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ABSTRACT 

Tropical montane cloud forests (TMCF) are characterized by short trees, often twisted 

with multiple stems, with many stems per ground area, a large stem diameter to height 

ratio, and small, often thick leaves.  These forests exhibit high root to shoot ratio, with a 

moderate leaf area index, low above-ground production, low leaf nutrient 

concentrations and often with luxuriant epiphytic growth.  These traits of TMCF are 

caused by climatic conditions not geological substrate, and are particularly associated 

with frequent or persistent fog and low cloud. There are several reasons why fog might 

result in these features.  Firstly the fog and clouds reduce the amount of light received 

per unit area of ground and as closed-canopy forests absorb most of the light that 

reaches them the reduction in the total amount of light reduces growth. Secondly, the 

rate of photosynthesis per leaf area declines in comparison with that in the lowlands, 

which leads to less carbon fixation.  Nitrogen supply limits growth in several of the few 

TMCFs where it has been investigated experimentally.  High root:shoot biomass and 

production ratios are common in TMCF, and soils are often wet which may contribute to 

N limitation.  Further study is needed to clarify the causes of several key features of 

TMCF ecosystems including high tree diameter:height ratio.  
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INTRODUCTION 

Distinctive forest vegetation on tropical mountains that are frequently or persistently 

immersed in ground-level clouds often is described as tropical montane cloud forest 

(TMCF). These forests often exhibit a variety of ecological features that distinguish them 

from tropical forests that are more rarely exposed to ground-level clouds, especially a 

stunted and gnarled canopy with high cover of epiphytes (especially bryophytes and 

filmy ferns, Hietz 2010). The overriding role of cloud immersion in shaping this 

vegetation’s physiognomy is emphasized by its recurrence across sites for which other 

environmental factors (e.g. temperature, precipitation, altitude, wind, slope, soils) 

exhibit wide variation; and in tropical regions with different biogeographic affinities. 

The mechanisms contributing to distinctive TMCF physiognomy and ecology have 

received long and detailed study, beginning with Shreve (1914) and Brown (1919), and 

including a recent synthesis volume detailing current  advances (Bruijnzeel et al. 2010). 

The objectives of this paper are to provide a concise overview of ecological interactions 

that characterize these distinctive forests and to suggest directions for future study.  We 

define TMCF primarily on the basis of frequent cloud immersion, distinguishing these 

tropical montane forests from other tropical forests in drier and warmer environments.   

 A variety of schemes for classifying tropical montane forest vegetation zones has 

been devised, and the designation of TMCF generally coincides with tropical montane 

rain forest (Grubb 1971) or upper montane rain forest and subalpine forest; this 

includes forests affected by frequent and/or persistent ground-level cloud (Grubb 

1977). Greater cloud immersion typically accompanies decreased temperatures with 

increasing altitude (Bruijnzeel & Hamilton 2000). We emphasize at the outset that the 

designation of a discrete TMCF type can be misleading because most commonly the 
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composition and structure of tropical montane vegetation exhibits more or less 

continuous variation across complex environmental gradients (Lieberman et al. 1996).  

Moreover, precise delineation of the distribution of TMCF is problematic because direct 

observations of ground-level clouds are not available on an extensive basis.  Mulligan 

(2010) demonstrated that limits of TMCF-classified vegetation coincide best with 

forested landscapes where greater than 70% of the time satellite-visible clouds and/or 

ground-level condensing conditions (modelled) occur. Also, strictly speaking tropical 

cloud forests are not restricted to mountains (Gradstein et al. 2010), but they are most 

commonly observed between about 1000 m and 2500 m asl; they are found in sites with 

a range of temperatures. Jarvis & Mulligan (2010) demonstrated that the climate of 

TMCFs is significantly different from other tropical montane forests, especially in terms 

of lower Tmax and Tmean, mostly because they occur at higher altitude.  TMCFs tend to be 

much closer to coasts, as the oceans provide a continuous source of atmospheric 

moisture to supply cloud formation. Also, cloud forests tend to occur more frequently 

on topographically exposed landscapes, ridges or peaks, than other montane forests. 

The geological settings of TMCFs are not distinctive and their soils exhibit a wide range 

of properties. A particularly distinctive feature of TMCF distribution is the so-called 

Massenerhebung (or mass-elevation) effect: the elevation of TMCF is much lower on 

smaller than on larger mountain massifs (Grubb 1971); the smaller mountains tend to 

be closer to the sea. The tropical Massenerhebung effect reflects greater cloud 

immersion on smaller mountains resulting from lower temperatures and a steeper 

adiabatic lapse rate owing to proximity to the sea; hence, this effect further emphasizes 

the key role played by climate and cloud immersion in defining TMCF distribution. 
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 A suite of biotic features characterizes TMCF in contrast to other tropical forests 

(Table 1). These features vary among TMCFs as a result of differences in environments 

and floras; for example, not all TMCFs are stunted, and stunting and twisting are not 

confined to wet TMCF.  Also, most research relating environment and vegetation in 

TMCF has been conducted in the neotropics and a few other locations (e.g. Hawaii), and 

wider study is needed to better characterize global relationships.  Nevertheless, we 

would argue that certain ecological features comprise a useful, unifying set that defines 

and aids in analyzing the TMCF phenomenon.  The low height, or stunting, of the canopy 

is common in most TMCF. Although decreased forest canopy height accompanies 

declining temperature at high elevation in most of Earth’s mountains, stunting in the 

TMCF can be extreme (Weaver et al. 1986). Moreover, the TMCF stems are often gnarled 

and twisted or leaning, and multi-stemmed trees are common (Bellingham & Sparrow 

2009). The leaf area index (LAI) in most TMCFs is lower than for lowland forests (Moser 

et al. 2007, Unger et al. 2012). The ratio of stem diameter to tree height increases with 

altitude on most tropical mountains (Girardin et al. 2014a), and stem density is usually 

higher in TMCF than in lower montane forests. Canopy openings are often more 

frequent in TMCF (Asner et al. 2014) which together with the humid climate and low 

LAI favours high abundance of tree ferns (Lieberman et al. 1996), and other ferns 

(Salazar et al. 2013).  Leaves of many TMCF species are classified as microphylls 

(Sugden 1985, Tanner & Kapos 1982), and leaf thickness is often high.   A final canopy 

feature that is particularly distinctive in most TMCF is the high abundance of epiphytes, 

especially liverworts, mosses and filmy ferns (Hietz 2010); at the extreme all stem 

surfaces can be clothed in a thick layer of epiphytes, and epiphyte-derived canopy soil 

(decaying organic matter) accumulates (Bohlman et al. 1995, Golley et al. 1971). 
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 Although soils of TMCF exhibit a wide range of physical and chemical properties, 

certain below-ground features appear to be common (Roman et al. 2010). Root biomass 

and the root:shoot ratio of TMCF are higher than in most other closed-canopy forests, 

and some evidence suggests distinctively high below-ground production (Girardin et al. 

2010, Moser et al. 2011). Most TMCF soils exhibit high soil organic matter content and 

many have a deep organic horizon developed over the mineral soil; this organic horizon 

may be peat (due to waterlogging) or mor humus (due to acidity and phenolics) or 

intermediate (Roman et al. 2010).  Perhaps most importantly TMCF soils are often wet 

because of the combination of high precipitation and low evaporative demand (cool and 

humid), and as a result of persistent saturation many TMCF soils are low in oxygen, 

exhibiting reducing conditions (Silver et al. 1999). Together with slow nutrient 

recycling through dead organic matter, these reducing conditions can contribute to 

chronic nutrient limitation of plant production, especially N limitation (Tanner et al. 

1998).  

