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The scattering of sound by a finite rigid plate with a finite poroelastic extension interact-
ing with an unsteady acoustic source is investigated to determine the effects of porosity,
elasticity, and the length of the extension when compared to a purely rigid plate. The
problem is solved using the Wiener-Hopf technique, and an approximate Wiener-Hopf
factorisation process is implemented to yield reliable far-field results quickly. Importantly,
finite chord-length effects are taken into account, principally the interaction of a rigid
leading-edge acoustic field with a poroelastic trailing-edge acoustic field. The model pre-
sented discusses how the poroelastic trailing-edge property of owls’” wings could inspire
quieter aeroacoustic designs in bladed systems such as wind turbines, and provides a
framework for analysing the potential noise reduction of these designs.

1. Introduction

It is well known that many species of owls have the unique ability to fly almost silently,
and this topic is now widely studied as it could provide novel designs which allow for
noise reduction in bladed systems, such as helicopter rotors and wind turbines (Barone
2011). Certain features of the wings of owls are known to be particularly effective in
reducing scattered noise (Graham 1934): the fringed or serrated trailing edge (Howe
1991); the downy coat on the upper surface of the wing (Clark 2014); and the flexible
and porous qualities of the feathers at the trailing edge (Jaworski & Peake 2013). It is
this latter feature that we discuss in detail here, by modelling the flexible and porous
qualities of the trailing edge of an owl’s wing. It is hoped that a greater understanding of
the sound reduction mechanisms could lead to new designs of wind turbine blades that
reduce trailing-edge noise.

Poroelastic plates, that is infinitely thin plates which include both flexural elasticity
and surface porosity due to acoustically compact circular apertures, can be modelled by
the poroelastic plate equation (Howe 1998). Howe has assessed the independent effects of
porosity and elasticity on trailing-edge noise for semi-infinite plates (Howe 1979, 1993),
finding both to be suitable adaptations to blades for noise reduction. Recently Jaworski &
Peake (2013) have combined the effects of porosity and elasticity to show that for a semi-
infinite plate, trailing-edge noise can be significantly reduced if a poroelastic material is
used rather than a purely rigid, impermeable material. Whilst semi-infinite models are
useful for highlighting the potential noise reduction for poroelastic trailing edges from, for
example, a turbulent eddy produced in a boundary layer near a compliant edge, they do
not account for finite chord effects, including perhaps principally the scattering of noise
by a leading edge. The interaction between the leading- and trailing-edge scattered fields
is a key factor in determining the maximum level of far-field noise due to rigid plates
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scattering an incident sound wave (Ayton & Peake 2013), and similarly leading-edge
back-scattering is important for rigid plates scattering near field acoustic sources (Roger
& Moreau 2005). For elastic plates, Scott (1992), and more recently Cavalieri et al.
(2014), have considered acoustic scattering by a finite-chord elastic strip analytically
and numerically respectively. Their results exhibit modulated far-field scattered acoustic
directivities, as is typical for finite chord length plate interactions, due to the interaction
of leading- and trailing-edge scattered fields.

Daly & Peake (2015) have extended the work of Jaworski & Peake (2013) by consid-
ering acoustic scattering by a semi-infinite rigid plate with a finite poroelastic extension,
which allows the effects of a rigid-elastic connection to be analysed, but does not allow for
a leading-edge acoustic field. The benefits of Daly & Peake (2015) lie with the implemen-
tation of the design; in practice one would not wish to alter a wind turbine blade from
fully rigid to fully compliant, as this would adversely affect the performance. Instead,
a poroelastic extension could be added to a rigid blade to reduce noise, but maintain
performance. Indeed the idea of a trailing edge extension is already implemented for
serrated (sawtooth) trailing edges on wind turbines (Koegler et al. 2009).

It is vital to include both leading- and trailing-edge fields, and a rigid-elastic connection
to appropriately model the effects of adding a poroelastic extension to a rigid wind turbine
blade. Therefore in this paper we develop such a model by extending the two ideas from
Jaworski & Peake (2013) and Daly & Peake (2015) to consider a finite rigid plate, with
a finite poroelastic extension. Not only can we then assess the effects of the poroelastic
trailing edge on the scattered leading- and trailing-edge fields, we can alter the length
of the poroelastic section to highlight optimal extensions that could minimise scattered
noise.

Also in this paper we present an analytic method to approximate the solution for
the far-field scattered acoustics. Previous work by Jaworski & Peake (2013) and Daly
& Peake (2015) relies on numerical factorisations of the Wiener-Hopf kernels which are
far from straightforward. The analytic approach presented here utilizes Padé approxi-
mations and the extended Liouville’s theorem to approximate unknown functions arising
in the Wiener-Hopf equations (Abrahams 2000). The results are sufficiently accurate to
illustrate the effects of finite chord length on this scattering process, and results can
be produced quicker and more easily than the numerical schemes in Jaworski & Peake
(2013) or Daly & Peake (2015). To validate the approximate Wiener-Hopf method we
compare to an asymptotic result for the scattering of a high-frequency incident sound
wave by a finite rigid flat plate, where the result is known (Ayton & Peake 2013), and
compare to the findings of Cavalieri et al. (2014) in the case of a fully elastic plate (with
no rigid section).

The model we use in this paper is illustrated by Figure 1 and investigates the scattering
of an arbitrary acoustic source, S, by a finite flat plate which comprises of a rigid section,
x € (=M,0), and a poroelastic section, = € (0,L). This composite plate represents a
simplified version of the owl’s wing, which has a rigid leading edge, but porous and flexible
qualities at the trailing edge. In our model, the porosity and elasticity of the poroelastic
section are assumed to be homogeneous. We obtain a formal Wiener-Hopf solution for the
scattered sound in Section 2. We initially consider a non-porous elastic edge in Section
2.1, and discuss the inclusion of porosity in Section 2.3. We confirm that our Wiener-
Hopf equations agree with the analytic systems obtained by Daly & Peake (2015) and
Scott (1992) in the limits M — o0, 0 respectively in Section 3. Section 4 discusses the
new analytic approach to approximating the solution for the far-field scattered sound,
Section 5 contains our results, and Section 6 contains concluding remarks.
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Figure 1: The model problem with arbitrary source, S.

2. Formal Wiener-Hopf Solution

In this section we construct the formal Wiener-Hopf solution for the acoustic scattering
of an arbitrary source by a finite flat plate with a poroelastic extension, as illustrated in
Figure 1.

