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The potential for land sparing to offset greenhouse gas emissions from agriculture: 

Supplementary Information 

Contains Supplementary Methods, Supplementary Discussion, Supplementary Tables and 

Supplementary Figures. 

Supplementary Methods 

Model. Calculations were performed using a spreadsheet model, available for download in 

the Supplementary Information. The logical structure of the model is illustrated in 

Supplementary Fig. 4. Each element of the model is described in further detail below.  

Future agricultural production. We projected the future production of all major UK crops 

(grouped as cereals, oilseeds, potatoes, sugar beet, fruit and vegetables, forage maize, forage 

legumes and other forage crops) and livestock products (beef meat, poultry meat, pig meat, 

sheep meat, milk and eggs). The production of livestock feed was calculated by our livestock 

model (see below). For all other production, a baseline was set at the mean of reported 

production in the three years 2009–2011
31

 and centred on 2010. Future production   
 
 of 

commodity j in year t was calculated as:   
 
     

 
               

 
    

 
 , where      is 

the projected UK population in year t (ref. 32) and   
 
 is the projected demand per capita for 

commodity j in year t for the EU-27 (provided by J. Bruinsma (pers. comm.) and consistent 

with ref. 5). Supplementary Table 2 shows the projected growth in the production of each 

commodity to 2050 using this approach. To ensure a like-for-like comparison we maintained 

this level of production (before any demand management) in all of our scenarios. 

Changes in yield and feed conversion ratio. We specified a range in future crop yields 

(expressed in tonnes per hectare per year) and livestock feed conversion ratios (FCR; MJ feed 

energy required per kilogram of production; production expressed as either kilogram dressed 
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carcase weight, kilogram milk or kilogram eggs as appropriate; see Table 1). For each 

commodity we specified a lower- and an upper-bound for yield or FCR in 2050. We changed 

yields and FCRs on a linear basis between 2010 and 2050 (e.g. Supplementary Fig. 1). On the 

horizontal axis of our results figures, the yields and FCRs of all commodities in 2050 are 

scaled uniformly and linearly between their respective lower- and upper-bounds. 

Mathematically, the yield (or FCR) Yi of the i
th

 commodity in 2050 is varied according to Yi = 

LBi + k (UBi – LBi), where LBi and UBi are the lower- and upper-bounds; and k varies 

between 0 and 1 and is applied uniformly to all commodities. Specific yield and FCR 

assumptions are discussed further in the Supplementary Discussion. 

Livestock model and livestock feed requirement. We modelled ten feed categories: cereals, 

forage maize, maize grain, rapeseed meal, forage legumes, other forage crops, concentrates, 

grass, wheat straw and silage and hay. We modelled livestock reared for meat, milk or egg 

production (producing animals) differently to those kept for breeding purposes (breeding 

animals). For producing animals, the required annual tonnage F of each feedstuff i was 

calculated as                  
 

       
 , where Pj is the annual tonnage of production of the 

j
th

 livestock commodity; FCRj is the feed conversion ratio; Di,j is the proportion (in energy 

terms) of each feedstuff in the diet; Ei,j is the feed energy density relevant to each animal 

(from refs. 33,34); and Ui is a factor for uneaten and wasted feed (based on refs. 35,36). We 

established present day diets and feed conversion ratios drawing primarily upon ref. 37 and 

with reference to the literature and standard agricultural references
33,38–42

, and cross-checked 

these by comparing the total consumption of different feedstuffs predicted by our calculations 

(Supplementary Table 6) with published UK feed statistics
31,43,44

. For monogastric animals 

(pigs and poultry), FCR improvements are projected to arise through genetic improvement 

rather than changes in diet
8,45

. For ruminant livestock, FCR gains from genetic improvement 

will be accompanied by changes in diets, principally the reduction of grass in favour of more 
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nutritious feeds
8,46

. To quantify diet changes, we looked at the gap (in terms of Di,j) between 

present day average herd diets and the best performing animals in ref. 37. We assumed that 

herd diets would shift towards those of the best performing animals, closing between 0% 

(lower-bound yield growth) and 50% (upper-bound yield growth) of the gap by 2050 (see 

Supplementary Table 6). For breeding animals, we assumed no FCR improvements and no 

changes in diet, so baseline feed consumed by breeding animals was projected forward in 

proportion to the production of the relevant livestock commodity. 

Area needed for crop and grass production, and area spared. The area of cropland and 

grassland required to meet our assumed level of future agricultural production was calculated 

for each crop and grass commodity using the relationship crop area = production / yield; the 

area of spared land is then the difference between the current area under this crop and its 

projected future area. We assumed that spared land arising for each crop was spatially 

distributed in direct proportion to the present land area occupied by that crop in each of 11 

UK regions (the NUTS 1 administrative regions
47

; see Supplementary Table 3). 

Habitat restoration on spared land. We assumed the establishment of forest or bioenergy 

crops on spared land arising in all locations except on organic soils, where rewetting – 

creating fen at low altitudes or bog at high altitudes – prevents further peat oxidation and so 

maximises greenhouse gas abatement
48

.  To implement this, we conducted a GIS analysis 

using ArcMap 10
(49)

. Working at a 1 km
2
 resolution we first extracted the average altitude of 

each square using ref. 50, and applied a 300 metre threshold to classify squares as either 

lowland or upland. Next we used the 25 metre resolution CEH UK Land Cover Map 2007
51

 

(LCM) to aggregate over each 1 km square the areas of arable (LCM class ‘Arable and 

horticulture’), improved grassland (LCM class ‘Improved grassland’) and rough grazing 

(LCM classes ‘Rough grassland’, ‘Neutral grassland’, ‘Calcareous grassland’, ‘Acid 

grassland’, ‘Fen, marsh and swamp’, ‘Heather’ and ‘Heather grassland’). Cross-checking 
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against published agricultural land-use data
31

 indicated that the LCM misclassified some 

improved grassland as arable, but correcting for this had negligible impact on our results. So 

that we could align land cover with soil type we next classified the soil in each square as 

either ‘mineral’ or ‘organic’ by comparing the soil carbon density to 1 metre depth at  each 

location
52

 with country- and habitat-specific thresholds (published in the UK inventory
53

 and 

based on refs. 52,54,55) and using the published value for organo-mineral soils as a threshold 

to delineate organic and mineral soils. Finally we summarised across the UK’s 11 NUTS 1 

administrative regions, computing for each of existing arable, improved grass and rough 

grazing land, the proportion suitable for forest (or bioenergy crops), fen or bog creation. 

