiteness upon thresholding is governed by complex algebraic
conditions. In particular, they show that the pattern of elements to be set to zero has to correspond
to a graph which is a union of complete components.

A number of methods have been developed in the literature that produce sparse inverse co-
variance matrix estimates. A popular approach applies the penalised likelihood with a LASSO
penalty to the off-diagonal terms of Σ−1. See, for example, D’Aspremont et al. (2008), Rothman
et al. (2008), Yuan and Lin (2007), and Peng et al. (2009). More recent contributions propose
a sparse positive definite covariance estimator obtained via convex optimisation, where sparseness
is achieved by use of a suitable penalty. For example, Rothman (2012) uses a logarithmic barrier
term, Xue et al. (2012) impose a positive definiteness constraint, while Liu et al. (2013) and Fan
et al. (2013) enforce an eigenvalue condition.7 Most of these approaches are rather complex and
computationally extensive. Instead, if inversion of R̂ or Σ̂ is of interest we recommend the use
of a Ledoit-Wolf (LW) type shrinkage estimator, either applied to the MT estimated correlation
matrix, R̃MT , or to the sample correlation, R̂, itself. The latter estimator is motivated by the work
of Schäfer and Strimmer (2005) who draw on the theoretical results of LW. However, they do not
account for the bias of the empirical correlation coeffi cients, which we do in our specification of
R̂LW .

Following Ledoit and Wolf (2004) (see Section 5 for a summary of their approach), we set
as benchmark target the N × N identity matrix IN . Our shrinkage on multiple testing (S-MT )
estimator is then defined by

R̃S-MT = λIN + (1− λ)R̃MT , (16)

where the shrinkage parameter λ ∈ (λ0, 1], and λ0 is the minimum value of λ that produces a non-
singular R̃S-MT (λ0) matrix. First note that shrinkage is again deliberately implemented on the

7Other related work includes that of Lam and Fan (2009), Rothman et al. (2009), Bien and Tibshirani (2011),
Cai et al. (2011), and Yuan and Wang (2013).
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correlation matrix R̃MT rather than on Σ̃MT . In this way we ensure that no shrinkage is applied
to the volatility measures. Second, shrinkage is applied to the non-zero elements of R̃MT , and as a
result the shrinkage estimator, R̃S-MT , has the same optimal non-zero/zero patterns obtained for
R̃MT . This is in contrast to thresholding approaches that impose eigenvalue restrictions to achieve
positive definiteness.

The shrinkage parameter used in (16) is derived from a grid search optimisation procedure
described below that involves the inverse of two matrices. Specifically, we consider a reference
correlation matrix, R0, which is selected to be well-conditioned, robust and positive definite. Next,
over a grid of λ bounded from below and above by λ0 and 1 respectively, R̃S-MT (λ) is evaluated.
Since both R0 and R̃S-MT (λ) are positive definite, the difference of their inverses is compared over
λ ∈ (λ0, 1] using the Frobenius norm. The shrinkage parameter, λ∗, is given by

λ∗ = arg min
λ0+ε≤λ≤1

∥∥∥R−1
0 −R̃

−1

S-MT (λ)
∥∥∥2

F
, (17)

where ε is a small positive constant. Let A = R−1
0 and B (λ) = R̃

−1

S-MT (λ). Note that since R0

and R̃S-MT are symmetric∥∥∥R−1
0 −R̃

−1

S-MT (λ)
∥∥∥2

F
= tr

(
A2
)
− 2tr[AB (λ)] + tr[B2 (λ)]. (18)

The first order condition for the above optimisation problem is given by

∂
∥∥∥R−1

0 −R̃
−1

S-MT (λ)
∥∥∥2

F

∂λ
= −2tr

(
A
∂B (λ)

∂λ

)
+ 2tr

(
B (λ)

∂B (λ)

∂λ

)
,

where

∂B (λ)

∂λ
= −R̃−1

S-MT (λ)
(
IN − R̃MT

)
R̃
−1

S-MT (λ)

= −B (λ)
(
IN − R̃MT

)
B (λ) .

Hence, λ∗ is obtained as the solution of

f(λ) = −tr
[
(A−B (λ))B (λ)

(
IN − R̃MT

)
B (λ)

]
= 0,

where f(λ) is an analytic differentiable function of λ for values of λ close to unity, such that B (λ)
exists. The resulting R̃S-MT (λ∗) is guaranteed to be positive definite since

λmin

(
R̃S-MT

)
= λ× λmin (IN ) + (1− λ)× λmin

(
R̃MT

)
> 0,

for any λ ∈ [λ0, 1], where λ0 = max

(
ε−λmin(R̃MT )
1−λmin(R̃MT )

, 0

)
. For more details of the above derivations

and the grid search optimisation procedure see Appendix A.
Having obtained the shrinkage estimator R̃S-MT , using λ∗ in (16), we construct the correspond-

ing covariance matrix as

Σ̃S-MT = D̂
1/2
R̃S-MT D̂

1/2
. (19)

Implementation of the above procedure requires the use of a suitable reference matrix R0. To this
end, we propose using a LW type shrinkage estimator, R̂LW , applied to the sample correlation
matrix itself. This appears to work better in practice over the more natural choice of the identity
matrix or even the generalised inverse of the sample correlation, which we experimented with. The
same is true when compared to the correlation matrix derived from shrinking Σ̂ using the Ledoit
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and Wolf (2004) method. In the simulations that follow, we use R̂LW as the reference matrix for
Σ̃S-MT . However, R̂LW , can also be used independently of the R̃S-MT estimator. Thus, we also
evaluate its performance when implemented on its own in obtaining the inverse of the covariance
matrix, and make relevant recommendations.

Consider the following shrinkage estimator of R,

R̂LW = ξIN + (1− ξ)R̂,

with shrinkage parameter ξ ∈ [0, 1], where R̂= (ρ̂ij). The squared Frobenius norm of the error of
estimating R by R̂LW (ξ) is given by∥∥∥R̂LW (ξ)−R

∥∥∥2

F
=

∑∑
i 6=j

[
(1− ξ)ρ̂ij − ρij

]2
=

∑∑
i 6=j

[
ρ̂ij − ρij − ξρ̂ij

]2
.

The main theoretical results for the shrinkage estimator based on the sample correlation matrix
are summarised in the theorem below.

Theorem 3 (Rate of convergence and optimal shrinkage parameter) Denote the sample
correlation coeffi cient of xit and xjt over t = 1, 2, ..., T by ρ̂ij and the population correlation matrix
by R = (ρij). Suppose also that Assumptions 1 and 2 are satisfied. Then

E
∥∥∥R̂LW (ξ∗)−R

∥∥∥2

F
=
∑∑
i 6=j

E
[
ρ̂ij − ρij − ξ∗ρ̂ij

]2
= O

(
mNN

T

)
, (20)

where ξ∗ is the optimal value of the shrinkage parameter ξ, which is given by

ξ̂
∗

= 1−

∑∑
i 6=j

ρ̂ij

[
ρ̂ij −

ρ̂ij(1−ρ̂2
ij)

2T

]
1
T

∑∑
i 6=j

(1− ρ̂2
ij)

2 +
∑∑
i 6=j

[
ρ̂ij −

ρ̂ij(1−ρ̂2
ij)

2T

]2 .

Proof. See Appendix A.

Corollary 1 Denote the sample correlation coeffi cient of xit and xjt over t = 1, 2, ..., T by ρ̂ij and
the population correlation matrix by R = (ρij). Then

E
∥∥∥R̂LW (ξ∗)−R

∥∥∥2

F
=

∑∑
i 6=j

E
(
ρ̂ij − ρij

)2 −
[∑∑

i 6=j
E
[
ρ̂ij
(
ρ̂ij − ρij

)]]2

∑∑
i 6=j

E
(
ρ̂2
ij

)
<

∑∑
i 6=j

E
(
ρ̂ij − ρij

)2
.

Proof. See Appendix A.
From Corollary 1, assuming that T is suffi ciently large so that ρij can be reasonably accurately
estimated by ρ̂ij , we would expect the shrinkage estimator to have smaller mean squared error than
R̂ . Recovery of the corresponding covariance matrix Σ̂LW (ξ∗) is performed as in (19).
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5 An overview of key regularisation techniques

In this section we provide an overview of three main covariance estimators proposed in the literature
which we use in our Monte Carlo experiments for comparative analysis. Specifically, we consider
the thresholding methods of Bickel and Levina (2008b), and Cai and Liu (2011), and the shrinkage
approach of Ledoit and Wolf (2004).

5.1 Bickel-Levina (BL) thresholding

The method developed by Bickel and Levina (2008b, BL) employs ‘universal’thresholding of the
sample covariance matrix Σ̂ = (σ̂ij) , i, j = 1, ..., N . Under this approach Σ is required to be sparse
according to Definition 1. The BL thresholding estimator is given by

Σ̃BL,C =

(
σ̂ijI

[
|σ̂ij | ≥ C

√
logN

T

])
, i = 1, 2, ..., N − 1, j = i+ 1, ..., N (21)

where I (.) is an indicator function and C is a positive constant which is unknown. The choice of
thresholding function - I (.) - implies that (21) implements ‘hard’thresholding. The consistency

rate of the BL estimator is
√

logN
T under the spectral norm of the error matrix

(
Σ̃BL,C −Σ

)
.

The main challenge in the implementation of this approach is the estimation of the thresholding
parameter, C, which is usually calibrated by cross validation.8 Details of the BL cross validation
procedure can be found in Appendix B.

As argued by BL, thresholding maintains the symmetry of Σ̂ but does not ensure positive
definiteness of Σ̃BL,Ĉ . BL show that their threshold estimator is positive definite if∥∥∥Σ̃BL,C − Σ̃BL,0

∥∥∥ ≤ ε and λmin (Σ) > ε, (22)

where ‖.‖ is the spectral or operator norm and ε is a small positive constant. This condition is not
met unless T is suffi ciently large relative to N . Furthermore, it is generally acknowledged that the
cross validation technique used for estimating C is computationally expensive. More importantly,
cross validation performs well only when Σ is assumed to be stable over time. If a structural break
occurs on either side of the cross validation split chosen over the T dimension then the estimate
of C could be biased. Finally, ‘universal’ thresholding on Σ̂ performs best when the units xit,
i = 1, ..., N, t = 1, ..., T are assumed homoscedastic (i.e. σ11 = σ22 = ... = σNN ). Departure from
such a setting can have a negative impact on the properties of the thresholding parameter.

5.2 Cai and Liu (CL) thresholding

Cai and Liu (2011, CL) proposed an improved version of the BL approach by incorporating the
unit specific variances in their ‘adaptive’ thresholding procedure. In this way, unlike ‘universal’
thresholding on Σ̂, their estimator is robust to heteroscedasticity. More specifically, the thresholding
estimator Σ̃CL,C is defined as

Σ̃CL,C =
(
σ̂ijsτ ij [|σ̂ij | ≥ τ ij ]

)
, i = 1, 2, ..., N − 1, j = i+ 1, ..., N (23)

where τ ij > 0 is an entry-dependent adaptive threshold such that τ ij =
√
θ̂ijωT ,with θ̂ij =

T−1
∑T

i=1(xitxjt − σ̂ij)2 and ωT = C
√

logN/T , for some constant C > 0. CL implement their
approach using the general thresholding function sτ (.) rather than I (.), but point out that all
their theoretical results continue to hold for the hard thresholding estimator. The consistency rate

8Fang, Wang and Feng (2013) provide useful guidelines regarding the specification of various parameters used in
cross-validation through an extensive simulation study.
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of the CL estimator is
√

logN/T under the spectral norm of the error matrix
(
Σ̃CL,C −Σ

)
. The

parameter C can be fixed to a constant implied by theory (C = 2 in CL) or chosen via cross
validation. Details of the CL cross validation procedure are provided in Appendix B.

As with the BL estimator, thresholding in itself does not ensure positive definiteness of Σ̃CL,Ĉ .
In light of condition (22), Fan, Liao and Mincheva (FLM) (2011, 2013) extend the CL approach
and propose setting a lower bound on the cross validation grid when searching for C such that

the minimum eigenvalue of their thresholded estimator is positive, λmin

(
Σ̃FLM,Ĉ

)
> 0. Further

details of this procedure can be found in Appendix B. We apply this extension to both BL and
CL procedures. The problem of Σ̃BL,Ĉ and Σ̃CL,Ĉ not being invertible in finite samples is then
resolved. However, depending on the application, the selected C might not be necessarily optimal
(see Appendix B for the relevant expressions). In other words, the properties of the constrained
Σ̃BL,Ĉ and Σ̃CL,Ĉ can deviate noticeably from their respective unconditional versions.

5.3 Ledoit and Wolf (LW) shrinkage

Ledoit and Wolf (2004, LW) considered a shrinkage estimator for regularisation which is based on
a convex linear combination of the sample covariance matrix, Σ̂, and an identity matrix IN , and
provide formulae for the appropriate weights. The LW shrinkage is expressed as

Σ̂LW = ρ̂1IN + ρ̂2Σ̂, (24)

with the estimated weights given by

ρ̂1 = mT b
2
T /d

2
T , ρ̂2 = a2

T /d
2
T

where

mT = N−1tr
(
Σ̂
)
, d2

T = N−1tr
(
Σ̂

2
)
−m2

T ,

a2
T = d2

T − b2T , b2T = min(b̄2T , d
2
T ),

and

b̄2T =
1

NT 2

T∑
t=1

∥∥∥ẋtẋ′t − Σ̂
∥∥∥2

F
=

1

NT 2

T∑
t=1

tr
[(
ẋtẋ

′
t

) (
ẋtẋ

′
t

)]
− 2

NT 2

T∑
t=1

tr
(
ẋ′tΣ̂ẋt

)
+

1

NT
tr
(
Σ̂

2
)
,

and noting that
∑T

t=1 tr
(
ẋ′tΣ̂ẋt

)
=
∑T

t=1 tr
(
Σ̂
∑T

t=1 ẋtẋ
′
t

)
= T

∑T
t=1 tr

(
Σ̂

2
)
, we have

b̄2T =
1

NT 2

T∑
t=1

(
N∑
i=1

ẋ2
it

)2

− 1

NT
tr
(
Σ̂

2
)
,

with ẋt = (ẋ1t, ..., ẋNt)
′ and ẋit = (xit − x̄i).9

Also, Σ̂LW is positive definite by construction. Thus, the inverse Σ̂
−1
LW exists and is well

conditioned.
As explained in LW and in subsequent contributions to this literature, shrinkage can be seen as

a trade-off between bias and variance in estimation of Σ, as captured by the choices of ρ1 and ρ2.
Note however that LW do not require these parameters to add up to unity, and it is possible for
the shrinkage method to place little weight on the data (i.e. the correlation matrix). Of particular
importance is the effect that LW shrinkage has on the diagonal elements of Σ̂ which renders it
inappropriate for use in impulse response analysis where the size of the shock is calibrated to the
standard deviation of the variables. Unlike the thresholding approaches considered in this paper,
the LW methodology does not require Σ to be sparse.