HYPOTHETICAL FRAMEWORK 

The environmental and biotic factors that characterize the ecological interactions in 

TMCF are summarized in a conceptual diagram (Figure 1). Because the distinctive 

features of TMCF (Table 1) are expressed over a wide range of environments and to 

differing degrees among TMCFs, the contribution of various driving factors undoubtedly 

differs among TMCFs; indeed, this variation provides insights for understanding the 

causes of the TMCF phenomenon. 

Following on early work of Shreve (1914), Brown (1919) and many others, we 

hypothesize that the primary factor shaping the TMCF is the climatic driver: the 

combination of relatively low temperatures, high humidity and cloud immersion. This 
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primary driver either directly influences, interacts with, or is augmented by a suite of 

secondary factors to limit the above-ground productivity of TMCF and contribute to 

their distinctive structure.   Here we provide a brief summary of a hypothetical causal 

framework for the ecosystem features of TMCF followed by a detailed overview of 

current evidence.  We again emphasize that TMCF actually exhibits a broad range of 

ecosystem features.   

 The key role played by cloud immersion in shaping the TMCF ecosystem seems 

clear, but the mechanisms by which cloud immersion leads to the distinctive 

physiognomy and functions of TMCF are not entirely obvious. Light availability 

undoubtedly limits net photosynthesis in TMCFs (Figure 1) compared with forests in 

less cloudy climates. For example, TMCF at 1550 m asl in Jamaica received 19% less 

shortwave radiation than a site in the drier lowlands near sea level (Aylett 1985). The 

low air temperature in high-elevation TMCF limits C assimilation (Wittich et al. 2012) 

and net primary productivity (Figure 1) in much the same way as noted for temperate 

alpine tree-line environments (Tranquillini 1979). Moreover, in the cloudy conditions of 

TMCF leaf temperatures are typically lower than for sunlit leaves, further constraining 

photosynthesis.  

Nutrient limitation of above-ground production is suggested by the high 

root:shoot production ratio observed in TMCF (Moser et al. 2011), and current evidence 

points to low nitrogen availability as the most common cause of nutrient limitation in 

TMCFs (Cleveland et al. 2011, Fisher et al. 2013), though there is good evidence that 

both P and N are limiting in some TMCF (Homeier et al. 2012). Chronic N limitation of 

above-ground productivity (Figure 1) results from some combination of low input, high 
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losses and delayed recycling owing to suppressed microbial activity in the usually cool 

and wet TMCF environment.  

High annual precipitation in TMCF, including the contribution of wind-driven 

rain or cloud drip, assures that most TMCFs are not much affected by soil drought. Quite 

the contrary, high rainfall and low evaporative demand associated with cool, humid 

atmospheric conditions result in soils that, in many sites, are often at or near saturation 

(Figure 1). The mechanisms whereby saturated soils contribute to TMCF dynamicsare 

complex. First, the direct effect of low oxygen on root function probably plays a varying 

role, depending upon plant species and the frequency and extent of anaerobic 

conditions in soil. In some situations root penetration of soil may be restricted leading 

to shallow rooting and low resistance to uprooting during windstorms (Soethe et al. 

2006). Also, nutrient uptake by roots may be further curtailed by low-oxygen 

conditions. Together these influences contribute further to chronic N limitation and low 

canopy C assimilation. Moreover, a higher proportion of assimilated C is allocated below 

ground to acquire soil nutrients and maintain wind-firmness, feeding back to lower 

above-ground net primary productivity (ANPP, Figure 1). 

 Another striking feature of TMCF ecosystems is the frequently high accumulation 

of epiphytes, especially bryophytes, made possible by the high atmospheric moisture 

(Figure 1). The effect of high epiphyte loads on the other features of TMCF ecosystems 

has received limited attention. It is possible that the high mass loading of water-

saturated bryophytes might lead to structural stability problems in some TMCFs, 

thereby contributing to observed canopy stunting, high tree diameter: height ratios and 

greater allocation to root systems. The role of wind in shaping TMCFs (Figure 1) has 

been suggested (Lawton 1982) and high winds can induce some of the canopy traits of 
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cloud-forest trees (Cordero 1999), but TMCF stunting is also expressed in low-wind 

environments (Martin et al. 2007). The high frequency of canopy openings in some 

TMCFs has been ascribed to low ANPP and slow closure of forest openings, thereby 

favouring high density of understorey stems (Asner et al. 2014). 

A final consideration in the structure and function of TMCF is the contribution of 

phylogenetic vs phenotypic factors. Stunting of TMCF trees is seen in species that grow 

much taller at lower altitudes; for example, in Jamaica one of the most common species 

in the most stunted (mor ridge) forest, Clethra occidentalis, also grows to nearly 30 m 

tall in lowland wet limestone forest. Other species common in the most stunted TMCF in 

Jamaica are found only as epiphytes at lower altitude (e.g. Clusia havetioides) or absent 

at lower altitudes (e.g. Lyonia jamaicensis). Conversely, some TMCF, which show 

extreme stunting, are dominated by species which are rare or absent at lower altitudes, 

for example the trees dominating the elfin forest on Pico del Este in Puerto Rico 

(Howard 1968). Thus, TMCF structure can result from inflexible species characteristics 

but also from flexible responses to the extreme environment in plastic species.  

MECHANISMS AND EVIDENCE 

Cloudiness and effects of cloud immersion 

Persistent cloudiness and cloud immersion reduce insolation relative to clear sky in 

TMCFs (19% in Jamaican TMCF, Aylett 1985, Hafkenscheid 2000; 40% in Puerto Rican 

TMCF, Baynton 1968; 62% in Bolivia, Schawe et al. 2010), but surprisingly little 

research has been conducted to quantify the effects of reduced photosynthetic photon 

flux density (PPFD) on photosynthetic C gain in TMCF vegetation. In a subtropical 

montane cloud forest, eddy flux measurements demonstrated that whole-canopy CO2 
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uptake was reduced by 21% under foggy conditions that reduced insolation by 64% in 

comparison to non-foggy conditions (Mildenberger et al. 2009; Figure 1).  Moreover, the 

light climate in TMCF is one of very low PPFD in fog potentially followed by very high 

PPFD in bright sunlight; the switch between high and low light in TMCF could be 

deleterious.  However, evidence to date does not suggest that TMCF species exhibit 

highly distinctive photosynthetic physiology in comparison with lowland trees.  For 

example, an investigation of the photosynthetic characteristics of leaves from TMCF at 

3025 m asl in the Peruvian Andes concluded that, the maximum carboxylation capacity 

and the maximum rate of electron transport were not different from values for lowland 

rain forest leaves (on a leaf area basis, when calculated for a standard temperature of 

25°C), but dark respiration was higher (van de Weg et al. 2012). Moreover, van de Weg 

et al. (2009) observed that leaf optical properties of cloud-forest species were similar to 

those of rain-forest trees, with typical ranges of plasticity in leaf mass per area with 

depth in the canopy.   In a pantropical survey, Wittich et al. (2012) concluded that light-

saturated photosynthesis may decline slightly with increasing altitude in tropical 

mountains, but the explanation of this observation was not clear and possibly is related 

to inorganic nutrition and low temperature; they suggested that low N and P availability 

might limit compensatory responses of enzyme activity that could otherwise balance 

effects of low temperature.  In sum, the combination of low total PPFD and low 

temperatures appears to constrain net C gain in TMCF (Figure 1), but further research is 

needed to clarify the exact mechanisms.  An additional influence of cloud immersion on 

photosynthesis may result from leaf wetness: water films on the abaxial leaf surface 

could constrain diffusion of CO2 into the leaf mesophyll and limit photosynthesis (Letts 

& Mulligan 2005).  However, data on leaf wetness in cloud-forest trees is needed to 

confirm the importance of this mechanism. 
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 Cloud immersion strongly affects the ecosystem water balance both by reducing 

evapotranspiration and through the enhanced precipitation inputs associated with 

wind-driven fog collected on canopy surfaces. Both potential and actual 

evapotranspiration rates are considerably lower in TMCF than for adjacent lower 

montane forests (McJannet et al. 2010, Santiago et al. 2000, Schawe et al. 2010), but the 

magnitude of this difference varies with climatic features both among (Mulligan 2010) 

and within (Lawton et al. 2010) montane regions.  Recent advances in the measurement 

of fog interception have clarified the role of cloud immersion in augmenting 

precipitation in TMCF. Holwerda et al. (2010) concluded that cloud-water interception 

exceeded 1 mm d-1 in a Puerto Rican elfin forest, and Häger & Dohrenbusch (2011) 

estimated as high as 3560 mm y-1 of horizontal precipitation in north-western Costa 

Rica. Giambelluca et al. (2010) estimated over 1000 mm y-1 in a wet cloud forest in 

Hawaii; however, they concluded that most of the intercepted water was re-evaporated 

rather than reaching the ground as cloud drip. The combined effect of reduced 

evapotranspiration and enhanced precipitation associated with cloud immersion might 

increase the frequency and duration of soil saturation in TMCFs (Schawe et al. 2010; 

Figure 1). 