2.1. Elastic edge

We begin by considering the problem illustrated in Figure 1 with zero porosity. The
surrounding fluid is quiescent and the speed of sound is ¢y. We take a general acoustic
source whose associated pressure, p;, satisfies the Helmholtz equation with source .S and
wavenumber kg = wl*/cq, where [* is a characteristic lengthscale of the problem which we
shall discuss shortly. The total unsteady pressure is written p = p;e™“! + H(z,y)e *?,
where H is the scattered pressure which satisfies the homogeneous Helmholtz equation,

V2H + k2H =0, 2.1
0

and must consist only of outgoing waves. The deflection of the elastic plate is given by

n(z)e™“! where () satisfies the thin-plate equation (Timoshenko & Woinowsky-Kreiger
1959)
9 4
B( 55 —km) =200, 0<z<L. (2.2)

B is the bending stiffness of the elastic plate, k, = (mw?/B)*/* is the plate in-vacuo
wavenumber and m is the mass per unit area of the plate. The forcing in (2.2) arises
due to the effect of unsteady fluid loading. We have a boundary condition of zero normal
velocity on the solid section of the plate,

H i
om\  _ _ % ~M<z<0, (2.3)
dy y=0 dy y=0
and a kinematic condition on the elastic plate,
OH Op;
a. P = pOanu 0 <z < La (24)
ay y=0 ay y=0

where pg is the mean fluid density. We demand that the vertical velocity is continuous
everywhere except across the plate, thus require

H(z,0) =0, x<—-M and z> L. (2.5)

Finally we impose conditions on the joint between the rigid and elastic sections of the
plate, z = 0, and at the edge of the poroelastic extension, x = L. Typically the joint
is clamped, n(0) = 1'(0) = 0, and = = L is taken to be a free edge, n’/(L) = /(L) =
0. There are however further possibilities, such as a pinned edge which would require
7(0) = 1”(0), so we do not immediately impose specific conditions at = 0, L for the
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deflection, however we note that at each point, two of the values n,n',n”,n"" are known
and two are unknown.

There are two key lengthscales in this problem, M and L, however we choose not
to non-dimensionalised with respect to either of them (or L + M) to allow us to take
the limits L — 0, M — 0 and M — oo to compare to previous results for acoustic
scattering by rigid plates (Ayton & Peake 2013), elastic plates (Scott 1992; Cavalieri
et al. 2014), and semi-infinite composite plates (Daly & Peake 2015). In these special
cases, the characteristic lengthscale, I*, is taken as M/2, L/2, and L respectively. In
cases where the rigid section is non-zero and finite, the characteristic lengthscale is taken
as the rigid semi-chord length, M /2, for an incident sound wave, and the full semi-chord
length (L 4+ M)/2 for a near-field monopole.

Equations (2.1) to (2.5), along with the imposed conditions for the deflection at x =
0, L, are sufficient to now solve the problem. We first determine the formal Wiener-Hopf
solution, which requires a number of Fourier transforms. The full range transform is
denoted

k) = [ Hy)dds, (2.6
therefore the solution to (2.1) is
H(k,y) = sgu(y)H(k,0)e "1V, (2.7)

where v = \/k2 — k2, and we take H(k,0) to mean the value at y = 0. We give ko a
small positive imaginary part, which is set to zero at the end of the analysis, and the
branch points of v are at k = +kg, with branch cuts extending to infinity in the upper
and lower half planes.

We introduce three pairs of half-range transforms;

M o
HM (k,y) = H(z,y)e* @M de, HY (k,y) = MH(w,y)e”“(”M)dw, (2.80)

0 oo

B (k) = [ Hlsp)eedn, Bk = [ ey, @8)
—00 0
L oo

HY (h,y) = / H(z,y)e"oDde,  HY(k,y) = / Hz,y)e"Dde.  (2:8¢)
oo L

The suffices + indicate that the functions are analytic in the upper and lower halves of
the complex k plane respectively. We also introduce two finite Fourier transforms

0
(k)= [ Hapeds (2.90)

L
k) = [ HGg)tds, (2.95)

which are analytic for all values of k.
The transforms, (2.8) and (2.9), allow us to write

H(k,y) = (HY + H{) e, (2.10a)
= H® + HY, (2.100)
— (H + HE) ¥, (2.10¢)
=HMe M L gM o OF 4 HEelFE, (2.104)
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We make use of these decompositions, along with the relation

oH -
2 (k,0) = —H(k,0), 2.11
Gy (1:0) = =971 (1,0) (211)
at various points throughout the following analysis.
We begin by transforming equations (2.2)—(2.5) using the appropriate range trans-

forms. First, (2.2) becomes
B

DK k) 0t 4 B (h0) = Q(R) + FQH(R), (2.12)

where the polynomials, Q%% are given by
Q(k) = 5 (1"(0) — ik (0) ~ K/ (0) + iK*n(0)) (2.130)
Q" (k) = g (=n""(L) +ikn" (L) + k(L) — ik>n(L)) . (2.13b)

There are four unknowns constants associated with the functions Q%% since four are
specified by edge conditions at @ = 0, L. The rigid boundary condition, (2.3), becomes

oHM opM
— =——"=alk 2.14
5 =~ =) (2.14)
whilst the kinematic boundary condition, (2.4), becomes
oY opt L,
=1 " =Bk it 2.15
9 gy T PowTn = Bk) + pown (2.15)
The continuous velocity conditions, (2.5), become
HE(k,0) = HM (k,0) = 0. (2.16)

We substitute (2.15) into (2.12) and use the splitting, (2.10d), along with the relation
(2.11), to yield

k(k)H (k,0) =HM (k,0) + Q (k) + e*L (QL(k) + agf (k,O)P(k))

—ikM oHM
+ e MP(R) =5 (k,0) + P(E) (ak) + 5(8)) (2.17)

where P(k) = B(k* — k) /(2pow?), and k = 1 —yP. We use the splitting
H® = AM 4 o7 PM M, (2.18)

along with (2.16), to replace the HM(k,0) term in (2.17) with H°(k,0). Finally, we
define

HO (k) = HO (k,0) + Q°(k), (2.194)
I OHY L
HE (k) = P(k) 5 (k,0) + QL (), (2.19)
so that we may write (2.17) as
) . , . OHM
k(k)H (k,0) = H® (k) +e*HE (k)+e ‘kMP(k)Ty(k,O)—&—P(k) (a(k) + B(k)). (2.20)