9Note that LW scale the Frobenius norm by 1/N , and use ‖A‖2F = tr(A′A)/N . See Definition 1 of Ledoit and
Wolf (2004, p. 376). Here we use the standard notation for this norm.
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6 Small sample properties

Using Monte Carlo simulations we investigate the small sample properties of our proposed multiple
testing (MT ) estimators as compared to the other thresholding and shrinkage type estimators
proposed in the literature and reviewed in Section 5. In what follows we present the MT results
using the Bonferroni procedure. We obtain very similar results when we use the Holm approach, and
to save space the MT results based on Holm procedure are provided in a supplementary appendix
which is available on request.

Given the importance of the type of covariance matrix being estimated, we consider four exper-
iments with four different types of covariance matrices.

(A) a first order autoregressive specification (AR);
(B) a first order spatial autoregressive model (SAR);
(C) a banded matrix with ordering used in CL (Model 1);
(D) a covariance structure that is based on a pre-specified number of non-zero off-diagonal

elements.
The first two experiments produce standard covariance matrices used in the literature and

comply to the approximately sparse covariance settings. The covariances in experiments C and D
are examples of exactly sparse covariance matrices. Results are reported for N = {30, 100, 200, 400}
and T = {60, 100}.

As explained in Section 2, we are interested in our MT and shrinkage estimators producing
covariance matrix estimates that are not only well-conditioned (and, when needed, invertible) but
also relatively stable over time. For this purpose we conduct our simulation exercises using values
of T that are relatively small but still suffi cient to produce reliable covariance/correlation coeffi cient
estimates. A robustness analysis is also conducted for these setups.

Experiment A In this experiment we set Σ to the covariance matrix of a first-order autore-
gressive process with coeffi cient, φ,

Σ = (σij) =
1

1− φ2



1 φ φ2 · · · φN−1

φ 1
...

φ2 φ
. . .

...
... · · · · · · . . . φ

φN−1 · · · · · · φ 1


N×N

.

For |φ| < 1, this matrix has a well-defined inverse given by

Σ−1 =
(
σij
)

=



1 −φ 0 · · · 0

−φ 1 + φ2 ...

0 −φ . . .
...

... · · · −φ 1 + φ2 −φ
0 · · · · · · −φ 1


N×N

.

The corresponding correlation matrix is given by R =
(
1−φ2

)
Σ, and it is easily seen that Σ−1 =

Q′Q, where

Q = (qij) =



√
1− φ2 0 0 · · · 0

−φ 1
...

0 −φ . . .
...

... · · · −φ 1 0
0 · · · · · · −φ 1


N×N

.
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The data generating process is then given by

Qx
(r)
t = ε

(r)
t , t = 1, ..., T. (25)

Here x(r)
t = (x

(r)
1t ,x

(r)
2t , ...,x

(r)
Nt)
′, ε

(r)
t = (ε

(r)
1t ,ε

(r)
2t , ...,ε

(r)
Nt)
′ and ε(r)

it ∼ IIDN(0, 1) are generated for each
replication r = 1, ..., R.

Equivalently, (25) can be written as

x
(r)
1t =

1√
1− φ2

ε
(r)
1t ,

x
(r)
it = φx

(r)
i−1,t + ε

(r)
it , for i = 2, ..., N.

We set φ = 0.7. The sample covariance matrix of x(r)
t is computed as

Σ̂
(r)

= T−1
T∑
t=1

ẋ
(r)
t ẋ

(r)′
t , (26)

for each replication r, where ẋ(r)
t =

(
ẋ

(r)
1t , ..., ẋ

(r)
Nt

)′
, ẋ

(r)
it =

(
x

(r)
it − x̄

(r)
i

)
and x̄(r)

i = T−1
∑T

t=1 x
(r)
it ,

for i = 1, ..., N . The corresponding sample correlation matrix, R̂
(r)
is expressed as

R̂
(r)

= D̂
−1/2(r)

Σ̂
(r)
D̂
−1/2(r)

, (27)

where D̂
(r)

=diag( σ̂
(r)
ii , i = 1, 2, ..., N).

Experiment B Here we examine a standard first-order spatial autoregressive model (SAR).
The data generating process for replication r is now given by

x
(r)
t = ϑWx

(r)
t + ε

(r)
t

= (IN − ϑW )−1ε
(r)
t , t = 1, ..., T, (28)

where x(r)
t = (x

(r)
1t , x

(r)
2t , ..., x

(r)
Nt)
′, ϑ is the spatial autoregressive parameter, ε(r)

it ∼ IIDN(0, σii), and

σii ∼ IID
(

1
2 + χ2(2)

4

)
. Therefore, E(σii) = 1 and σii is bounded away from zero, for i = 1, ..., N .

The weights matrixW is row-standardized with all units having two neighbours except for the first
and last units that have only one neighbour

W =



0 1 0 · · · · · · 0 0
1/2 0 1/2 · · · · · · 0 0
0 1/2 0 · · · · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1/2 0 1/2
0 0 0 · · · 0 1 0


N×N

.

This ensures that the largest eigenvalue ofW is unity and the intensity of cross-sectional dependence
of x(r)

t is measured by ϑ. We set ϑ = 0.4. The population covariance matrix Σ is given by

Σ = (IN − ϑW )−1D(IN − ϑW ′)−1,

where D = diag(σ11, σ22, ...., σNN ), its inverse by

Σ−1 = (IN − ϑW ′)D−1(IN − ϑW ),

and R = D−1/2ΣD−1/2.
We generate the sample covariance and correlation matrices Σ̂ and R̂ as in experiment A using

(26) and (27).
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Experiment C Following Model 1 of Cai and Liu (2011), we consider the banded matrix
given by,

Σ = diag(A1 +A2),

where A1 = (σij)1≤i,j≤N/2, σij = (1 − |i−j|10 )+ and A2 = 4IN/2. Σ is a two block diagonal (non-
invertible) matrix, A1 is a banded and sparse covariance matrix, and A2 is a diagonal matrix with
4 along the diagonal. Here x(r)

t = (x
(r)
1t ,x

(r)
2t , ...,x

(r)
Nt)
′ are generated as IIDN -variate random vectors

from the normal distribution with mean 0 and covariance matrix Σ.

Experiment D Under this experiment we consider a covariance structure that explicitly
controls for the number of non-zero elements of the population correlation matrix. First we draw
N × 1 vectors b = (b1, b2, ..., bN )′ as Uniform (0.7, 0.9) for the first and last Nb (< N) elements of
b, where Nb =

[
N δ
]
, and set the remaining middle elements of b to zero. The resulting population

correlation matrix R is defined by
R = IN + bb′ − B̌2

,

where B̌=diag (b) is of N×N dimension. The degree of sparseness of R is determined by the value
of the parameter δ. We are interested in weak cross-sectional dependence, so we focus on the case
where δ < 1/2 following Pesaran (2013), and set δ = 0.25.

Further, we impose heteroskedasticity on the main diagonal ofΣ by generatingD = diag(σ11, σ22, ..., σNN )
such that σii ∼ IID

(
1/2 + χ2(2)/4

)
, i = 1, 2, ..., N as in Experiment B. Then, Σ becomes

Σ = D1/2RD1/2. We obtain the Cholesky factor of R, P , and generate Q = D1/2P which is
then used in the data generating process

x
(r)
t = Qε

(r)
t , t = 1, ..., T. (29)

6.1 Alternative estimators and evaluation metrics

We obtain estimates of Σ for all four experiments, using the alternative regularisation techniques
described above. More specifically, we compute the following estimates:

MTR: thresholding based on the MT approach applied row-wise to the sample correlation
matrix (Σ̃MTR)

MTF : thresholding based on the MT approach applied to all distinct non-diagonal elements of
the sample correlation matrix (Σ̃MTF )

BLĈ : BL thresholding on the sample covariance matrix using cross-validated C (Σ̃BL,Ĉ )
CL2: CL thresholding on the sample covariance matrix using the theoretical value of C = 2

(Σ̃CL,2)
CLĈ : CL thresholding on the sample covariance matrix using cross-validated C (Σ̃CL,Ĉ)

S-MTR: supplementary shrinkage applied to MTR (Σ̃S-MTR)
S-MTF : supplementary shrinkage applied to MTF ( Σ̃S-MTF )
BLĈ∗ : BL thresholding using the FML cross-validation adjustment procedure for estimating C

to ensure positive definiteness (Σ̃BL,Ĉ∗)
CLĈ∗ : CL thresholding using the FLM cross-validation adjustment procedure for estimating C

to ensure positive definiteness (Σ̃CL,Ĉ∗)

LWΣ̂: LW shrinkage on the sample covariance matrix (Σ̂LWΣ̂
)

LWR̂ : LW shrinkage on the sample correlation matrix (Σ̂LWR̂
)

The first five estimates relate to the original thresholding techniques. With regard to the
next four estimates, for the MT method we apply additional shrinkage and for both BL and CL
thresholding procedures we further impose the FLM extension which ensures positive definiteness of
the estimated matrices. The adjusted thresholding methods and shrinkage approaches are evaluated
predominantly for comparison with the inverse covariance matrices.
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Where regularisation is performed on the correlation matrix we reconstruct the corresponding
covariance matrix in line with (8). Across all experiments we compute the spectral norm of the
deviations of each of the regularised covariance matrices from their respective true Σ :∥∥AΣ̊

∥∥ =
∥∥∥Σ−Σ̊

∥∥∥ , (30)

for Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LWΣ̂
}, where Ĉ

and Ĉ∗ are constants evaluated through cross-validation - over the full grid and a reduced grid
suggested by Fan, Liao and Mincheva (2013) (see Appendix B for details). We also evaluate the
Frobenius norm of the difference given in (30), denoted by ‖.‖F . With regard to the performance
of the inverse covariance matrices we evaluate∥∥BΣ̊−1

∥∥ =
∥∥∥Σ−1−Σ̊

−1
∥∥∥ , (31)

for Σ̊
−1

= {Σ̃−1

S-MTR
, Σ̃
−1

S-MTF
, Σ̃
−1

BL,Ĉ∗ , Σ̃
−1

CL,Ĉ∗ , Σ̂
−1
LWΣ̂

, Σ̂
−1
LWR̂
}, where all estimates are positive defi-

nite. Again, we also calculate the Frobenius norm of the difference given in (31).
Note that as long as Σ is well defined (implying that

∥∥Σ−1
∥∥ = O (1)) then for the inverses it

holds that: ∥∥∥Σ−1−Σ̊
−1
∥∥∥ =

∥∥∥Σ−1
(
Σ̊−Σ

)
Σ̊
−1
∥∥∥

≤
∥∥Σ−1

∥∥∥∥∥Σ̊−Σ
∥∥∥∥∥∥Σ̊−1

∥∥∥ .
The condition

∥∥Σ−1
∥∥ = O (1) is satisfied for all experiments with the exception of experiment C,

for which the population covariance matrix is not invertible.
We report the averages of the above norms over R = 500 replications, except for the BL and CL

cross-validation procedures. For these procedures computations take a very long time to complete
and we were forced to use a lower number of replications and a cursor grid structure. Specifically for
the experiments with N = 400, calculations can take up to 12 weeks so we set the grid increments
to 4 and reduced the number of replications to R = 100 in this case. The latter is in line with the
BL and CL simulation specifications.10

Finally, we assess the ability of the thresholding estimators to recover the support of the true
covariance matrix via the true positive rate (TPR) and false positive rate (FPR), as defined in (14)
and (15), respectively. These are only implemented for experiments C and D. Experiments A and
B refer to approximately sparse matrix settings, implying the absence of zero elements in the true
covariance matrix. Also, TPR and FPR are not applicable to shrinkage techniques.

6.2 Robustness analysis

In order to assess the robustness of our multiple testing (MT ) and shrinkage methodologies we also
conduct the following experiments:

1. We allow for departures from normality for the errors ε(r)
it in experiments A-D. Therefore,

in each case we also generate ε(r)
it ∼ IID((χ2(2) − 2)/4), for i = 1, 2, ...., N and r = 1, ..., R

and repeat the steps in (26) and (27). We evaluate our results using the sample covariance
matrix.

2. We consider a more complex setting where x(r)
t represents a vector of error terms in a regres-

sion equation. We set u(r)
it = x

(r)
it , for i = 1, 2, ...., N, t = 1, 2, ..., T for notational convenience,

where u(r)
it are constructed as in experiments A-D. Then for each replication r, we generate

y
(r)
it = δi + γiz

(r)
it + u

(r)
it , for i = 1, 2, ...., N, t = 1, 2, ..., T, (32)

10Standard deviations for all estimates are available upon request.
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where δi ∼ IIDN (1, 1), and

z
(r)
it = ζiz

(r)
i,t−1 +

√
1− ζ2

i ν
(r)
it , for i = 1, 2, ...., N, t = −49, ..., 0, 1, ..., T,

with zi,−50 = 0, and νit ∼ IIDN (0, 1) . We discard the first 50 observations. The observed

regressors, z(r)
it , are therefore strictly exogenous and serially correlated, and could possibly

also be cross-sectionally dependent. We set ζi = 0.9. Further we allow for slope heterogeneity
by generating γi ∼ IIDN (1, 1) for i = 1, 2, ...., N . In this case, the multiple testing approach
is corrected for the degrees of freedom. Hence, as in (9)

√
T is replaced by

√
T −m, where

m is equal to the number of regressors in (32) including the intercept.

6.3 Robustness of the MT procedures to the choice of the p-value

First, we investigate the robustness of our MT estimators to different levels of significance, p,
used in the derivation of the theoretical threshold value, bN , defined by (7). We experimented
with p = 5% and 10%. The spectral and Frobenius norms (averaged over 500 replications) for
all the four experiments are summarised in Table 1, and clearly show that the choice of p is of
secondary importance for the performance of theMT type estimators of sample covariance or
correlation matrices. There are minor differences in the average spectral and Frobenius norms for
MTR (0.05) (or MTF (0.05)) and MTR (0.10) (or MTF (0.10)) for all N and T combinations and
for all covariance matrix setups considered. As we noted earlier (see also Section 3.1), the multiple
testing procedure applied to all distinct non-diagonal elements of R̂ (namely the MTF estimator)
is expected to have a faster rate of convergence to R, at least when Bonferroni critical values are
used. However, in small samples multiple testing by row (namely the MTR estimator) appears
to perform marginally better in most cases, although the differences between the MTR and MTF
estimators diminish in most cases as T and N increase, with the MTF version outperforming the
row-wise version in some cases. See for example experiment D for T = 100. Also, as to be expected,
the performance of the estimators (as measured by the norms) deteriorates with N for a given T ,
and improves with T for a given N . These results hold across all four experiments (A-D).

6.4 Comparative results

The average norm results for experiments A-D across the different regularisation estimators are
summarised in Tables 2-5. In view of the discussion of the previous section, we provide results
for the MT estimators using the Bonferroni critical values only at the 5% significance level. In
all cases the top panel shows comparative results for the different regularisation estimators. The
middle panel presents results for the estimated inverse matrices (when such inverses exist). Finally,
the bottom panel gives the results for the shrinkage coeffi cients used in the shrinkage approaches
that we consider. Note that in Table 4 the middle panel has been excluded because the population
covariance matrix, Σ, is non-invertible.