Spared land arising in each region under a given scenario was then allocated in accordance 

with these proportions (Supplementary Table 3). This approach predicted a greater area of 

lowland peatland available for restoration than the 150,000 ha reported in the UK inventory
12

 

so we modified our restoration assumptions in this regard to reflect the reported figure (see 

below). 

Greenhouse gas emissions attributable to agriculture.  

Emissions reported in the following section are in general reported under agriculture in the 

UK inventory
12

, however we also report certain emissions that are attributable to agriculture 

but reported in other sectors, and in certain cases we have re-allocated emissions between the 

agriculture sector and the ‘land use, land-use change and forestry’ (LULUCF) sector to 

improve clarity. Baseline emissions were set at the mean of reported emissions in the three 

years 2009-2011 and centred on 2010 (see Supplementary Table 1). Emissions reported in the 

UK inventory were projected forward using emissions factors from the inventory and 

functional relationships drawn from standard IPCC guidelines
13,56

. All emissions factors and 

other key parameters are reported in Supplementary Table 4. 
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Enteric fermentation methane emissions were varied in proportion to the gross energy content 

of feed consumed by livestock (ref. 13, vol. 4, equation 10.21). 

Manure management methane CH4MM,T for each livestock class T was projected forward from 

baseline values using two relationships from ref. 13 (vol.4, equations 10.23 and 10.24): 

                                    and        , where     is the volatile 

solids excreted;       is the methane producing capacity of manure; MET is the metabolisable 

energy content of feed (obtained from our livestock model); MST,S is the proportion of waste 

handled in each of five manure management systems S (obtained from ref. 12 and for 

ruminants adjusted over time reflecting our diet assumptions); and MCFS are methane 

conversion factors (obtained from ref. 12 and held constant). 

Manure management nitrous oxide N2OMM for each livestock class T was quantified 

according to ref. 13 (vol.4, equation 10.25) as                            , where 

NexT is the quantity of nitrogen excreted (assumed proportional to protein consumed in 

feed
13

, obtained from our livestock model); MST,S is as defined above; and EF3,S are 

emissions factors (obtained from ref. 12 and held constant). 

Nitrous oxide from synthetic fertilisers N2OSN was quantified as a function of the tonnage of 

nitrogen in fertiliser applied per hectare Ri to each crop i; the area Ai of each crop; and an 

emissions factor EF1 (ref. 13, vol.4, equation 11.1):                  . Ri values were 

obtained from ref. 12 and were adjusted in future years in proportion to changes in yield. Ai 

was calculated as outlined above and EF1 was obtained from ref. 12 and held constant. 

Emissions from animal manure applied to soils N2OOS for each livestock class T were 

quantified according to ref. 13 (vol.4, equation 11.1) as:                       , 

where NexT and MST,S are defined as above (with NexT is adjusted to exclude a small quantity 
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of chicken waste incinerated
12

) and EF1 is an emissions factor (obtained from ref. 12 and held 

constant). 

Other direct soil emissions comprises emissions from nitrogen fixing crops and crop residues 

returned to soils which were obtained from ref. 12 and varied in in proportion to the total 

tonnage of crop production.  

Atmospheric deposition emissions N2OATD were quantified according to ref. 13 (vol.4, 

equation 11.9) as                                               , where FSN is 

the tonnage of synthetic nitrogen applied to soils, of which FracGASF is the fraction that 

volatilises; FON and FPRP quantify nitrogen applied to soils from animal manures (calculated 

as above and adjusted to exclude a quantity of chicken waste incinerated) and sewage sludge 

(obtained from ref. 12 and increased in line with UK population growth), of which FracGASM 

is the fraction that volatilises; and EF4 is an emissions factor. FPRP, FracGASF, FracGASM and 

EF4 were each obtained from ref. 12 and held constant. 

Nitrogen runoff and leaching NL follows a similar relationship (ref. 13, vol.4, equation 

11.10):                                , where the definitions and approach 

follow directly from above. 

Other indirect soil emissions comprises three sources of emissions. Emissions from nitrogen 

fixed by improved grassland were obtained from ref. 12 and were varied in proportion to the 

total area of improved grassland. Emissions from sewage sludge applied to soils and from 

overseas dependencies and crown territories were obtained from ref. 12 and increased in 

proportion to UK population growth. 

The remainder of this section reports emissions that are attributable to agriculture but 

reported in other sectors or omitted from the UK inventory altogether. Emissions from farm 
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energy use are reported under ‘stationary and mobile combustion’ in the energy sector (ref. 

57) and were varied in proportion to the total tonnage of crop and livestock production.  

For imported livestock feed we quantified emissions associated with farming, land-use 

change, processing and transporting feed by first establishing the quantity and composition of 

feedstuffs imported to the UK
43,44

 and then reviewing the literature for applicable emissions 

factors, adopting conservative values where ranges were presented. The proportion that each 

component contributes to the total mass imported to the UK was obtained from ref. 
43

 for the 

year 2010 and was used to calculate a weighted average emissions factor of 1.54 kg CO2e kg 

feed
-1

 (Supplementary Table 6). Our figure is conservative relative to values elsewhere in the 

literature
37,40,41

, but our overall result is largely insensitive to variation in this parameter 

(Supplementary Fig. 2). We separately specified emissions factors for imported maize grain 

(0.66 kg CO2e kg feed
-1

; refs. 37,58) and for co- and bi-products fed to livestock (0.05 kg 

CO2e kg feed
-1

; ref. 37). 