 A final direct effect of cloud immersion contributing to the TMCF ecosystem is 

associated with the composition and abundance of epiphytic plants. The diversity and 

biomass of both vascular and non-vascular epiphytes is high in most TMCFs, and cloud 

immersion undoubtedly contributes to this pattern (Figure 1). The most distinctive 

feature of the epiphyte vegetation in many TMCFs is the high abundance of non-vascular 

species and filmy ferns (Hymenophyllum spp.) that often cover nearly all stem surfaces 

(Hietz 2010, Horwath 2011).  The epiphytic bryophytes of TMCF are predominantly 
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leafy liverworts (Jungermanniales) in contrast to lowland rain forest where true mosses 

can be equally common (Horwarth 2011).  Among ferns, the genera Hymenophyllum and 

Elaphoglossum and the family Grammitidaceae are characteristic of TMCF (Hietz 2010, 

Kessler et al. 2001, Krömer et al. 2005). High atmospheric moisture particularly favours 

these taxa, and absorption of cloud water probably contributes to their water supply 

(Shreve 1911, Tobón et al. 2010).  The possible role of cloud-water in supplying growth-

limiting mineral nutrients to epiphytic vegetation, or favouring epiphytic N2-fixing taxa 

also is notable (Hietz et al. 2002). Conversely, epiphyte vegetation including epiphylls 

could restrict tree photosynthesis by growing over leaves and reducing light availability 

(Grubb 1977). To our knowledge, no measurements of this effect have been made for 

TMCF. 

Nutrient limitation 

The role of mineral nutrient limitation in contributing to TMCF ecosystem dynamics has 

been an enduring theme of TMCF studies. An early idea that reduced convective 

transport associated with low transpirational water flux limits nutrient acquisition 

(Odum 1970) has been largely discounted (Bruijnzeel & Veneklaas 1998, Grubb 1977), 

but relatively low foliar nutrient concentrations (on a mass basis) clearly pointed to the 

likelihood of nutrient limitation (Grubb 1977). Tanner et al. (1998) summarized 

experimental evidence for nutrient limitation of TMCF productivity and noted that 

most, but not all, studies indicated nutrient limitation. Moreover, they concluded that N 

was usually the principal limiting nutrient (Figure 1), a conclusion that has been borne 

out in more recent fertilization studies (Cleveland et al. 2011, Fisher et al. 2013).   These 

results agree with some observations of decreasing foliar N:P ratios with increasing 

altitude in tropical mountains (Soethe et al. 2008, van de Weg et al. 2009). 
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Photosynthetic parameters of TMCF trees also support N rather than P limitation of C 

assimilation (van de Weg et al. 2012).  However, colimitation by N and P may occur in 

some TMCF (Homeier et al. 2012), depending upon local soil properties (Wittich et al. 

2012).  Moreover, recent measurements of nitrate leaching from a TMCF in Costa Rica 

(Brookshire et al. 2012) call into question the universal role of soil N availability in 

limiting TMCF productivity. A resolution to this apparent paradox - that tree growth is 

limited by N in soils from which water with low concentrations of nitrate is draining - 

may simply be a question of relative amounts, as nitrate is very soluble and it may be 

impossible for tree mycorrhizas to take it all up. Early studies in Puerto Rico reported 

nitrate in stream water (McDowell & Asbury 1994) in an area where fertilization of 

forest recovering from a hurricane resulted in about a doubling of leaf-litter production 

(Zimmerman et al. 1995). 

Evidence about the mechanisms contributing to apparent N limitation of TMCF 

productivity is not entirely conclusive; any or all of low N inputs, delayed recycling or 

high N losses could contribute to chronic N limitation. Benner et al. (2010) concluded 

that the generally low nutrient status of TMCF compared with other tropical forests 

probably is not associated with chronically low nutrient inputs but rather with 

differences in the rates of nutrient cycling or losses. However, low temperatures have 

been linked to limitation of N2 fixation in Earth’s terrestrial biomes (Houlton et al. 

2008), and although they are common in lowland tropical forests, symbiotic N2-fixing 

tree taxa are uncommon in TMCF. Nitrogen fixation by lichens (Forman 1975) and other 

canopy epiphytes clearly occurs as indicated both by direct measurements (Benner et 

al. 2007) and by isotopic evidence (Hietz et al. 2002).  Free-living N2 fixation also occurs 

in forest floor and canopy soils, but the quantities remain highly uncertain and more 
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research is needed (Matson et al. 2015). Intriguingly, Benner & Vitousek (2007) 

observed that the abundance of N2-fixing canopy epiphytes was stimulated by soil P 

fertilization in a Hawaiian TMCF, suggesting a possible interaction between P and N 

supply. The high accumulation of soil organic matter in TMCF is indicative of delayed 

recycling of nutrients and could contribute to chronic N2 limitation of NPP (Tanner et al. 

1998, Unger et al. 2012). Declining temperature appears to be the principal rate-

limiting factor for declining litter decay with increasing altitude in tropical mountains 

(Salinas et al. 2011, Schuur 2001), but a possible role of excess water and low O2 is 

described below; this factor also could contribute to increased losses of N (Figure 1). 

Mycorrhizal associations undoubtedly play a key role in mediating nutrient 

relations in TMCF, but they have received limited attention to date.  Although 

arbuscular mycorrhizas are associated with most TMCF tree genera (Brundrett 2009), 

many species of Ericaceae, with their distinctive ericoid mycorrhizal associations, are 

common as TMCF epiphytes (Rains et al. 2003) and at environmental extremes in 

tropical mountains (Gentry et al. 1995).  Moreover, in some tropical regions, tree 

species supporting ectomycorrhizal associates from the families Fagaceae and Pinaceae 

are common in TMCF.  These mycorrhizal associations exhibit some systematic 

differences in nutrient acquisition mechanisms (Marschner & Dell 1994); studies of 

their efficacy across TMCF ectones where taxa with the different associations are 

present or absent might be particularly informative for understanding nutrient 

relations of TMCF. 

Nutrient limitation could contribute to TMCF ecosystem dynamics either directly 

by constraining photosynthetic activity or indirectly by diverting C from above-ground 

growth to below-ground resource acquisition (Figure 1). Fisher et al. (2013) concluded 
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that N fertilization of TMCF promoted higher stem growth not by increasing C 

assimilation but through effects on below-ground allocation. Some studies have 

demonstrated that root:shoot ratios increase with altitude on tropical mountains 

(Kitayama & Aiba 2002, Leuschner et al. 2007), and Girardin et al. (2013) provided 

evidence for a step increase in the cloud immersion zone. Moreover, some evidence 

suggests that below-ground production is especially high in TMCF (Girardin et al. 2010, 

Moser et al. 2011), although measurement of below-ground production is notoriously 

difficult and uncertain. Taken together, these observations suggest that the  low stature 

and low ANPP of TMCF results in part from relatively high below-ground C allocation 

associated with chronic N (and sometimes P) limitation (Figure 1). 

