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A theoretical study is presented of the flow of viscoplastic fluid through a Hele-Shaw
cell that contains various kinds of obstructions. Circular and elliptical blockages of the
cell are considered together with step-wise contractions or expansions in slot width,
all within the simplifying approximation of a narrow gap. Specific attention is paid to
the flow patterns that develop around the obstacles, particularly any stagnant plugged
regions, and the asymptotic limits of relatively small or large yield stress. Periodic arrays
of circular contractions or expansions are studied to explore the interference between
obstructions. Finally, viscoplastic flow through a cell with randomly roughened walls
is examined, and it is shown that constructive interferences of local contractions and
expansions leads to a pronounced channelization of the flow. An optimization algorithm
based on minimisation of the pressure drop is derived to construct the path of the channels
in the limit of relatively large yield stress or, equivalently, relatively slow flow.

1. Introduction

The flow of complex fluids along slender conduits or through porous media plays a key
role in a number of industrial and geophysical settings, ranging from injection moulding
to the recovery of oil. In particular, viscoplastic fluids present the awkward feature of a
yield stress, which can cause the fluid to clog up the conduit or medium and interfere
with flow. Recent interest in this problem has been spurred by a number of applications
in the petroleum and hydraulic fracture industries involving the flow, leakage, injection or
extraction of viscoplastic fluids, including waxy crude oils, cements, and proppant-laden
slurries.

The Hele-Shaw cell, which traditionally consists of two parallel flat plates separated
by a thin gap, provides a simple experimental and theoretical model geometry in which
to study flow along slender conduits or through porous media. With a Newtonian fluid in
the cell, standard analysis based on the thinness of the gap reduces the problem to that
of potential flow, which provides the foundation for Henry Selby Hele-Shaw’s classical
visualizations of potential flow around obstacles (e.g. Homsy et al. 2008). The equivalent
analysis for a viscoplastic fluid leads to a nonlinear elliptic filtration problem, which
incorporates the clogging effect of stagnant unyielded plugs of fluid (e.g. Bernadiner &
Protopapas 1994). This problem first received detailed attention in the Russian literature
of the 1960s and 1970s, which was largely concerned with the application of analytical
techniques (specifically the hodograph transform) to build exact solutions for certain
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idealized problems (e.g. Alishaev et al. 1969; Entov 1970; Bernadiner & Protopapas 1994).
Subsequent studies in the area have explored the viscoplastic version of the Saffman-
Taylor instability (Pascal 1981; Coussot 1999) and the dynamics of displacement fronts
(Bittleston et al. 2002; Pelipenko & Frigaard 2004). The latest developments have been
directed at bridging the gap between viscoplastic flow dynamics on the pore scale and
a macroscopic analogue of Darcy’s law (Chevalier et al. 2013; Talon & Bauer 2013;
Chevalier et al. 2014; Bleyer & Coussot 2014).

The purpose of the present paper is to investigate the flow of viscoplastic fluid in
a Hele-Shaw cell. Our study has two main themes. First, we explore viscoplastic flow
around isolated blockages or localized changes in the width of the cell. This setup mirrors
classical visualization of potential flow around obstacles (e.g. Homsy et al. 2008) or flow
in the presence of low or high permeability intrusions in porous media (e.g. Phillips
2009). Secondly, we investigate viscoplastic flow in more complicated geometries, either by
placing arrays of obstruction in the cell or by taking the slot width to be a suitable random
function of position, thereby “roughening” the cell. Studies of Newtonian flow in a thin
gap with a regular array of obstructions have appeared previously in the physiological and
hydrological literature (Lee 1969; Tsay & Weinbaum 1991; Zimmerman & Bodvarsson
1996), and randomly roughened cells have been used experimentally and theoretically
to model rock fractures (e.g. Yeo 2001; Brush & Thomson 2003; Zhang et al. 2013).
Both geometries also provide simple models of a heterogeneous porous medium. The
equivalent problem of the flow of viscoplastic fluid in these geometries has relevance
to a number of industrial and geophysical settings, including the transport of proppant
slurries in hydraulic fractures (e.g. Lecampion & Garagash 2014; Dontsov & Peirce 2014),
the plumbing of mud volcanoes and related geological problems (Huuse et al. 2010),
and the flow of drilling mud and cement around centralizing posts in narrow well bores
(Bittleston et al. 2002) or into local fractures in the surrounding rock (e.g. Majidi et al.
2010; Gustafson et al. 2013).

In section 2, we derive and summarize the mathematical formulation for viscoplastic
flow in a Hele-Shaw cell. Section 3 contains an outline of how the problem can be analysed
using a hodograph transformation to build some useful exact solutions. In section 4, we
present numerical solutions for viscoplastic flow around isolated blockages of the cell
with circular or elliptical cross-section, and in section 5, we present related results when
partial contractions or expansions in cell width act as the obstruction to flow. In section
6, we explore more complicated geometries in which arrays of obstructions are placed in
the cell or where the cell has a random thickness. We find that the yield stress of the fluid
can lead to dramatic channelization of the flow in such cases, and we develop a method
to locate flow channels given the width of the cell.

2. Mathematical model

Consider the steady flow of an incompressible viscoplastic fluid down a narrow slot
of spatially varying width. We assume that the slot is symmetrical about its midplane
and use a Cartesian coordinate system to describe the geometry. We align the slot’s
midplane with z = 0, and locate the side walls at z = ±h(x, y). The fluid has velocity
u(x, t), pressure p(x, t) and a stress tensor τjk − pδjk. As a constitutive law, we use the
Bingham model (e.g. Balmforth et al. 2014):

γ̇jk = 0 if τ ≤ τY (2.1)
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and the fluid is rigid, or

τjk =

(
µ+

τY
γ̇

)
γ̇jk if τ > τY (2.2)

and the fluid is yielded, where

γ̇jk =
∂uj
∂xk

+
∂uk
∂xj

, γ̇ =

√
1

2

∑
j,k

γ̇jkγ̇jk, τ =

√
1

2

∑
j,k

τjkτjk, (2.3)

µ is the viscosity and τY is the yield stress. We assume that there is no penetration and
no slip on the walls of the slot, such that u = 0 on z = ±h(x, y).

2.1. Reduction

For slow flow down a relatively narrow slot, the shear stresses (τxz, τyz) dominate the
force balance, so that

∂p

∂x
=
∂τxz
∂z

,
∂p

∂y
=
∂τyz
∂z

,
∂p

∂z
= 0. (2.4a, b, c)

Hence, given the symmetry about the midplane of the slot (z = 0),

p = p(x, y), (τxz, τyz) = z

(
∂p

∂x
,
∂p

∂y

)
. (2.5a, b)

In this geometry, one also expects the shear across the slot to dominate the deformation
rate tensor, and so(

τxz
τyz

)
≈
(
µ+

τY
γ̇

)(
∂u/∂z
∂v/∂z

)
if τ ≈

√
τ2xz + τ2yz > τY , (2.6)

where

γ̇ ≈
√

(∂u/∂z)
2

+ (∂v/∂z)
2
. (2.7)

However, given (2.5),
√
τ2xz + τ2yz inevitably falls below the yield stress near z = 0, which

suggests that the flow is plug-like over the central section of the cell, with ∂u/∂z ≈
∂v/∂z ≈ 0. After integrating (2.5b) with (2.6), we find(

u
v

)
= − 1

2µ

[
max(h− Y, 0)2 −max (|z| − Y, 0)

2
](px

py

)
, (2.8)

where the “yield surface” is

Y =
τY(

p2x + p2y
)1/2 . (2.9)

Here, and in subsequent expressions, the x and y subscripts indicate partial derivatives.
Equation (2.8) demonstrates the plug-like character of the flow in |z| < Y for h > Y .

Despite this, and as will become clearer later, the plug flow is nevertheless able to deform
along the x−y plane. The fluid within |z| < Y < h cannot therefore be truly rigid, but is
a “pseudo-plug” (Walton & Bittleston 1991; Balmforth & Craster 1999), where the shear
stresses no longer dominate the stress state. Instead the fluid is held just above the yield
stress by a combination of shear and extensional stresses. On the other hand, if Y → h,
the channel becomes fully plugged up, flow halts and the fluid is genuinely unyielded.