For emissions from the manufacture of synthetic fertiliser we used an emissions factor of 6.2 

kg CO2e kg N
-1

 
(59)

 declining to 3.5 kg CO2e kg N
-1

 by 2050 in all scenarios reflecting the 

ongoing uptake of nitrous oxide abatement technology in nitric acid manufacturing plants 

across the UK and Europe
60

. This reduction has only a small impact on our results and we 

show this in our sensitivity analysis (Supplementary Table 4; Supplementary Fig. 2). 

Emissions from machinery manufacture and maintenance were quantified as a fixed 35% of 

emissions from farm energy use. This ratio was obtained from ref. 37 as the area weighted 

average across six major cropping systems. 

Emissions from pesticide manufacture and breakdown were obtained from refs. 61 and 57 

respectively and were varied in proportion to the total area under crop production in the UK. 
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Emissions from the liming of agricultural fields (reported in the LULUCF inventory
12

) were 

varied in proportion to the total tonnage of crop production. 

Greenhouse gas emissions associated with land use and land-use change. 

Emissions reported in the following section are in general reported under ‘land use, land-use 

change and forestry’ (LULUCF) in the UK inventory although in certain instances we have 

re-allocated emissions between LULUCF and agriculture to improve clarity. 

Emissions from drained fen. These comprise several sources of emissions reported in 

different sections of the UK inventory or not reported at all. Emissions of nitrous oxide are 

reported under ‘cultivation of histosols’ in the agriculture section of the UK inventory
12

.We 

used the figure from the inventory but updated the emissions factor based on recent IPCC 

guidelines
56

. Carbon dioxide emissions were obtained from the ‘lowland drainage’ category 

in the LULUCF inventory
12

. In addition we used IPCC tier 1 emissions factors
56

 to quantify 

emission of dissolved organic carbon and methane. The area of drained fen under cultivation 

was set initially at 150,000 ha, the area reported in the UK inventory
12

, and then reduced in 

accordance with our peatland restoration assumptions outlined below. 

Emissions from drained bog. We obtained emissions factors for carbon dioxide from 

applicable UK studies
62–65 

and used IPCC tier 1 emissions factors
56

 for dissolved organic 

carbon, methane and nitrous oxide. We assumed an initial applicable area of 911,000 hectares 

(based on ref. 62), reducing it in accordance with our peatland restoration assumptions 

outlined below. 

Conversion between grassland and arable. Under certain combinations of yield growth and 

demand management there is a need to convert grassland to cropland to meet shifting demand 

patterns. To quantify land conversion emissions we assumed an immediate loss of 10% of 
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topsoil carbon on ploughing
66

, a step change in biomass carbon, and a longer term asymptotic 

decay in soil carbon (assuming mineral soils in all cases) using the methodology of the UK 

inventory
12. 

 This models changes in soil carbon over time according to       

         
  

  , where    is the soil carbon density in year t;    and    are the soil carbon 

densities of the initial and final land use, respectively; and   is a time constant 

(Supplementary Table 7 contains the values assumed for these parameters broken down by 

country and land cover). We quantified nitrous oxide emissions using an emissions factor of 

0.22 kg N2O-N ha
-1

 yr
-1

 (ref. 12). 

Greenhouse gas fluxes in forest biomass on spared land. We started with regional estimates 

of forest yield class (a standard metric of volume growth rate) for 21 common broadleaved 

and coniferous tree species derived from a spatially explicit study of species’ suitability under 

local climatic and soil conditions
67,68

. We then cross-referenced these data with standard 

carbon accumulation curves for UK tree growth used in the UK inventory
12

 (discussed also in 

refs. 69,70 and available at ref. 71) to identify the species with the highest carbon 

sequestration potential in each region (Supplementary Table 3). Data were not available for 

Northern Ireland so we used the values for the North East region which is closest in latitude. 

Carbon accumulation curves quantify the carbon density (t C ha
-1

) in forest biomass as a 

function of time since planting; a different standard curve exists for each species and yield 

class combination. We projected total carbon stored in forest biomass    in calendar year t 

using:          
       

  
    

 
 , where, for each of 11 regions  ,     

  is the carbon density 

predicted by the applicable carbon accumulation curve t* years since planting; and      
  is 

the area of new forest established in region R in the calendar year t - t*. This approach aligns 

carbon sequestration curves (which are S-shaped curves specified on a years-since-planting 

basis) with the applicable areas of afforested spared land arising in each calendar year 
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between 2010 and year t. In addition, we assumed an immediate loss of crop or grass biomass 

from the prior land use. 

We sense-checked our results by running a sensitivity using the UK average yield class 

assumptions reported in the UK inventory
12

 and found good agreement (Supplementary Fig. 

2). We assumed that, once established, forest would be left as a carbon sink, without any 

ongoing management, though we acknowledge that management to extract wood products 

and fuel-wood can potentially enhance the carbon sink (ref. 23 but see also ref. 72). 

Greenhouse gas fluxes in forest soils. On former grassland we assumed an immediate loss of 

2% of topsoil carbon caused by ground disturbance
66

 and no long-term soil carbon gains
73,74

. 

On former cropland we modelled soil carbon gains using                
  

   , where 

   is the soil carbon density in year t;    and    are the soil carbon densities of the initial and 

final land use, respectively; and   is a time constant
12

 (Supplementary Table 7). Consistent 

with UK forestry guidelines and the UK inventory we assumed no use of nitrogen fertilisers 

on forest land
12

; high rates of nitrogen deposition in the UK make this unnecessary
23

.  

Site preparation and natural disturbance in forest. We included emissions associated with 

seedling production, fencing, tree shelters, ground preparation and herbicide use
70

, in total 

amounting to around 3 t CO2e ha
-1

. We adopted European average rates of natural 

disturbance, assuming that 0.15% of timber volume was damaged each year (increasing by 

40% by 2050
75

) and as an approximation quantified all emissions (from loss through fire, 

windstorm, pests and diseases) using IPCC tier 1 emissions factors for forest fires
13

. 