Starting with experiment A and focusing initially on the top panel of Table 2, the results show
that multiple testing and thresholding in general ourperform the shrinkage technique under both
norm specifications and especially for larger values of N . While not surprisingly the performance of
all estimators improves as T increases from 60 to 100, the MT and other thresholding procedures
continue to outperform the shrinkage estimators. For small N , MTR, MTF , BLĈ , CL2 and CLĈ
behave similarly, however as N increases MTR and in most cases MTF outperform BLĈ and CL2.
In general, CLĈ performs better than MTF though the difference between the two diminishes for
larger values ofN . When the positive definite condition is imposed the performance of all estimators
deteriorates. However, S-MTR and S-MTF perform favourably relative to BLĈ∗ and CLĈ∗ across
all (N,T ) combinations. Finally, adaptive thresholding (CLĈ and CLĈ∗) outperforms universal
thresholding (BLĈ and BLĈ∗), which is to be expected given the heteroskedasticity present in the
data. Also, in line with results reported in Cai and Liu (2011), the CL procedure that uses the
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theoretical thresholding parameter of 2 (CL2) performs poorer than its cross-validated equivalent
(CLĈ).

Moving on to the middle panel of Table 2, we find that the inverse covariance estimators S-
MTR and S-MTF perform much better than BLĈ∗ and CLĈ∗ . In fact, the average spectral norm
for CLĈ∗ includes some sizeable outliers, especially for small N . Still, their more reliable Frobe-
nius norm estimates are higher than those of shrinkage applied to the multiple testing estimators.
Furthermore, while LWΣ̂ outperforms both S-MTR and S-MTF for N = {30, 100}, as N rises to
200 and 400 shrinkage applied to the MT estimators appears to perform better. Finally, of all
estimators considered, shrinkage on the sample correlation matrix LWR̂ produces the lowest norm
values across the N,T combinations. Interestingly, the shrinkage parameters of the bottom panel
of Table 2 show that LWΣ̂ imposes a progressively lower weight on Σ̂ as N increases, even more so
for smaller T . On the other hand, S-MTR, S-MTF and LWR̂ place comparatively more balanced
weights on IN and R̂ in this case across the range of (N,T ) combinations.

Results for experiments B, C and D are summarized in Tables 3-5. On the whole, the results are
qualitatively similar to those of experiment A, although the average value of the norms are lower,
particularly for experiments B and D. Also, MTR and MTF now outperform both of the threshold
cross-validated estimators BLĈ and CLĈ . With regard to the inverse covariance matrix estimators,
again BLĈ∗ and CLĈ∗ suffer from outlier realisations especially for smaller values of N . Further,
LWR̂ and LWΣ̂ perform similarly for small N but as the cross section dimension rises LWΣ̂ clearly
outperforms, especially in the case of experiment D. Overall, S-MT outperforms the other inverse
covariance estimators across experiments. The results also clearly show adaptive thresholding to
be superior to universal thresholding. Finally, although LWΣ̂ is computationally attractive as
compared to the cross-validation based thresholding approaches, its performance still falls short
of the equally computationally appealing MT and S-MT procedures. The LWΣ̂ estimator also
has the additional disadvantage that it tends to shrink the sample covariance matrix excessively
towards the identity matrix.

Table 6 presents results for support recovery of Σ using the multiple testing and thresholding
approaches with no adjustments. Superiority of MTR and MTF over BLĈ , CL2 and CLĈ is again
established when comparing the true positive rates (TPR) of the estimators (FPR are uniformly
close to zero in all cases). As T rises the TPRs improve while as N increases they decrease, as
expected. The only exception is BLĈ in experiment D, which shows improvement from N = 30
to N = 100 for both values of T (60 and 100). TPRs are higher for experiment D, since for
this experiment we explicitly control for the number of non-zero elements in Σ, and ensure that
conditions of Theorem 2 are met.

We next turn to the results obtained from the robustness analysis outlined in Section 6.2 applied
to experiments A-D. Evaluating the estimated covariance matrices based on non-normal errors is of
particular interest. In this case, a deterioration in the values of the average spectral and Frobenius
norms is observed across all estimators and experiments. This is not surprising as most of these
methods are based on the assumption of normality of the underlying data. However, the MT
and S-MT procedures still outperform the remaining estimators in most instances. To see this we
measured the relative performance of the considered key regularisation estimators against our MT
and S-MT estimators across all (N,T ) combinations and experiments. Specifically, we compare
MTF , BLĈ , CL2 and CLĈ to our preferred MTR estimator, where no adjustments are made to
these estimators, and S-MTF , BLĈ∗ , CLĈ∗ and LWΣ̂ (as well as LWR̂ for the inverse covariance
matrices) to our adjusted S-MTR estimator, where all these estimators are positive definite. Tables
7-10 show the relative values of the average spectral and Frobenius norms for all these estimators.
As can be seen these values are predominantly greater than the benchmark of unity attached to
MTR and S-MTR respectively. Values greater than one indicate that the corresponding estimators
are underperforming relative to the preferred estimators. Interestingly, MTF outperforms MTR at
times depending on the experiment, which supports the theoretical results of Section 3.1. Similar
conclusions can be drawn by re-evaluating the support recovery of Σ following the original Table
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6. By comparison, the TPR values for all estimators under non-normal errors shown in Table 11
are lower than their normal counterparts. However, the loss in support recovery is significantly less
pronounced for MTR and MTF than for BLĈ , CL2 and CLĈ , especially for experiment D and for
large N . As before, support recovery improves in all cases when T increases. Finally, results based
on the residuals from regression (32) in general are similar to the main results of Tables 2-5. The
tables for this case are therefore relegated to the supplementary appendix.

Overall, both our proposed multiple testing (MT ) and shrinkage on multiple testing (S-MT )
estimators prove to be robust to the specification of the underlying covariance matrix Σ. If the
inverse covariance matrix is of interest S-MT and LWR̂ are more appropriate, while MT gives
better covariance matrix estimates when positive definiteness is not required. Also, MT is robust
to the choice of the family wise significance level, p, used in the calculation of bN . Moreover, S-MT
yields covariance matrix estimates that are closer to the sample correlation matrix as compared to
the widely used LW shrinkage approach. No clear ordering emerges when S-MT and LWR̂ are
compared, rather the outcome depends on the true covariance matrix under consideration.

7 Concluding Remarks

This paper considers regularisation of large covariance matrices particularly when the cross-sectional
dimension N of the data under consideration exceeds the time dimension T. In this case the sam-
ple covariance matrix, Σ̂, becomes ill-conditioned and is not a good estimator of the population
covariance.

A novel regularisation estimator (MT ) is proposed that uses insights from the multiple testing
literature to enhance the support of the true covariance matrix. It is applied to the sample cor-
relation matrix thus keeping the variance components of Σ̂ intact. It is shown that the resultant
estimator has a convergence rate of (mNN/T )1/2 under the Frobenius norm, where mN is bounded
in N , which is comparable with the convergence rates established in the literature. Further, it
is robust to random permutations of the underlying observations and it is computationally sim-
ple to implement. Multiple testing is also suitable for application to high frequency observations,
rendering it robust to changes in the covariance matrix over time.

Monte Carlo simulation results provide support of the theoretical properties of our MT esti-
mator. They show favourable performance of the proposed MT procedure (applied either by row
or to the full matrix) compared with a number of key regularisation techniques in the literature.
They further highlight the robustness of the MT estimator to different covariance matrix settings
and deviations from the main assumptions of the underlying theory.

If the inverse of the covariance matrix is of interest, since traditional thresholding approaches
including multiple testing do not necessarily produce a positive definite matrix, we recommend
additional shrinkage of our regularised multiple testing estimator or a shrinkage estimator applied
to the sample correlation matrix itself.

The problems of invertibility and robustness of estimated large covariance matrices to time
variations of the underlying variances and covariances are topics that continue to concern the
research community and are interesting areas for future study.
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Table 1: Performance of Multipe Testing (MT ) estimator under the Spectral and Frobenius norms
of error matrices (Σ̃MTR −Σ) and (Σ̃MTF −Σ) at 5% and 10% significance levels

Normally distributed errors. Averages over 500 replications
Experiment A

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

T = 60

MTR(0.05) 4.461 7.972 5.699 16.281 6.116 23.994 6.483 35.138
MTF (0.05) 5.217 9.164 6.621 19.076 7.165 28.491 7.737 42.609
MTR(0.10) 4.278 7.706 5.505 15.761 5.941 23.301 6.329 34.190
MTF (0.10) 5.035 8.874 6.472 18.630 6.996 27.832 7.540 41.463

T = 100

MTR(0.05) 3.529 6.313 4.550 12.888 4.946 19.016 5.343 27.884
MTF (0.05) 4.058 7.190 5.392 15.283 5.894 23.026 6.297 34.347
MTR(0.10) 3.407 6.101 4.403 12.513 4.795 18.500 5.195 27.177
MTF (0.10) 3.920 6.967 5.246 14.840 5.759 22.398 6.194 33.539

Experiment B
T = 60

MTR(0.05) 1.421 3.339 1.634 6.477 2.012 10.094 2.170 14.753
MTF (0.05) 1.558 3.929 1.755 7.407 2.098 11.187 2.243 15.997
MTR(0.10) 1.379 3.183 1.613 6.243 1.988 9.796 2.153 14.401
MTF (0.10) 1.526 3.795 1.731 7.313 2.095 11.131 2.242 15.964

T = 100

MTR(0.05) 1.030 2.306 1.284 4.561 1.618 7.258 1.750 10.836
MTF (0.05) 1.225 2.872 1.523 6.163 1.939 9.896 2.046 14.659
MTR(0.10) 1.000 2.238 1.251 4.365 1.565 6.916 1.712 10.332
MTF (0.10) 1.173 2.703 1.495 5.904 1.906 9.590 2.022 14.335

Experiment C
T = 60

MTR(0.05) 2.211 4.097 3.311 8.506 3.873 12.589 4.302 18.414
MTF (0.05) 2.404 4.352 3.955 9.664 4.730 14.720 5.335 22.171
MTR(0.10) 2.220 4.149 3.263 8.550 3.799 12.618 4.218 18.428
MTF (0.10) 2.339 4.258 3.818 9.407 4.580 14.331 5.184 21.601

T = 100

MTR(0.05) 1.686 3.123 2.523 6.453 2.879 9.496 3.223 13.892
MTF (0.05) 1.739 3.214 2.841 7.093 3.310 10.726 3.775 16.116
MTR(0.10) 1.724 3.192 2.516 6.560 2.859 9.614 3.194 14.030
MTF (0.10) 1.707 3.160 2.766 6.931 3.230 10.474 3.689 15.750

Experiment D
T = 60

MTR(0.05) 0.656 1.196 1.062 2.186 0.998 2.980 1.401 4.344
MTF (0.05) 0.729 1.245 1.514 2.513 1.487 3.195 2.416 4.818
MTR(0.10) 0.677 1.258 1.056 2.294 1.015 3.164 1.357 4.568
MTF (0.10) 0.687 1.201 1.395 2.398 1.366 3.106 2.248 4.705

T = 100

MTR(0.05) 0.488 0.902 0.763 1.653 0.730 2.310 0.920 3.331
MTF (0.05) 0.468 0.852 0.798 1.589 0.743 2.154 1.120 3.224
MTR(0.10) 0.510 0.959 0.786 1.772 0.767 2.492 0.951 3.608
MTF (0.10) 0.467 0.853 0.780 1.574 0.723 2.141 1.054 3.178
Notes: For an N ×N matrix A = (aij), the spectral norm is given by: ‖A‖ = λ

1/2
max (A′A), where λmax (A) is its largest eigenvalue.

For an N ×N matrix A = (aij), the Frobenius norm is given by: ‖A‖F =
√
tr (A′A). MTR=Multiple Testing by row, MTF=

Multiple Testing on full R̂ matrix (applied to all off-diagonal elements). Both estimators use the Bonferroni method at the 0.05 and

0.10 significance level.
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Table 2: Comparison of regularisation estimators applied to sparse covariance matrix Σ̂
Experiment A - normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ− Σ̊)
T = 60

MTR 4.461 7.972 5.699 16.281 6.116 23.994 6.483 35.138
MTF 5.217 9.164 6.621 19.076 7.165 28.491 7.737 42.609
BLĈ 4.284 7.497 5.648 16.028 6.384 24.347 6.963 36.414
CL2 5.566 9.705 7.537 21.611 8.263 33.149 8.729 49.729
CLĈ 4.088 7.339 5.228 15.610 5.785 23.612 6.274 35.382

S-MTR 5.827 8.801 7.176 18.501 7.574 27.585 7.883 40.666
S-MTF 6.473 9.939 7.778 20.880 8.174 31.156 8.506 46.083
BLĈ∗ 8.543 14.503 9.142 27.137 9.223 38.570 9.267 54.679
CLĈ∗ 8.512 14.446 9.130 27.098 9.220 38.555 9.265 54.668
LWΣ̂ 4.221 7.039 7.002 18.704 8.206 30.743 8.890 48.020

T = 100

MTR 3.529 6.313 4.550 12.888 4.946 19.016 5.343 27.884
MTF 4.058 7.190 5.392 15.283 5.894 23.026 6.297 34.347
BLĈ 3.336 5.829 4.383 12.439 4.893 18.775 5.496 28.182
CL2 4.140 7.336 5.695 16.169 6.323 24.760 6.931 37.571
CLĈ 3.247 5.757 4.144 12.227 4.585 18.407 5.000 27.459

S-MTR 4.837 7.149 6.208 15.409 6.678 23.282 7.067 34.784
S-MTF 5.497 8.161 6.890 17.668 7.369 26.781 7.737 40.095
BLĈ∗ 8.527 14.450 9.114 27.043 9.187 38.438 9.228 54.503
CLĈ∗ 8.434 14.299 9.095 26.980 9.181 38.409 9.228 54.491
LWΣ̂ 3.393 5.683 6.039 16.076 7.503 27.550 8.489 44.737

Error matrices (Σ−1 − Σ̊−1)
T = 60

S-MTR 4.090 5.255 4.756 10.265 4.995 15.033 5.174 21.863
S-MTF 4.087 5.007 4.452 9.993 4.559 15.132 4.718 22.756
BLĈ∗ 5.683 7.348 5.868 13.663 5.941 19.403 6.002 27.487
CLĈ∗ 2.5E+02 8.723 1.2E+02 14.302 6.298 19.404 7.520 27.514
LWΣ̂ 2.523 4.187 4.038 10.674 4.666 16.953 5.074 25.610
LWR̂ 2.216 3.920 3.421 9.028 3.818 13.865 3.995 20.560