 Excess soil water and reducing conditions  

Although not all TMCFs exhibit frequent and persistent soil saturation (Roman et al. 

2010), this is clearly a common feature in many TMCFs (Schawe et al. 2010). Chronically 

high water content of soils leads to the depletion of oxygen.  Indeed, field studies 

indicate that anaerobic conditions increase along some tropical montane elevation 

gradients (Silver et al. 1999). Low soil oxygen has been suggested as a factor limiting 

the LAI of some TMCF (Santiago et al. 2010). However, it seems likely that the tolerance 

of low soil oxygen varies considerably among TMCF species so that the contribution of 

reducing conditions will vary with the phylogenetic history of the extant floras.  Rapp et 

al. (2012) attributed the low ANPP of TMCF in part to such species effects.  Notably, 

some tall, highly productive forests are found in low oxygen floodplain soils and 

swamps (Grubb 1977) including TMCF (e.g. at Monteverde, Costa Rica; R. Lawton, pers. 

comm.) 
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  Under anaerobic conditions organic matter decomposition is slow and 

incomplete, contributing to the high accumulation of soil organic matter in TMCF. 

Schuur (2001) demonstrated that lower tissue quality of leaf litter in wetter sites also 

can contribute to reduced decay rates, high SOM accumulation and delayed nutrient 

recycling. Such a mechanism appears not to be universally important in TMCF, however, 

as Silver et al. (2010) indicated, net N mineralization rates are not consistently different 

between TMCF and low-elevation tropical forest in Puerto Rico. Moreover, TMCF in 

their study exhibited higher gross N mineralization rates than low-elevation soils and 

no effect of anaerobic conditions was observed.  Clearly, further study of the 

interactions between soil N dynamics and soil saturation in TMCF is warranted. 

 Other mechanisms associated with excess soil water could contribute to nutrient 

limitation in TMCF. For example, anaerobic conditions can limit root growth and 

physiological activity in many species. Indeed, aerial and canopy roots are a common 

feature of wet TMCF (Gill 1969, Nadkarni 1981, Santiago et al. 2000). Low-oxygen 

conditions also may favour losses of N by denitrification, and high losses of soil 

nutrients may accompany the greater hydrologic outputs in wetter tropical soils. 

Although losses of mineral N forms should be constrained on N-limited sites (but see 

Brookshire et al. 2012), leaching of organic N may be favoured by the accumulation of 

recalcitrant organic matter under cool or anaerobic conditions (Perakis & Hedin 2002). 

Also, by restricting the depth distribution of tree roots, anaerobic conditions may either 

restrict access to available nutrients or promote their losses. It is also possible that 

shallow rooting in some TMCF reflects ease of access to soil water and superficial 

nutrient supply; however, as noted previously, shallow rooting also may reduce the 
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wind-firmness of trees and increase the frequency of disturbance with possible long-

term effects on nutrient losses. 

Topographic effects 

Variation of topography in tropical montane landscapes clearly plays a role in regulating 

TMCF structure, and provides further indications about the contributing mechanisms. 

Most TMCFs occur under highly variable topography including steeper slopes (Asner et 

al. 2014) and more landslides (Larsen & Torres-Sanchez 1998, Shreve 1914) than lower 

montane landscapes. Tanner (1977) demonstrated that systematic variation in forest 

structure of TMCF was related to landscape position and subsequent studies have 

confirmed this relationship (Wardle et al. 2015). For example, several studies report 

that canopy height in TMCF is lower on steep slopes (Roman et al. 2010), an observation 

that would also question the universal role of poor soil drainage in shaping TMCF 

ecosystems. This pattern might be explained in part by disturbance history associated 

with landslides or more generally by soil stability and tree rooting (Soethe et al. 2006).  

Werner & Homeier (2014) proposed a nutrient feedback mechanism to explain striking 

contrasts in forest structure and composition between slope positions in tropical 

montane landscapes:  downslope nutrient transport could result in spatial contrasts in 

soil nutrient availability, reinforced by differences in organic recycling owing to litter 

quality responses to soil fertility.  However, in some situations TMCF stunting is most 

strongly expressed in saddles where soils are enriched and moisture may accumulate 

(Wilcke et al. 2010). Girardin et al. (2014b) associated the strong expression of the 

TMCF structural features with local topography that favoured cloud convergence and 

formation. At Monteverde, Costa Rica, maximum  TMCF stunting also has been 

associated with topographic effects on wind exposure and cloud formation (Lawton 
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1982, Lawton et al. 2010). Conversely, Schwarzkopf et al. (2011) noted that extreme 

differences in TMCF structure were unrelated to topographic variables in an Andean 

landscape.  

Forest structure in TMCF  

 Stunting of trees and low canopy height are commonly observed in TMCF (Grubb 

1977). Because trees in closed-canopy forest compete intensely for the light resource, 

height growth is important to individual tree success. Thus, unless there are other 

advantages of being stunted, trees would be expected to attain the maximum height that 

resource limitations permit; however, greater relative competition for soil resources 

than light in TMCF might contribute to lower investment in height growth.  In any case, 

all the environmental factors that constrain plant production (low insolation, cold 

temperatures, nutrient limitation) undoubtedly contribute to tree stunting in TMCF 

(Figure 1).  Less clear is the explanation for increases in the ratio of tree diameter to 

height with increasing elevation on tropical mountains (Grubb 1977, Lieberman et al. 

1996). The consistency of this relationship is indicated by a summary for 11 altitudinal 

transects in different regions of the world (Figure 2). 

The factors influencing D:H relationships in trees have been analyzed and 

debated, and include mechanical constraints (King et al. 2009, McMahon 1973); drought 

and hydraulic constraints (Niklas & Spatz 2004, Sperry et al. 2008); influences of 

neighbouring trees on both access to light and exposure to wind (King 1996); and 

phylogenetic constraints.  Because canopy height is low in TMCF the advantage of 

monopodial growth to limit light competition is reduced and multi-stemmed 

architecture can have selective value (Givnish 1984).  Such architecture is common in 

many TMCFs (Figure 1; Bellingham & Sparrow 2009, Culmsee et al. 2010). 
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In addition, trees would be expected to maintain a safety factor against mechanical 

buckling to reduce risks associated with storm winds (de Gouvenain & Silander 2003) 

although for multi-stemmed individuals a sprouting trunk can compensate for failure of 

stems. King et al. (2009) suggested trees in locations protected from wind in lowland 

tropical forest approached the theoretical buckling height, whereas most TMCF forests 

exhibit very low values (Table 2). Feldpausch et al. (2011) summarized the factors 

related to D:H variation across a large data set for the world’s tropical forests. Among 

the climatic influences was an effect of temperature, but this effect was confined only to 

the influence of altitude, reflecting the relationships in Figure 2. Recently, Asner et al. 

(2014) observed that TMCF trees maintained crown shapes in which a greater 

proportion of the foliage was held low in the canopy than for trees at lower altitudes 

which might contribute to mechanical stability. 

Perhaps the single most likely cause of the increasing D:H ratio with altitude is 

increasing windspeeds (Woodward 1993). As noted above Lawton (1982) attributed 

high D:H ratio in a cloud-forest tree species to wind exposure, and King et al. (2009) 

observed a higher mechanical safety factor for lowland rain-forest trees on exposed 

ridges than protected coves. The possible role of soil properties influencing tree 

stability has also been suggested (Soethe et al. 2006) as shallow rooting in thin or 

waterlogged soils could necessitate wide root crowns for trees to remain wind-firm.  