We now place the equations into dimensionless form. Let U denote the mean flow
speed down the slot, and H denote the typical half width. The characteristic lengthscale
L � H along the slot is set by the natural dimension of each obstacle when we place



4 D. R. Hewitt, M. Daneshi, N. J. Balmforth & D. M. Martinez

isolated or multiple obstructions in the slot, or by the length of the spatial domain for
our roughened slots, as discussed in §2.3 below. We then remove dimensions by defining
the scaled variables,

(x̂, ŷ) =
(x, y)

L
, (ẑ, ĥ, Ŷ ) =

(z, h, Y )

H
, (û, v̂) =

(u, v)

U
, p̂ =

H2p

3µUL
. (2.10)

We also define a dimensionless streamfunction ψ̂ for the flux,(
−ψ̂ŷ
ψ̂x̂

)
=

∫ ĥ

0

(
û
v̂

)
dẑ, (2.11)

in order to satisfy the slot-integrated continuity equation.
From (2.8) and (2.11), and after dropping the hat decoration, we find(

ψy
−ψx

)
=
Q

S

(
px
py

)
, (2.12)

where the magnitudes of the flux Q ≡
√
ψ2
x + ψ2

y and pressure gradient S ≡
√
p2x + p2y

are related by

Q =
1

2
[max (h− Y, 0)]

2
(2h+ Y )S, (2.13)

and the dimensionless Y and Bingham number B are

Y =
B

S
, B =

HτY
3µU

. (2.14a, b)

Equation (2.13) explicitly contains the yield condition for the full slot: Q > 0 for h > Y
or B/h < S. Formally we may invert (2.13) to give, for some function S(Q; B, h),(

px
py

)
=
S(Q; B, h)

Q

(
ψy
−ψx

)
. (2.15)

2.2. The function S(Q;B, h)

The pressure gradient function S(Q;B, h) is a critical ingredient in our model for the
viscoplastic Hele-Shaw flow. The function has the limiting forms

S(Q;B, h) ∼ B

h
+

1

h2

√
2

3
BQ for Q→ 0, (2.16)

and

S(Q;B, h) ∼ Qh−3 for Q� 1, (2.17)

the second of which coincides with the Newtonian function S(Q;B = 0, h) = Qh−3.
The relation S = S(Q; B, h) can also be viewed as a form of Darcy’s law, which

establishes the link between flows in Hele-Shaw cells and porous media. For the Hele-
Shaw cell, S(Q; B, h) encodes the fluid rheology and can be adjusted to accommodate
different constitutive laws. For example, if we use the Herschel-Bulkley model, with τjk =
(Kγ̇n + τY )γ̇jk/γ̇ if τ > τY , rather than the Bingham law, then (2.13) is replaced by

Q =
1

n+ 1
[max (h− Y ), 0)]

1+1/n
[(n+ 1)h+ nY ]S1/n, (2.18)

where n is the power-law index, and the non-dimensionalization must be reworked to re-
place µ in (2.10) and (2.14b) by a characteristic viscosity µ∗ = (K/3)(2+1/n)n(U/H)n−1,
where K is the consistency of the fluid. A key point here is that both of the forms of
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S(Q;B, h) in (2.13) and (2.18) contain a threshold below which flow ceases, which is the
hallmark of a yield-stress fluid.

Our formulation matches that implicit in previous studies of viscoplastic displacement
and Saffman-Taylor fingering (Pascal 1981; Coussot 1999; Bittleston et al. 2002). In the
more general setting of a porous media, one can hypothesize that the formulation still
holds, and S(Q; B, h) also builds in information regarding the geometry of the porous
matrix (Vradis & Protopapas 1993). A main objective is then to determine the form of
S(Q; B, h), which is sometimes referred to as a nonlinear filtration law (e.g. Barenblatt
et al. 1989). There have been attempts to empirically determine S(Q; B, h) from lab-
oratory experiments (e.g. Bernadiner & Protopapas 1994; Chevalier et al. 2013, 2014)
or from microscale numerical simulations (e.g. Talon & Bauer 2013; Bleyer & Coussot
2014).

2.3. Summary of the model and flow geometries

By setting equal the mixed partial derivatives of the pressure in (2.15), we arrive at the
governing equation of the model, which is a nonlinear elliptic problem for the stream-
function,

∇·
(
S

Q
∇ψ

)
≡ (Q−1Sψx)x + (Q−1Sψy)y = 0 (2.19)

(cf. Entov 1970; Bittleston et al. 2002). We describe some general features of (2.19) and
two relevant exact solutions in the following section. In the remainder of the paper, we
solve (2.19) numerically using an augmented Lagrangian method, the details of which
are provided in Appendix A.

In §4 and §5, we study flow around an isolated obstruction, in the form of either a
complete blockage of the cell or a localized step-change in its width h(x, y). The length
scale, L, is then given by the characteristic dimension of the obstruction (its radius, in
the case of a circular obstacle), and H is set to be the uniform half-width of the slot
outside these obstacles (so that h = 1 there). We use a computational domain that is
much larger than the obstruction and demand that the solution match to a far-field
uniform flow in the positive x−direction, which is unity given our scaling by the mean
flow speed U . Hence, ψ → −y for x2 + y2 � 1. The corresponding pressure gradient
S → S∞ satisfies Q = 1 in (2.13), where S∞ = S(1;B, 1). It is important to note that
S∞ > B, in order that there is a flow with unit flux down the uniform slot. In other
words, the fluid is always driven sufficiently to prevent the slot from plugging up away
from the obstruction.

In §6, we consider problems in which the cell is periodic in either direction. For a cell
containing a periodic array of obstacles, H and L are again selected as above. For a
periodic cell with roughened walls, however, we focus on square domains, with L chosen
to be the domain length, and H to be the average half width (so h(x, y) has unit mean).
If the cell is periodic only in the y direction, we again set ψ → −y in the far field. If the
cell is periodic in the flow direction, we can no longer explicitly impose a far-field flow;
instead we scale the mean flux in the x direction to unity, by setting ψ(x, 0) = 0 and
ψ(x,D) = D, where D is the length of the domain in the y direction.

Note that, in all these cases, the scaling of the problem demands that there is always
a unit mean flux passing through the domain; the mean pressure gradient that must
be imposed in order to drive this flux is determined by the solution. One could instead
imagine fixing the cell geometry and fluid rheology, then seeking the mean flux that
results from a given pressure drop, as in the standard statement of Darcy’s law. For this
latter formulation, if the fluid has a yield stress, one must exceed a critical threshold in
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the driving pressure force in order to initiate motion. With our choice of scalings, the
problem of onset corresponds to the limit B →∞, with the limiting mean pressure drop
across the cell, scaled by B, being analogous to the threshold value.

3. Hodography

3.1. Hodograph transform

For a uniform slot with h = 1, given the polar coordinate representation of the pressure
gradient and flux,(

px
py

)
= S(Q;B, 1)

(
cos θ
sin θ

)
and

(
ψx
ψy

)
= Q

(
sin θ
− cos θ

)
, (3.1)

we may introduce the transformation (x, y) → (Q, θ) in the manner of the usual hodo-
graph transform. The result is a linear elliptic problem for the streamfunction (see Entov
1970):

Q2

S

(
S2

QS′
ψQ

)
Q

+ ψθθ = 0, (3.2)

along with

pθ = − S2

QS′
ψQ, pQ =

S

Q2
ψθ, (3.3)

and

dx+ i dy = e iθ
(

dp

S
− i

dψ

Q

)
, (3.4)

where S′ = ∂S/∂Q, and Q and θ subscripts indicate partial derivatives. Streamlines,
which have dψ = 0, are given by

( dx, dy) =
dp

S
(cos θ, sin θ). (3.5)

3.2. Separable solutions in a uniform slot (h = 1)

A family of interesting separable solutions of (3.2) is given by ψ = a(Q) sinmθ, with
parameter m (cf. Alishaev et al. 1969; see also Atkinson & El-Ali 1992). For the amplitude
a(Q), we must solve the ordinary differential equation,

Q2

S

(
S2

QS′
aQ

)
Q

−m2a = 0, (3.6)

subject to the limits a ∝ Qm as Q→∞ (where S → Q), and

a→ am (S −B)
3

= am

(
2BQ

3

)3/2

as Q→ 0, (3.7)

for some constant am. To arrive at (3.7), we have chosen the solution corresponding to
finite pressure from (3.3), and used the limiting form of S(Q) from (2.16).

One relevant separable solution is given bym = 2, which describes viscoplastic stagnation-
point flow. In this case we demand ψ → − 1

4Q
2 sin 2θ for Q� 1, which corresponds to a

far-field Newtonian stagnation-point flow with p = 1
4Q

2 sin 2θ, (x, y) = − 1
2Q(cos θ,− sin θ)

and ψ = 2xy. Solving (3.6) numerically gives a2 ≈ −0.1811B−1. The streamline pattern
of the separable solution is shown in figure 1(a). The key detail of this solution is the
appearance of a plug in the vicinity of the origin, which is where the pressure gradient S
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Figure 1: Streamlines for the separable solutions with (a) m = 2 and (b) m = 1
2 . The

plug regions are shaded; the lower panels show the streamlines on the hodograph plane.

falls below B. The yield surfaces bordering this region can be constructed analytically:
here, the amplitude is given by (3.7), and so

p ∼ B3a2 cos 2θ, (3.8)

implying the corresponding limiting streamline from (3.5) is given by

(x, y) = 1
3B

2a2(cos 3θ + 3 cos θ, sin 3θ − 3 sin θ). (3.9)

Thus, for θ → 0, (x, y)→ (4B2a2/3, 0) ≈ (−0.2415B, 0), which gives the upstream length
of the plug (which is also the plug half-length along the wall at x = 0).