T = 100

S-MTR 3.547 5.076 4.311 10.071 4.615 14.823 4.864 21.651
S-MTF 4.053 5.190 4.734 9.985 4.969 14.635 5.135 21.425
BLĈ∗ 29.820 7.590 5.822 13.731 5.879 19.496 5.925 27.623
CLĈ∗ 7.1E+03 13.561 6.9E+03 18.230 32.454 19.744 4.1E+02 29.356
LWΣ̂ 1.927 3.480 3.511 9.463 4.285 15.764 4.846 24.669
LWR̂ 1.712 3.368 3.042 8.254 3.601 13.124 3.896 19.965

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.392 0.608 0.474 0.526 0.513 0.487 0.545 0.455
S-MTF 0.414 0.586 0.494 0.506 0.534 0.466 0.564 0.436
LWΣ̂ 0.443 0.770 0.898 0.534 1.202 0.377 1.458 0.244
LWR̂ 0.157 0.843 0.306 0.694 0.377 0.623 0.425 0.575

T = 100

S-MTR 0.315 0.685 0.401 0.599 0.445 0.555 0.484 0.516
S-MTF 0.355 0.645 0.435 0.565 0.480 0.520 0.522 0.478
LWΣ̂ 0.298 0.846 0.678 0.650 0.988 0.491 1.296 0.333
LWR̂ 0.109 0.891 0.248 0.752 0.331 0.669 0.396 0.604

Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set the number of replications to 100 and the grid increment

to 4. Here, Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
} and Σ̊

−1
= {Σ̃−1

S-MTR
,

Σ̃
−1
S-MTF

, Σ̃
−1

BL,Ĉ∗ , Σ̃
−1

CL,Ĉ∗ , Σ̂
−1
LW

Σ̂
, Σ̂
−1
LW

R̂
}. MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use

the Bonferroni method at the 5% significance level. S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂

matrix. BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding. Ĉ uses a cross-validation

parameter; Ĉ∗ uses Fan, Liao and Michela grid adjustment; 2 is the CL optimal theoretical parameter; LW=Ledoit and Wolf

shrinkage: Σ̂ on the sample covariance matrix; R̂ on the sample correlation matrix.
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Table 3: Comparison of regularisation estimators applied to sparse covariance matrix Σ̂
Experiment B - normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ− Σ̊)
T = 60

MTR 1.421 3.339 1.634 6.477 2.012 10.094 2.170 14.753
MTF 1.558 3.929 1.755 7.407 2.098 11.187 2.243 15.997
BLĈ 1.615 3.941 1.983 7.625 2.106 11.250 2.277 16.048
CL2 1.571 3.974 1.894 7.505 2.093 11.182 2.242 15.986
CLĈ 1.436 3.361 1.900 7.214 2.089 11.129 2.239 15.929

S-MTR 1.438 3.329 1.657 6.389 2.003 9.860 2.144 14.428
S-MTF 1.560 3.878 1.758 7.360 2.093 11.136 2.238 15.964
BLĈ∗ 1.599 4.095 1.978 7.639 2.103 11.251 2.267 16.060
CLĈ∗ 1.461 3.568 1.977 7.476 2.093 11.191 2.252 16.010
LWΣ̂ 1.621 3.576 2.643 7.559 2.543 11.829 3.308 17.824

T = 100

MTR 1.030 2.306 1.284 4.561 1.618 7.258 1.750 10.836
MTF 1.225 2.872 1.523 6.163 1.939 9.896 2.046 14.659
BLĈ 1.214 2.705 1.574 5.843 1.911 9.915 2.145 15.584
CL2 1.249 2.961 1.553 6.401 1.970 10.214 2.086 15.020
CLĈ 1.034 2.334 1.295 4.587 1.628 7.423 1.860 11.911

S-MTR 1.142 2.535 1.409 4.966 1.702 7.633 1.814 11.216
S-MTF 1.293 2.971 1.575 6.199 1.953 9.813 2.053 14.531
BLĈ∗ 1.193 2.718 1.543 6.145 1.919 10.161 2.148 15.649
CLĈ∗ 1.035 2.344 1.331 4.836 1.756 8.282 2.040 14.228
LWΣ̂ 1.405 3.071 2.402 7.012 2.429 11.291 3.205 17.301

Error matrices (Σ−1 − Σ̊−1)
T = 60

S-MTR 1.966 3.377 2.652 6.892 3.259 10.149 3.691 14.938
S-MTF 2.584 3.926 3.157 8.029 3.723 11.584 4.078 16.669
BLĈ∗ 1.4E+04 19.315 58.881 9.377 3.9E+03 15.321 14.009 17.017
CLĈ∗ 2.1E+04 33.982 2.4E+04 23.651 44.094 12.593 16.774 17.064
LWΣ̂ 2.971 3.874 3.715 8.438 4.932 12.850 5.832 18.870
LWR̂ 1.969 3.539 4.809 8.773 6.958 13.956 8.767 20.919

T = 100

S-MTR 1.296 2.650 1.891 5.438 2.436 8.036 2.854 11.934
S-MTF 1.777 3.095 2.636 6.871 3.274 10.352 3.764 15.437
BLĈ∗ 5.0E+03 23.048 4.2E+03 24.145 2.7E+04 30.297 43.825 17.318
CLĈ∗ 3.0E+05 65.501 1.9E+05 1.0E+02 2.2E+07 3.6E+02 2.2E+03 31.662
LWΣ̂ 2.338 3.374 3.406 7.993 4.735 12.515 5.744 18.663
LWR̂ 1.333 2.982 2.805 7.349 4.381 12.101 5.719 18.967

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.383 0.617 0.402 0.598 0.387 0.613 0.378 0.622
S-MTF 0.329 0.671 0.327 0.673 0.303 0.697 0.312 0.688
LWΣ̂ 0.591 0.517 0.871 0.257 1.011 0.162 1.086 0.105
LWR̂ 0.341 0.659 0.436 0.564 0.461 0.539 0.474 0.526

T = 100

S-MTR 1.296 2.650 0.417 0.583 0.415 0.585 0.408 0.592
S-MTF 1.777 3.095 0.380 0.620 0.355 0.645 0.331 0.669
LWΣ̂ 0.449 0.635 0.770 0.348 0.946 0.221 1.055 0.137
LWR̂ 0.288 0.712 0.412 0.588 0.450 0.550 0.470 0.530

Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set the number of replications to 100 and the grid increment

to 4. Here, Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
} and Σ̊

−1
= {Σ̃−1

S-MTR
,

Σ̃
−1
S-MTF

, Σ̃
−1

BL,Ĉ∗ , Σ̃
−1

CL,Ĉ∗ , Σ̂
−1
LW

Σ̂
, Σ̂
−1
LW

R̂
}. MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use

the Bonferroni method at the 5% significance level. S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂

matrix. BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding. Ĉ uses a cross-validation

parameter; Ĉ∗ uses Fan, Liao and Michela grid adjustment; 2 is the CL optimal theoretical parameter; LW=Ledoit and Wolf

shrinkage: Σ̂ on the sample covariance matrix; R̂ on the sample correlation matrix.
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Table 4: Comparison of regularisation estimators applied to sparse covariance matrix Σ̂
Experiment C - normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ− Σ̊)
T = 60

MTR 2.211 4.097 3.311 8.506 3.873 12.589 4.302 18.414
MTF 2.404 4.352 3.955 9.664 4.730 14.720 5.335 22.171
BLĈ 7.040 8.795 8.755 17.234 8.961 24.701 9.031 35.161
CL2 2.661 4.641 5.138 11.183 6.477 17.786 7.468 27.640
CLĈ 2.381 4.394 3.574 9.404 4.316 14.278 5.024 21.375

S-MTR 3.515 4.953 6.017 11.657 6.646 17.495 7.046 25.823
S-MTF 4.171 5.520 6.603 12.652 7.213 18.988 7.609 28.107
BLĈ∗ 7.091 8.804 8.755 17.233 8.961 24.701 9.031 35.172
CLĈ∗ 7.059 8.769 8.747 17.207 8.958 24.671 9.030 35.131
LWΣ̂ 3.532 7.675 5.853 18.451 6.707 28.593 7.182 42.720

T = 100

MTR 1.686 3.123 2.523 6.453 2.879 9.496 3.223 13.892
MTF 1.739 3.214 2.841 7.093 3.310 10.726 3.775 16.116
BLĈ 5.118 7.511 8.747 16.895 8.946 24.243 9.014 34.528
CL2 1.781 3.279 3.084 7.534 3.786 11.748 4.585 18.160
CLĈ 1.738 3.230 2.634 6.816 3.002 10.180 3.395 15.206

S-MTR 2.525 3.685 5.107 9.643 5.744 14.774 6.224 22.272
S-MTF 3.088 4.152 5.775 10.764 6.381 16.366 6.823 24.506
BLĈ∗ 7.082 8.609 8.747 16.898 8.946 24.241 9.014 34.534
CLĈ∗ 7.038 8.563 8.721 16.852 8.937 24.215 9.011 34.504
LWΣ̂ 2.989 6.497 5.246 16.722 6.267 26.843 6.935 41.115

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.400 0.600 0.564 0.436 0.604 0.396 0.634 0.366
S-MTF 0.471 0.529 0.595 0.405 0.628 0.372 0.655 0.345
LWΣ̂ 1.015 0.586 1.633 0.335 1.925 0.217 2.124 0.136

T = 100

S-MTR 0.277 0.723 0.483 0.517 0.533 0.467 0.572 0.428
S-MTF 0.351 0.649 0.543 0.457 0.585 0.415 0.619 0.381
LWΣ̂ 0.744 0.700 1.373 0.445 1.741 0.297 2.024 0.183

Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set the number of replications to 100 and the grid increment

to 4. Here, Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
}. The population covariance

matrix Σ does not have an inverse in this experiment hence results relating to matrix inverses are not provided. MTR=Multiple

testing by row; MTF=Multiple testing on full R̂ matrix. Both use the Bonferroni method at the 5% significance level. S-MTR=

Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂ matrix. BL=Bickel and Levina universal thresholding; CL= Cai

and Liu adaptive thresholding. Ĉ uses a cross-validation parameter; Ĉ∗ uses Fan, Liao and Michela grid adjustment; 2 is the CL

optimal theoretical parameter; LW=Ledoit and Wolf shrinkage: Σ̂ on the sample covariance matrix; R̂ on the sample correlation

matrix.
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Table 5: Comparison of regularisation estimators applied to sparse covariance matrix Σ̂
Experiment D - normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ− Σ̊)
T = 60

MTR 0.656 1.196 1.062 2.186 0.998 2.980 1.401 4.344
MTF 0.729 1.245 1.514 2.513 1.487 3.195 2.416 4.818
BLĈ 1.436 1.931 2.635 3.512 2.735 3.985 3.722 5.566
CL2 0.847 1.389 2.055 3.054 1.976 3.550 3.088 5.218
CLĈ 0.925 1.478 1.854 2.939 2.328 3.761 3.362 5.372

S-MTR 0.783 1.309 1.540 2.472 1.304 3.042 1.964 4.436
S-MTF 0.890 1.391 2.027 2.878 1.946 3.399 3.050 5.041
BLĈ∗ 1.512 2.016 3.336 4.072 2.744 3.987 3.730 5.557
CLĈ∗ 1.314 1.854 3.356 4.085 2.738 3.977 3.733 5.547
LWΣ̂ 1.188 2.304 3.166 4.703 2.522 6.172 3.623 9.534

T = 100

MTR 0.488 0.902 0.763 1.653 0.730 2.310 0.920 3.331
MTF 0.468 0.852 0.798 1.589 0.743 2.154 1.120 3.224
BLĈ 0.879 1.308 1.237 2.120 2.544 3.508 3.526 4.909
CL2 0.485 0.875 0.948 1.738 0.923 2.309 1.595 3.589
CLĈ 0.496 0.917 0.812 1.718 1.141 2.533 2.445 4.258

S-MTR 0.647 1.056 1.415 2.093 1.083 2.421 1.364 3.409
S-MTF 0.646 1.040 1.457 2.105 1.193 2.423 1.877 3.612
BLĈ∗ 1.133 1.573 3.328 3.915 2.727 3.617 3.696 4.989
CLĈ∗ 1.052 1.499 3.333 3.922 2.720 3.613 3.731 5.001
LWΣ̂ 1.032 2.052 2.935 4.463 2.450 6.007 3.575 9.318

Error matrices (Σ−1 − Σ̊−1)
T = 60

S-MTR 4.758 2.905 15.439 6.138 13.381 6.046 14.052 7.855
S-MTF 5.283 3.031 17.860 6.501 16.941 6.540 18.114 8.513
BLĈ∗ 7.1E+02 7.034 46.674 8.388 26.348 7.707 24.963 9.503
CLĈ∗ 9.3E+04 21.119 29.780 8.096 34.349 7.834 45.816 9.851
LWΣ̂ 12.420 4.558 31.907 8.771 31.988 9.478 31.854 12.568
LWR̂ 5.187 4.452 15.736 12.584 15.080 19.470 18.160 30.113

T = 100

S-MTR 4.529 2.683 15.394 5.865 12.790 5.363 11.037 6.435
S-MTF 4.526 2.665 15.673 5.882 13.853 5.444 14.398 6.900
BLĈ∗ 1.7E+04 19.022 2.7E+02 8.880 48.354 7.690 26.695 8.897
CLĈ∗ 4.5E+02 6.177 8.1E+02 9.214 1.9E+02 8.419 40.085 9.033
LWΣ̂ 10.861 4.240 30.981 8.611 31.783 9.400 31.841 12.526
LWR̂ 4.850 3.720 16.168 10.239 14.347 16.032 13.104 26.403

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.381 0.619 0.406 0.594 0.399 0.601 0.455 0.545
S-MTF 0.424 0.576 0.496 0.504 0.540 0.460 0.614 0.386
LWΣ̂ 0.579 0.375 0.735 0.180 0.842 0.091 0.871 0.067
LWR̂ 0.423 0.577 0.467 0.533 0.483 0.517 0.485 0.515

T = 100

S-MTR 0.352 0.648 0.394 0.606 0.364 0.636 0.335 0.665
S-MTF 0.353 0.647 0.402 0.598 0.401 0.599 0.459 0.541
LWΣ̂ 0.473 0.492 0.682 0.244 0.826 0.115 0.868 0.077
LWR̂ 0.392 0.608 0.460 0.540 0.485 0.515 0.489 0.511

Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set the number of replications to 100 and the grid increment

to 4. Here, Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
} and Σ̊

−1
= {Σ̃−1

S-MTR
,

Σ̃
−1
S-MTF

, Σ̃
−1

BL,Ĉ∗ , Σ̃
−1

CL,Ĉ∗ , Σ̂
−1
LW

Σ̂
, Σ̂
−1
LW

R̂
}. MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use

the Bonferroni method at the 5% significance level. S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂

matrix. BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding. Ĉ uses a cross-validation

parameter; Ĉ∗ uses Fan, Liao and Michela grid adjustment; 2 is the CL optimal theoretical parameter; LW=Ledoit and Wolf

shrinkage: Σ̂ on the sample covariance matrix; R̂ on the sample correlation matrix.
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Table 6: Comparison of Σ support recovery produced by different thresholding estimators
Support recovery is measured by the True Positive Rate (TPR) and False Positive Rate (FPR)

Normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400
TPR FPR TPR FPR TPR FPR TPR FPR

Experiment C
T = 60

MTR 0.714 0.001 0.587 0.000 0.551 0.000 0.521 0.000
MTF 0.619 0.000 0.455 0.000 0.402 0.000 0.357 0.000
BLĈ 0.013 0.002 0.000 0.000 0.000 0.000 0.000 0.000
CL2 0.584 0.000 0.370 0.000 0.286 0.000 0.215 0.000
CLĈ 0.710 0.005 0.576 0.002 0.528 0.001 0.478 0.000

T = 100

MTR 0.801 0.002 0.696 0.000 0.667 0.000 0.640 0.000
MTF 0.735 0.000 0.596 0.000 0.553 0.000 0.514 0.000
BLĈ 0.324 0.048 0.000 0.000 0.000 0.000 0.000 0.000
CL2 0.729 0.000 0.566 0.000 0.506 0.000 0.453 0.000
CLĈ 0.781 0.002 0.686 0.001 0.655 0.001 0.623 0.000

Experiment D
T = 60

MTR 0.974 0.001 0.972 0.000 0.941 0.000 0.895 0.000
MTF 0.869 0.000 0.832 0.000 0.649 0.000 0.468 0.000
BLĈ 0.187 0.001 0.325 0.000 0.009 0.000 0.006 0.000
CL2 0.753 0.000 0.607 0.000 0.375 0.000 0.214 0.000
CLĈ 0.723 0.003 0.666 0.001 0.225 0.000 0.135 0.000

T = 100

MTR 1.000 0.001 0.999 0.000 0.997 0.000 0.994 0.000
MTF 0.993 0.000 0.986 0.000 0.969 0.000 0.915 0.000
BLĈ 0.686 0.002 0.852 0.001 0.101 0.000 0.051 0.000
CL2 0.981 0.000 0.950 0.000 0.886 0.000 0.749 0.000
CLĈ 0.994 0.002 0.986 0.001 0.790 0.000 0.469 0.000
Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set

the number of replications to 100 and the grid increment to 4.