Another possible factor influencing the low canopy height and high D:H ratio of 

TMCF is the extra canopy loading associated with high epiphyte and canopy soil 

biomass in the cloud immersion zone (Köhler et al. 2007). Although the dry biomass of 

canopy epiphytes is typically only a small fraction of the tree canopy mass, epiphytic 

bryophytes can hold several times their dry mass in water when they are immersed in 
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clouds (Köhler et al. 2007), and canopy soil adds still more to the canopy load (Bohlman 

et al. 1995). The water-saturated mass of canopy epiphytes in several cloud forests 

ranges from 13 to 45 Mg ha-1, values which are substantial relative to leaf and branch 

biomass. For example, the biomass of wet epiphytes and canopy soil in the Monteverde 

cloud forest in Costa Rica (33.1 Mg ha-1; Nadkarni 1984) is about half of leaf and branch 

biomass (60 Mg ha-1; Nadkarni et al. 2004), and comparable proportions are likely in 

other cases (Horwath 2011).  The theoretical critical height (Hcritical) at which buckling 

would occur can be calculated on the basis of tree architecture and wood properties 

(Niklas 1994), and notably, the ratio of actual canopy height to buckling height 

(Hactual:Hcritical; the static mechanical safety factor) is particularly low for some epiphyte-

laden forests (0.25-0.31; Table 2); much higher values are noted for lower montane 

forest (e.g. 0.7 at 750 m asl in Costa Rica; Lieberman et al. 1996). However, some 

stunted cloud forests have much smaller epiphyte loads; the Hactual:Hcritical ratio of the 

stunted mor forest in Jamaica is 0.30, yet the epiphyte mass is only 2.1 Mg ha-1. Thus, 

although the possible role of mechanical constraints associated with epiphyte loading in 

stunted TMCF deserves further study, the evidence at present is not conclusive. 

The role of phylogenetic factors affecting canopy height and forest structure also 

deserves attention. In some notable cases particular species – e.g. from Pinaceae, 

Fagaceae, Eucalyptus spp. -- attain much greater heights within the cloud zone than the 

species that form the main canopy. In the Dominican Republic, the native Pinus 

occidentalis grows along the entire elevation gradient, attains heights much greater than 

the TMCF trees and is also somewhat stunted in the main cloud immersion zone (Martin 

et al. 2007). Plastic species such as this could lend themselves to experimental 

investigations of the relative importance of the potential causal factors. For example, 
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temperature and light can be varied independently in field experiments with potted 

plants, though it will be more difficult to manipulate direct contact of leaves with fog or 

canopy epiphyte loading. 

Feedbacks and non-linearity in TMCF  

Early concepts and observations in tropical montane forest ecology suggested the 

existence of spatial discontinuities in the composition and structure of vegetation along 

the altitudinal gradient (Holdridge 1967). Such a pattern might arise either as a result of 

discontinuity in one or more key macro-environmental drivers (e.g. geologic substrates, 

topography or climatic variables) or because of strong feedbacks between vegetation 

(or other biota) and micro-environmental factors. Although some detailed studies have 

discounted the existence of discontinuous variation in forest composition across the 

altitudinal gradient in tropical mountains (Lieberman et al. 1996), some cases of sharp 

discontinuities involving the vegetation feedback switch have been documented. For 

example, Martin et al. (2007) demonstrated that a sharp ecotone between species-rich 

TMCF and monodominant pine forest is maintained by vegetation effects on natural fire 

disturbance, together with the influence of frequent cloud immersion especially during 

the dry season (Martin & Fahey 2014). 

 Distinctive TMCF structure, particularly in its most extreme form, also may 

depend upon feedback mechanisms in which vegetation traits and soil properties 

reinforce the limitation on the productivity and stature of the forest (Werner & Homeier 

2014). Recent syntheses conclude that nutrient limitation of TMCF productivity results 

not from lower amounts of limiting soil nutrients but by the inability of trees to access 

these nutrients (Benner et al. 2010, Roman et al. 2010). Some evidence supports a 

positive feedback mechanism whereby litter of lower chemical quality is produced in 
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TMCF, suppressing efficient recycling of nutrients by microbial decomposition (Schuur 

et al. 2001, Werner & Homeier 2014). The role of soil saturation on such a feedback also 

seems plausible: inhibition of root function by anaerobic soil could reduce water uptake 

(Weaver et al. 1973) reinforcing soil saturation and contributing to low litter quality 

(Schuur 2001).  

 An additional vegetation-soil feedback that contributes to TMCF structure and 

function is the apparently high proportional allocation of C to root systems (Girardin et 

al. 2010, Kitayama & Aiba 2002, Moser et al. 2011), leaving less C to support above-

ground growth and LAI. Again, a feedback involving soil saturation seems plausible. For 

example, the higher below-ground allocation could limit LAI, and thereby promote soil 

saturation by reducing AET. Also, observations of Leuschner et al. (2007) emphasize the 

much higher coarse-root biomass in high-elevation TMCF with frequently saturated 

soils; high allocation to coarse roots could contribute to overcoming structural stability 

problems in saturated soils (Coutts 1983, Soethe et al. 2006).  

 In conclusion, recent research has contributed to an improved understanding of 

tropical montane cloud forest structure and function and its dependence on unique 

climatic conditions in the altitudinal zone where fog is persistent (Figure 1).   However, 

additional research is needed to clarify several features of TMCF ecosystem dynamics: 

(1) The role of phylogeny vs. phenotype in shaping the characteristic traits of TMCF 

vegetation; (2) Photosynthetic physiology of TMCF foliage in fog-shrouded 

environments; (3) Below-ground carbon allocation and fine-root production and 

turnover in TMCF; (4) Factors leading to N vs. P limitation of TMCF productivity, 

including the role of mycorrhizal associations; (5) The role of saturated soils and low 

soil oxygen in TMCF ecosystems; (6) Causes of contrasting patterns of variation in TMCF 
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structure in relation to topographic position among different locations; (7) Drivers of 

high diameter:height ratio of TMCF; (8) The role of high epiphyte abundance in 

regulating TMCF ecosystem dynamics.   

Recognizing the great variation of vegetation structure and dynamics among TMCF 

locations, comparative research approaches across TMCF sites should help to provide 

new insights into the causal factors driving the behaviour of these remarkable forests. 
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  28 

GARCIA-CABRERA, K., HALLADAY, K., FISHER, J. B., GALIANO-CABRERA, D. F., 

HUARACA-QUISPE, L. P., ALZAMORA-TAYPE, I., EGUILUZ-MORA, L., SALINAS-REVILLA, 

N., SILMAN, M. R., MEIR, P. & MALHI, Y.  2014b. Productivity and carbon allocation in a 

tropical montane cloud forest in the Peruvian Andes. Plant Ecology & Diversity 7:107-

123. 

GIVNISH T. J. 1984. Leaf and canopy adaptations in tropical forests. Pp. 51–84 in  

Medina, E., Mooney, H. A. & Vazquez-Yanes, C. (eds.).  Physiological ecology of plants of 

the Wet Tropics. Dr Junk Publisher, The Hague. 

GOLLEY, F., McGINNIS, J. & CLEMENTS, R. 1971. La biomasa y la estructura de algunos 

bosque de Darien, Panama. Turrialba 21:189-196. 

GRADSTEIN, S. R., OBREGON, A., GEHRIG, C. & BENDIX, J.  2010.  Tropical lowland cloud 

forest:  a neglected forest type.  Pp. 130-133 in Bruijnzeel, L. A., Scatena, F. N. & 

Hamilton, L. S. (eds.).  Tropical montane cloud forests: science for conservation and 

management.  Cambridge University Press, New York. 

DE GOUVENAIN, R. C. & SILANDER, J. A. 2003. Do tropical storm regimes influence the 

structure of tropical lowland rain forests? Biotropica 35:166-180. 

GRIEVE, T. G. A., PROCTOR, J. & COUSINS, S. A. 1990. Soil variation with altitude on 

Volcán Barva, Costa Rica. Catena 17:525-534. 