This is the key equation for our problem, and the remainder of this section is dedicated
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to using the splittings, (2.10), to obtain three Wiener-Hopf equations allowing us to
formally solve for H} (k,0) and HZ(k,0).
We first use splitting (2.10a) to obtain

r(k)e™ FMHY (k,0) = HO (k) + e 1Y (k) + e‘”“MP(k)@ + P (k) (a(k) + 8(k))

dy
(2.21)

Using a multiplicative factorisation of k(k) = x4 (k)k—(k), as described in Jaworski &
Peake (2013), we obtain
ik M Gk(L+M)  paggM  p
HM — 0 L, - 7= 4 - . 2.22
Ryl1y o M+ o HY +/<5, By +/<;, (a+B) ( )

This is a typical Wiener-Hopf equation, which we could write as

P OHM
HM —p, =— "= L [ 2.23
KZJ,_ + + o ay + 9 ( )
where
F=F,+F_
ik M ik (L+M) , P
= H + T%i +—(a+p) (2.24)

is an additive factorisation into plus and minus functions. The factorisations required for
this problem will be discussed later in Section 4. In equation (2.23), the RHS is analytic in
the lower half of the complex k plane, whilst the LHS is analytic in the upper half plane.
Therefore by Liouville’s theorem both sides must be equal to an entire function, which
must be a polynomial in & (Noble 1958). The degree of this polynomial is determined by
considering the k — oo behaviour of (2.22). As k — oo, Daly & Peake (2015) determine
that k- ~ k°/2, and physically the most singular allowable pressure at the leading edge is
O(z='/?) as x — 04 so HM ~ k=12 as k — oo. Similarly, the most physically allowable
oHM oHM

form of =~ yields —— ~ k'/? as k — oo. Therefore the entire function must be

Ey + kE, + k®>E,, where Ejp.1,2 are constants. We now obtain two equations for A fy and
OHM

By in terms of Ey ;2 and Fy;

1
oM = . (Fy + Eo + kEy + K*E,) (2.25)

OHM K_

= =22 (-F_+ Ey+kE; + K*E,) . 2.26
8y P ( + E£o + 1+ 2) ( )

Similarly to Daly & Peake (2015), we require that the pressure and its derivatives are
not singular at P(k) = 0, therefore (2.26) yields four conditions;

oikM ik (L+M)
k| Ey+kE) + Kk2Ey — HO + QL]
K K _

0. (2.27)

k=ctky,Fik,

These conditions allow us to determine the three constants, Fy 12, and one constant
in QY. One constant in Q¥ remains unknown. The constants in Q° are not formally
required since QU is determined as part of the solution for #° in (2.30), and no singularity
conditions arise from this term.
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We now split (2.20) using (2.10b) and relation (2.11) to obtain
OHY 1

I = T (M0 +eint’) +

—ikM aHM

P
T oy + Jia+ A (a+8), (2.28)

€

where Ji = ki /y+ ~ k? for large k. The scattered pressure is continuous across the
joint at « = 0, so with reference to Daly & Peake (2015), we determine that the entire
function is zero. Therefore

oHY G+
=—— 2.29
9 T (2.29)
H =T G_, (2.30)
where
G=GL+G_

ofL kM g M P
= — +J — . 2.31
J_ HJr + J—’Y 5‘y +Jya+ I (Oé—‘rﬁ) ( )

Finally we split (2.20) using (2.10¢) to obtain

_ . oM L

o HY = (Hoe*“ + Pe1k<L+M>—> L P (a+8). (2.32)
Kt oy Ky Ky

As before, this equation can be separated into functions that are analytic in the upper
and lower halves of the complex k plane, and the conditions on the derivative of HM
determine that the entire function must be equal to F3 + kE, + k?E5 where Fj 45 are
constants. Hence

1

HE = — (h-+ B3+ kEy + K*Es) (2.33)
HY = ki (hy + B3 + kEy + k°E5) (2.34)
where
h=hy+h_
e—ikL " aHiW P
= (H‘l + Pe”! ) +—(a+p). (2.35)
Kt Jy K
Once again, we have an expression that could be singular at P(k) = 0, this time due to
L ’
the term Pagj within ’Hi . To ensure there is not a singularity, we obtain a further four
conditions
—ikL QHM
[m ({e (H(i + PelkM_)] + B3+ kEy + k2E5> — QL] =0,
ot 9y /14 k=-tk,, +ik,
(2.36)

which allow us to determine the three constants, Fs 4 5, along with the final constant in
Q" and thus completes the formal solution.

An issue arises when we wish to actually calculate the solution from these formal ex-
pressions since the Wiener-Hopf factorisations of F', G, and h in (2.24), (2.31), and (2.35),
are all dependent on our unknown H. functions, therefore the formal solution is implicit.
A lengthy numerical solution for a two-dimensional implicit system is given in Daly &
Peake (2015). For our three-dimensional system we shall instead use an approximation
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method discussed later in Section 4 that provides results far quicker that the procedure
in Daly & Peake (2015).

2.2. Matriz formulation

We take equations (2.22), (2.28), and (2.32), and formulate them into a matrix equation,
MiH + MyH_ = P(a+ 3)(1,1,1)T, where

HY OHM /oy
H, = #HY |, H_ = HO , (2.37)
OHY /0y HL
and M; o are matrices containing known functions. By inverting M, we obtain
ol U Hi/{ OHM /oy
_efllc]M elkL _p Hf,r + H(l
—eR(IAM) 0 OHY /oy HL
_olkM,
= -P5 |, (2.38)
0

which provides a simpler view of the formal solution to our problem than the six separate
equations presented in the previous subsection, and is of the form of a standard Wiener-
Hopf matrix equation. However, this is no easier to solve than the implicit system of
equations found in the previous subsection.

2.3. Including porosity

Jaworski & Peake (2013) show that including porosity is a straight-forward algebraic
process, which results in a redefinition of functions used throughout the elastic analysis.
We briefly repeat this here and state the required redefinitions. We now suppose that
the elastic section of the plate, x € (0, L) is also porous, with N circular apertures of
radius R. The fractional open area is oy = N7R?, and the Poisson ratio is v so the
effective plate stiffness is B = [1 — 2ayv/(1 — v)] B. The average fluid displacement in
the apertures is 7, = —KRA;D/(7Tpfo.)2R2)7 where Ap is the pressure jump across the
plate and equals —2H (z,0), py is the fluid density, and K is the Rayleigh conductivity.
The poroelastic plate displacement equation, (equivalent to the non-porous equation,
(2.2)), is
4

(1—ag)B (gxz - k§n> = —2H(z,0)(1 + 2NRKR), 0<z<L, (2.39)

where k, = (mw?/B)'/4. The new kinematic condition (equivalent to (2.4)) is

on
dy

QOéHKRH
Tpsw? R?