MTR=Multiple testing by row, MTF=Multiple testing on the full R̂ matrix.

Both MT estimators use the Bonferroni method at the 5% significance level.

BLĈ=Bickel and Levina universal thresholding using a cross-validated parameter Ĉ.

CL2= Cai and Liu adaptive thresholding using the theoretical parameter of 2.

CLĈ= Cai and Liu adaptive thresholding using a cross-validated parameter Ĉ.
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Table 7: Relative performance of key regularisation estimators to the MT and S-MT estimators
MTF , BLĈ , CL2, CLĈ are compared to MTR and S-MTF , BLĈ∗ , CLĈ∗ , LWΣ̂ are compared to S-MTR

Experiment A - non-normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ− Σ̊)
T = 60

MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MTF 1.122 1.121 1.134 1.152 1.142 1.172 1.138 1.192
BLĈ 0.998 0.952 1.095 1.035 1.149 1.081 1.245 1.203
CL2 1.372 1.331 1.388 1.405 1.368 1.421 1.314 1.417
CLĈ 0.942 0.927 0.966 0.992 0.992 1.031 1.031 1.076

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.102 1.114 1.082 1.121 1.077 1.125 1.072 1.129
BLĈ∗ 1.446 1.591 1.266 1.441 1.212 1.381 1.169 1.330
CLĈ∗ 1.436 1.580 1.264 1.438 1.211 1.380 1.169 1.330
LWΣ̂ 0.926 0.863 1.176 1.089 1.282 1.214 1.292 1.293

T = 100

MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MTF 1.126 1.122 1.149 1.159 1.155 1.178 1.148 1.195
BLĈ 0.973 0.941 1.032 0.998 1.070 1.025 1.113 1.051
CL2 1.320 1.305 1.443 1.436 1.466 1.498 1.460 1.546
CLĈ 0.938 0.917 0.945 0.968 0.962 0.996 0.984 1.028

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.129 1.128 1.103 1.135 1.095 1.136 1.088 1.137
BLĈ∗ 1.728 1.944 1.451 1.719 1.360 1.620 1.293 1.541
CLĈ∗ 1.710 1.923 1.448 1.714 1.358 1.618 1.293 1.540
LWΣ̂ 0.960 0.896 1.279 1.187 1.445 1.369 1.521 1.514

Error matrices (Σ−1 − Σ̊−1)
T = 60

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 0.997 0.962 0.960 0.983 0.952 1.011 0.967 1.039
BLĈ∗ 2.4E+02 1.687 1.239 1.329 1.196 1.290 1.170 1.257
CLĈ∗ 40.960 1.723 12.447 1.379 2.549 1.299 1.188 1.257
LWΣ̂ 0.671 0.845 0.849 1.058 0.922 1.138 0.961 1.179
LWR̂ 0.706 0.807 0.756 0.898 0.799 0.936 0.818 0.954

T = 100

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.119 1.016 1.074 0.989 1.051 0.986 1.030 0.988
BLĈ∗ 10.472 1.497 1.335 1.364 1.261 1.318 1.213 1.280
CLĈ∗ 9.4E+03 3.341 3.5E+03 2.037 25.906 1.370 5.511 1.291
LWΣ̂ 0.587 0.726 0.810 0.958 0.906 1.076 0.969 1.149
LWR̂ 0.604 0.719 0.718 0.833 0.786 0.895 0.812 0.931

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.389 0.611 0.474 0.526 0.512 0.488 0.545 0.455
S-MTF 0.409 0.591 0.487 0.513 0.526 0.474 0.555 0.445
LWΣ̂ 0.503 0.738 0.926 0.520 1.215 0.370 1.461 0.243
LWR̂ 0.156 0.844 0.304 0.696 0.375 0.625 0.424 0.576

T = 100

S-MTR 0.312 0.688 0.401 0.599 0.446 0.554 0.485 0.515
S-MTF 0.351 0.649 0.433 0.567 0.477 0.523 0.518 0.482
LWΣ̂ 0.341 0.824 0.701 0.639 1.002 0.484 1.301 0.330
LWR̂ 0.108 0.892 0.246 0.754 0.329 0.671 0.395 0.605

Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set the number of replications to 100 and the grid increment

to 4. Here, Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
} and Σ̊

−1
= {Σ̃−1

S-MTR
,

Σ̃
−1
S-MTF

, Σ̃
−1

BL,Ĉ∗ , Σ̃
−1

CL,Ĉ∗ , Σ̂
−1
LW

Σ̂
, Σ̂
−1
LW

R̂
}. MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use

the Bonferroni method at the 5% significance level. S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂

matrix. BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding. Ĉ uses a cross-validation

parameter; Ĉ∗ uses Fan, Liao and Michela grid adjustment; 2 is the CL optimal theoretical parameter; LW=Ledoit and Wolf

shrinkage: Σ̂ on the sample covariance matrix; R̂ on the sample correlation matrix.
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Table 8: Relative performance of key regularisation estimators to the MT and S-MT estimators
MTF , BLĈ , CL2, CLĈ are compared to MTR and S-MTF , BLĈ∗ , CLĈ∗ , LWΣ̂ are compared to S-MTR

Experiment B - non-normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ− Σ̊)
T = 60

MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MTF 1.035 1.103 0.982 1.073 0.929 1.044 0.896 1.017
BLĈ 1.050 1.194 1.039 1.108 0.921 1.050 0.888 1.020
CL2 1.015 1.133 1.012 1.091 0.905 1.043 0.868 1.015
CLĈ 0.973 0.979 0.994 1.036 0.905 1.018 0.860 1.002

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.060 1.107 1.041 1.098 1.018 1.083 1.007 1.065
BLĈ∗ 1.111 1.226 1.147 1.148 1.033 1.099 1.018 1.074
CLĈ∗ 1.037 1.040 1.109 1.096 1.019 1.081 0.994 1.063
LWΣ̂ 0.886 0.924 1.088 0.980 0.863 0.996 0.901 1.019

T = 100

MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MTF 1.087 1.155 1.049 1.218 1.036 1.226 0.989 1.207
BLĈ 1.154 1.185 1.190 1.381 1.049 1.336 0.961 1.279
CL2 1.143 1.273 1.141 1.320 1.028 1.286 0.980 1.253
CLĈ 1.005 1.003 1.004 0.999 0.964 0.997 0.925 1.061

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.079 1.121 1.067 1.175 1.085 1.200 1.060 1.198
BLĈ∗ 1.142 1.155 1.232 1.345 1.140 1.326 1.079 1.284
CLĈ∗ 1.006 0.967 1.047 0.996 1.057 1.053 1.049 1.173
LWΣ̂ 1.071 1.123 1.337 1.257 1.091 1.286 1.197 1.314

Error matrices (Σ−1 − Σ̊−1)
T = 60

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.138 1.107 1.079 1.111 1.041 1.093 1.008 1.077
BLĈ∗ 1.0E+02 1.785 2.338 1.172 1.944 1.122 1.380 1.090
CLĈ∗ 2.5E+05 15.995 189.473 1.893 268.017 1.497 7.0E+05 12.629
LWΣ̂ 1.292 1.079 1.123 1.139 1.184 1.181 1.230 1.187
LWR̂ 1.620 1.144 2.978 1.404 3.745 1.539 4.516 1.599

T = 100

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.245 1.138 1.287 1.214 1.265 1.229 1.233 1.225
BLĈ∗ 4.5E+05 22.845 3.0E+03 2.836 3.190 1.397 1.432 1.326
CLĈ∗ 3.1E+03 8.657 4.5E+04 13.837 1.8E+04 6.414 2.9E+02 2.132
LWΣ̂ 1.643 1.238 1.516 1.382 1.652 1.454 1.714 1.458
LWR̂ 1.362 1.184 2.119 1.407 2.673 1.569 3.243 1.668

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.389 0.611 0.426 0.574 0.429 0.571 0.445 0.555
S-MTF 0.331 0.669 0.348 0.652 0.330 0.670 0.339 0.661
LWΣ̂ 0.649 0.468 0.887 0.245 1.015 0.160 1.087 0.105
LWR̂ 0.338 0.662 0.435 0.565 0.460 0.540 0.473 0.527

T = 100

S-MTR 0.364 0.636 0.429 0.571 0.434 0.566 0.437 0.563
S-MTF 0.349 0.651 0.385 0.615 0.364 0.636 0.350 0.650
LWΣ̂ 0.509 0.586 0.786 0.335 0.952 0.217 1.057 0.136
LWR̂ 0.285 0.715 0.411 0.589 0.449 0.551 0.469 0.531

Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set the number of replications to 100 and the grid increment

to 4. Here, Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
} and Σ̊

−1
= {Σ̃−1

S-MTR
,

Σ̃
−1
S-MTF

, Σ̃
−1

BL,Ĉ∗ , Σ̃
−1

CL,Ĉ∗ , Σ̂
−1
LW

Σ̂
, Σ̂
−1
LW

R̂
}. MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use

the Bonferroni method at the 5% significance level. S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂

matrix. BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding. Ĉ uses a cross-validation

parameter; Ĉ∗ uses Fan, Liao and Michela grid adjustment; 2 is the CL optimal theoretical parameter; LW=Ledoit and Wolf

shrinkage: Σ̂ on the sample covariance matrix; R̂ on the sample correlation matrix.
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Table 9: Relative performance of key regularisation estimators to the MT and S-MT estimators
MTF , BLĈ , CL2, CLĈ are compared to MTR and S-MTF , BLĈ∗ , CLĈ∗ , LWΣ̂ are compared to S-MTR

Experiment C - non-normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ− Σ̊)
T = 60

MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MTF 1.006 1.015 0.996 1.028 0.963 1.033 0.895 1.034
BLĈ 2.005 1.541 1.720 1.491 1.531 1.465 1.229 1.419
CL2 1.200 1.149 1.274 1.205 1.259 1.234 1.109 1.250
CLĈ 1.061 1.064 1.014 1.048 1.001 1.058 0.957 1.104

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.106 1.055 1.079 1.050 1.069 1.051 1.048 1.053
BLĈ∗ 1.732 1.441 1.395 1.315 1.309 1.281 1.201 1.248
CLĈ∗ 1.724 1.437 1.394 1.312 1.308 1.280 1.200 1.248
LWΣ̂ 1.054 1.259 1.148 1.434 1.143 1.519 0.967 1.542

T = 100

MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MTF 0.992 1.004 0.984 1.020 0.960 1.020 0.904 1.019
BLĈ 2.290 1.751 2.330 1.836 2.052 1.805 1.685 1.760
CL2 1.090 1.097 1.160 1.148 1.228 1.188 1.178 1.216
CLĈ 1.019 1.037 0.987 1.026 0.964 1.020 0.939 1.035

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.123 1.060 1.119 1.072 1.101 1.069 1.081 1.066
BLĈ∗ 2.332 1.755 1.676 1.528 1.527 1.464 1.406 1.410
CLĈ∗ 2.312 1.746 1.672 1.525 1.525 1.463 1.406 1.408
LWΣ̂ 1.197 1.400 1.413 1.710 1.440 1.866 1.298 1.944

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.400 0.600 0.562 0.438 0.602 0.398 0.633 0.367
S-MTF 0.470 0.530 0.595 0.405 0.628 0.372 0.655 0.345
LWΣ̂ 1.146 0.532 1.674 0.320 1.942 0.211 2.127 0.135
LWR̂ 0.132 0.868 0.263 0.737 0.340 0.660 0.401 0.599

T = 100

S-MTR 0.281 0.719 0.482 0.518 0.532 0.468 0.571 0.429
S-MTF 0.356 0.644 0.542 0.458 0.584 0.416 0.618 0.382
LWΣ̂ 0.866 0.649 1.417 0.428 1.762 0.289 2.030 0.180
LWR̂ 0.089 0.911 0.203 0.797 0.287 0.713 0.362 0.638

Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set the number of replications to 100 and the grid increment

to 4. Here, Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
}. The population covariance

matrix Σ does not have an inverse in this experiment hence results relating to matrix inverses are not provided. MTR=Multiple

testing by row; MTF=Multiple testing on full R̂ matrix. Both use the Bonferroni method at the 5% significance level. S-MTR=

Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂ matrix. BL=Bickel and Levina universal thresholding; CL= Cai

and Liu adaptive thresholding. Ĉ uses a cross-validation parameter; Ĉ∗ uses Fan, Liao and Michela grid adjustment; 2 is the CL

optimal theoretical parameter; LW=Ledoit and Wolf shrinkage: Σ̂ on the sample covariance matrix; R̂ on the sample correlation

matrix.
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Table 10: Relative performance of key regularisation estimators to the MT and S-MT estimators
MTF , BLĈ , CL2, CLĈ are compared to MTR and S-MTF , BLĈ∗ , CLĈ∗ , LWΣ̂ are compared to S-MTR

Experiment D - non-normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400

Norms Norms Norms Norms
Spectral Frobenius Spectral Frobenius Spectral Frobenius Spectral Frobenius