A second relevant solution is given by m = 1
2 In this case, we adopt the limiting

solution ψ ∼ −√Q sin 1
2θ for Q� 1, which corresponds to Newtonian flow around a disk

moving through a quiescent ambient with p = −√Q cos 1
2θ, (x, y) = Q−1/2(cos 1

2θ, sin
1
2θ)

and ψ = −y/(x2 + y2) (in the right half plane; the flow is symmetric about the y−axis).
The numerical solution of (3.6) then gives a 1

2
≈ 0.629B−5/2, and sample streamlines are

shown in figure 1(b). The yield surface, which is again given by the limit Q→ 0, is

(x, y) = 2
3B

2a 1
2
(cos 3

2θ − 3 cos 1
2θ, sin

3
2θ − 3 sin 1

2θ). (3.10)

In order to satisfy the boundary condition on the surface of the disk, x2 + y2 = 1, the
yield surface must be relatively far away, so that the solution reduces to the Newtonian
limit at the disk. Thus, this solution corresponds to viscoplastic flow with a weak yield
stress (B � 1) around a moving disk, and, from (3.10), the yield surface is at a distance
of O(B−1/2).
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Figure 2: Flow around a disk in a slot with half width h = 1. (a–c) Streamlines with
a colour map of Q in the (x, y) plane (left), and streamlines in the hodograph plane
(right), for (a) B = 0.64, (b) B = 20, (c) B = 3200. The disk is shaded black and the
plugs are shown in grey. Note the different ranges for the horizontal axes. Points marked
(i) in each plot correspond to (Q, θ) = (0, θ∗), where the plug intersects the disk, and
those marked (ii) correspond to (x, y) = (0, 1), where the flux is maximum and the flow
horizontal. (d) Yield surfaces for several values of B separated by a factor of 4 between
B = 0.2 and B = 5.1× 104.

4. Circular and elliptical blockages in a uniform cell

We begin our numerical study with a discussion of flow around full obstacles in the cell.
At the boundary of the obstacle we impose no normal flux. However, the tangential flow
along the boundary cannot be made to vanish owing to the Hele-Shaw approximation.

4.1. Flow around a disk

Numerical solutions for flow around a circular blockage are shown for different values of
the yield stress B in figure 2. The flow is symmetrical about both coordinate axes, and
so solutions are shown over only one quadrant. With a finite yield stress, plugs appear
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at the front and back of the obstacle (denoted by the shaded regions in the figure)
spanning a fraction of the disk’s surface. As B is increased, these plugs lengthen in the
flow direction, to become much longer than the diameter of the obstacle, and widen such
that an increasingly large fraction of the disk lies within the yield surface (figure 2d).

The right-hand plots in figure 2 display streamlines on the hodograph plane; the yield
surface is given by a section of the Q = 0 axis between θ = 0 (where the incoming
or outgoing streamline along the x−axis intersects the tip of the plugs) and θ = θ∗,
corresponding to the border of the plug on the disk. The streamline leaving (Q, θ) =
(0, θ∗) represents the fluid path along the yielded surface of the disk and delineates the
periphery of the flow region on the hodograph plane in Q > 0. The point where this
bounding streamline intersects the Q axis corresponds to the edge of the disk at its
widest point (x, y) = (0,±1), and is where the flux is largest. Somewhat surprisingly,
as the yield stress is increased the maximum flux increases, which indicates that fluid
with a larger yield stress travels more rapidly, at least locally. In the physical plane, the
flux is enhanced in increasingly narrow high-speed boundary layers that arise around the
widest section of the disk, as can be observed in the colour plots of Q (e.g. figure 2c).

Figure 3 shows a collection of numerical results over a range of values of B. For B �
1, the plugs shrink to narrow regions surrounding the fore and aft points of the disk,
and the obstacle appears locally to be a plane wall. The length of the plug in the flow
direction converges to 0.24B in this limit (figure 3a), which is the result for the separable
stagnation-point-flow solution calculated in §3.2 and shown in figure 1. The arc length of
the plug along one quarter of the disk converges to the same value (figure 3b), as expected
from the symmetry of the stagnation-point flow. The flow away from the plugs reduces
to the Newtonian result ψ = y/(x2 + y2) − y for B � 1, as illustrated by the limiting
values of the maximum flux and pressure gradient (figure 3c,d), which both equal 2 and
occur at the widest points of the disk.

For B � 1, the length of the plugs grows like B1/4 and the arc length on a quarter of
the disk approaches π/2 (figure 3a,b). The maximum flux increases like B1/3 (figure 3c),
and the maximum magnitude of the pressure gradient increases like B (figure 3d), as it
must in order to achieve any flow through the cell as a whole. All these observations are
rationalized by the scaling analysis in Appendix B, which identifies three characteristic
regions of the flow based on an analysis of the hodograph plane: a relatively long inflow
or outflow away from the disk, a narrow high-speed boundary-layer around the widest
part of the obstacle, and the flow in the vicinity of the yield surface.

4.2. Flow around an ellipse

Computations of the flow past elliptical blockages are summarized in figure 4. We scale the
semi-major axis of the ellipse to unity; the figure shows results for different eccentricities
e and inclination angle α of the semi-major axis with respect to the incoming flow. The
qualitative features of the flow patterns for different values of B are similar to the case
of a circular obstacle. When B > 0, plugs appears at the front and back of the obstacle,
and, in the limit B → 0, they again shrink to small wedges centred on the Newtonian
stagnation points with a shape given by the separable solution in figure 1. As B is
increased, the plug regions again become much longer than the cross-sectional width of
the obstacle and span much of the surface of the ellipse (figure 4b–d). For a tilted ellipse,
the plugs bend around as they lengthen to align with the direction of the incident flow
(figure 4c). Thus, for B � 1, the detailed shape of the obstacle is largely hidden within
the shadow of the plug region, and one expects the eccentricity and orientation of the
ellipse to matter only in how they dictate the cross-sectional width of the obstruction.
Indeed, if one rescales lengths so as to set to unity the cross-sectional width perpendicular
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Figure 3: Flow around a disk. (a) Upstream length of the plug ahead of the front of the
disk; (b) arc length along the disk from y = 0 to the edge of the plug; (c) the maximum
flux; and (d) the maximum pressure gradient, all plotted against B. The dashed lines
show the theoretical predictions for B � 1 (see §3.2) and B � 1 (see Appendix B). The
red solid line in (d) shows the pressure gradient in the far field S∞(B) ≡ S(1;B, 1).

to the incident flow (figure 4e,f ), the plug extent converges towards the same scaling for
B � 1, irrespective of e and α.

As for the circular obstruction, the maximum flux limits to the Newtonian values for
B → 0 and scales as Q ∼ B1/3 for large B in narrow high-speed boundary layers at
the extremities of the obstacle. Because these boundary layers must align with the local
geometry, an imprint of the shape of the obstacle remains in the measured maximum
flux, which prevents any collapse in figure 4(g,h) for B � 1. For a given eccentricity,
the maximum flux increases with orientation from head-on flow (α = 0) to broadside-on
(α = π/2) flow.

4.3. A moving disk

The solution for flow around a disk moving through a quiescent Newtonian fluid in a
Hele-Shaw cell is simply a translation of the flow past a stationary disk, with the feature
that Q = 1 on the surface of the disk. This result no longer applies for a viscoplastic fluid,
owing to the non-linearity of the problem. In particular, unyielded plugs arise sufficiently
far from the object due to the waning stresses exerted on the fluid, leading to localized
flow around the object; see figure 5(a). In the (Q, θ)−hodograph plane, the boundary
corresponding to the surface of the disk, x2 + y2 = 1, deforms away from Q = 1 for
0 ≤ θ ≤ π/2 into a non-trivial curve bounding the flow region (figure 5b).