— B = pow? [(1 —ag)n+ 0<z<L. (2.40)

y=0

The rigid boundary condition, (2.3), and the continuous velocity conditions, (2.5) are
unchanged. Taking the finite Fourier transform of (2.39) and (2.40), eliminating 7%,
and using the splitting (2.10d), we obtain an equation identical to (2.20), but with a
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redefinition of terms, X — X;

> B 4 74
(k) W(k — k), (2.41a)
R(k) =1—yP(k)+2NKg (R - poP(k)) , (2.410)

P
H = (1 +2NRKp — 2P(k)KRNp0> H° +Q°, (2.41¢)
Pf
L

HE = P(k) 8;? (k,0) + Q(k), (2.41d)
Q(k) = (1 — o) (1/"(0) — ikn"(0) — K/ (0) + K*n(0)) (241¢)
QH(R) = o (1= ) (" (L) + ik (1) + K/ (L) — k(L)) (2.411)

The function v remains unchanged. Since the fundamental equation, (2.20), is unchanged
except for these redefinitions, the solution in the poroelastic case is immediate from (2.38).

3. Limiting Cases

In this section we compare our formal solution (2.38) (and its poroelastic equivalent)
in the limits M — 0,00 to the solutions in Scott (1992) and Daly & Peake (2015)
respectively, when the source is a sound wave,

pi = e*iko cos x—iko sinX, (31)
incident from the far field.

3.1. Limit of M — 0

The matrix formulation of the finite elastic plate solution from Scott (1992) is

—k eikL HY Ho’ kn sin % _PeikL eiL(k—ko cosx) _ 1
ik )+l ) = _07 ( ) » (32)
e 0 Hy H*™ k — kgcosx 0

where

/ OH°
HO =0+ pP= 3.3
- =@+ P (3.3)

The two equations are therefore
—e RLHY 4 HL =, (3.4a)
. , OH° A ko sin x ;

e HO 4 oikLyL 0y pZi= _ _ pgikL 10 ( iL(k—kocosx) _ 1) . (3.4b
RHY + e HY +Q7 + ay e [ m— e ( )

In the limit of M — 0, HY — HY, therefore the first equation obtained from our matrix
system, (2.38), is redundant. The remaining two equations are

—e gy g =0, (3.5a)
: / oOHY - kg sin x ;
_HO ikLy L _ p9i+ 0 _ _peikL "0 ( IL(k—ko cosx) _ 1) . 3.5b
+ ety Jy H ¢ k — kocosx ¢ (3:50)
By using the relation
oHY o OH°
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and noting that with M = 0 the continuous velocity condition upstream becomes H (k,0) =
0, we obtain the same equations as Scott, and thus have agreement in the M — 0 limit.

3.2. Limit of M — oo
The matrix form of the solution presented in Daly & Peake (2015) is

J fL\ (OHY /8y N HO\  kosiny _J — PeiL(k—kocosx) (37)
e"kly=1 0 ’Hi, HE ) ™ k —kgcosx —e kL1 A

In the limit of M — oo, the splitting (2.10a) informs us that He M — H, since
HM — 0 by definition, and H™ = H®. We use the relation

OHY  0H®

—~H =
y 8y+8y’

(3.8)

so our first equation obtained from (2.38) reduces to (2.14). Our second equation is

~ . / OHY ko sin x .
_ ikLayL" P + 0 _ 0 P (1 _ AiL(k—kg cos X)) 3.9
H + e*lpl 5 M = T o e . (3.9)

which, after applying (3.8) and the rigid boundary condition,

OHE_ ko sin x
Oy  k—kocosy’

(3.10)

is found to be identical to the first equation obtained from (3.7). Our third equation is
—e g+ HL =0, (3.11)

which is identical to the second equation from (3.7) on application of (3.8). Therefore
in the limit of a semi-infinite rigid section we recover the previous result from Daly &
Peake (2015).

4. Approximate Solution

The formal solution obtained in Section 2 requires multiplicative and additive factori-
sations of k, F, G, h, however these cannot be found exactly, due in part to the awkward
exponential functions, e*’ e~ *M but also the implicit nature of the formal Wiener-
Hopf solutions, (2.22), (2.28), and (2.32). For the one-dimensional problem (i.e. a single
Wiener-Hopf equation) Jaworski & Peake (2013) provide a numerical method for factoris-
ing x (and an asymptotic factorisation for special cases) however this cannot be extended
to our three-dimensional problem due to terms containing exponential functions. Daly &
Peake (2015) present a numerical method for solving two implicit Wiener-Hopf equations,
but it is far from straight forward to implement, and due to the truncation of infinite
series it provides an approximate solution nonetheless. Here we present a method with
which to obtain an approximate solution to the system of three equations given in (2.38),
that is quick to produce results and simple to implement.

We begin by taking the system of equations in (2.38) and rearrange so that the terms
containing exponential functions and our unknown H terms in the resulting equations
are either purely plus or purely minus functions, e.g. e* is only present with H terms
and never associated with H_ terms (known forcing terms do not have this constraint).
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This yields

S+ FM S 4 5 = —e*Mq, (4.1a)
—kS; + Pe RLAM) G | oIkl g 4 PSH = —Pe * (o + B) — QF, (4.10)
kSy +e MG 4y Ss 4 AP ST = PR — o — v QF, (4.1¢)

where Sf2’3 are the components of the plus and minus vectors in (2.38), except we have

set S5 = Hf so that we may impose the condition that Hﬁ/ is non-singular (similar to
(2.36)). We write the right hand sides of (4.1) as A(k), B(k), C(k) respectively. Recall
Q" contains 2 unknown constants.