Error matrices (Σ− Σ̊)
T = 60

MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MTF 1.004 0.993 1.426 1.150 0.985 0.920 1.015 0.893
BLĈ 1.321 1.195 3.095 2.282 1.311 0.986 1.316 0.933
CL2 1.163 1.119 2.817 2.210 1.236 0.973 1.282 0.927
CLĈ 1.181 1.122 2.711 2.170 1.249 0.977 1.249 0.926

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.040 1.017 1.316 1.164 1.103 0.993 1.178 0.991
BLĈ∗ 1.320 1.205 2.190 2.049 1.367 1.056 1.392 1.030
CLĈ∗ 1.249 1.174 2.184 2.048 1.355 1.054 1.386 1.029
LWΣ̂ 1.016 1.100 2.997 2.168 1.172 1.019 1.267 1.048

T = 100

MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MTF 0.980 0.966 0.997 0.945 0.946 0.907 0.942 0.882
BLĈ 1.517 1.283 1.904 1.268 1.734 1.082 1.815 1.015
CL2 1.149 1.107 1.696 1.221 1.370 1.016 1.518 0.983
CLĈ 1.123 1.082 1.332 1.108 1.438 1.030 1.520 0.980

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 0.997 0.988 1.038 0.994 1.053 0.972 1.133 0.963
BLĈ∗ 1.574 1.317 2.060 1.411 1.760 1.136 1.910 1.087
CLĈ∗ 1.310 1.204 2.060 1.412 1.749 1.133 1.909 1.086
LWΣ̂ 1.239 1.310 2.195 1.447 1.551 1.299 1.752 1.341

Error matrices (Σ−1 − Σ̊−1)
T = 60

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 1.076 1.016 1.157 1.059 1.186 0.992 1.196 0.979
BLĈ∗ 2.598 1.291 3.918 1.590 1.725 1.071 1.566 1.028
CLĈ∗ 44.853 1.805 5.190 1.642 8.573 1.169 17.846 1.142
LWΣ̂ 2.352 1.205 2.079 1.434 2.180 0.980 2.010 0.934
LWR̂ 1.519 1.449 1.592 2.522 2.719 2.537 3.585 2.858

T = 100

S-MTR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S-MTF 0.992 0.989 1.033 0.998 1.110 0.987 1.249 0.974
BLĈ∗ 57.098 1.923 8.877 1.366 2.008 1.168 16.354 1.219
CLĈ∗ 35.382 2.082 6.362 1.320 32.792 1.400 2.129 1.103
LWΣ̂ 2.540 1.359 2.039 1.260 2.457 1.246 2.720 1.222
LWR̂ 1.160 1.348 1.079 1.704 1.441 2.477 2.320 3.022

Srinkage parameters
on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂ on I on R̂/Σ̂

T = 60

S-MTR 0.395 0.605 0.406 0.594 0.418 0.582 0.455 0.545
S-MTF 0.432 0.568 0.496 0.504 0.530 0.470 0.593 0.407
LWΣ̂ 0.625 0.322 0.746 0.169 0.845 0.090 0.872 0.067
LWR̂ 0.422 0.578 0.468 0.532 0.483 0.517 0.485 0.515

T = 100

S-MTR 0.356 0.644 0.395 0.605 0.369 0.631 0.344 0.656
S-MTF 0.356 0.644 0.413 0.587 0.424 0.576 0.460 0.540
LWΣ̂ 0.527 0.433 0.695 0.230 0.828 0.114 0.869 0.077
LWR̂ 0.391 0.609 0.460 0.540 0.485 0.515 0.489 0.511

Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set the number of replications to 100 and the grid increment

to 4. Here, Σ̊ = {Σ̃MTR , Σ̃MTF , Σ̃BL,Ĉ , Σ̃CL,2, Σ̃CL,Ĉ , Σ̃S-MTR , Σ̃S-MTF , Σ̃BL,Ĉ∗ , Σ̃CL,Ĉ∗ , Σ̂LW
Σ̂
} and Σ̊

−1
= {Σ̃−1

S-MTR
,

Σ̃
−1
S-MTF

, Σ̃
−1

BL,Ĉ∗ , Σ̃
−1

CL,Ĉ∗ , Σ̂
−1
LW

Σ̂
, Σ̂
−1
LW

R̂
}. MTR=Multiple testing by row; MTF=Multiple testing on full R̂ matrix. Both use

the Bonferroni method at the 5% significance level. S-MTR=Shrinkage on MT by row; S-MTF=Shrinkage on MT on full R̂

matrix. BL=Bickel and Levina universal thresholding; CL= Cai and Liu adaptive thresholding. Ĉ uses a cross-validation

parameter; Ĉ∗ uses Fan, Liao and Michela grid adjustment; 2 is the CL optimal theoretical parameter; LW=Ledoit and Wolf

shrinkage: Σ̂ on the sample covariance matrix; R̂ on the sample correlation matrix.
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Table 11: Comparison of Σ support recovery produced by different thresholding estimators
Support recovery is measured by the True Positive Rate (TPR) and False Positive Rate (FPR)

Non-normally distributed errors. Averages over 500 replications.

N = 30 N = 100 N = 200 N = 400
TPR FPR TPR FPR TPR FPR TPR FPR

Experiment C
T = 60

MTR 0.710 0.002 0.588 0.001 0.552 0.000 0.520 0.000
MTF 0.614 0.000 0.456 0.000 0.403 0.000 0.357 0.000
BLĈ 0.009 0.001 0.000 0.000 0.000 0.000 0.000 0.000
CL2 0.450 0.000 0.277 0.000 0.213 0.000 0.156 0.000
CLĈ 0.655 0.009 0.536 0.003 0.480 0.001 0.377 0.001

T = 100

MTR 0.797 0.002 0.693 0.001 0.663 0.000 0.639 0.000
MTF 0.730 0.000 0.592 0.000 0.550 0.000 0.514 0.000
BLĈ 0.200 0.031 0.000 0.000 0.000 0.000 0.000 0.000
CL2 0.637 0.000 0.483 0.000 0.418 0.000 0.365 0.000
CLĈ 0.778 0.008 0.674 0.002 0.637 0.001 0.595 0.001

Experiment D
T = 60

MTR 0.941 0.003 0.954 0.001 0.898 0.001 0.859 0.000
MTF 0.809 0.000 0.802 0.000 0.611 0.000 0.481 0.000
BLĈ 0.237 0.002 0.091 0.000 0.004 0.000 0.001 0.000
CL2 0.312 0.000 0.193 0.000 0.092 0.000 0.051 0.000
CLĈ 0.367 0.003 0.288 0.001 0.094 0.000 0.001 0.000

T = 100

MTR 0.998 0.003 0.997 0.001 0.992 0.001 0.987 0.000
MTF 0.986 0.000 0.974 0.000 0.941 0.000 0.895 0.000
BLĈ 0.322 0.001 0.395 0.000 0.025 0.000 0.007 0.000
CL2 0.668 0.000 0.496 0.000 0.339 0.000 0.238 0.000
CLĈ 0.787 0.005 0.745 0.002 0.326 0.000 0.278 0.000
Notes: For the BL and CL methods, for N = 400 and T = 60, 100 we set

the number of replications to 100 and the grid increment to 4.

MTR=Multiple testing by row, MTF=Multiple testing on the full R̂ matrix.

Both MT estimators use the Bonferroni method at the 5% significance level.

BLĈ=Bickel and Levina universal thresholding using a cross-validated parameter Ĉ.

CL2= Cai and Liu adaptive thresholding using the theoretical parameter of 2.

CLĈ= Cai and Liu adaptive thresholding using a cross-validated parameter Ĉ.

Appendix A Mathematical Proofs

A.1 Lemmas and proofs for MT estimator
We begin by stating a few technical lemmas that are essential for the proofs of the main results.

Lemma 1 Suppose that x ∼ N(ρ, σ2), then

E [xI(a ≤ x ≤ b)] = ρ

[
Φ

(
b− ρ
σ

)
− Φ

(a− ρ
σ

)]
+ σ

[
φ
(a− ρ

σ

)
− φ(

b− ρ
σ

)

]
, (A.1)

and

E
[
x2I(a ≤ x ≤ b)

]
=
(
σ2 + ρ2) [Φ( b− ρ

σ

)
− Φ

(a− ρ
σ

)]
+ σ (a+ ρ)φ(

a− ρ
σ

)− σ (b+ ρ)φ(
b− ρ
σ

). (A.2)

Proof. Note that

E [xI(a ≤ x ≤ b)] =

∫ b

a

x(2πσ2)−1/2e−(1/2)(x−ρ)2/σ2

dx.
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Let z = (x− ρ)/σ, then

E [xI(a ≤ x ≤ b)] =

∫ (b−ρ)/σ

(a−ρ)/σ
(σz + ρ)φ(z)dz,

where φ(z) = (2π)−1/2 exp(−0.5z2). But∫ (b−ρ)/σ

(a−ρ)/σ
(σz + ρ)φ(z)dz = σ [−φ(z)]

(b−ρ)/σ
(a−ρ)/σ + ρ

∫ (b−ρ)/σ

(a−ρ)/σ
φ(z)dz,

and hence

E [xI(a ≤ x ≤ b)] = ρ

[
Φ

(
b− ρ
σ

)
− Φ

(a− ρ
σ

)]
+ σ

[
φ
(a− ρ

σ

)
− φ(

b− ρ
σ

)

]
,

which establishes (A.1). To prove (A.2) note that using the transformation z = (x− ρ)/σ we have

E
[
x2I(a ≤ x ≤ b)

]
=

∫ (b−ρ)/σ

(a−ρ)/σ

(
σ2z2 + ρ2 + 2ρσz

)
φ(z)dz.

But ∫ (b−ρ)/σ

(a−ρ)/σ
z2φ(z)dz = [−zφ(z)]

(b−ρ)/σ
(a−ρ)/σ + Φ

(
b− ρ
σ

)
− Φ

(a− ρ
σ

)
= Φ

(
b− ρ
σ

)
− Φ

(a− ρ
σ

)
−
(
b− ρ
σ

)
φ(
b− ρ
σ

) +
(a− ρ

σ

)
φ(
a− ρ
σ

),

and ∫ (b−ρ)/σ

(a−ρ)/σ
zφ(z)dz = φ(

a− ρ
σ

)− φ(
b− ρ
σ

).

Therefore

E
[
x2I(a ≤ x ≤ b)

]
=
(
σ2 + ρ2) [Φ( b− ρ

σ

)
− Φ

(a− ρ
σ

)]
+ σ (a+ ρ)φ(

a− ρ
σ

)− σ (b+ ρ)φ(
b− ρ
σ

).

which establishes (A.2).

Lemma 2 Let bN = Φ−1
(

1− p
2f(N)

)
,where p/ [2f(N)] is suffi ciently small such that 1− p

2f(N)
> 0, then

bN ≤
√

2 [ln f(N)− ln(p)]. (A.3)

Proof. First note that
Φ−1 (z) =

√
2 erf−1(2z − 1), z ∈ (0, 1),

where Φ(x) is cumulative distribution function of a standard normal variate, and erf(x) is the error function defined
by

erf(x) =
2√
π

∫ x
0
e−u

2

du. (A.4)

Consider now the inverse complementary error function erfc−1(x) given by

erf c−1(1− x) = erf−1(x).

Using results in Chiani et al. (2003, p.842) we have

erf c−1(x) ≤
√
− ln(x).

Applying the above results to bN we have

bN = Φ−1

(
1− p

2f(N)

)
=
√

2 erf−1

[
2

(
1− p

2f(N)

)
− 1

]
=
√

2 erf−1

(
1− p

f(N)

)
=
√

2 erf c−1

(
p

f(N)

)

≤
√

2

√
− ln

(
p

f(N)

)
=
√

2 [ln f(N)− ln(p)].
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Lemma 3 Consider the cumulative distribution function of a standard normal variate, defined by

Φ(x) = (2π)−1/2∫ x
−∞e

−u2

2 du.

Then for x > 0

Φ(−x) = 1− Φ(x) ≤ 1

2
exp(−x

2

4
). (A.5)

Proof. Using results in Chiani et al. (2003, p.840) we have

erf c(x) =
2√
π

∫∞
x
e−u

2

du ≤ exp(−x
2

2
), (A.6)

where erf c(x) is the complement of the erf(x) function defined by (A.4). But

1− Φ(x) = (2π)−1/2∫∞
x
e−

u2

2 du =
1

2
erf c

(
x√
2

)
,

and using (A.6) we have

1− Φ(x) =
1

2
erf c

(
x√
2

)
≤ 1

2
exp

[
−1

2

(
x√
2

)2
]

=
1

2
exp

(
−x

2

4

)
.

Lemma 4 (i) Under Assumption 1,

E[I

(∣∣ρ̂ij∣∣ ≤ bN√
T

)
] = P (Lij ≤ zij ≤ Uij) = Φ(Uij)− Φ(Lij),

where zij = (ρ̂ij − µij)/ωij , bN is defined as in Lemma 2, and

Uij =

{
O(

bN−
√
Tρij

1−ρ2
ij

), if ρij 6= 0

bN , otherwise
, and Lij =

{
O(
−bN−

√
Tρij

1−ρ2
ij

), if ρij 6= 0

−bN , otherwise
. (A.7)

(ii) Under Assumptions 1 and 2,

∑∑
i 6=j,ρij 6=0

E[I

(∣∣ρ̂ij∣∣ ≤ bN√
T
|ρij 6= 0

)
] ≤ 2mNNΦ(

bN −
√
Tρmin

1− ρ2
min

).

Proof. (i) Under (10) of Assumption 1

zij =
ρ̂ij − µij
ωij

∼ N(0, 1).

The required result follows trivially,

E[I

(∣∣ρ̂ij∣∣ ≤ bN√
T

)
] = E[I

(
−bN −

√
Tρij

1− ρ2
ij

≤
ρ̂ij − µij
ωij

≤
bN −

√
Tρij

1− ρ2
ij

)
]

= P (Lij ≤ zij ≤ Uij) = Φ(Uij)− Φ(Lij).

(ii) From part (i) it follows that

∑∑
i6=j,ρij 6=0

E[I

(∣∣ρ̂ij∣∣ ≤ bN√
T
|ρij 6= 0

)
] =

∑∑
i 6=j,ρij 6=0

{
Φ
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bN −

√
Tρij
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ij

)
− Φ

(
−bN −

√
Tρij
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ij

)}
.

Distinguishing between cases where ρij are strictly positive and negative the last expression in the above can be written
as

∑∑
i 6=j,ρij>0

{
Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)}
+

∑∑
i 6=j,ρij<0

{
Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)}

=
∑∑

i 6=j,ρij>0

{
Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)}
+

∑∑
i 6=j,ρij<0

{
Φ

(
bN +

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN +

√
Tρij

1− ρ2
ij

)}

= 2
∑∑

i6=j,|ρij |>0

{
Φ

(
bN −

√
T
∣∣ρij∣∣

1− ρ2
ij

)
− Φ

(
−bN −

√
T
∣∣ρij∣∣

1− ρ2
ij

)}
.
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Hence, ∑∑
i 6=j,ρij 6=0

E
[
I
(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]

≤ 2mNN

[
Φ

(
bN −

√
Tρmin

1− ρ2
min

)
− Φ

(
−bN −

√
Tρmax

1− ρ2
max

)]
≤ 2mNNΦ

(
bN −

√
Tρmin

1− ρ2
min

)
.