The shape of the yield surface in these solutions (figure 5(c)) shows some qualitative
similarities with the corresponding surfaces for two-dimensional flow of viscoplastic fluid
around cylinders or axisymmetric flow around spheres (Beris et al. 1985), although, unlike
in those situations, here there are no plugs attached to the disk itself. For B � 1, the
yielded region is relatively large, scaling as B−1/2 in both spatial directions (figure 5d),
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Figure 4: Flow around elliptical obstacles in a slot with half width h = 1. (a) Streamlines
for flow past an ellipse with e = 0.99 incident at an angle of α = π/4, for B = 20.48. (b-d)
Yield surfaces for values of B between B = 0.02 and B = 2.1×104 for an elliptical obstacle
with e = 0.99, inclined at three different angles to the incoming flow as marked. (e–h)
Measurements of the upstream length of the plug region scaled by the cross-sectional
width of the obstacle perpendicular to the flow direction, and the maximum flux, for
ellipses with eccentricity (e,g) e = 0.9 and (f,h) e = 0.99, and incident angle α = 0
(green), α = π/4 (red) and α = π/2 (blue). The stars show results for a circular disk
(figure 3) and the dashed lines indicate asymptotic scalings (see §3.2 and Appendix B).

in accord with the separable hodograph solution shown in figure 1(b). For B � 1 the
yielded zone shrinks to become a narrow boundary layer shrouding the disk, with a width
that scales like B−1/3 (figure 5d). This scaling demands that the maximum flux reaches
values of order B1/3 (figure 5e), in order to maintain the imposed O(1) flux. Both scalings
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Figure 5: Flow around a disk moving in the positive x direction through a uniform slot
(h = 1). (a) Streamlines with a colour map of Q in the (x, y) plane for B = 1.28, and (b)
corresponding streamlines in the hodograph plane; the dashed line indicates the edge of
the disk. The disk is shaded black and the plug region is shown in grey. (c) Yield surfaces
for varying B between B = 0.02 and B = 1 × 104. (d) The length of the yielded region
along the upstream (y = 0; blue) and cross-stream (x = 0; red) axes, together with the
limiting values for B � 1 (see §3.2), and (e) the maximum flux. The asymptotic scalings
for B � 1 are also shown dashed in (d) and (e).

can again be rationalized by a scaling analysis of equations in the hodograph domain,
similar to that undertaken in Appendix B.

5. Cell contractions and expansions

A sudden contraction or expansion in the width provides a different kind of obstacle to
flow along a Hele-Shaw cell, by impeding or diverting viscous flow but not directly block-
ing it. In the context of flow through a porous medium, a change in width is equivalent
to a change in the permeability of the medium, and step changes in permeability over
a disk or lens provide a classical model of flow around and through various geological
formations (e.g. Phillips 2009).

In this section we focus predominantly on viscoplastic flow through circular contrac-
tions and expansions. We set h = 1 outside and h = ξ inside the obstacle, such that ξ
dictates the contraction or expansion ratio. At the border of the obstacle, we smooth out
the jump in slot thickness over a narrow layer of the order of tens of gridpoints, such
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that the border remains relatively sharp, but the coefficients in (2.19) remain smooth
and no special jump conditions are required when numerically computing the solution
for ψ. This procedure is equivalent to enforcing the continuity of normal flux in the limit
of a genuine step change in h(x, y). For comparison, we note that the corresponding
streamfunction for Newtonian flow impinging on a circular contraction or expansion can
be determined analytically and is

ψ =
(1− ξ3)y

(1 + ξ3)(x2 + y2)
− y if x2 + y2 < 1, (5.1)

while within the obstacle the solution has uniform flux in the x direction: ψ = 2ξ3y/(ξ3+
1).

5.1. Contractions

Figure 6(a)-(c) displays solutions for viscoplastic flow incident on a circular cell con-
traction with a dimensionless width of 2ξ = 1 (the contraction is half as wide as the
surrounding slot). When the fluid has a relatively low yield stress (figure 6a), the flow
remains yielded everywhere. Within the contraction, the fluid has an almost uniform
flux, reflecting the remnant of this feature of the Newtonian solution. When the fluid
has a slightly higher yield stress (figure 6b), the contraction begins to plug up, with
stagnant zones appearing at its peripheries. For larger values of B the contraction be-
comes fully plugged (figure 6c). In this situation, the blockage prompts the formation of
wedge-shaped plugs outside the contraction and the flow pattern is very similar to the
corresponding solution for a full circular obstacle, as illustrated by the upstream length
of the plug (figure 6d). There is, however, a subtle difference in the boundary conditions
in the high-speed boundary layers above and below the obstacle. A full barrier across the
cell prevents any normal flow but allows tangential slip within the Hele-Shaw approxi-
mation. By contrast, a plugged contraction is bordered by a yield surface along which
Q = 0, which corresponds to a no-slip boundary. This feature is illustrated in the inset
of figure 6(c), which shows how the flux decreases to zero at the edge of the plugged
contraction. The flux gradient arises over the layer where the change in slot thickness is
smoothed in the numerical computations, and reduces the maximum flux in comparison
to that for a full obstacle, for which the flux peaks at the edge of the disk.

The critical Bingham number for which a plug first appears is plotted as a function
of the degree of contraction ξ in figure 6(e), along with the value of B above which the
contraction is completely plugged. The window of yield stresses over which the obstacle
is partially plugged is relatively small. For ξ = 1, there is no obstacle and hence no plugs
form. Conversely, for ξ → 0 an arbitrarily small yield stress will plug up the contraction,
in line with the result that plugs are always present for a complete obstruction when
B > 0. For ξ → 0, the limiting critical Bingham number for the obstacle to plug up can be
predicted by observing that the Newtonian solution (5.1) has a constant pressure gradient
of S = 2/(1 + ξ3) within the contraction, whereas the yield condition is Y = B/S = ξ.
Hence, B → 2ξ if ξ → 0, as seen in figure 6g.

Note that the features of the solutions in figure 6 are not specific to a circular con-
traction: solutions for an elliptical contraction are plotted in figure 7, which shows how
the orientation of the ellipse affects the critical yield stress at which the contraction be-
gins to plug up. Once the contraction is fully blocked, the solutions are much like their
counterparts for a complete blockage. Thus, for B � 1, both blockages and contractions
arrest motion along an increasingly long strip whose thickness is dictated by the width
of the obstacle perpendicular to the flow. In other words, at the onset of motion (the
limit B →∞) the obstacle blocks off an entire strip of the whole cell.
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Figure 6: (a–c) Streamlines and colour maps of Q for flow past a circular contraction of
width 2ξ = 1, for (a) B = 0.8; (b) B = 6.4; and (c) B = 205. The plugs are shaded.
The inset in (c) shows a contours of Q in the thin boundary layer that arises at the
widest points of the disk, where, unlike in the case of a full obstacle, the flux decreases
to zero at the edge of the plugged contraction. (d) Upstream length of the plug ahead
of the disk for ξ = 0.1 (black), ξ = 0.25 (blue), ξ = 0.5 (red), and ξ = 0.75 (green). The
stars show corresponding results for a full obstruction (i.e. ξ = 0, from figure 3). (e) The
critical Bingham number above which a plug first appears (black) or the disk becomes
fully plugged up (blue), including results for expansions (ξ > 1) as well as contractions
(ξ < 1). The red lines denote asymptotic predictions for ξ � 1 and ξ � 1 as marked.

5.2. Expansions

Results for flow past circular expansions are shown in figure 8. For sufficiently low values
of B (figure 8a), there are no plugs and the flow resembles the Newtonian solution;
fluid is diverted through the expansion, and the flow is slowest just above and below the
expansion. For larger B (figure 8b), plugs appear in these low-speed regions. As B is
increased further, the plugs extend significantly upstream and downstream and invade
the expansion (figure 8c). For large values of B, the plugs divert far more fluid through
the expansion than for B = 0, and establish a surprisingly far-field influence of the
obstacle relative to the Newtonian problem.

Figure 8(d) shows that the area of the plug increases with both the expansion ratio ξ
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Figure 7: Streamlines for flow past an elliptical contraction of width 2ξ = 1 (dashed),
for B = 12.8 (top) and B = 51.2 (bottom). The ellipse has eccentricity e = 0.9, and is
aligned at an angle (a) α = 0, (b) α = π/4, and (c) α = π/2 to the incoming flow. The
plugs are shaded.

and B, and, rather counterintuitively, indicates that expansions lead to a larger plugged
region than contractions and full blockages for sufficiently large values of B. The maxi-
mum flux increases with ξ and B (figure 8e), and, for B � 1, appears to show the same
scaling as for flow past a full blockage, although it now occurs through the centre of the
expansion. In the limit B →∞, the area of the buffering plugs diverges, which indicates
that, at the onset of motion, the expansion funnels all of the flow through its core, and
leaves plugged wedges of fluid extending from either side.