By constructing the Wiener-Hopf equations in this way, we can formally obtain ex-
pressions for some of the S% in (4.1) using standard Wiener-Hopf additive factorisations.
For example, take (4.1a); the right hand side is analytic in the UHP. On the left hand
side, we require an additive factorisation of vS;" into plus and minus functions. Then
by Liouville’s theorem we can consider just the terms that are analytic in the lower half
plane to obtain

ST = (=ST)_+ Ei(k), (4.2a)

where (-)+ denotes the part of an additive factorisation that is analytic in the upper/lower
half of the complex k plane, and F; is an entire function which must be a polynomial
containing a number of unknown constants dependent on the degree of the polynomial.
We discuss the degrees of the unknown polynomials in the next subsection. Similar con-
sideration of (4.10) yields

PS8y = (kS3 ), + Ea(k), (4.20)
where Fy(k) is entire. Finally, after dividing (4.1¢) by -y, we obtain

Sy = (-55@) sz () + Es(), (4.2¢)

where s, arises from the additive factorisation of v~ !c(k) —y~te*M S and is formally
known since S; is given by (4.2a), and FEj is a further entire function.

By creating equations (4.2) we have reduced the problem of factorising either the
matrix equation, (2.38), or solving the system of implicit equations, (2.22), (2.28), (2.32),
to a problem of merely having to calculate the entire functions, Eq 23 (which we do in
the following subsection), and the additive factorisations of the bracketed terms on the
right hand sides of (4.2). It is these factorisations that we will approximate by using
rational approximations of the functions v, k, and /7 in Section 4.2 in a procedure that
is far quicker than methods proposed for solving implicit equations (Daly & Peake 2015)
or factorising Wiener-Hopf matrices (Veitch & Peake 2008).

4.1. Determining the entire functions

To determine the entire functions, E; 2 3 in (4.2) we must consider the large k behaviour
of (4.1).
The dominant contributions to the left hand side of (4.1a) for large k come from

Sy + 57 (4.3)
The remaining terms decay with k£ and are therefore not going to contribute to assessing
the polynomial F;. By considering the above term, and using the splitting (2.10a) we

Mo
find in fact this term is ~ %eﬂk}w, which cancels with the right hand side, A(k),
yielding overall an equation that decays for large k, thus the entire function, F; (k) = 0.
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The second equation, (4.1b), contains Q*” which could be dominant for large k, how-
ever upon splitting S; into a term containing dH /9y, using (2.15), and approximating
i by Fourier transforming n(x) ~ n(0)+zn'(0)+z%n"(0)/2+231n""(0)/6, we see that the
contributions from Q%% cancel with corresponding terms from S; . By further splitting
terms in (4.1b) we reduce the dominant contribution for large k to POHE /0y = O(k"/?),
since H f = O(k~'/?) is the most singular allowable solution (Jaworski & Peake 2013).
Therefore by the extended Liouville’s theorem, Eo(k) = eq + e1k + eak? + e3k®, where
the e; are unknown constants. A similar analysis of the third equation, (4.1¢), yields
E5(k) = eq + esk.

4.2. Rational approzimations

We wish to construct an analytic approximation for the solution to the system of equa-
tions, (4.2). We begin by approximating v and s by rational functions

(k— o) (k—aj)

v(k) = ]l_j[/ (k:—’y;r)(k ) ; (4.4a)
(k—B)(k = B5)

r(k) :M =G )’ (4.4b)

which can be done using Padé approximants (Abrahams 2000). The poles and zeros of the
rational approximations lie in the upper or lower half planes, denoted by =+, respectively.
We require the rational approximation of v to be accurate for bounded values of k since
we only wish to discuss the far-field scattered acoustics (which requires evaluation of our
approximations only at the bounded points k = —kq cos 8, as shall be discussed later). If
there are n zeros of v and n poles of v, there are n+4 zeros of k, and n poles of k. n must
be even since we wish to preserve the symmetry of our functions, i.e. the approximation
of v should still be an even function. We ensure that the relationship, x = 1 — P, holds
so that the poles of v and « are identical (since P has no poles).
The approximations (4.4) now allow us to express the factorisations, (f'ySf)i , (,%,S’g_)Jr , (f/-z 7*1S§r) _

analytically. For example, consider .S f‘ which we wish to additively factorise. The minus
function only admits poles at k = 'yf since Sfr cannot have poles in the upper half plane.
Therefore we can write (4.2a) as

1

Sr=Y_ % — + By (k). (4.5a)

7k

The a; are unknown, and the number of these unknowns equals the number of poles of
~ that lie in the UHP, n/2. We have not allowed for poles of order greater than 1 since
non-simple poles do not arise for the functions we are considering here.

Similar consideration of (4.2b) yields

2
PSt=3- Yy Bk, (4.5b)
J

J

where the number of unknowns a? equals the number of poles of x in the LHP, n/2.
Finally (4.2¢) yields
3
S2 = Z ﬁ + So (]f) + Eg(k), (450)
J

J
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where s; is now known in terms of the ajl-. We apply Cauchy’s theorem to obtain this
additive decomposition.

We have now obtained series solutions for three functions in (2.38) in terms of unknown
constants, and with these we could determine H (k,0), and thus the scattered solution. We
have 3n/2 + 6 unknowns constants due to our approximations and the entire functions,
E; 2,3, and a further 2 from the constant terms in QL totalling 3n/2 + 8.

4.3. Determining the unknown constants
To determine the unknown constants a'*? and €o,...,5, we consider rearrangements of
the equations, (4.1). Equation (4.1a) yields

1 — i
v Sf = - [A(k) — Sy — "M ST, (4.60)

where the left hand side is analytic in the upper half k-plane, so the right hand side
cannot be singular at v~ = 0, i.e. at k = ozj. Therefore the function in the square
brackets of (4.6a) must be zero for all k = a;r. Note, we obtain an expression for S5 by
rearranging (4.1¢). From (4.1b) we find

1 . .

oSy = —— [B(k) — PS§ — Sye kL _ pgre=ik(L+AD) (4.6b)

Ky
so similarly, the function in the square brackets must be zero at all k = 6;. From (4.1¢)
Wwe require

C(k) — Sye "M _~nG — fyPS;'eikL|k:ﬂ_+ =0. (4.6¢)

This gives us 3n/2 + 4 equations. We finally note that the expression for Sy in (4.5b)
cannot be singular at P = 0 in the UHP and by virtue of the relationship

Sf = —yHY — HY (4.7)

S;’ can also not be singular in the LHP, therefore we obtain a further 4 equations from
requiring the RHS of (4.5b) to be zero at P = 0. This gives us a total of 3n/2 + 8
equations to solve for our 3n/2 + 8 unknowns (including the two unknowns in Q%). We
may then rearrange the equations (4.1) to obtain solutions for all of the six functions.
Note, due to the small positive imaginary part of kg, all poles and zeros discussed do
have non-zero imaginary parts.