GRUBB, P. J. 1971. Interpretation of the 'Massenerhebung effect' on tropical mountains. 

Nature 229:44-45. 

GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: 

with special reference to mineral nutrition. Annual Review of Ecology and Systematics 

8:83-107. 



  29 

HAFKENSCHEID, R. L. L. J. 2000. Hydrology and biogeochemistry of tropical montane rain 

forests of contrasting stature in the Blue Mountains, Jamaica. Doctoral dissertation, Vrije 

Universiteit Amsterdam. 302 pp. 

HÄGER, A. & DOHRENBUSCH, A. 2011. Hydrometeorology and structure of tropical 

montane cloud forests under contrasting biophysical conditions in north-western Costa 

Rica. Hydrological Processes 25:392–401. 

HIETZ, P. 2010. Ecology and ecophysiology of epiphytes in tropical montane cloud 

forests. Pp. 67-76 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical 

montane cloud forests: science for conservation and management. Cambridge University 

Press, New York.  

HIETZ, P., WANEK, W., WANIA, R. & NADKARNI, N. M.  2002.  Nitrogen-15 natural 

abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and 

epiphyte nutrition.  Oecologia 131:350-355. 

HOLDRIDGE, L. R. 1967. Life zone ecology. Tropical Science Center, San Jose. 206 pp. 

HOLWERDA, F., BRUIJNZEEL, L. A., OORD, A. L. & SCATENA, F. N. 2010. Fog interception 

in a Puerto Rico elfin cloud forest: a wet-canopy water budget approach. Pp. 282-292 in 

Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: 

science for conservation and management. Cambridge University Press, New York. 

HOMEIER, J., HERTEL, D., CAMENZIND, T., CUMBICUS, N. L., MARAUN, M., MARTINSON, 

G. O., POMA, L. N., RILIG, M. C., SANDMANN, D., SCHEU, S., VELDKAMP, E., WILCKE, W., 

WULLAERT, H. & LEUSCHNER, C. 2012. Tropical Andean forests are highly susceptible 

to nutrient inputs - rapid effects of experimental N and P addition to an Ecuadorian 

montane forest. Plos One 7:e347128. 



  30 

HORWATH, A. B. 2011. Epiphytic bryophytes as cloud forest indicators: stable isotopes, 

biomass and diversity along an altitudinal gradient in Peru. PhD Thesis, University of 

Cambridge. 

HOULTON, B. Z., WANG, Y. P., VITOUSEK, P. M. & FIELD, C. B. 2008. A unifying 

framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327-330. 

HOWARD, R. A. 1968. Ecology of an elfin forest in Puerto Rico. 1. Introduction and 

composition studies. Journal of the Arnold Arboretum 49:381-418. 

JARVIS, A. & MULLIGAN, M. 2010. The climate of cloud forests. Pp. 39-56 in Bruijnzeel, L. 

A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for 

conservation and management. Cambridge University Press, New York.   

KESSLER, M., PARRIS, B. S. & KESSLER, E. 2001. A comparison of the tropical montane 

pteridophyte floras of Mount Kinabalu, Borneo, and Parque Nacional Carrasco, Bolivia. 

Journal of Biogeography 28:611–622. 

KING, D. A. 1996. Allometry and life history of tropical trees. Journal of Tropical Ecology 

12:25-44. 

KING, D. A., DAVIES, S. J., TAN, S. & NOOR, N. S. M. 2009. Trees approach gravitational 

limits to height in tall lowland forests of Malaysia. Functional Ecology 23:284-291. 

KITAYAMA, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, 

Borneo. Vegetatio 102:149–171 

KITAYAMA, K. & AIBA, S.-I. 2002. Ecosystem structure and productivity of tropical rain 

forests along altitudinal gradients with contrasting soil phosphorus pools on Mount 

Kinabalu, Borneo. Journal of Ecology 90:37–51. 



  31 

KÖHLER, L., TOBÓN, C., FRUMAU, K. F. A. & BRUIJNZEEL, L. A. 2007. Biomass and water 

storage dynamics of epiphytes in old-growth and secondary montane cloud forest 

stands in Costa Rica. Plant Ecology 193:171-184. 

KRÖMER, T., KESSLER, M., GRADSTEIN, S. R. & ACEBEY, A. 2005. Diversity patterns of 

vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 

32:1799–1809. 

LARSEN, M. C., & TORRES-SÁNCHEZ, A. J. 1998. The frequency and distribution of recent 

landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309-331. 

LAWTON, R. O. 1982. Wind stress and elfin stature in a montane rain forest tree: an 

adaptive explanation. American Journal of Botany 69:1224-1230. 

LAWTON, R. O., NAIR, U. S., RAY, D., REGMI, A., POUNDS, J. A. & WELCH, R. M.  2010.  

Quantitative measures of immersion in cloud and the biogeography of cloud forests.  Pp. 

217-227 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.).  Tropical montane 

cloud forests: science for conservation and management.  Cambridge University Press, 

New York. 

LETTS, M. G. & MULLIGAN, M. 2005. The impact of light quality and leaf wetness on 

photosynthesis in north-west Andean tropical montane cloud forest. Journal of Tropical 

Ecology 21:549-557. 

LEUSCHNER, C., MOSER, G., BERTSCH, C., RODERSTEIN, M., & HERTEL, D. 2007. Large 

altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. 

Basic and Applied Ecology 8:219-230. 



  32 

LIEBERMAN, D., LIEBERMAN, M., PERALTA, R. & HARTSHORN, G. S. 1996. Tropical 

forest structure and composition on a large-scale altitudinal gradient in Costa Rica. 

Journal of Ecology 84:137-152. 

MARSCHNER, H. & DELL, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and 

Soil 159: 89-102. 

MARTIN, P. H. & FAHEY, T. J. 2014. Mesoclimate patterns shape the striking vegetation 

mosaic in the Cordillera Central, Dominican Republic. Arctic, Antarctic and Alpine 

Research 46:755-765. 

MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: 

climate gradients, natural disturbance, and vegetation zonation in the Cordillera 

Central, Dominican Republic. Journal of Biogeography 34:1792–1806. 

MATSON, A. L., CORRE, M. D., BURNEO, J. I. & VELDKAMP, E.  2015.  Free-living nitrogen 

fixation responds to elevated nutrient inputs in tropical montane forest floor and 

canopy soils of southern Ecuador.  Biogeochemistry 122:281-294. 

McDOWELL, W. H. & ASBURY, C. E. 1994. Export of carbon, nitrogen, and major ions 

from three tropical montane watersheds. Limnology and Oceanography 39:111-125. 

McJANNET, D. L., WALLACE, J. S. & REDDELL, P. 2010. Comparative water budgets of a 

lower and an upper montane cloud forest in the Wet Tropics of northern Australia. Pp. 

479-490 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane 

cloud forests: science for conservation and management. Cambridge University Press, 

New York.  

McMAHON, P. 1973. Size and shape in biology: elastic criteria impose limits on 

biological proportions, and consequently on metabolic rates. Science 179:1201-1204. 

http://hydro.csumb.edu/lieberman/docs/Large-scale%20altitudinal%20gradient%20J%20Ecol.pdf
http://hydro.csumb.edu/lieberman/docs/Large-scale%20altitudinal%20gradient%20J%20Ecol.pdf
http://hydro.csumb.edu/lieberman/docs/Large-scale%20altitudinal%20gradient%20J%20Ecol.pdf


  33 

MILDENBERGER, K., BEIDERWIEDEN, E., HSIA, Y.-J. & KLEMM, O. 2009. CO2 and water 

vapor fluxes above a subtropical mountain cloud forest—the effect of light conditions 

and fog . Agricultural and Forest Meteorology 149:1730-1736. 