In aggregate, these assumptions result in a mean annual rate of carbon sequestration in the 

soils and biomass of forests across the 40 years of our projections of 2.5 t C ha
-1

 yr
-1

 and a 

rate in 2050 of 4.1 t C ha
-1

 yr
-1

 (Supplementary Figure 5). Average rates for British forests 

cited in the literature include 2.7 t C ha
-1

 yr
-1

 (ref. 70), 3.5 t C ha
-1

 yr
-1

 (ref 76), 2.7 t C ha
-1

 yr
-
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1
 (ref. 77) and 3.8 t C ha

-1
 yr

-1
 (ref. 23). Maximum sequestration rates in fast growing British 

forests are reported anywhere from 6 t C ha
-1

 yr
-1 

to as high as 10 t C ha
-1

 yr
-1

 (refs. 70,76,78). 

Greenhouse gas fluxes in re-wetted fen and bog. We quantified four greenhouse gas fluxes: 

carbon dioxide, dissolved organic carbon, methane and nitrous oxide, using UK specific 

values where available, supplemented by IPCC tier 1 emissions factors
56

 (Supplementary 

Table 4). We assumed an additional ‘spike’ in methane emissions in the ten years following 

re-wetting (based on refs. 48,79) but otherwise assumed an immediate transition from drained 

to restored state. We assumed one-off greenhouse gas emissions of 2.5 t CO2e ha
-1 

associated 

with fencing, drain-blocking and vegetation management, using estimates for comparable 

activities from the forestry sector
70

. We assumed low density grazing (0.1 livestock units ha
-

1
) by ponies and sheep to manage vegetation succession, and quantified emissions using 

IPCC tier 1
(13)

 and UK inventory
12

 emissions factors. Under certain scenarios, the area of 

lowland peatland available for restoration exceeded the 150,000 ha reported in the UK 

inventory; we conservatively capped the area restored at 150,000 ha and assumed nil 

greenhouse gas abatement on any additional spared lowland peatland (though this is likely to 

understate the mitigation achievable). In aggregate, these assumptions result in long-term 

abatement (the reduction in emissions in the re-wetted state versus the drained state) of 

around 4 t CO2e yr
-1

 for each hectare of peatland restored. 

LULUCF emissions unaffected by scenarios. Certain LULCF emissions associated with non-

farmland habitats (pre-existing forest land, wetlands and settlements) are unaffected by our 

land-sparing scenarios. We obtained an estimate of these emissions in 2050 (3.6 Mt CO2e) 

from the business as usual scenario in ref. (80) and include this estimate in our projections. 

Baseline emissions in 1990. We quantified emissions in 1990 on an equivalent basis to the 

above to facilitate comparison with 2050 projections (Supplementary Table 1). Where 
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reported, we obtained 1990 values directly from the UK inventory
12,57

. Remaining emissions 

were quantified using the methods above but making the following additional assumptions: 

for imported feed we performed a linear extrapolation using reported feed consumption data 

(available from 1997 to present
43

) backwards to 1990; for pesticide manufacture and 

breakdown we scaled emissions from manufacture in proportion to those from pesticide 

breakdown (available in the inventory); for emissions from drained fen we scaled emissions 

from dissolved organic carbon and methane in proportion to emissions of carbon dioxide 

(available in the inventory); and for emissions from drained bog we assumed that emissions 

in 1990 were equal to those in 2010. 

Emissions from food imports. In scenarios with yield growth close to the lower-bound 

assumption, UK production growth did not keep pace with projected demand growth. In these 

cases we assumed an increase in imports to the UK and quantified the greenhouse gas 

emissions arising overseas due to these additional imports. This ensured that all of our 

scenarios quantified the emissions associated with the same quantity of agricultural 

production (before any demand management). This approach reflects the fact that reducing 

UK production and increasing imports will reduce UK emissions but will lead to an increase 

in emissions overseas. We used life-cycle emissions factors to quantify emissions associated 

with farming, farming inputs, transport to the UK, and (separately) land-use change, based on 

ref. 81 and cross-checked against refs. 82–85. Emissions due to land-use change in these 

studies can vary by an order of magnitude depending on whether land-use change emissions 

are allocated entirely to production on the converted land or are averaged over production on 

all land
83

. So that our results in the main text (Figs. 1 and 2) do not overstate the potential 

mitigation benefits of land sparing (which can reduce the need for food imports) we adopted 

conservative (low) emissions factors for overseas land-use change using ref. 81 (see 

Supplementary Table 8). This approach implicitly assumes that global market linkages and 
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displacement effects mean that the total (rather than incremental) demand for a product 

determines its contribution to global land-use change
83

. Higher overseas emissions estimates 

would be obtained if we instead calculated overseas land-use change assuming that UK food 

imports were directly allocated an incremental share of overseas land-use change
83

. 

Reduced consumption of animal products. We based the upper-bound of our analysis on a 

dietary scenario assessed by the UK Committee on Climate Change (described in ref. 86). 

The diet involves a 64% reduction in beef, poultry, pig and sheep meat consumption, a 40% 

reduction in egg and dairy consumption and a 30% reduction in sugar consumption, offset by 

a 40% increase in cereal, vegetable oil and potato consumption and a 60% increase in the 

consumption of pulses, fruit and vegetables. The replacement diet is similar to present day 

diets in energy terms, but calories derived from animal products are halved and it is up to 

14% lower in protein (though protein levels still comfortably exceed World Health 

Organization guidelines
87

). The diet was assessed as nutritionally viable in ref. 86, is 

consistent with healthy diets published elsewhere and is likely to provide a number of human 

health co-benefits
16,88–90

. We treated this diet as an upper-bound for the shift in diet that might 

plausibly be achieved by 2050 and then assessed the effect of diets shifting anywhere 

between nil and that upper-bound. We assumed that the diet shift would be phased in by a 

linear change between 2010 and 2050. The results in the main text assume that this scenario 

is implemented with broadleaved forest established on spared mineral soils and wet peatland 

on spared organic soils. 