The critical values of B at which the plugs first appear are shown in figure 6(g). For
ξ → ∞, plugs are present for all B > 0, because the Newtonian solution (5.1) features
stagnation points at (x, y) = (0,±1) in this limit. In fact, locally, the top and bottom of
the expansion appear to be plane boundaries with purely normal flow, and a matched
asymptotic expansion for B � 1 can be used to show that the local viscoplastic flow
is given by the stagnation-point solution of section 3.2, but rotated by 45◦. We can
predict the critical value of B at which the plug appears in this limit by noting that
the Newtonian pressure gradient S outside the disk approaches 2/ξ3 at (x, y) = (0,±1).
Hence Y = B/S → 1 when B → 2/ξ2, as shown in figure 6g.

6. More complicated geometries

6.1. Arrays of obstacles

A natural extension of the results for isolated obstacles in sections 4 and 5 is to consider
arrays of such obstacles, and examine whether multiple objects interfere constructively
or destructively in the flow patterns. Accordingly, in this section we present results for
periodic arrays of circular contractions and expansions, separated vertically or horizon-
tally by a distance Λ. We focus on linear arrays orientated either with the flow direction
or perpendicular to it, and then briefly discuss two-dimensional arrays in a square or
staggered arrangement.

We first consider periodic arrays of contractions (figure 9). When arranged perpendicu-
lar to the flow (figure 9a), the contractions channel the flow into the gaps between them,
raising the maximum flux (figure 9c) and delaying the plugging up of those obstacles
(figure 9e), effects that are enhanced if Λ is reduced. However, once contractions have
been blocked and the plugs extend upstream and downstream, the size of the plug for
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Figure 8: (a–c) Streamlines and colour maps of flow past a circular expansion with width
2ξ = 3, for (a) B = 0.8; (b) B = 36.2; and (c) B = 4634. Plug regions are shaded. (d)
Plug area, and (e) maximum flux, plotted against B, for ξ = 1.2 (black), ξ = 1.5 (blue),
and ξ = 2 (red). The stars show corresponding results for a full obstruction (i.e. ξ = 0;
from figure 3). Points at B = 0 indicate the Newtonian solution.

each member of the array (figure 9e) is little different than if the contraction were iso-
lated. Thus, arranging the contractions perpendicular to the flow has a relatively minor
effect on the flow patterns.

A more significant effect is observed if contractions are aligned in the direction of the
flow (figure 9b). In this case, the presence of neighbouring contractions lowers the maxi-
mum flux (figure 9d) and increases the length of the plugs (figure 9f ). More importantly,
above a critical value of B, which decreases with the separation distance Λ, the plugs of
neighbouring contractions merge, at which point the effective plug length diverges with
an uninterrupted stagnant zone bridging the gaps between the contractions.

We next address periodic arrays of expansions (figure 10). When expansions are ar-
ranged perpendicular to the flow (figure 10a), the convergence of flow into the expansions
weakens the flow between them, which results in plugs that are larger and form at lower
yield stresses than for an isolated expansion (figure 10c). For larger values of B, neigh-
bouring pairs of plugs merge together (figure 10a, lower plot), but the presence of the
expansions impedes the combined plugs from growing too large.
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Figure 9: Flow past periodic arrays of circular contractions with ξ = 0.1. (a) Streamlines
and a colour map of Q for contractions arranged perpendicular to the flow with Λ = 1/2
and (b) aligned with the flow with Λ = 2, for (top row) B = 1.6 and (lower row)
B = 409.6. Plug regions are shaded. (c–d) Length of the plug upstream of the obstacle,
and (e–f ) maximum flux, for perpendicular arrays: Λ = 1/8 (black), Λ = 1/4 (blue),
Λ = 1/2 (red), Λ = 1 (green), and Λ = 2 (pink); and for aligned arrays: Λ = 1 (black),
Λ = 2 (blue), Λ = 4 (red), Λ = 8 (green), and Λ = 16 (pink). Results for an isolated
contraction are shown by black stars and a solid line. In (c), the squares indicate the
lowest value ofB for which a plug exists. In (d), when the downstream plug of one obstacle
intersects the upstream plug of the next obstacle, the length of the plug diverges.

As for contractions, a more significant effect is observed if expansions are aligned with
the direction of the flow (figure 10b). Above a critical value of B, which increases with the
separation distance Λ, the plugs merge to form an uninterrupted stagnant layer (figure
10d) and flow becomes channelized through the expansions. Even below this threshold,
although the plug area is similar to that for an isolated expansion, there is a significant
reduction in the flow through the part of the slot that is not aligned with the expansion
(e.g. dark shaded area in figure 10b).

Thus, for linear arrays, periodic contractions or expansions interfere most effectively
when aligned with the flow direction (i.e. in series), rather than when arrayed perpendic-
ular to the flow (i.e. in parallel). In terms of plug area, the interference of periodic arrays
is constructive, and stronger for expansions than contractions. In the limit B → ∞,
or equivalently at the onset of motion, arrays aligned periodically in the flow direction
channelize the flow through the gaps between contractions or within the expansions
themselves.
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Figure 10: Flow past infinite arrays of circular expansions with ξ = 2. (a) Streamlines
and a colour map of Q for expansions arranged perpendicular to the flow with Λ = 1 and
(b) aligned with the flow with Λ = 2, for (top row) B = 18.1 and (lower row) B = 409.6.
Plug regions are shaded. (c–d) Area of the plug regions, for perpendicular arrays: Λ = 1/4
(blue), Λ = 1/2 (red), Λ = 1 (green), and Λ = 2 (pink); and for aligned arrays: Λ = 1
(black), Λ = 2 (blue), Λ = 4 (red), Λ = 8 (green), and Λ = 16 (pink). Results for an
isolated expansion are plotted as black stars and a solid line. When the downstream
plug of one obstacle reaches the upstream plug of the next obstacle, the area of the plug
diverges.

Many of these results carry over to fully two-dimensional arrays of obstacles: as illus-
trated in figure 11, on raising B, plugs fill the contractions, appear around the regions
where the flow is slowest in the Newtonian solutions, and then expand to merge horizon-
tally, thereby channelizing the flow. For yet larger B, the channels become thinner and
wend their way around the topography, in such a manner as to preferentially sample the
widest parts of the slot. This channelization allows the flow either to avoid contractions,
rendering the net resistance dependent only on the tortuosity of the path taken, or to
pass through expansions, which lowers the resistance to flow.

6.2. Randomly roughened cells

A significantly more complex geometry is provided by a cell with randomly roughened
walls. To generate a “rough” conduit, we consider a periodic domain of unit length in
the x direction and take the half-thickness h to be a suitable random function of spatial
position. More specifically, we introduce a roughness function F given by a random
Fourier series in both directions, each truncated at a wavenumber kt, and set

h = 1 + σF, F (x, y) = Re

{
kt∑

m=−kt

kt∑
n=−kt

amn exp [2πi (mx+ ny)]

max [1, (m/k∗)α] max [1, (n/k∗)α]

}
, (6.1)

where the complex coefficients amn are randomly selected from a uniform distribution
on [−A,A], with A chosen such that F 2 has a spatial average of unity. The parameter
σ controls the amplitude of the roughness around the average cell half-width of 1. The
parameters k∗ and α control the smoothing of the roughness, such that the Fourier
coefficients decay with a power of α for wavenumbers greater than k∗. Note that the
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Figure 11: Solutions for flow past arrays of circular obstacles at B = 3.2 (upper row)
and B = 820 (lower row). Streamlines and colour maps of Q for sample (a,b) square and
(c,d) staggered arrays. (a) and (c) show solutions for contractions with ξ = 0.2; (b) and
(d) show solutions for expansions with ξ = 2.

assumptions in §2 of a thin slot remain valid provided the slope of the roughness is small
relative to the aspect ratio of the cell, such that σk∗ � L/H.

Figure 12 shows density maps of the flux for one realization of the slot with α =
2, kt = 30 and k∗ = 10, for three choices of both σ and B. When the yield stress
is very low (left-hand column), the solutions are little different than if the flow was
Newtonian: the roughness triggers the development of structure in the flow patterns with
a scale comparable to the smoothing length k−1∗ . When the amplitude of the roughness is
sufficiently large (lowest row), the slot almost closes off in several locations and incipient
channels can be discerned in the flow field.

More dramatically, when the yield stress is increased, the flow fully channelizes into
localized conduits. These channels are present even for smaller levels of roughness (i.e.
σ = 0.05; top row) provided the yield stress is sufficiently high, and follow paths with
little deviation from the flow direction. For cells with a larger amplitude of roughness,
the channels migrate further from the flow direction, but in none of the cases is there
an obvious correlation with distinctive features of the “topography” in h(x, y) (shown in
part in the top left corner of figure 12, and again in more detail in figure 14 below). We
attribute the channelization to the accidental alignment of either contractions or expan-
sions in the flow direction; that is, plugged lines of contractions and high-speed conduits
through aligned expansions conspire to create the channel network. However, the lack of
any obvious correlation between the geometries of the network and topography indicates
that the conspiracy is relatively subtle, and the factors that dictate the locations of the
channels demand more analysis. Note that similar channelization to that shown in fig-
ure 12 has previously been observed in Lattice-Boltzmann simulations of two-dimensional
flow of Bingham fluids through complex networks (Talon & Bauer 2013).