4.4. Far-field Acoustics

Given the solutions obtained in the previous section, we can finally solve for H(k,0) =
ny(k, 0)e~*M required in (2.7). We invert the Fourier transform, (2.6), to yield H (z,y),
which we can approximate in the far field, x,y — oo, by using the method of stationary
phase. We find the far-field scattered acoustic pressure,

eikor eiko”'
V2mr VT
where (r,0) are polar coordinates, with § = 0 denoting the downstream direction. |D(9)|
gives the directivity of the far-field acoustics as a function of observer angle. Since we

only evaluate H}! at k = —kqcosf, we only require our approximation to be accurate
for HY (k,0) (equivalently S;") when |k| < ko, which we obtain from (4.6a).

H(r,0) ~ HM (—kg cos 0, 0)e! ko cos 0=mi/4 iy, 9| = D(9) (4.8)
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5. Results

Before proceeding with results for a rigid plate with poroelastic extension, we first
present verification that the rational approximation approach is reasonable by comparing
results for the scattering of sound by a purely rigid plate. All Padé approximations are
calculated using the built-in PadeApproximant function in Mathematica.

5.1. Verification of the Rational Approximation Method

We consider the scattering of sound by a purely rigid flat plate, M = 2, L = 0.

In Figure 2 we compare the approximate result for the far-field scattered sound as
calculated using the rational approximation method in this paper (with v given by a
Padé approximation with 10 poles), with an asymptotic approximation which can be
obtained from Ayton & Peake (2013).

Figure 2 shows good agreement between the two approximate solutions. The method in
Ayton & Peake (2013) requires kg to be large, and has errors of O(ky *). It does not strictly
impose zero pressure upstream of the flat plate, as seen in all three comparisons; the errors
at 8 = m can therefore be attributed to this discrepancy of boundary conditions at this
point. A final difference is that the asymptotic approximation is for sound scattering in
a background steady uniform flow with non-zero Mach number; in Figure 2 we set that
Mach number to 0.01.

5.2. Results for Poroelastic Extensions

We now investigate the effects of a poroelastic extension to a rigid flat plate for two
different acoustic sources. First, an incident sound wave from the far field, and second,
a near-field monopole close to the poroelastic trailing edge. In both cases, we suppose
the poroelastic plate is clamped to the rigid plate at x = 0 and the edge at x = L is
free, and we normalise the scattered pressure by the amplitude of the incident field. The
incident sound wave provides insight into the potential noise reduction capabilities of
poroelastic extensions for the scattering of external sound sources by blades. A near-field
monopole models a turbulent source within a boundary layer above a wind turbine blade.
The poroelastic extension is an attempt to model the flexible and porous qualities of the
trailing edge of the owl’s wing and understand the noise reduction that could be achieved
by a similar adaptation to turbine blades.

5.2.1. Incident Sound Wave

We first consider the scattering of a far-field incident sound wave with pressure

pi = eflk:[) cos x—iko sinx (51)

Since the source emanates from the far field, it is independent of the properties of the
plate, in particular the length of the poroelastic section. We can therefore consider the
effects of altering the length of the poroelastic section without having to modify the
original source. For all results here, we set y = 7/4.

We define the following function, proportional to the total above-plate scattered sound
power, as

Pros = / D(6)[2db, (5.2)

where D(0) is the far-field directivity given by (4.8). To assess the difference in above-
plate scattered power levels between a plate with a poroelastic extension of length x, and
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(C) ko = 14.

Figure 2: Comparison of two approximate solutions for the far-field scattered acoustics
from a finite rigid plate of length 2, due to an sound wave incident with x = 37i/4 and
varying ko. Solid line uses asymptotic approximation from Ayton & Peake (2013). Dashed
line uses the Wiener-Hopf rational approximation approach and plots |D(6)|, given by
(4.8). Both results are normalised by the incident pressure amplitude.

a fully rigid plate, we define

Ptot|M=2,L=x ) (5 3)

Pyig(z) = 101log <Pt 210 10

which is measured in dB.

Figure 3 illustrates Pgig for different elastic plates and different incident frequencies.
A negative result indicates noise reduction, whilst a positive value is a noise increase.
We see that altering the length of the poroelastic section could significantly reduce the
scattered noise but there exist lengths whereby the noise would in fact be increased.
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-10C

Figure 3: Pgig as a function of poroelastic section length, L, for different elastic plate
wavenumbers, k,, and incident frequencies, kg. Porosity remains fixed at oy, = 0.014.

The optimal choice of length L of the poroelastic section for reducing the scattered noise
depends on the parameters of the plate, L and k,, and incident frequency, ko.

The eigenvalues, A, of an elastic plate of length L are discussed in Cavalieri et al.
(2014), and satisfy

cos(LA) cosh(LA) +1=10 (5.4)

when one edge is free and one is clamped. The first few eigenvalues are given by LA =
1.88,4.69,7.85,11.00. All modes are permitted in our system, but due to the practical
restriction on length 0 < L < 0.5, we only observe the first few modes in the presented
results. If k, is close to A the plate experiences a resonance and we expect a significant
reduction of scattered noise. This is illustrated in Figure 4a; we see significant troughs
at lengths, L, where k,L ~ {1.88,4.69,7.85,11.00}. These reductions do not however
automatically translate to a reduction of noise, i.e. a significant reduction in Figure 3
(dashed line), since the interaction of the trailing-edge field with the leading-edge field
must be taken into account to find the total far-field noise. In Figure 4b we plot P, for
a rigid plate of varying length. The total scattered sound varies with length since the
phase shift between the leading- and trailing-edge scattered fields is dependent on the
length of the plate. A minimum in Figure 4b indicates a destructive interference between
the leading- and trailing-edge fields, whilst a peak indicates a constructive interference.
By changing the trailing edge from rigid to poroelastic, we alter the phase shift between
the leading- and trailing-edge fields. If in the fully rigid case, there is a destructive
interference, e.g. for M € (2.15,2.3), altering the phase shift by introducing a poroelastic
trailing edge results in losing this optimal destructive interference and can produce an
overall increase in noise (despite the trailing-edge field being reduced in magnitude), as
seen in Figure 3 for L € (0.12,0.25).

We justify that the rigid-elastic connection is not a significant contributer to the scat-
tered far-field noise by considering Figure 5 which illustrates the far-field directivity for
a finite poroelastic extension clamped to a semi-infinite rigid plate. There are no oscil-
lations, even at the high frequency of ky = 10, indicating only one source is dominant
in determining the far-field sound, and this must be the trailing edge. We can therefore
attribute any oscillations in the directivity of the far-field scattered sound by our finite
length plates to leading- and trailing-edge interaction rather than interference by the
rigid-elastic connection.