Reduced food waste. We first reviewed the literature for food waste estimates applicable to 

the UK
91–94

. Based on this we adopted the following values for the current proportion of 

human-edible food that is wasted in the post-harvest food supply chain: cereals (33%), 

oilseeds (11%), potatoes (40%), sugar beet (29%), fruit and vegetables (32%), beef, poultry, 

pig and sheep meat (19%), milk (9%) and eggs (25%). Following other studies
14,95,96

, we 
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adopted a 50% reduction in food waste as a reasonable upper-bound and then assessed the 

effect of reductions by 2050 of anywhere between nil and that upper-bound. We assumed that 

this was phased in by a linear change between 2010 and 2050, and adjusted production levels 

to maintain constant levels of post-waste food production. The results in the main text assume 

that this scenario is implemented with broadleaved forest established on spared mineral soils 

and wet peatland on spared organic soils. 

Natural regeneration scenario. The natural regeneration scenario assumed that following 

the cessation of farming, a succession trajectory led to the establishment of a shrub / herb 

layer followed by secondary succession to woodland, the climax vegetation in the UK. We 

assumed a 16 year delay before the establishment of woody species based on observations in 

the UK and Europe
97–99

 and reflecting the lag in seedling recruitment associated with wind-

blown seeds of pioneer species
100

. We assumed the colonisation of broadleaved species 

everywhere in the UK with the exception of upland Scotland where we assumed colonisation 

by Scots Pine. During the shrub phase we assumed that carbon in biomass would increase to 

a maximum of 10 t C ha
-1

 based on data from UK and European shrublands (refs. 

55,101,102). To model tree succession after 16 years we assumed the establishment of slow 

growing mixed broadleaved species representative of those found on abandoned UK 

farmland
100

, which we modelled as sycamore-ash-birch of yield class 4; and in upland 

Scotland we modelled Scots Pine, also of yield class  4. The low yield class reflects 

observations in the UK
23,97,100

 and Europe
98,103

 that secondary succession results in lower 

biomass accumulation rates compared with managed forestry.  

We assumed that soil carbon changes following natural regeneration on mineral soils would 

be the same as those assumed under managed forestry (except that we assumed no active 

ground preparation and no related loss of soil carbon). For soil emissions from natural 

regeneration on organic soils, we used emissions factors applicable to forestland on drained 
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organic soils. For carbon dioxide emissions applicable to lowland organic soils, we assumed 

a value of 2.32 t CO2e ha
-1

 yr
-1

, reflecting reduced soil disturbance due to the cessation of 

ploughing and gradual afforestation of former arable land
36,95,112,113. In upland areas we 

retained the emissions factor of 1.80 t CO2e ha
-1

 yr
-1

 assumed for drained bog, assuming the 

soil disturbance regime would be unchanged following natural regeneration. We used IPCC 

tier 1 emissions factors
56

 applicable to forestland on drained organic soils for dissolved 

organic carbon (1.14 t CO2e ha
-1

 yr
-1

), methane (0.28 t CO2e ha
-1

 yr
-1

) and nitrous oxide (1.36 

t CO2e ha
-1

 yr
-1

). 

In aggregate, these assumptions result in an annual rate of carbon sequestration in soils and 

biomass under natural regeneration of 0.6 t C ha
-1

 yr
-1

 during the shrub phase (a rate 

comparable with figures published elsewhere (refs. 70,106–108)) increasing to 2.4 t C ha
-1

 yr
-

1
 by 2050 as woodland gradually becomes established (Supplementary Figure 5). 

Bioenergy scenarios. We quantified both the emissions avoided due to the displacement of 

fossil fuels by bioenergy, and the emissions associated with growing, transporting and 

processing the bioenergy crops. To calculate avoided fossil fuel emissions we first calculated 

the energy content of biomass production as the product of biomass yield, energy density and 

crop area. We assumed a biomass yield for oilseed rape as in Table 1, and obtained regional 

yield estimates for Miscanthus and short-rotation coppice poplar from ref. 109. We used 

energy densities (all parameters quoted on a lower heating value basis) of 18.0 MJ kg
-1

 

(Miscanthus), 18.5 MJ kg
-1

 (short-rotation coppice) and 37.2 MJ l
-1

 (oilseed rape; with a 

feedstock conversion yield of 364 l t
-1

)
59,110

. We assumed power plant combustion 

efficiencies of 35% for biomass, 45% for coal and 58%
(59)

 for natural gas. In all cases these 

efficiencies represent modern, high efficiency plants (in the case of biomass plants assuming 

large plant sizes and the drying of biomass feedstock using flue gases; see ref. 111). We 

assumed that the electrical energy produced by combusting biomass would displace fossil 
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fuels of a quantity that would yield the equivalent electrical energy. We calculated avoided 

emissions using carbon intensities of 89 g CO2e MJ fuel
-1

 for diesel (displaced by oilseed 

rape); and 110 g CO2e MJ fuel
-1

 for coal
59

, 65 g CO2e MJ fuel
-1

 for natural gas
59

 and 128 g 

CO2e MJ elec
-1

 for the UK electricity grid average
112

 (displaced by Miscanthus and short-

rotation coppice). These figures include lifecycle emissions from extracting, transporting, 

refining and combusting fuel. We similarly obtained lifecycle carbon intensities accounting 

for farming, farm inputs, drying, transporting, processing and converting biomass feedstock 

for  Miscanthus (5.5 g CO2e MJ fuel
-1

; ref 112), short-rotation coppice (8.9 g CO2e MJ fuel
-1

; 

ref 112) and oilseed rape (53 g CO2e MJ fuel
-1

; ref 59). We quantified emissions of methane 

and nitrous oxide from biomass combustion (because unlike carbon dioxide these are not 

reabsorbed during biomass regrowth) using emissions factors of 1.9 g CO2e MJ fuel
-1

 

(Miscanthus and short-rotation coppice biomass
13

) and 0.25 g CO2e MJ fuel
-1

 (biodiesel
13

). In 

all cases we cross-checked our parameter values against ranges in the literature (e.g. refs. 