Further details of solutions for multiple realisations are presented in figure 13. To
define “channels” in these solutions we identify distinct regions in the y direction at each
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Figure 12: Density maps of flux Q from one realization of flow along a cell with randomly
roughened walls (α = 2, kt = 30, and smoothing scale k∗ = 10). The three columns
correspond to different Bingham numbers, as marked, and the roughness has standard
deviation (a) σ = 0.05, (b) σ = 0.1 and (c) σ = 0.3. The inset in the upper left plot
shows a greyscale density plot of the roughness F (x, y) of the channel over the range
0 6 x 6 0.5, 0.5 6 y 6 1.

streamwise position x for which Q > 1. The average number and width of such regions
over x provides the mean channels number and width. Once plugs appear, the number of
channels and their width decrease as B is increased (figure 13a–b), leading to large areas
of stagnant or near-stagnant flow for high yield stress (cf. right-hand column of figure
12). Simultaneously, the flow through the channels becomes faster with the maximum
fluxes scaling with B1/3 (figure 13c). The final panel (figure 13d) shows a scaled average
pressure drop across the cell. Definition of a mean pressure drop is complicated by the
presence of stagnant plugs in the flow, inside which the pressure is formally undefined. We
determine the pressure drop by a suitable integration along streamlines, thereby avoiding
plugged regions, as described in Appendix C.

Given the scaling of the problem, the inverse of the pressure drop 1/∆p defines an
effective permeability. In a uniform cell, ∆p = S∞(B), which increases with B, reflecting
how the rheology of the fluid controls the pressure force required to achieve flow. Even
when one roughens the walls of the cell, this rheological effect dominates the pressure
drop, such that ∆p ∝ S∞ for large B. In figure 13(d) we therefore use the scaled relative
pressure drop (∆p − S∞)/S∞ to remove the dominant rheological effect. For low B,
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Figure 13: Averages over 20 different realizations of the roughness with the same param-
eter settings as figure 12, showing: (a) the average number of channels; (b) the average
width of the channels; (c) the maximum flux Q; and (d) the relative deviation of the
average pressure drop across the cell, ∆p, from the value for a uniform cell, S∞, scaled
by σ2. The method of calculation of ∆p is described in Appendix C. Negative values
indicate that the effective permeability (1/∆p) is increased relative to a uniform cell.
Data is shown for σ = 0.05 (blue), σ = 0.1 (black), σ = 0.2 (red), and σ = 0.3 (green).
Dots show individual realizations for σ = 0.1.

the relative pressure drop is positive, indicating that the effective permeability of the
roughened cell is lower than the uniform cell. However, for higher B when the flow has
channelized, (∆p− S∞)/S∞ < 0. Thus, a channelized rough conduit is more permeable
than a uniform cell.

To collapse the results for different scales of roughness, we further scale the relative
pressure drop by σ2, which corresponds to the dependence expected for a Newtonian fluid
in a cell with low-amplitude roughness (Zimmerman & Bodvarsson 1996). The scaling
with σ2 arises because the flow encounters variations in the width with zero spatial
average, which demands that resistance is modified at second order. On the other hand,
for larger values of B the fluid is diverted into channels that are, on average, wider than
the mean cell width, leading to a deviation from the scaling of the relative pressure drop
with σ2 (figure 13d).

The results of this section suggest that, in the limit B → ∞, a network of a small
number of infinitely narrow channels survive. As discussed in §2.3, this limit corresponds
to the flow at the initiation of motion. In fact, when the slot has no spatial symmetry
(other than the base periodicity), multiple channels are unlikely to support equal pressure
drops, and so it is natural to anticipate that channels continue to disappear with all but
one remaining in the asymptotic limit B →∞ (as in the final panel of figure 12). In the
following section we show that this “break-through” channel can be constructed more
directly using an optimization procedure.
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6.3. Break-through channels

6.3.1. The optimization problem

The infinitely narrow channel that opens up in the limit B → ∞ is characterized
by Y → h all the way along its length, or S ∼ B/h(x, y). At first sight (since S2 ≡
p2x + p2y), this suggests that the pressure satisfies the eikonal equation. However, the
limiting channel constitutes a curve on the (x, y)−plane, and S ∼ B/H applies only
along its course. Thus, if the curve is parameterized by its arc length s, we have

dp

ds
=

B

h(x(s), y(s))
,

(
dx

ds

)2

+

(
dy

ds

)2

= 1, (6.2a, b)

and the scaled pressure drop across this pathway is

1

B
∆p =

1

B
[p(x(s), y(s))]

`
s=0 =

∫ `

0

ds

h(x(s), y(s))
, (6.3)

where ` is the total path length. The path with the lowest pressure drop can therefore
be determined by searching for the minimum of the functional,∫ `

0

[
1

h
− λ(s)

(
1− x2s − y2s

)]
ds, (6.4)

where λ(s) is a Lagrange multiplier.
For our periodic unit cells, the path must have the endpoints [x(0), y(0)] = [0, y0] and

[x(`), y(`)] = [1, y0], for some 0 6 y0 6 1. This condition translates to the imposition of
homogeneous boundary conditions when considering the variations of the channel path
about the optimal solution. The Euler-Lagrange equations for the optimal path are then

2 (λxs)s +
hx
h2

= 2 (λys)s +
hy
h2

= 0, (6.5)

along with the constraint x2s + y2s = 1. Multiplying the first relation in (6.5) by λxs
and the second by λys, then adding the results, leads to (λ− h−1)s = 0. Hence we take
λ = h−1 to obtain

xξξ +
yξ
h

(hxyξ − hyxξ) = yξξ +
xξ
h

(hyxξ − hxyξ) = 0. (6.6)

where ξ = s/`. By using the variable ξ, we may avoid the unknown path length `, and
the boundary conditions become [x(0), y(0)] = [0, y0] and [x(1), y(1)] = [1, y0]. Although
in general it is straightforward to construct numerical solutions to (6.6) for an arbi-
trary starting position y0, these solutions are typically unacceptable because they are
not smooth periodic functions in x; i.e. xs(0) 6= xs(1) and ys(0) 6= ys(1). Only certain
special choices of y0 will lead to acceptable, periodic solutions. The set of possible so-
lutions, characterized by these special values of y0, correspond to local extrema of the
pressure drop (6.2a), and we identify the solution with the lowest pressure drop as the
break-through channel. Note that one can formulate the optimal path problem using
the alternative parameterization, y = f(x), which leads to a lower-order system of Euler-
Lagrange equations. We use (6.6), however, to avoid any issues with the parameterization
becoming multi-valued.

The optimization problem that underlies (6.6) amounts to finding the path across the
periodic domain that minimizes [h(x(s), y(s))]−1, or equivalently maximizes the sampling
of local expansions of the slot. However, in view of the path integral, the optimization
simultaneously seeks to minimize the path length. Thus, the optimal solutions are those
that minimize the deviations from straight lines in the flow direction whilst preferentially
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sampling slot expansions. For example, a long winding path that traverses all the widest
sections of the slot is unlikely to give the lowest pressure drop, unless the variations in
the width of the cell are very large.

6.3.2. Optimal paths

We begin with a brief outline of some instructive asymptotic limits of the optimization
problem. First, if h = h(x), equations (6.6) have the solution x(ξ) = ξ and y(ξ) = y0; i.e.
straight lines parallel to the flow direction. All values of y0 are acceptable in this instance,
as expected when the slot is uniform in y and unplugs everywhere simultaneously at the

critical pressure drop B−1∆p =
∫ 1

0
[h(x)]−1 dx. Secondly, if h = h(y), the optimal paths

are again straight lines with x(ξ) = ξ and y(ξ) = y0, although the only possible values
of y0 satisfy hy(y0) = 0. Thus, unsurprisingly, the first channel opens along the widest
expansion of the slot.