A.2 Proofs of theorems for MT estimator
In what follows we suppress subscript MT from R̃MT for notational convenience.
Proof of Theorem 1. Consider ∥∥∥R̃−R∥∥∥2

F
=
∑∑
i6=j

(ρ̃ij − ρij)
2,

and note that

ρ̃ij − ρij =
(
ρ̂ij − ρij

)
I

(∣∣ρ̂ij∣∣ > bN√
T

)
− ρij

[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]
.

Hence (
ρ̃ij − ρij

)2
=

(
ρ̂ij − ρij

)2
I

(∣∣ρ̂ij∣∣ > bN√
T

)
+ ρ2

ij

[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]2

−2ρij
(
ρ̂ij − ρij

)
I

(∣∣ρ̂ij∣∣ > bN√
T

)[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]
.

However,

I

(∣∣ρ̂ij∣∣ > bN√
T

)[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]
= 0,

and [
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]2

= 1− I
(∣∣ρ̂ij∣∣ > bN√

T

)
.

Therefore, we have∑∑
i6=j

(
ρ̃ij − ρij

)2
=

∑∑
i6=j

(
ρ̂ij − ρij

)2
I

(∣∣ρ̂ij∣∣ > bN√
T

)
+
∑∑
i6=j

ρ2
ij

[
1− I

(∣∣ρ̂ij∣∣ > bN√
T

)]
=

∑∑
i6=j

(
ρ̂ij − ρij

)2
I

(∣∣ρ̂ij∣∣ > bN√
T

)
+
∑∑
i6=j

ρ2
ijI

(∣∣ρ̂ij∣∣ ≤ bN√
T

)
. (A.8)

To simplify the derivations we write all the indicator functions in terms of zij = (ρ̂ij − µij)/ωij , with µij and ωij
defined in (11) and (12) of Assumption 1, respectively. Hence, from part (i) of Lemma 4 it follows that

I

(∣∣ρ̂ij∣∣ > bN√
T

)
= 1− I (Lij ≤ zij ≤ Uij) ,

where Uij and Lij are given in (A.7) of the same lemma.
Consider now a typical element in the first term of (A.8) and note that it can be rewritten as(
ρ̂ij − ρij

)2
I

(∣∣ρ̂ij∣∣ > bN√
T

)
=

(
ρ̂ij − µij + µij − ρij

)2
[1− I (Lij ≤ zij ≤ Uij)]

=
[
ω2
ijz

2
ij + 2ωij

(
µij − ρij

)
zij +

(
µij − ρij

)2]× [1− I (Lij ≤ zij ≤ Uij)] .

From (11) and (12) of assumption 1, we note that(
µij − ρij

)2
= 0, if ρij = 0,(

µij − ρij
)2

=
ρ2
ij(1− ρ2

ij)
2

4T 2
+O

(
T−3) = O(T−2), if ρij 6= 0.

and

ωij
(
µij − ρij

)
= 0 if ρij = 0

ωij
(
µij − ρij

)
=

(1− ρ2
ij)√

T

[
1 +O(T−1)

]1/2 [−ρij(1− ρ2
ij)

2T
+
G(ρij)

T 2

]
= O

(
T−3/2

)
, if ρij 6= 0.

34



Collecting the various terms, we can now write

E
∥∥∥R̃−R∥∥∥2

F
=

∑∑
i 6=j

E
{[
ω2
ijz

2
ij +

(
µij − ρij

)2
+ 2ωij

(
µij − ρij

)
zij
]
× [1− I (Lij ≤ zij ≤ Uij)]

}
+
∑∑
i 6=j

ρ2
ijE [I (Lij ≤ zij ≤ Uij)] .

We now decompose each of the above sums into those with ρij = 0 and those where ρij 6= 0, and write

E
∥∥∥R̃−R∥∥∥2

F
=

∑∑
i6=j, ρij 6=0

E

{ [
ω2
ijz

2
ij +

(
µij − ρij

)2
+ 2ωij

(
µij − ρij

)
zij
]

×
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)] }

+
∑∑

i 6=j,ρij 6=0

ρ2
ijE

[
I
(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]

+
∑∑

i 6=j, ρij=0

E
{
ω2
ijz

2
ij ×

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

. (A.9)

Consider the three terms in the above expression starting with the second term. We distinguish between cases
where ρij are strictly positive and negative as in part (ii) of Lemma 4 from which it follows that∑∑

i6=j,ρij 6=0

ρ2
ijE

[
I
(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]

≤ 2ρ2
maxmNNΦ

(
bN −

√
Tρmin

1− ρ2
min

)

= 2ρ2
maxmNNΦ

−√Tρmin

(
1− bN√

Tρmin

)
1− ρ2

min

 .
Using (A.3) of Lemma 2 and under our assumptions, bN√

Tρmin
= o(1), and

NΦ

−√Tρmin

(
1− bN√

Tρmin

)
1− ρ2

min

 = O

[
NΦ

(
−
√
Tρmin

1− ρ2
min

)]
.

But by (A.5) of Lemma 3

NΦ

(
−
√
Tρmin

1− ρ2
min

)
≤ 1

2
N exp

[
−1

4

Tρ2
min

(1− ρ2
min)2

]
= o(1).

Note that this result does not require N/T → 0, and holds even if N/T tends to a fixed constant.
Consider now the third term of (A.9)∑∑

i 6=j, ρij=0

E
{
ω2
ijz

2
ij ×

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

=

[
1

T
+O(T−2)

] ∑∑
i6=j, ρij=0

E
{
z2
ij ×

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

.

E
{
z2
ij

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

= 1− {[Φ (Uij)− Φ (Lij)] + Lijφ(Lij)− Uijφ(Uij)}
= Φ (−Uij) + Φ (Lij) + Uijφ(Uij)− Lijφ(Lij).

But since under ρij = 0, Uij = bN and Lij = −bN , we then have

E
{
z2
ij

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

= Φ (−bN ) + Φ (−bN ) + bNφ(bN ) + bNφ(bN )

= 2Φ (−bN ) + 2bNφ(bN ),

and ∑∑
i 6=j, ρij=0

E
{
ω2
ijz

2
ij

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

≈ N(N −mN − 1)

T
[2Φ (−bN ) + 2bNφ(bN )] .

However,

Φ (−bN ) = 1− Φ(bN ) = 1− Φ

[
Φ−1

(
1− p

2f(N)

)]
=

p

2f(N)
,

and hence ∑∑
i 6=j, ρij=0

E
{
ω2
ijz

2
ij

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij = 0
)]}

≈ N(N −mN − 1)

T

[
p

f(N)
+ 2(2π)−1/2bN exp

(
−1

2
b2N

)]
.
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The first term in the above expression is o(1) if f(N) = O(N2) for N and T large. But we need the additional
restriction of N/T → 0, if f(N) = O(N). To ensure that the second term tends to zero, we need N/T → 0, as well
as NbN exp

(−1
2
b2N
)
being bounded in N. Finally, consider the first term of (A.9), and note that

E
{
zij
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]}

= 0− φ(Lij) + φ(Uij)

E
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]

= 1− [Φ (Uij)− Φ (Lij)]

= Φ (−Uij) + Φ (Lij) ,

and

E
{
z2
ij ×

[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]}

= 1− {[Φ (Uij)− Φ (Lij)] + Lijφ(Lij)− Uijφ(Uij)}
= Φ (−Uij) + Φ (Lij) + Uijφ(Uij)− Lijφ(Lij).

∑∑
i6=j, ρij 6=0

E
{[
ω2
ijz

2
ij +

(
µij − ρij

)2
+ 2ωij

(
µij − ρij

)
zij
]
×
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]}

=
∑∑

i6=j, ρij 6=0

{
ω2
ij [Φ (−Uij) + Φ (Lij) + Uijφ(Uij)− Lijφ(Lij)] +(

µij − ρij
)2

[Φ (−Uij) + Φ (Lij)] + 2ωij
(
µij − ρij

)
[−φ(Lij) + φ(Uij)]

}
.

Hence, using the expressions for Uij and Lij under ρij 6= 0,

∑∑
i6=j, ρij 6=0



ω2
ij


Φ

(√
Tρij−bN
1−ρ2

ij

)
+ Φ

(
−bN−

√
Tρij

1−ρ2
ij

)
+

(
bN−

√
Tρij

1−ρ2
ij

)
φ

(√
Tρij−bN
1−ρ2

ij

)
+

(
bN+

√
Tρij

1−ρ2
ij

)
φ

(
−bN−

√
Tρij

1−ρ2
ij

)
+

(
µij − ρij

)2 [
Φ

(√
Tρij−bN
1−ρ2

ij

)
+ Φ

(
−bN−

√
Tρij

1−ρ2
ij

)]
+2ωij

(
µij − ρij

) [
φ

(
bN−

√
Tρij

1−ρ2
ij

)
− φ

(
−bN−

√
Tρij

1−ρ2
ij

)]


=

∑∑
i 6=j, ρij 6=0

[
ω2
ij +

(
µij − ρij

)2] [
Φ

(√
Tρij − bN
1− ρ2

ij

)
+ Φ

(
−bN −

√
Tρij

1− ρ2
ij

)]

+
∑∑

i6=j, ρij 6=0

ω2
ij


(
bN−

√
Tρij

1−ρ2
ij

)
φ

(√
Tρij−bN
1−ρ2

ij

)
+

(
bN+

√
Tρij

1−ρ2
ij

)
φ

(
−bN−

√
Tρij

1−ρ2
ij

)


+2
∑∑

i 6=j, ρij 6=0

ωij
(
µij − ρij

) [
φ

(
bN −

√
Tρij

1− ρ2
ij

)
− φ

(
−bN −

√
Tρij

1− ρ2
ij

)]
.

Since ω2
ij = O(T−1), and

(
µij − ρij

)
= O(T−1), and also Φ

(√
Tρij−bN
1−ρ2

ij

)
+ Φ

(
−
√
Tρij−bN
1−ρ2

ij

)
< 2, then

∑∑
i 6=j, ρij 6=0

[
ω2
ij +

(
µij − ρij

)2] [
Φ

(√
Tρij − bN
1− ρ2

ij

)
+ Φ

(
−
√
Tρij − bN
1− ρ2

ij

)]
< 2

∑∑
i 6=j, ρij 6=0

[
ω2
ij +

(
µij − ρij

)2]
,

and

2
∑∑

i6=j, ρij 6=0

[
ω2
ij +

(
µij − ρij

)2]
= O

(
mNN

T

)
.

Also, (
bN −

√
Tρij

1− ρ2
ij

)
φ

(√
Tρij − bN
1− ρ2

ij

)
= (2π)−1/2

(
bN −

√
Tρij

1− ρ2
ij

)
exp

([
−1

2

(
bN −

√
Tρij

1− ρ2
ij

)2])
,

and

∑∑
i 6=j, ρij 6=0

ω2
ij

[(
bN −

√
Tρij

1− ρ2
ij

)
φ

(√
Tρij − bN
1− ρ2

ij

)]

= (2π)−1/2 ∑∑
i 6=j, ρij 6=0

ω2
ij

(
bN −

√
Tρij

1− ρ2
ij

)
exp

([
−1

2

(√
Tρij − bN
1− ρ2

ij

)2])

= (2π)−1/2 ∑∑
i 6=j, ρij 6=0

ω2
ij

(
bN −

√
Tρij

1− ρ2
ij

)
exp

(
−Tρ2

ij

2

(
b2N
Tρ2

ij

+ 1− 2
bN

ρij
√
T

))
.
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But by (A.3) of Lemma 2, b
2
N
T

= o(1), and T exp
(
−Tρ2

min
2

)
→ 0 as T →∞, and

(2π)−1/2 ∑∑
i 6=j, ρij 6=0

ω2
ij

(
bN −

√
Tρij

1− ρ2
ij

)
exp

[
−Tρ2

ij

2

(
b2N
Tρ2

ij

+ 1− 2
bN

ρij
√
T

)]

= O

[
mNN

T

√
T exp

(
−Tρ2

min

2

)]
= o(1).

Overall, the order of the final term is given by∑∑
i 6=j, ρij 6=0

E
{[
ω2
ijz

2
ij +

(
µij − ρij

)2
+ 2ωij

(
µij − ρij

)
zij
]
×
[
1− I

(
Lij ≤ zij ≤ Uij

∣∣ρij 6= 0
)]}

= O

(
mNN

T

)
.

Considering the results for all the three terms together we note that the order of E
∥∥∥R̃−R∥∥∥2

F
depends on the order

of NbN exp
(−1

2
b2N
)
. But from (A.3) of Lemma 2 setting bN =

√
2 [ln f(N)− ln(p)] we have

NbN exp

(
−1

2
b2N

)
=

Np
√

2 [ln f(N)− ln(p)]

f(N)

=

{
O(
√

lnN), if f(N) = O(N)

O(
√

lnN
N

), if f(N) = O(N2)
,

and therefore NbN exp
(−1

2
b2N
)
will be bounded in N only if f(N) = O(N2). Consequently

E
∥∥∥R̃−R∥∥∥2

F
= O

(
mNN

T

)
, if f(N) = O(N2). (A.10)

Proof of Theorem 2. Consider first the FPR statistic given by (15) which can be written equivalently as

FPR =

∑∑
i6=j

I
(∣∣ρ̂ij∣∣ > bN√

T
|ρij = 0

)
N(N −mN − 1)

. (A.11)

Taking the expectation of (A.11) we have

E |FPR| =

∑∑
i6=j

E
[
I
(∣∣ρ̂ij∣∣ > bN√

T
|ρij = 0

)]
N(N −mN − 1)

.

Note that the elements of FPR are either 0 or 1 and |FPR| = FPR.
As earlier, to simplify the derivations we will write all the indicator functions in terms of zij = (ρ̂ij − µij)/ωij

with µij and ωij defined in (11) and (12) of assumption 1, respectively. Using the property

I

(∣∣ρ̂ij∣∣ > bN√
T
|ρij = 0

)
= 1− I

(∣∣ρ̂ij∣∣ ≤ bN√
T
|ρij = 0

)
,

and taking expectations it follows from part (i) of Lemma 4 that

E

[
I

(∣∣ρ̂ij∣∣ > bN√
T
|ρij = 0

)]
= 1− P (Lij ≤ zij ≤ Uij |ρij = 0),

= 1− [Φ(bN )− Φ(−bN )]

= 2[1− Φ(bN )]

= 2

{
1− Φ

[
Φ−1

(
1− p/2

f(N)

)]}
=

p

f(N)
,

with Uij and Lij given in (A.7) of the same lemma. Hence, E |FPR| = N(N−1)p
N(N−mN−1)f(N)

= (N−1)p
(N−mN−1)f(N)

→ 0 as
N →∞, so long as f(N)→∞. But by the Markov inequality applied to |FPR| we have that

P (|FPR| > ε) ≤ E(|FPR|)
ε

=
p

εf(N)
,
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for some positive ε > 0. Therefore lim
N,T→∞

P (|FPR| > ε) = 0, and so the required result is established. This holds

irrespective of the order by which N and T →∞.
Consider next the TPR statistic given by (14) and set

X = 1− TPR =

∑∑
i6=j

[1− I(ρ̃ij 6= 0, and ρij 6= 0)]∑∑
i 6=j

I(ρij 6= 0)

=

∑∑
i 6=j

I(ρ̃ij = 0, and ρij 6= 0)∑∑
i 6=j

I(ρij 6= 0)
.