29,110,113). We quantified the increase in carbon stored in biomass, averaged across a 

harvest cycle, relative to former arable or grassland. Finally, we quantified changes in soil 

carbon from land conversion for each bioenergy crop based on the methodology in the UK 

inventory
12

 and treating oilseed rape as cropland and Miscanthus and short-rotation coppice 

as grassland for soil carbon purposes
114

. Soil carbon changes were modelled as       

         
  

   , where    is the soil carbon density in year t;    and    are the soil carbon 

densities of the initial and final land use, respectively; and   is a time constant
12

 

(Supplementary Table 7). This resulted in long term soil carbon losses if spared grassland 

was planted with oilseed rape, and soil carbon gains if spared cropland was planted with 

Miscanthus or short-rotation coppice. In addition, on former grassland we assumed an 

immediate loss of 2% of topsoil carbon due to soil disturbance on crop establishment
66

. 
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Technical potential for land sparing in other regions. We compiled data on projected 

demand growth and the existing scope for yield growth (indicated by current yield gaps) in 

different regions (Supplementary Fig. 3). If yield growth outstrips demand growth, future 

demand could in principle be met from a smaller farmland area and therefore land sparing 

might be possible. We quantified demand growth in different global regions across all 

commodities to 2050, obtained from ref. 5 for all regions except the UK, which uses per-

capita demand projections for the EU-27 underlying ref. 5 obtained from J. Bruinsma (pers. 

comm.) and UK population projections
32

. We used data on yield gaps (the percentage by 

which present day realised yields are below those attainable in a given region) from ref. 30 as 

a comparative indicator of the  potential for future yield growth across different regions. We 

calculated the percentage increase in yield that would result from closing entirely the present 

day yield gap (as yield gap / (1 – yield gap)) for nine major crops (rice, maize, wheat, barley, 

cassava, potato, soybean, sugar cane and sugar beet) and weighted by the energy value of 

crop production in each region. Yield gaps reflect yield increases that might be achievable 

through improved farm management but not through genetic improvement, so understate 

growth potential, but nonetheless provide a like-for-like comparison across regions. 

Sensitivity to key parameters. We quantified the sensitivity of our overall result to 

uncertainty in key parameters and assumptions. We first established the uncertainty in each 

key parameter using 95% confidence intervals where available (Supplementary Table 4). 

Next, we re-calculated net emissions in 2050 by varying each parameter in sequence and non-

cumulatively to the upper-and lower-bound of its uncertainty range. Results are presented in 

Supplementary Fig. 2. 
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Supplementary Discussion 

Yield growth in crops. Rates of yield growth in key crops have declined in recent years to 

the extent that UK cereal yields have plateaued (Supplementary Fig. 1). There are two main 

hypotheses put forward to explain the declines. Firstly, it is argued that yields in the UK (and 

in other industrial countries) are approaching a biophysical yield ‘ceiling’, whereby the 

capacity of crops to assimilate sunlight, water and nutrients into useful biomass has reached a 

physiological limit
9,115,116

. Under this hypothesis, future yields will be constrained by this 

ceiling and yield growth will ultimately decline to zero. In addition, climate change might 

constrain future yield growth or may even cause yield declines by altering temperature, 

rainfall and nutrient cycles
15

. 

The alternative hypothesis proposes that various other, controllable, factors are responsible 

for the declines. In particular, it is suggested that low commodity prices have reduced the 

incentive to invest in yield growth and have led to declining investment in research and 

development, farmer education, farm labour and farm capital investment
9–11

. In addition, the 

regulatory environment in the European Union has in recent decades balanced the pursuit of 

productivity gains with environmental and other objectives
9,117–121

.  Finally, a number of 

aspects of present day agricultural practice may be contributing to declining yield growth. 

These are numerous and crop-specific but include, for example, declines in fertiliser 

application rates, sub-optimal crop rotations and declines in effective crop protection
117,122,123

.  

Consistent with this alternative hypothesis, crop technologists argue that there is considerable 

technical scope to further increase crop yields
124,125

. Principle opportunities include 

optimising crop nutrition and crop protection, improving mechanised operations and breeding 

for improved use of sunlight, water and nutrients or for increased useful biomass in the 

plant
121,122,124,126–128

 (Supplementary Table 5). This hypothesis gains support in the fact that 



19 

 

the yields in official crop variety trials have not plateaued
117,122–124,126

, despite the decline in 

yield growth on-farm. Further, calculations of the physiological yield potential of key crops 

produce estimates substantially higher than current yields
121,122,124,126

. 

Our yield projections reflect both of these broad hypotheses. The lower-bound of our yield 

range reflects an outcome in which future yields are limited by a biophysical ceiling, by 

climate change or by regulatory, market or other controllable factors that remain 

unfavourable for yield growth. For cereals (occupying around 70% of UK arable land), we 

assume that the plateau in yields in recent years could transition into a decline in yields from 

7.0 to 6.5 t ha
-1

 yr
-1

. We similarly allow for a decline in forage maize yields. For remaining 

arable crops we assumed nil yield growth at the lower-bound of our projections, though these 

crops have not exhibited signs of a plateau to-date (Supplementary Fig. 1). 

The upper-bound of our yield range reflects the view that biophysical yield ceilings are in 

fact substantially higher than present day yields
121,122,124,126

 and will not limit yield growth in 

the foreseeable future. It also reflects an outcome in which any detrimental effects of climate 

change on yields are small (or even positive, as might be the case in the UK
18,125,129,130

) and 

are mitigated through adaption measures
15

. In parallel it is assumed that market conditions 

and regulatory and policy settings provide incentives for yield growth, that research and 

development programs are well-funded and that agricultural practices are optimised. Yields 

can respond strongly and positively under such conditions, as evidenced by the role of 

breeding programs in historic yield gains
123

, the demonstrated link between yields and 

commodity prices
131

, the substantial return on investment in agricultural research and 

development
10

 and the importance of agricultural policy settings in determining yield 

growth
118

. To determine the yield growth that might plausibly be achievable under these 

conditions we referred to yield projections by agricultural technologists, studies of 

biophysical yield potentials and the current rates of yield growth in official variety trials. We 
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also referred to historic rates of yield growth and ensured that our projections did not exceed 

the highest rates observed historically (Supplementary Fig. 1). 