Another informative limit is when the conduit is almost uniform, such that h = 1 +
σF (x, y) with σ � 1. To find the solution is this limit, we set

x = ξ + σ2x2(ξ) + ... and y = y0 + σy1(ξ) + σ2y2(ξ) + ... (6.7)

Substituting these sequences into (6.6) gives, to leading order in σ,

y1ξξ + Fy(ξ, y0) = 0, x2ξξ + y1ξFy(ξ, y0) = 0. (6.8)

Thus,

y1 = Φ(ξ, y0) x2 = −
∫ ξ

0

Φ2
ξ dξ, (6.9)

if Fy(ξ, y0) = Φξξ(ξ, y0). Not all of these solutions are acceptable, however, as higher-
order corrections may not be periodic. In particular, we must constrain the starting value
y0 by demanding that

0 = [y2ξ]
ξ=1
ξ=0 =

∫ 1

0

[F (ξ, y0)Φξξ − Fx(ξ, y0)Φξ − Fyy(ξ, y0)Φ] dξ. (6.10)

Solutions of (6.10) pick out specific values of y0 at which channels are initiated. The
channels are nearly straight lines, aligned with the pressure gradient; the minimization
of the path length overwhelms the preference for local expansions in this limit.

The break-through channels for the realisation of the roughness in figure 12 are shown
in figure 14(a), overlain on a map of the topography; a selection of some other optimal
channels is shown in figure 14(b). The full set of optimal path solutions and their depen-
dence on σ for this realisation is excessively convoluted, owing to the complexity of the
roughness. A more transparent illustration of typical optimal path solutions is provided
by a simpler realisation of (6.1) with α = 4, k∗ = 3 and kt = 20, as shown in figure
15(a). Numerical flow solutions at large Bingham number for three values of the rough-
ness amplitude σ are shown in figure 15(b-d). For the largest value of σ, only one channel
remains at this value of B, while for smaller σ there are still a network of channels.
Solutions of (6.6) for the optimal pathways are overlain in these figures, including those
corresponding to elevated as well as reduced pressure drops. In each case, the channel
with the smallest pressure drop lies along the centre of the dominant channel from the
numerical flow solution.

In figures 14(b) and 15(b–d), there are a number of solutions that give a favourable
pressure drop (i.e. ∆p < limB→∞ S∞ = B) as well as the break-through channel. As
illustrated in both of these figures, some of these “secondary” pathways actually pick
out other channels in the networks of the flow solutions. In fact, the average pressure
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Figure 14: Optimal paths for the realisation of the topography from figure 12. (a) Density
map of the topography overlain by the break-through channels for σ = 0.05 (solid),
σ = 0.1 (dashed), and σ = 0.3 (short dashed). (b) A density map of Q from the numerical
flow solution for σ = 0.1 and B = 105, as in the right-hand column of figure 12(b), overlain
by a selection of optimal paths (thin blue lines). The stars indicate the break-through
channel.

drop of the flow solutions in figure 15 is indeed higher than the pressure drops of several
secondary channels (figure 15f ), which suggests that they could also open up in addition
to the main break-through channel.

Although the optimal paths coincide with favourable topographic features at least
somewhere along their lengths, they are very sensitive to the detailed topography, and it
is difficult to anticipate from the density plot of h(x, y) alone where the break-through
channel appears (cf. figure 14a). Moreover, a small change of parameters can lead to a
sudden switch in the location of this pathway, as is evident in figure 14(a), where the
break-through channels correspond to two distinct optimal solutions for different values
of σ. Sometimes, the geometry of a flow channel is also slightly different from any optimal
solution, with fluid following one of the paths for part of its course before taking a wrong
turn around a topographic feature and then aligning with a second path for the remainder
of its journey (examples can be seen in figure 14b).

An impression of the full richness of the solution structure for the simpler model
topography is shown in figure 15(e). This picture shows an almost complete collection
of the optimal channel paths, as a bifurcation diagram on the (σ, y0)−plane. For σ → 0,
there are fifteen acceptable values of y0, as indicated by circles on the bifurcation diagram.
The corresponding pathways are almost straight lines on the physical plane, as illustrated
for σ = 0.05 in figure 15(b). Increasing the roughness amplitude σ prompts a number
of saddle-node bifurcations; two optimal solutions disappear near σ = 0.01, but many
more appear for higher values of σ, leading to over fifty solutions at σ = 0.33. For such
high levels of roughness, there are evidently preferred routes through the topographic
maze, with paths converging then diverging as one traverses the periodic domain (see,
e.g. figure 15d). The solution structure of the more complex topography of figure 12 is far
richer still, with the bifurcation diagram for this case consisting of many more solution
branches, which we have not mapped out in full.

We also note that it is possible to proceed a little further with the analysis of the break-
through channel and explore the flow structure about the optimal path. A convenient
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Figure 15: Optimal paths for a realization of the topography (6.1) with k∗ = 3, α = 4,
and kt = 20, as shown in (a). (b–d) Density maps of Q from full numerical solutions with
B = 105, overlain by optimal paths, for (b) σ = 0.05, (c) σ = 0.1, and (d) σ = 0.3. Stars
indicate the path with the lowest pressure drop. Blue (green) indicates ∆p < B (∆p > B).
(e) An almost complete bifurcation diagram of the optimal paths, coloured according to
the scaled pressure drop ∆p/B along that path, as a function of the roughness amplitude
σ. The stars show the path with the lowest pressure drop. The red circles indicate the
starting locations for σ → 0, as given by (6.10). Vertical dashed lines indicate the location
of the three solutions shown in (b–d). (f ) The scaled pressure drops of the optimal-path
solutions shown in (e), together with the mean values of the full numerical solutions in
(b–d) (dots; computed as indicated in Appendix C).
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way to proceed with this analysis is to return to (2.19) and then change coordinates from
the Cartesian frame to an orthogonal pair based on the arc length of the optimal path.
The main balances in the resulting equation for B � 1 furnish the scaling Q ∼ B1/3 and
a channel width of O(B−1/3). Although the scaling of the flux matches the observation
in figure 13(a), the detailed solution for the structure of the break-through channel is
more subtle, with the problem boiling down to a boundary-layer equation like that found
earlier for flows around obstacles (see Appendix B).

We conclude with a cautionary remark on the validity of all the solutions involving a
cell with a variable width discussed in §§ 5–6. It is important to bear in mind that these
solutions remain valid only within the Hele-Shaw approximation, namely, when the topo-
graphic slopes are small. If slopes are large, this approximation can break down, which,
for viscoplastic fluids, can lead to the formation of “residual wall layers” corresponding
to localised plugs that fill topographic cavities (e.g. Roustaei & Frigaard 2013). As long
as the cell is sufficiently thin, however, this break-down of the Hele-Shaw approximation
can be avoided and our results remain relevant.

7. Conclusions

In this paper we have considered the flow of a viscoplastic fluid through a Hele-Shaw
cell in the presence of obstructions or variations in the width of the cell. We first explored
the flow patterns around circular or elliptical blockages placed in the slot, by analogy to
Hele-Shaw’s classical visualizations of potential flow of Newtonian fluid around obstacles.
When the fluid has a yield stress, vanishing pressure gradients near the blockage lead
to local patches of stagnant fluid that extend ahead of and behind the object. As the
Bingham number is increased, the stagnant regions become longer, which has the unex-
pected effect of funnelling the fluid past the sides of the object in increasingly fast-moving
boundary layers. In addition to complete blockages of the cell, we considered obstructions
to flow created by step-wise changes in the width of the cell, and again identified the
flow patterns and stagnant regions. We also explored the flow around periodic arrays of
these objects, which provided a stepping stone to the more complex geometry of a cell
with rough walls.

A key result of our analysis is that the yield stress can substantially extend the influence
of an obstacle both up and downstream. Somewhat counterintuitively, local expansions
of the slot are more effective at diverting viscoplastic flow than contractions. For arrays
of obstacles, the flow can channelize when the obstructions align with the flow direction.
In randomly roughened slots this feature can occur naturally, leading to dramatic chan-
nelization and large regions of stagnant fluid when either the yield stress is relatively
high or the pressure gradient is relatively weak. In the latter case, which corresponds to
the situation at the onset of flow, we developed an optimization algorithm to determine
the path of the channels through the otherwise stagnant fluid.

Previous studies of Newtonian flow in cells with arrays of obstructions or roughened
walls have focussed on the effect of the geometry or roughness on the hydraulic resistance
of the cell, or, when interpreted as a simple model for a porous medium, the effective
permeability of the matrix. For the viscoplastic problem, the rheology of the fluid, rather
than the geometry of the cell, dominates the resistance, because the yield stress signifi-
cantly modifies the pressure drop required to drive a given flux, even if the slot is uniform.
Nevertheless, in addition to the dominant rheological effect, one can also examine the
impact on the pressure drop of roughening the slot or placing obstacles within it. In
particular, if the yield stress is large enough, the flow channelizes and fluid is diverted
into conduits that are wider, on average, than the bulk of the slot. As a result, unlike
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in the Newtonian problem (e.g. Zimmerman & Bodvarsson 1996), topography leads to
a lower pressure drop, or equivalently an enhanced permeability, relative to the uniform
cell.