MOSER, G., HERTEL, D. & LEUSCHNER, C. 2007. Altitudinal change in LAI and stand leaf 

biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical 

meta- analysis.  Ecosystems 10:924-935. 

MOSER, G., LEUSCHNER, C., HERTEL, D., GRAEFE, S., SOETHE, N. & IOST, S. 2011. 

Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role 

of the belowground compartment. Global Change Biology 17:2211-2226. 

MULLIGAN, M. 2010. Modeling the tropics-wide extent and distribution of cloud forest 

and cloud forest loss, with implications for conservation priority.  Pp. 14-38 in 

Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: 

science for conservation and management. Cambridge University Press, New York.  

NADKARNI, N. M. 1981.  Canopy roots: convergent evolution in rainforest nutrient 

cycles. Science 214:1023-2024. 

NADKARNI, N. M. 1984. Epiphytic biomass and nutrient capital of a neotropical elfin 

forest. Biotropica 16:249-256. 

NADKARNI, N. M., SCHAEFER, D. A., MATELSON, T. J. & SOLANO, R. 2004. Biomass and 

nutrient pools of canopy and terrestrial components in primary and secondary montane 

cloud forest, Costa Rica. Forest Ecology and Management 198:223–236. 

NIKLAS, K. J. 1994. Interspecific allometries of critical buckling height and actual plant 

height.  American Journal of Botany 81:1275-1279. 

http://academic.research.microsoft.com/Author/46833011/e-beiderwieden
http://academic.research.microsoft.com/Author/53965317/y-j-hsia
http://academic.research.microsoft.com/Author/13002589/otto-klemm
http://academic.research.microsoft.com/Publication/40754267/co-2-and-water-vapor-fluxes-above-a-subtropical-mountain-cloud-forest-the-effect-of-light
http://academic.research.microsoft.com/Publication/40754267/co-2-and-water-vapor-fluxes-above-a-subtropical-mountain-cloud-forest-the-effect-of-light
http://academic.research.microsoft.com/Publication/40754267/co-2-and-water-vapor-fluxes-above-a-subtropical-mountain-cloud-forest-the-effect-of-light


  34 

NIKLAS, K. J. & SPATZ, H. C. 2004. Growth and hydraulic (not mechanical) constraints 

govern the scaling of tree height and mass. Proceedings of the National Academy of 

Sciences USA 101:15661-15663. 

ODUM, H. T. 1970. Rain forest structure and mineral-cycling homeostasis. Pp. H3-H52 in 

Odum, H. T. & Pigeon, R. F. (eds.). A tropical rainforest. Division of Technical 

Information, U.S. Atomic Energy Commission, Oakridge. 

PERAKIS, S. S. & HEDIN, L. O. 2002. Nitrogen loss from unpolluted South American 

forests mainly via dissolved organic compounds. Nature 415:416-419. 

PROCTOR, J., LEE, Y. F., LANGLEY, A. M., MUNRO, W. R. & NELSON, T. 1988. Ecological 

studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. 

Environment, forest structure and floristics. Journal of Ecology 76:320–340. 

RAICH, J. W., RUSSELL, A. E. & VITOUSEK, P. M. 1997. Primary productivity and 

ecosystem development along an elevational gradient on Mauna Loa, Hawai’i. Ecology 

78:707–721. 

RAINS, K. C., NADKARNI, N. M. & BLEDSOE, C. S. 2003. Epiphytic and terrestrial 

mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257-264. 

RAPP, J. M., SILMAN, M. R., CLARK, J. S., GIRARDIN, D. G., GALIANO, D. & TITO, R. 2012. 

Intra-and interspecific tree growth across a long altitudinal gradient in the Peruvian 

Andes. Ecology 93:2061-2072. 

ROMAN, L., SCATENA, F. N. & BRUIJNZEEL, L. A. 2010. Global and local variations in 

tropical montane cloud forest soils. Pp. 77-89 in Bruijnzeel L. A., Scatena F. N. & 

Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and 

management. Cambridge University Press, Cambridge. 



  35 

SALAZAR, L., HOMEIER, J., KESSLER, M., ABRAHAMCZYK, S., LEHNERT, M., KRÖMER, T. 

& KLUGE, J.  2013. Diversity patterns of ferns along elevational gradients in Andean 

tropical forests.  Plant Ecology & Diversity 8:13-24. 

SALINAS, N., MALHI, Y., MEIR, P., SILMAN, M., ROMAN CUESTA, R., HUAMAN, J., 

SALINAS, D., HUAMAN, V., GIBAJA, A., MAMANI, M. & FARFAN, F. 2011. The sensitivity of 

tropical leaf litter decomposition to temperature: results from a large-scale leaf 

translocation experiment along an elevation gradient in Peruvian forests. New 

Phytologist 189:967–977. 

SANTIAGO, L. S., GOLDSTEIN, G., MEINZER, F. C., FOWNES, J. & MUELLER-DOMBOIS, D. 

2000. Transpiration and forest structure in relation to soil waterlogging in a Hawaiian 

montane cloud forest. Tree Physiology 20:673-681. 

SANTIAGO, L. S., JONES, T. J. & GOLDSTEIN, G. 2010. Physiological variation in Hawaiian 

Metrosideros polymorpha across a range of habitats: from dry forests to cloud forests. 

Pp. 456-464 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane 

cloud forests: science for conservation and management. Cambridge University Press, 

Cambridge.  

SCHAWE, M., GEROLD, G., BACH, K. & GRADSTEIN, S. R. 2010. Hydrometeorological 

patterns in relation to montane forest types along an elevational gradient in the Yungas 

of Bolivia. Pp. 199-207 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical 

montane cloud forests: science for conservation and management. Cambridge University 

Press, Cambridge. 

SCHUUR, E. A. G. 2001. The effect of water on decomposition dynamics in mesic to wet 

Hawaiian montane forests. Ecosystems 4:259-273. 

http://link.springer.com/article/10.1007/s10021-001-0008-1
http://link.springer.com/article/10.1007/s10021-001-0008-1


  36 

SCHUUR, E. A. G., CHADWICK, O. A. & MATSON, P. A. 2001. Carbon cycling and soil 

carbon storage in mesic to wet Hawaiian montane forests. Ecology 82:3182-3196. 

SCHWARZKOPF, T., RIHA, S. J., FAHEY, T. J., & DEGLORIA, S. 2011. Are cloud forest tree 

structure and environment related in the Venezuelan Andes? Austral Ecology 36:280-

289.  

SHERMAN, R. E., MARTIN, P. M. & FAHEY, T. J. 2005. Vegetation-environment 

relationships in forest ecosystems of the Cordillera Central, Dominican Republic. Journal 

of the Torrey Botanical Society 132:293-310. 

SHREVE, F. 1911. Studies on Jamaican Hymenophyllaceae. Botanical Gazette 51:184-

209. 

SHREVE, F. 1914. A montane rain-forest: a contribution to the physiological plant 

geography of Jamaica. Carnegie Institution of Washington, Washington, D.C.  176 pp. 

SILVER, W., LUGO, A. E. & KELLER, M. 1999. Soil oxygen availability and 

biogeochemistry along rainfall and topographical gradients in upland wet tropical forest 

soils. Biogeochemistry 44:301–328. 

SILVER, W. L., THOMPSON, A. W., HERMAN, D. J. & FIRESTONE, M. K. 2010. Is there 

evidence for limitations to nitrogen mineralization in upper montane tropical forests? 

Pp. 418-427 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane 

cloud forests: science for conservation and management. Cambridge University Press, 

New York.  

SOETHE, N., LEHMANN, J. & ENGELS, C. 2006. Root morphology and anchorage of six 

native tree species from a tropical montane forest and an elfin forest in Ecuador. Plant 

and Soil 279:173-185. 

http://scholar.google.com/scholar?oi=bibs&hl=en&cluster=9978448693548461863&btnI=Lucky
http://scholar.google.com/scholar?oi=bibs&hl=en&cluster=9978448693548461863&btnI=Lucky


  37 

SOETHE, N., LEHMANN, J., & ENGELS, C. 2008. Nutrient availability at different altitudes 

in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24:397-406. 