As before |X| = X and P (|X| > ε) ≤ E|X|
ε
. But

E(X) = E |X| =

∑∑
i 6=j

P
(∣∣ρ̂ij∣∣ < bN√

T
|ρij 6= 0

)
∑∑
i6=j

I(ρij 6= 0)
,

and from part (i) of Lemma 4 we have that

P

(∣∣ρ̂ij∣∣ < bN√
T
|ρij 6= 0

)
= P (Lij ≤ zij ≤ Uij |ρij 6= 0)

= Φ

(
bN −

√
Tρij

1− ρ2
ij

)
− Φ

(
−bN −

√
Tρij

1− ρ2
ij

)
.

We can further distinguish between cases where ρij are strictly positive and negative as in part (ii) of Lemma 4 from
which it follows that

E |X| ≤ 2mNN

mNN
Φ

(
bN −

√
Tρmin

1− ρ2
min

)
.

Hence

P (|TPR− 1| > ε) ≤ 2Φ

(
bN −

√
Tρmin

1− ρ2
min

)
,

and the desired result is established if bN −
√
Tρmin → −∞ which is equivalent to ρmin >

bN√
T
, as N,T → ∞ in any

order.

A.3 Proof of theorem and corollary for shrinkage estimator RLW

Proof of Theorem 3 and Corollary 1. This proof has two parts. In the first part we obtain the optimal value
of the shrinkage parameter that minimizes the squared Frobenius norm of the error of estimating R by R̂LW . In the
second part we obtain the convergence rate of the shrinkage correlation matrix estimator under the derived shrinkage
parameter.

Taking the expectation of
∥∥∥R̂LW −R

∥∥∥2

F
, with R̂LW = ξIN + (1− ξ)R̂, we have

E
∥∥∥R̂LW −R

∥∥∥2

F
=
∑∑
i 6=j

E
(
ρ̂ij − ρij

)2
+ ξ2∑∑

i 6=j
E
(
ρ̂2
ij

)
− 2ξ

∑∑
i6=j

E
[
ρ̂ij
(
ρ̂ij − ρij

)]
, (A.12)

and following Ledoit and Wolf (2003, 2004) and Schäfer and Strimmer (2005) the value of ξ that minimizes (A.12) is
given by

ξ∗ =

∑∑
i 6=j

E
[
ρ̂ij
(
ρ̂ij − ρij

)]
∑∑
i 6=j

E
(
ρ̂2
ij

) = 1−

∑∑
i6=j

E
(
ρ̂ijρij

)
∑∑
i 6=j

E
(
ρ̂2
ij

) . (A.13)

Using (11) of Assumption 1 we have that

bij = E(ρ̂ij)− ρij = −
ρij(1− ρ2

ij)

2T
+
G(ρij)

T 2
. (A.14)

Thus, in terms of bij and V ar(ρ̂ij), it follows that

1− ξ∗ =

∑∑
i6=j

E
(
ρ̂ijρij

)
∑∑
i6=j

E
(
ρ̂2
ij

) =

∑∑
i 6=j

ρij(bij + ρij)∑∑
i 6=j

V ar
(
ρ̂ij
)

+
∑∑
i6=j

(bij + ρij)
2
. (A.15)

38



Substituting for (12) of Assumption 1 and (A.14) in (A.15) yields

1− ξ∗ =

∑∑
i6=j

ρij(ρij −
ρij(1−ρ2

ij)

2T
+

G(ρij)

T2 )

∑∑
i 6=j

[
(1−ρ2

ij)2

T
+

K(ρij)

T2

]
+
∑∑
i 6=j

[
ρij −

ρij(1−ρ2
ij)

2T
+

G(ρij)

T2

]2 .

Hence, an estimator of ξ∗ can be obtained (ignoring terms of order T−2) as

1− ξ̂∗ =

∑∑
i6=j

ρ̂ij

[
ρ̂ij −

ρ̂ij(1−ρ̂2
ij)

2T

]
1
T

∑∑
i6=j

(1− ρ̂2
ij)

2 +
∑∑
i 6=j

[
ρ̂ij −

ρ̂ij(1−ρ̂2
ij)

2T

]2 .

Note that limT→∞(ξ̂
∗
) = 0 for any N . However, in small samples values of ξ̂

∗
can be obtained that fall outside the

range [0, 1]. To avoid such cases, if ξ̂
∗
< 0 then ξ̂

∗
is set to 0, and if ξ̂

∗
> 1 it is set to 1, or ξ̂

∗∗
= max(0,min(1, ξ̂

∗
)).

Using (A.13) in (A.12) we have that

E
∥∥∥R̂LW −R

∥∥∥2

F
=

∑∑
i 6=j

E
(
ρ̂ij − ρij

)2 −
[∑∑

i6=j
E
[
ρ̂ij
(
ρ̂ij − ρij

)]]2

∑∑
i 6=j

E
(
ρ̂2
ij

)
<

∑∑
i 6=j

E
(
ρ̂ij − ρij

)2
,

which postulates that the expected quadratic loss of the shrinkage sample covariance estimator is smaller than that
of the sample covariance matrix, suggesting an improvement using the former compared to the latter. Further we
have ∑∑

i 6=j
E
(
ρ̂ij − ρij

)2
=

∑∑
i 6=j

E
(
ρ̂2
ij

)
− 2
∑∑
i6=j

E
(
ρ̂ijρij

)
+
∑∑
i 6=j

ρ2
ij ,{∑∑

i 6=j
E
[
ρ̂ij
(
ρ̂ij − ρij

)]}2

=

[∑∑
i 6=j

E
(
ρ̂2
ij

)
−
∑∑
i6=j

E
(
ρ̂ijρij

)]2

=

[∑∑
i 6=j

E
(
ρ̂2
ij

)]2

+

[∑∑
i 6=j

E
(
ρ̂ijρij

)]2

− 2
∑∑
i6=j

E
(
ρ̂2
ij

)∑∑
i 6=j

E
(
ρ̂ijρij

)
,

and

E
∥∥∥R̂LW −R

∥∥∥2

F
=


∑∑
i 6=j

E
(
ρ̂2
ij

) [∑∑
i 6=j

E
(
ρ̂2
ij

)
− 2
∑∑
i6=j

E
(
ρ̂ijρij

)
+
∑∑
i6=j

ρ2
ij

]

−
[∑∑

i6=j
E
(
ρ̂2
ij

)]2

−
[∑∑

i6=j
E
(
ρ̂ijρij

)]2

+ 2
∑∑
i 6=j

E
(
ρ̂2
ij

)∑∑
i 6=j

E
(
ρ̂ijρij

)
∑∑

i 6=j
E
(
ρ̂2
ij

) .
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Hence,

E
∥∥∥R̂LW −R

∥∥∥2

F
=

∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

E
(
ρ̂2
ij

)
−
[∑∑

i6=j
E
(
ρ̂ijρij

)]2

∑∑
i6=j

E
(
ρ̂2
ij

)

=

∑∑
i 6=j

ρ2
ij [
∑∑
i 6=j

V ar
(
ρ̂ij
)

+
∑∑
i 6=j

(bij + ρij)
2]−

[∑∑
i 6=j

ρij(bij + ρij)

]2

∑∑
i 6=j

E
(
ρ̂2
ij

)

=


∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

V ar
(
ρ̂ij
)

+

[∑∑
i6=j

ρ2
ij

]2

+
∑∑
i6=j

ρ2
ij

∑∑
i6=j

b2ij + 2
∑∑
i6=j

ρ2
ij

∑∑
i6=j

bijρij

−
[∑∑

i 6=j
bijρij

]2

−
[∑∑

i 6=j
ρ2
ij

]2

− 2

[∑∑
i 6=j

bijρij

][∑∑
i 6=j

ρ2
ij

]
∑∑

i 6=j
E
(
ρ̂2
ij

)

=

∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

V ar
(
ρ̂ij
)

+
∑∑
i 6=j

ρ2
ij

∑∑
i 6=j

b2ij −
[∑∑

i 6=j
bijρij

]2

∑∑
i6=j

E
(
ρ̂2
ij

) .

Finally, using Assumptions 1 and 2, it follows from the above results that

E
∥∥∥R̂∗LW (ξ∗)−R

∥∥∥2

F
= O

(
mNN

T

)
,

which is in line with the result obtained by LW.

A.4 Derivation of the shrinkage parameter for shrinkage on MT (S-MT) esti-
mator

Recall the expression for the function f(λ) from Section 4

f(λ) = −tr
[
(A−B (λ))B (λ)

(
IN − R̃MT

)
B (λ)

]
,

with A=R−1
0 and B (λ) = R̃

−1

S-MT (λ). We need to solve f(λ) = 0, for λ∗ such that f(λ∗) = 0 for a given choice of
R0.

Abstracting from the subscripts, note that

f(1) = −tr
[(
R−1−IN

) (
IN − R̃

)]
,

or

f(1) = −tr
[
−R−1R̃+R−1−IN + R̃

]
= tr

(
R−1R̃

)
− tr

(
R−1

)
,

which is generally non-zero. Also, λ = 0 is ruled out, since R̃S-MT (0) = R̃ need not be non-singular.
Thus we need to assess whether f(λ) = 0 has a solution in the range λ0 < λ < 1, where λ0 is the minimum value

of λ such that R̃S-MT (λ0) is non-singular. First, we can compute λ0 by implementing naive shrinkage as an initial
estimate:

R̃S-MT (λ0) = λ0IN + (1− λ0)R̃.

The shrinkage parameter λ0 ∈ [0, 1] is given by

λ0 = max

 ε− λmin

(
R̃
)

1− λmin

(
R̃
) , 0

 ,

where in our simulation study we set ε = 0.01. Here, λmin (A) stands for the minimum eigenvalue of matrix A. If

R̃ is already positive definite and λmin

(
R̃
)
> 0, then λ0 is automatically set to zero. Conversely, if λmin

(
R̃
)
≤ 0,

then λ0 is set to the smallest possible value that ensures positivity of λmin

(
R̃S-MT (λ0)

)
.
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Second, we implement the optimisation procedure. In our simulation study and empirical applications we employ
a grid search for λ∗ = {λ : λ0 + ε ≤ λ ≤ 1} with increments of 0.005. The final λ∗ is given by

λ∗ = arg min
λ

[f(λ)]2 .

When λ0 = 0 we still implement shrinkage to find the optimal shrinkage parameter (which might not be λ∗ = 0).

Appendix B Cross validation for BL and CL
BL and CL cross validation with FLM extension: We perform a grid search for the choice of C over a specified

range: C = {c : Cmin ≤ c ≤ Cmax}. In BL procedure, we set Cmin =

∣∣∣∣min
ij

σ̂ij

∣∣∣∣√ T
logN

and Cmax =

∣∣∣∣max
ij
σ̂ij

∣∣∣∣√ T
logN

and impose increments of (Cmax−Cmin)
N

. In CL cross-validation, we set Cmin = 0 and Cmax = 4, and impose increments
of c/N . In each point of this range, c, we use xit, i = 1, ..., N, t = 1, ..., T and select the N × 1 column vectors
xt = (x1t, ..., xNt)

′ , t = 1, ..., T which we randomly reshuffl e over the t-dimension. This gives rise to a new set of

N × 1 column vectors x(s)
t =

(
x

(s)
1t , ..., x

(s)
Nt

)′
for the first shuffl e s = 1. We repeat this reshuffl ing S times in total

where we set S = 50. We consider this to be suffi ciently large (FLM suggested S = 20 while BL recommended

S = 100 - see also Fang, Wang and Feng (2013)). In each shuffl e s = 1, ..., S, we divide x(s) =
(
x

(s)
1 , ...,x

(s)
T

)
into two

subsamples of size N ×T1 and N ×T2, where T2 = T −T1. A theoretically ‘justified’split suggested in BL is given by

T1 = T
(

1− 1
log T

)
and T2 = T

log T
. In our simulation study we set T1 = 2T

3
and T2 = T

3
. Let Σ̂

(s)

1 =
(
σ̂

(s)
1,ij

)
, with

elements σ̂(s)
1,ij = T−1

1

∑T1
t=1 x

(s)
it x

(s)
jt , and Σ̂

(s)

2 =
(
σ̂

(s)
2,ij

)
with elements σ̂(s)

2,ij = T−1
2

∑T
t=T1+1 x

(s)
it x

(s)
jt , i, j = 1, ..., N,

denote the sample covariance matrices generated using T1 and T2 respectively, for each split s. We threshold Σ̂
(s)

1 as
in (21) or (23) using I (.) as thresholding function, where both θ̂ij and ωT are adjusted to

θ̂
(s)

1,ij =
1

T1

∑T1
t=1(x

(s)
it x

(s)
jt − σ̂

(s)
1,ij)

2,

and

ωT1 (c) = c

√
logN

T1
.

Then (23) becomes

Σ̃
(s)
1 (c) =

(
σ̂

(s)
1,ijI

[∣∣∣σ̂(s)
1,ij

∣∣∣ ≥ τ (s)
1,ij (c)

])
,

for each c, where

τ
(s)
1,ij (c) =

√
θ̂

(s)

1,ijωT1 (c) > 0,

and θ̂
(s)

1,ij and ωT1 (c) are defined above.
The following expression is computed for BL or CL,

Ĝ (c) =
1

S

S∑
s=1

∥∥∥Σ̃(s)
1 (c)− Σ̃

(s)
2

∥∥∥2

F
, (B.16)

for each c and
Ĉ = arg min

Cmin≤c≤Cmax

Ĝ (c) . (B.17)

If several values of c attain the minimum of (B.17), then Ĉ is chosen to be the smallest one. The final estimator of
the covariance matrix is then given by Σ̃Ĉ . The thresholding approach does not necessarily ensure that the resultant
estimate, Σ̃Ĉ , is positive definite. To ensure that the threshold estimator is positive definite FLM (2011, 2013)

propose setting a lower bound on the cross validation grid for the search of C such that λmin

(
Σ̃Ĉ

)
> 0. Therefore,

we modify (B.17) so that
Ĉ∗ = arg min

Cpd+ε≤c≤Cmax

Ĝ (c) , (B.18)

where Cpd is the lowest c such that λmin

(
Σ̃Cpd

)
> 0 and ε is a small positive constant. We do not conduct

thresholding on the diagonal elements of the covariance matrices which remain in tact.
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