At the upper-bound of our projections, for cereals, a yield of 13 t ha
-1

 yr
-1

 was assumed based 

on refs. 125,126, well within an estimated biophysical potential of 17.4 t ha
-1

 yr
-1

  (ref. 126). 

For oilseeds, the upper-bound of 6.8 t ha
-1

 yr
-1

  is based on ref. 122 and is well within an 

estimated biophysical potential of 9.2 t ha
-1

 yr
-1

  (ref. 122). For potatoes, the upper-bound of 

74 t ha
-1

 yr
-1

 is consistent with growth projections in ref. 125, is more conservative than 

projections in ref. 124 and is well within an estimated biophysical yield potential of 145 t ha
-1

 

yr
-1

 (ref. 132). For sugar beet, the upper-bound of 113 t ha
-1

 yr
-1

 is conservative relative to ref. 

124 but was adopted to maintain yield growth rates within observed historic rates. Relatively 

little is published on the future yield potential of fruit and vegetables. Our upper-bound 

assumes a 50% increase in yields by 2050, but as a relatively minor crop (3% of UK arable 

land), results are insensitive to this assumption. For forage maize, the upper-bound 

assumption of a 33% increase in yields by 2050 is conservative relative to refs. 124,125 but 

was chosen so that future yield growth does not exceed observed historic yield growth. For 

forage legumes, the upper-bound of 6.0 t ha
-1

 yr
-1

 equates to a 63% increase by 2050 which is 

more conservative than estimates in ref. 124 and is well within estimated biophysical 

potentials of 8.9 t ha
-1

 yr
-1

 and 10 t ha
-1

 yr
-1

 for spring-sown combining peas and winter-sown 

field beans respectively
133

. For temporary and permanent grass, the upper-bound of 1.5% yr
-1

 

reflects both yield improvements
134

 and increases in pasture utilisation (the proportion of 

edible biomass actually consumed
34

). The scope for yield improvements on rough grazing 

land is limited by topography, soil and climatic factors and consequently no yield 

improvements are assumed. 

Yield growth in livestock. For livestock, the lower- and upper-bounds of yield growth were 

defined based on the same principles as those for crops. The lower-bound assumes no future 
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growth in yields, reflecting an outcome in which biophysical limits and/or regulatory, market 

or other factors constrain yield growth. Our upper-bound livestock productivity gains assume 

that technological advancements lead to continued genetic gains through breeding, coupled 

with improved livestock health and nutrition. These gains might be untenable in practice on 

economic, animal welfare or technical grounds and we note that other studies predict much 

lower future livestock productivity growth in Europe
38,135

. 

Beef cattle and sheep. Improvements in FCR can arise through both genetic gain and through 

changes in diet. Rates of genetic gain in beef cattle and sheep have lagged those in 

monogastrics due to difficulty in measuring the traits of interest and in targeting selection 

programs
136

. As a result there is significant untapped genetic potential in the beef cattle 

population. This is reflected in the considerable variation in FCR among cattle breeds
137

 and 

among individuals of the same breed
138

. Consequently there is significant scope to increase 

beef cattle FCR through genetic improvement
137

. This is confirmed by recent breeding 

programs that report improvements in FCRs in beef cattle of between 7% and 25% after just 

one generation of selection
139

. In the past these selection methods have proved impractical for 

the beef and sheep industry (due to cost and the difficulty in measuring feed intake). 

However, recent advancements in molecular genetics have reduced costs by making available 

cheaper indirect biochemical or DNA markers for feed efficiency
139

. These tools are already 

increasing the rates of genetic gain in dairy cattle
140

 and are similarly expected to accelerate 

the rate of genetic gain in beef cattle
141,142

. 

In ruminant livestock there is also significant scope to improve FCR by changing the diet of 

the animals. In the UK, beef cattle finished on a mainly cereal-based diet exhibit FCRs 

around 50% lower (dry matter basis; 30% lower on an energy basis) than animals finished on 

a mainly grass-based diet
143

. In UK sheep meat production, the difference is around 45%
(144)

. 

Similar FCR differences due to diet are reported in beef cattle in the United States
142

. 
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Kerley et al. (2012) (ref. 138) concluded that the combination of genetic selection and 

improved nutrition have the theoretical potential to improve beef cattle feeding efficiencies 

by 50% or more, though there is considerable uncertainty attached to this upper-bound 

estimate. Basarab et al. 2013 (ref. 145) estimated that future improvements in FCR of -0.75% 

yr
-1

 to -1.0% yr
-1

 are achievable. Our upper-bound assumption for beef cattle equates to a -

33% improvement by 2050 (producing animals; -25% across all animals) or -1.0% yr
-1

 

(producing animals; -0.8% yr
-1

 across all animals). For sheep, our upper-bound of -0.7% yr
-1

 

is based on ref. 42. 

Dairy cattle, pigs and poultry. Rates of genetic change of 1-3% per year have been achieved 

over the past few decades in dairy cattle, pigs and poultry
8
. These gains have come about 

because of the ease of measuring production traits (including feed conversion), the high 

heritability of production traits, and the availability of large databases containing genetic 

information. The new tools of molecular genetics are expected to increase these rates of gain 

by providing greater accuracy in predicting genetic merit, by shortening the generation 

interval and by increasing the number of potentially elite animals that can be screened
136,146

. 

These technologies have already been implemented by breeders in the dairy industry
136,146

 

where rates of genetic gain are increasing
140

 and may as much as double compared to recent 

rates of gain
146,147

. There is also scope to improve feed conversion in broilers
148,149

, laying 

hens
150

 and pigs
151

 although there are technical and cost barriers to be overcome. 

Although biophysical limits to yield gains could well constrain future FCRs, there is little 

evidence to-date of a ceiling on genetic gains
8,46,152

 so there is an expectation that in the 

medium term, rates of gain will continue at present levels or higher. Specifically in a UK 

context, a study commissioned by DEFRA reported recent FCR gains of around   

-0.015, -0.025 and -0.024 kg / kg feed yr
-1

 in broilers, layers and pigs (equivalent to 

approximately -0.9% yr
-1

, -1.3% yr
-1

 and -1.0% yr
-1

, respectively) and outlined an 
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expectation, based on expert judgement, that rates of gain will be similar or greater in the 

medium term
153

. Similar projections of FCR improvements in UK pigs, amounting to -0.9% 

yr
-1

, are outlined in ref. 154. 