Figure 6a illustrates the effects of altering the poroelastic plate stiffness on possible
noise reduction, as the length of the plate is increased. We see the peaks and troughs
familiar from Figure 3, with more oscillations for higher values of k, since more flexible
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(a) Piot as a function of poroelastic sec-
tion length, L, for elastic plate wavenum-
ber k, = 20, and incident frequency ko = 3.
Rigid plate length, M, is fixed at 2.
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(b) P:ot as a function of rigid plate length,
M, for elastic plate wavenumber k, = 20,
and incident frequency ko = 3. Poroelastic
section length, L, is fixed at 0.

Figure 4: ptot results used to produce the dashed line in Figure 3.
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Figure 5: Far-field directivity for a semi-infinite plate, M — oo, L = 1, with kg = 10,
kp =70, ap, = 0. Result is normalised by the incident pressure amplitude.
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(a) Porosity remains fixed at ap = 0.014
and the frequency of the incident sound
wave is kg = 7. The bending wavenumber
is varied.
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(b) The bending wavenumber of the plate
is fixed at k, = 13, and the frequency of
the incident sound wave is ko = 1. Porosity
is varied.

Figure 6: Pyis as a function of poroelastic section length, L, for different poroelastic plate
wavenumbers, k,, or porosity, o, and incident frequencies, kg.
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(a) Pt as a function of poroelastic plate (b) Piot as a function of rigid plate length,
length, L, for elastic plate wavenumber M, for elastic plate wavenumber k, = 13
kp = 13, and incident frequency ko = 1. and incident frequency ko = 1. Poroelastic
Rigid plate length, M, is fixed at 2. plate length, L, is fixed at O.

Figure 7: pyot results used to produce solid line results from Figure 6b.

plates admit more resonances. The overall trend of when there is an increase or decrease in
noise is similar across all £k, values, since this is governed by the leading- and trailing-edge
interaction rather than the alteration of the trailing-edge field directly by the poroelastic
plate.

We see the effect of altering porosity in Figure 6b, which we know from Jaworski &
Peake (2013) and Cavalieri et al. (2014) has more significant effects at low frequencies.
We see that a higher porosity has the capability of maintaining a negative sound power
difference for a larger range of values of L, and in agreement with Cavalieri et al. (2014),
the more porous the extension, the greater the possible reduction of noise. There are
only two oscillations in the results in Figure 6b since there are only two lengths that
correspond to resonances which can be seen in Figure 7a. Figure 7b does not have any
minima, therefore the leading- and trailing-edge interaction does not have a significant
impact on the scattered noise, and overall we see reductions in total noise for almost all
lengths of extension and the main mechanism reducing noise in Figure 6b is due to the
reduction of the trailing-edge scattered field by the addition of the poroelastic extension.

Realistic designs with poroelastic extensions would only use small values of L, to
minimise adverse aerodynamic effects, and we see from Figures 3 and 6a that even small
poroelastic extensions of 5% — 10%, L € (0.1,0.2), of the total rigid chord length can
yield a reduction in scattered sound power of up to 4dB for certain frequencies. Figure
6b shows that increasing the porosity of the extension could extend the range of lengths
over which we would see a noise reduction for given frequencies, thereby allowing the
poroelastic extension to be chosen to optimise noise reduction over a wide range of
possible incident sound frequencies.

5.2.2. Near-Field Monopole

For a near-field source, located just above the trailing edge, varying the length of the
poroelastic section significantly alters how the source interacts with the rigid section of
the plate, therefore for clarity when comparing results we shall focus on results at fixed
values of L. Unless otherwise specified, we choose a monopole source,

L
g = ——e'oTm 5.5
pt k(ﬂ‘m ( )
where 7, is a radial coordinate centred on the location of the monopole. We begin by
comparing results to Cavalieri et al. (2014, Fig. 9a) in Figure 8; we see clear similarities
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Figure 8: Directivity of the far-field scattered pressure from a monopole at (L, 0.06) with
ko = b5, interacting with an impermeable elastic plate of length L = 0.999 with rigid
section, M = 0.001. Results are normalised by the incident pressure amplitude.

although there is a notable difference in the sharp dip between lobes in our k, = 20
result, which is much less pronounced in the result from Cavalieri et al. (2014). This is
most likely a result of our different source terms (we use a monopole but Cavalieri et al.
(2014) use a quadrapole; the quadrapole radiates noise differently towards the leading
edge therefore producing a different leading-edge scattered field than the monopole), but
there could also be an effect from our result having a non-zero rigid length, thereby
allowing the leading-edge acoustic field to be scattered by a rigid edge rather than a
clamped elastic edge.

In Figure 9 we see the effect of altering the plate stiffness for M = 1.85, L = 0.15,
oy, = 0.0014, and ko = 8. We refer to the k, = 0.01 case as the rigid plate comparison. We
see a large increase in noise for k, = 50 compared to the rigid plate, and a large decrease
for k, = 70. These increases or decreases with respect to the rigid plate scattered noise
arise for similar reasons as the previous section; altering k,, alters the trailing-edge field
which could be close to a resonance, however there could be a constructive or destructive
interference of the leading- and trailing-edge acoustic fields. The decrease for k, = 70
occurs since it is close to a resonance (0.15 x 70 = 10.5), whilst the increase for k, = 50
occurs since in the rigid case there is an optimal destructive interference between the
leading- and trailing-edge field, but the poroelastic trailing edge with k, = 50 alters the
phase shift between the leading- and trailing-edge fields in such a way as to create a
constructive interference. Figure 10 uses the same results as Figure 9 to illustrate the
noise difference in dB at each angle € between the rigid plate and a flexible plate.

We see from Figure 10 that by choosing a length and bending wavenumber close to a
resonance, a large noise decrease could be achieved. Figure 11 illustrates a similar situa-
tion as Figure 10 but for kg = 10 and L = 0.1. We choose different bending wavenumbers
to provide consistent bending Mach numbers, 2 = kg /kp, as the previous situations, since
the bending Mach number was found to be a key parameter in Cavalieri et al. (2014). By
comparing Figures 10 and 11 we see that the same poroelastic plate would have different
noise reduction capabilities for different source frequencies. The reduction in noise for
k, = 75 occurs due to the proximity of the resonant mode (0.1 x 756 = 7.5).