SPERRY, J. S., MEINZER, F. C. & McCULLOH, K. A. 2008. Safety and efficiency conflicts in 

hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment 31:632-

645. 

SUGDEN, A. M. 1985. Leaf anatomy in a Venezuelan montane forest. Botanical Journal of 

the Linnean Society 90:231-241. 

TANNER, E. V. J. 1977. Four montane rain forests of Jamaica: a quantitative 

characterization of the floristics, the soils and the foliar mineral levels, and a discussion 

of the interrelations.  Journal of Ecology 65:883-918. 

TANNER, E. V. J. & KAPOS, V. 1982. Leaf structure of Jamaican upper montane rain-

forest trees. Biotropica 14:16-24. 

TANNER, E. V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of 

nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10-22. 

TOBÓN, C., BRUIJNZEEL, L. A.  FRUMAU, K. F. A. & CALVO-ALVARADO, J. C. 2010. 

Changes in soil physical properties after conversion of tropical montane cloud forest to 

pasture in northern Costa Rica. Pp. 502–515 in Bruijnzeel, L. A., Scatena, F. N. & 

Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and 

management. Cambridge University Press, New York.  

TRANQUILLINI, W. 1979. Physiological ecology of the alpine timberline. Ecological 

Studies Vol. 31. Springer Verlag, Berlin. 137 pp. 

http://scholar.google.co.uk/scholar?oi=bibs&hl=en&cluster=16425120995196547537&btnI=Lucky
http://scholar.google.co.uk/scholar?oi=bibs&hl=en&cluster=16425120995196547537&btnI=Lucky


  38 

UNGER, M., HOMEIER, J. & LEUSCHNER, C. 2012.  Effects of soil chemistry on tropical 

forest biomass and productivity at different elevations in the equatorial Andes.  

Oecologia 170:263-274. 

VAN DE WEG, M. J., MEIR, P., GRACE, J. & ATKIN, O. K. 2009. Altitudinal variation in leaf 

mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along 

an Amazon-Andes gradient in Peru. Plant Ecology & Diversity 2:243-254. 

VAN DE WEG, M. J., MEIR, P., GRACE, J. & RAMOS, G. D. 2012. Photosynthetic parameters, 

dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud 

forest. Oecologia 168:23-34. 

WARDLE, D. A., BELLINGHAM, P. J., KARDOL, P., GIESLER, R. & TANNER, E. V. J. 2015. 

Coordination of aboveground and belowground responses to local-scale soil fertility 

differences between two contrasting Jamaican rain forest types. Oikos 124:285-297. 

WEAVER, P. L., BYER, M. D. & BRUCK, D. L. 1973 Transpiration rates in the Luquillo 

Mountains of Puerto Rico. Biotropica 5:123–133. 

WEAVER, P.L., MEDINA, E., POOL, D., DUGGER, K., GONZALEZ-LIBOY, J. & CUEVAS, E. 

1986. Ecological observations in the dwarf forest of the Luquillo Mountains of Puerto 

Rico. Biotropica 18:79–85. 

WERNER, F. A. & HOMEIER, J. 2015. Is tropical montane forest heterogeneity promoted 

by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and 

litter decomposition along a topographical gradient. Functional Ecology 29:430-440.  

WILCKE, W., BOY, J., GOLLER, R., FLEISCHBEIN, K., VALAREZO, C. & ZECH, W. 2010. 

Effect of topography on soil fertility and water flow in an Ecuadorian lower montane 

forest. Pp. 402-409 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical 

http://onlinelibrary.wiley.com/doi/10.1111/oik.01584/pdf


  39 

montane cloud forests: science for conservation and management. Cambridge University 

Press, New York.  

WITTICH, B., HORNA, V., HOMEIER, J. & LEUSCHNER, C. 2012. Altitudinal change in the 

photosynthetic capacity of tropical trees: a case study from Ecuador and a pantropical 

literature analysis. Ecosystems 15:958–973 

WOODWARD, F. I. 1993. The lowland-to-upland transition--modelling plant responses 

to environmental change. Ecological Applications 3:404-408. 

 

ZIMMERMAN, J. K., PULLIAM, W. M., LODGE, D. J., QUIÑONES-ORFILA, V., FETCHER, N., 

GUZMÁN-GRAJALES, S., PARROTTA, J. A., ASBURY, C. E., WALKER, L. R. & WAIDE, R. B. 

1995. Nitrogen immobilization by decomposing woody debris and the recovery of 

tropical wet forest from hurricane damage. Oikos 72:314-322. 

 

  



  40 

 

TABLE 1. Key characteristics of tropical montane cloud forests.  

Ecological feature Reference 

Low canopy height and twisted stems  Weaver et al. 1986 

Multi-stemmed and leaning trees Bellingham & Sparrow 2009 

Low leaf area index Moser et al. 2007 

High ratio of diameter:height See Figure 2 

High stem density Weaver et al. 1986 

Many canopy gaps Asner et al. 2014 

High tree fern abundance Lieberman et al. 1996 

Small, thick leaves Tanner & Kapos 1982 

High epiphyte abundance, bryophytes Hietz 2010 

Deep surface organic horizon Grieve et al. 1990 

Persistently wet soil Silver et al. 1999 

High root:shoot ratio Leuschner et al. 2007 

Nitrogen limitation of ANPP Tanner et al. 1998 
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TABLE 2. Canopy height, estimated water-saturated biomass of canopy epiphytes and 

ratio of actual canopy height (Hact) to buckling height (Hcrit) for six tropical montane 

forests. Epiphyte biomass from Kӧhler et al. (2007), except for Peru (from Horwath 

2011). Hcrit = C x (
𝐸

⋎
)1/3 × D2/3 where, C = constant (0.79 for columnar tapering); E is 

elastic modulus, ⋎ is stem wood density; and D is stem diameter; (
𝐸

⋎
) = 117.6 m for 

angiosperms (Niklas 1994; and pers. comm.). 

Location Altitude 

(m asl) 

Canopy height 

(m) 

Epiphyte mass 

(Mg ha-1) 

Hact:Hcrit 

Colombia 3000+ 12 12-44 0.23 

Puerto Rico 1000 3-5 4.3-7.3 0.12 

Costa Rica 1480 20 16.2-33.1 0.31 

Peru 2500 7 45 0.25 

Jamaica 1550 10 2.1 0.30 

Costa Rica 1700 13 4.7 0.14 

 

1/   
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FIGURE 1. Hypothesized causal diagram for the effects of environmental factors (in red) 

shaping cloud forest ecosystem  properties (blue) and cloud forest structure (green). 

Features in bold have been observed in all studies to date whereas other features occur 

only in some cases. 
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FIGURE 2. Tree diameter to canopy height ratio (cm m-1) for forests along eleven 

altitudinal transects on tropical mountains. Mean diameter for trees >10 cm dbh except 

for Ecuador (>5 cm dbh). References as follows: Ecuador (Leuschner et al. 2007); 

Ecuador-2 (Homeier et al. 2012); Borneo (Kitayama 1992); Borneo-1 (Aiba & Kitayama 

1999 non-ultrabasic soils); Borneo-2 (Aiba & Kitayama 1999 ultrabasic soils); Malaysia 

(Proctor et al. 1988); Costa Rica (Liebermann et al. 1996); Hawaii (Raich et al. 1997); 

Dominican Republic (DR, Sherman et al. 2005); Peru (Andes Biodiversity and Ecosystem 

Research Group [ABERG] 2014. Long-term plot inventory data. Unpublished data at 

http://www.andesconservation.org/). 
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