Acknowledgements: DRH is grateful to the Killam Foundation for a Postdoctoral
Fellowship.

Appendix A. Numerical method

Here we summarize the augmented Lagrangian numerical scheme used to solve (2.19).
We do not discuss the derivation of the method, as it can be found in various previ-
ous papers on the subject (see, for example, Pelipenko & Frigaard (2004)). Instead, we
informally outline a physical interpretation of how the method works.

The numerical scheme takes the form of sequential iteration of an approximate solution
ψn via the introduction of two dummy vectors qn and µn, which converge towards ∇ψ
and (py,−px), respectively, as n→∞. At each step n, the triad [ψn, qn,µn] satisfy

µn = µn−1 + r̃
(
∇ψn−1 − qn−1

)
, (A 1)

∇2ψn =∇ · qn−1 −
1

r
∇ · µn, (A 2)

qn = Θn (µn + r∇ψn) , (A 3)

where r and r̃ are relaxation parameters, and Θn is determined by

Θn = 0, Xn ≤ B/h,
S(ΘnXn) + (rΘn − 1)Xn = 0, Xn > B/h, (A 4)

with Xn = |µn + r∇ψn|. The numerical scheme consists of the iterative solution of these
equations until the variables have converged, given some initial guess [ψ0, q0,µ0].

The key strength of this numerical scheme lies in the reduction of a nonlinear elliptic
equation (2.19) to an iterative procedure involving only the solution of a linear Poisson
equation and a nonlinear algebraic equation. Formally, the algorithm can be derived by
posing the variational form of (2.19) as a minimisation problem over ψ, and then iterating
towards the solution of the resulting Euler-Lagrange equations rather than solving them
directly. However, the details of this derivation cloud the physical intuition into how
and why the scheme works. In essence, the method entails the coupled relaxation of the
flux and the pressure gradient towards the true solution of (2.19), in such a manner
as to avoid having to solve the nonlinear PDE. (In fact, for notational convenience qn
is chosen to converge to the gradient of the streamfunction rather than to the flux,
and µn to the curl of the pressure rather than to the pressure gradient.) Crucially, the
nonlinearity of the original equation is dealt with directly at each step in (A 4) as an
algebraic relationship between the magnitude of the flux (i.e. of qn) and the magnitude
of the pressure gradient (i.e. of µn). The direction of the pressure gradient is explicitly
imposed to converge towards that of the flux, via (A 1), while the Poisson equation (A 2)
ensures incompressibility in the eventual converged solution. As the variables converge,
the conditions Xn > B/h and Xn < B/h in (A 4) reduce to conditions on whether
S = |∇p| = |µn| is greater than or less than B/h, and thus whether the fluid is plugged
or not.

We solved the system of equations using a finite-difference method. For the case of
a full obstruction, when the boundary of the obstruction was also the boundary of
the domain, we used either plane radial polar coordinates or elliptic polar coordinates,
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depending on the shape of the obstruction. In the case of a contraction or expansion
(§5), we solved the equations across the whole domain in Cartesian coordinates. In all
cases, the Poisson equation was solved at each step using a multigrid scheme. Following
Pelipenko & Frigaard (2004), we measured the residual in qn as a means of determining
convergence of all the variables; we considered the solutions to have converged when∫
x,y

∣∣qn − qn−1∣∣ dx dy < 10−7. Convergence was, in general, fairly slow: typically, be-

tween 100 and 1000 iterations were required, with a relaxation parameter of r = 0.5B1/3.
We determined the location of the yield surfaces in the converged solution by the contour
|µ| = (1 + ε)B/h, where the small parameter ε = O(10−4) was introduced to account for
the very slow convergence of solutions in the vicinity of the boundary of the plug regions.
An estimate of the global error in the solutions are given by the numerical resolution:
typical grid sizes were O(10−3), which we judged to be adequate based on comparison
with some calculations with a higher resolution. We refer the reader to some further
discussion of convergence and accuracy in Pelipenko & Frigaard (2004) and references
therein.

Appendix B. Large-B scalings for flow around an ellipse

For an elliptical obstacle placed in the flow, with semi-major and minor axes of a and
b and orientated at an angle α with respect to the flow direction, we may parameterize
the boundary in terms of ν by

(x, y) = c

(
1 +

λ2

c2

)
[cos(ν + α), sin(ν + α)], (B 1)

where c = 1
2 (a+ b) and λ = 1

2

√
a2 − b2. Hence, on the boundary

( dx, dy) = c

[
−
(

1 +
λ2

c2

)
sin(ν + α),

(
1− λ2

c2

)
cos(ν + α)

]
dν, (B 2)

and so ν is related to the flow angle θ, defined in (3.1), by

tan θ tan(ν + α) +
c2 − λ2
c2 + λ2

= 0, (B 3)

giving ν = ν(θ). On the boundary of the obstacle, dψ = 0 and so

−SG(θ) dθ = dp = pQ dQ+ pθ dθ, (B 4)

from (3.3)–(3.4) and (B 2), where

G(θ) = cν′(θ)

√
1 +

λ4

c4
− 2λ2

c2
cos 2(ν + α) (B 5)

Hence, the boundary condition on the obstacle, dψ ≡ ψQ dQ+ψθ dθ = 0, can be written
as

SGψQ −
(SψQ)2

QSQ
=

S

Q2
ψ2
θ . (B 6)

We consider general Hershel-Bulkley flow with power-law index n, for which the func-
tion S is given by (2.18). When B � 1, we expect that Y → 1 and so S − B =
O(BQ)n/(n+1). The first term in (3.2) is therefore expected to be of orderB1/(n+1)Q−n/(n+1).
Thus, over the region of the hodograph plane with Q = O(1), the inclination of the
velocity field must be O(B−1/2(n+1)). Using (3.3) and (3.4), we also find that p =
O(B(2n+3)/(2n+2)), x = O(B1/(2n+2)) and y = O(1). In other words, the (Q, θ) =



Viscoplastic flow in a Hele-Shaw cell 29

O(1, B−1/(2n+2)) region of the hodograph plane corresponds to a far-field incoming or
outgoing flow satisfying (3.2), with a simplified asymptotic S(Q) function. The limiting
form of the problem in the (x, y) plane (2.19) is a little more complicated: the scalings
of the derivatives of the streamfunction indicate that |ψy| � |ψx| and (2.19) reduces to(

ψx
ψy

)
x

−
(
ψ2
x

2ψ2
y

)
y

+B−1/(n+1)

[∣∣∣∣ (n+ 1)ψy
(2n+ 1)

∣∣∣∣n/(n+1)
]
y

∼ 0. (B 7)

No analytic progress seems possible at this stage.
When the far-field flow encounters the obstacle, the plug develops, which implies the

plug has length O(B1/(2n+2)). A consideration of the boundary condition in (B 6), how-
ever, indicates that the above scalings cannot continue to hold once the plug intersects
the obstacle. In particular, the scaling of Q must change to allow a balance to be achieved
in (B 6). We find that fluxes increase to order B1/(2n+1) and the inclination of the veloc-
ity field weakens to order B−1/(4n+2). The transformation back to the hodograph plane
in (3.4) indicates that this (Q, θ) = O(B1/(2n+1), B−1/(4n+2)) region of the hodograph
plane corresponds to narrow boundary layers surrounding the uppermost and lowermost
points of the obstacle (xm, ym), where p = O(B(4n+1)/(4n+2)), x− xm = O(B−1/(4n+2))
and y− ym = O(B−1/(2n+1)). In other words, all the fluid that must pass around the ob-
stacle does so within narrow boundary layers at the peripheries of the object, with local
fluxes increasing to maintain the order-one mean flux. The problem in the hodograph
plane remains (3.2) with the asymptotic S(Q) relationship, and the problem in the (x, y)
plane (2.19) again reduces to (B 7). We conclude that the plug necessarily extends to
close to the top and bottom of the obstacle, and maximum fluxes scale as B1/(2n+1).

Appendix C. The average pressure drop of the flow solution

For the periodic domains considered in §6, the computation of the mean pressure
drop is made problematic by the appearance of stagnant plugs in which the stress state,
and therefore the pressure gradient, is formally indeterminate. Nevertheless, within any
yielded section of the flow, ∇p = (px, py) is known, and one can perform a path integral
along a streamline C to establish the drop in pressure from one side of the domain to the
other:

∆p =

∫
C
∇p · d` =

∫ 1

0

SQ

|ψy|
dx, (C 1)

where d` denotes the line element along the streamline. Averaging (C 1) in y over all
the yielded sections of the flow then furnishes the mean pressure drop, avoiding the
indeterminacy in the stagnant plugs.
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