A turbulent boundary layer would contain a vast number of sources at different lo-
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Figure 9: Directivity of the far-field scat-

Figure 10: Far-field noise difference in dB
tered pressure from a monopole with

at each polar angle 6 between the rigid
ko = 8, interacting with a rigid plate plate, k, = 0.01 and flexible plates, with

of length M = 1.85 with a poroelas- M =1.85, L =0.15, and «p, = 0.0014, for
tic extension of length L = 0.15, with ko = 8.

oy, = 0.0014 and varying k,. Results are
normalised by the incident pressure am-
plitude.

cations with different frequencies. The results in this paper can allow multiple sources
to be assessed. To illustrate this, we consider Figure 12 which shows the magnitude of
the far-field acoustic pressure produced by five monopoles of equal strength, located at
points (0.15,0.06), (0.13,0.04), (0.14,0.03), (0.12,0.02), (0.145,0.05), with frequencies
6,6.5,7,7.5,8, for a plate with L = 0.15, M = 1.85, and constant porosity aj = 0.0014.
Figure 13 shows two of the contributions to Figure 12. In Figure 13a we see a result
where the overall sound pressure is decreased for the given flexible plates compared to
the rigid plate, whereas in Figure 13b this is not the case and we see increases in noise
for certain values of k, versus the rigid plate, in particular k, = 40, 50. It is these values
of k,, that cause an increase in pressure at certain angles in Figure 12 which could result

in an increase of total scattered noise. We notice however that the increases in Figure

12 for the combined five monopoles are much less than the increases seen in the sin-

gle monopole result in Figure 13b, indicating that over a number of different turbulent

sources the capability of the poroelastic plate to increase total noise is lessened.

By comparing Figures 13a and 13b we see that the magnitude of the far-field acoustic
directivity for the rigid plates is very different despite the similar sources, indicating that
in the case of Figure 13b there is a strong destructive interference between the leading-
and trailing-edge acoustic fields, whereas in Figure 13a there is not. This explains why,
for the same values of k,, we do not always see a consistent increase or decrease of noise
even though the length of the poroelastic section is the same. The destructive leading-

and trailing-edge acoustic interference is dependent on the acoustic source, which differs
between Figures 13a and 13b.
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Figure 11: Far-field noise difference in
dB at each polar angle 6 between the
rigid plate, k, = 0.01 and flexible plates,
with M = 1.9, L = 0.1, and ap =
0.0014, for kg = 10. Results are nor-
malised by the incident pressure ampli-
tude.

Figure 12: Far-field pressure directivity
obtained by five monopoles with dif-
ferent locations and frequencies. In all
cases oy, = 0.0014.

SS

(a) ko = 7.5, located at (0.12,0.02).

(b) ko = 8, located at (0.145,0.05).

Figure 13: Far-field pressure directivity for two different single monopole sources, with
ap, = 0.0014. Results are normalised by the incident pressure amplitude.

6. Conclusions

In this paper we have considered the scattering of acoustic sources by finite rigid plates
with finite poroelastic extensions in an attempt to model the noise control properties
of the trailing edge of an owl’s wing. Whilst the formulation holds for an arbitrary
acoustic source, we have focussed on results in two important cases; far-field sound waves,
applicable to rotor blockage within aeroengines, and near-field monopoles, applicable to
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turbulent boundary layer self-noise. In both cases the rigid section of the plate was seen
to be important in determining the potential noise reduction due to interference between
acoustic leading- and trailing-edge fields, something that studies for purely poroelastic
plates or semi-infinite plates have not assessed. Additionally the length of the poroelastic
section was a key parameter affecting noise levels since longer extensions permit more
possible resonant modes. We have also presented an approximation method for Wiener-
Hopf factorisations, based on Padé approximations. This is particularly effective for this
problem since we are concerned only with the far-field scattered acoustics; the method
would not be appropriate for calculating the acoustics in the mid or near field.

Blade geometry and mean flow have been excluded from the analysis. An inclusion of
either would significantly complicate the modelling of the fluid-structure interaction, and
progress with the Wiener-Hopf technique would be difficult. Abrahams (1983) discusses
the scattering of sound by a finite elastic plate in uniform subsonic flow, however to solve
this problem one must use a matched asymptotic expansion in conjunction with the
Wiener-Hopf technique. By including a mean flow the sound generated by non-acoustic
sources, such as a convective gust from far upstream, could be assessed. Also we have
neglected any viscous fluid action within the perforates of the extension. The poroelastic
plate model used here presents just a first-order correction to account for the porosity
of the plate, provided k,R < 1,kgR < 1 and a7 < 1. These restrictions, along with
the effects of mean flow on a perforated plate are discussed in Howe (1998). We would
anticipate that any effective increase in surface damping (such as including the effects
of viscosity within the perforate) could further decrease the far-field scattered sound by
decreasing the trailing-edge scattered field, however the interaction between the leading-
and trailing-edge fields could still result in noise increases.

The solution in this paper allows us to calculate the scattered field from multiple near-
field sources, as would be found in a turbulent boundary layer above a wind turbine
blade. Whilst we have seen that not all single monopole source cases result in an overall
decrease of far-field noise for flexible plates compared to fully rigid plates, we would
expect, given that we know owls fly almost silently despite turbulence generated within
the boundary layers above their wings, that when a large number of sources interact
with the poroelastic trailing edge, the noise is reduced overall. In this paper, we have
seen that single monopole sources can scatter more noise when interacting with plates
with certain poroelastic extensions than when interacting with fully rigid plates. However,
the combination of multiple monopole sources results in a much reduced increase in the
scattered noise in these situations. We expect that if we included far more near-field
sources, any poroelastic extension would reduce the total scattered noise compared to
that from a fully rigid plate. Further work is required to support this hypothesis, however
it is similar to the results observed for sound generation by wavy leading edges; for single
turbulent sources, wavy leading edges have been seen to both increase and decrease noise
compared to straight leading edges (Mathews & Peake 2015). However, fully turbulent
flow with a large number of sources predicts a consistent noise reduction for all types of
wavy leading edge when compared to straight leading edges (Haeri et al. 2015).

We can conclude that, in agreement with previous studies, poroelastic trailing edges
could be a significant tool for reducing sound scattering for a range of acoustic sources,
however the interaction of the leading- and trailing-edge scattered fields has the capability
of increasing the overall far-field scattered noise when compared to a purely rigid plate.
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