There is also the technical potential to close ‘yield gaps’ in production systems. Free range 

and organic poultry production systems tend to exhibit much lower FCRs than caged systems. 

The FCR of caged laying hens (accounting for 55% of UK egg production) is 12% and 14% 

lower than free range and organic systems, respectively (which account for 45% of UK 

production in aggregate)
40

. The equivalent yield gaps are 22% and 36% for broiler chickens, 

though standard indoor systems represent the vast bulk of UK production
41

. Clearly the 

choice between these systems will be dictated by many factors including animal welfare 

considerations, but here we simply highlight the technical differences between systems, 

without advocating any particular approach. There are also differences in monogastric FCRs 

between different flocks or herds, highlighting an opportunity to improve overall FCRs. In 

UK pig production, the gap in FCR between the national average and the top 10% of herds is 

approximately 12%
(154)

. 

Our upper-bound assumptions for dairy cattle, pigs and poultry reflect this technical potential. 

For dairy cattle, we assume a -1.0% yr
-1

 improvement
155

. For pigs, upper-bound FCR 

improvements assume a continuation of historic FCR gains of -0.9 to -1.1% yr
-1

 (refs. 

153,154,156). For poultry meat, we assume that future rates of gain reduce from recent levels 

of between -0.9% yr
-1

 and -1.2% yr
-1 (45,152,153)

 to -0.8% yr
-1

 at the upper-bound. For laying 

hens, we assume that future rates of gain reduce from recent levels of between -1.0% yr
-1

 and 

-1.3% yr
-1 (152,153)

 to -0.8% yr
-1

 at the upper-bound. 

Animal welfare considerations. Our upper-bound scenarios consider the technical potential of 

increases in livestock productivity to reduce greenhouse gas emissions, but there are other 
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important considerations associated with animal welfare. Historical productivity gains have 

often come at the expense of welfare, particularly in the poultry and dairy sectors, where 

breeding programs have focussed almost exclusively on production gains at the expense of 

immune function and fertility
8,156

. These are important factors that may ultimately influence 

decisions about future productivity gains. It is therefore encouraging that modern breeding 

techniques (including genomic tools) allow multiple traits to be considered simultaneously, 

including health, welfare and productivity
156

. Multi-trait selection can help to avoid the 

deleterious effects of yield increases and also offers potential productivity dividends: non-

stressed, healthy livestock are more productive
8,25

. 

Mechanisms to reduce the consumption of animal products. Achieving meaningful 

reductions in the consumption of animal products will be challenging as it will require 

changes in consumer behaviour
157

 and changes in the operating practices of food producers 

and retailers
86,157,158

. However, the climate mitigation benefits and the expected health 

benefits provide a strong incentive for policymakers to act
90

. Encouragingly, taxes and 

subsidies are demonstrably effective at driving diet change. A recent systematic review of 38 

studies found that taxes (on unhealthy foods) and subsidies (on healthy foods) are 

consistently effective at changing consumption patterns
17

. Other studies have explicitly 

considered a tax on meat consumption as a tool for reducing greenhouse gas emissions
159,160

. 

Other policy options include consumer education programs and the integration of climate 

considerations into healthy eating guidelines
89,158

. The growing trend of eco-certification 

might be extended to certifying and labelling products according to greenhouse gas 

impacts
158

. Finally, meat consumption could in principle be reduced through direct 

regulation, for example by banning meat imports or by regulating the purchase of meat in 

public procurement
158

. 
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Mechanisms to reduce food waste. There are a number of policy options that might promote 

reductions in food waste ranging from actions directed at consumers to actions directed at 

food producers and retailers. Educating consumers about the use and storage of perishable 

goods and the environmental and economic benefits of reducing waste might lead to 

behavioural change in the home
92,95,161

. Similarly, a targeted education program aimed at 

consumers and retailers could encourage the consumption of produce currently rejected on 

purely cosmetic grounds
95,161

. Effective policy options might include promoting investments 

in infrastructure to improve processing, storage, transportation and supply chain management 

92,95,161
. Addressing regulatory impediments to the use of food waste for charitable purposes 

or livestock feed, and encouraging the use of anaerobic digestion plants (provided these are 

used only for genuine waste) might also be beneficial
92,95,161,162

. Finally, a financial incentive 

to minimise waste could be created through effective taxation (e.g. by taxing foods with the 

highest wastage rates, or by increasing taxes on waste disposal)
92

. Ultimately the best 

solution is likely to be a combination of these measures and encouragingly there are signs 

that the levels of waste of many commodities has been declining in recent decades
92

. 
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Supplementary Table 1: Sources of emissions quantified 

  

Reported and 
estimated 

1990 
emissions  

(Mt CO2e yr
-1
) 

Mean of  
2009-2011 
emissions 

(Mt CO2e yr
-1
) 

Relative 
contributions 
to 2009-2011 

emissions 

Emissions from agriculture per UK GHG inventory     

Enteric fermentation methane 18.8 15.3 21% 

Manure management methane 3.5 2.6 3% 

Manure management nitrous oxide 2.0 1.6 2% 

Nitrous oxide from synthetic fertilisers 8.7 6.7 9% 

Animal manure applied to soils 9.2 7.4 10% 

Other direct soil emissions 3.0 3.8 5% 

Atmospheric deposition 2.0 1.5 2% 

Nitrogen runnoff and leaching 10.3 7.5 10% 

Other indirect soil emissions 0.3 0.6 1% 

Field burning of agricultural residues 0.3 0.0 0% 

Sub-total 58.2 47.0 64% 

    Other emissions attributable to agriculture       

Farm energy use 9.6 7.1 10% 

Imported livestock feed 9.4 7.3 10% 

Manufacture of synthetic fertiliser 8.9 6.8 9% 

Machinery manufacture and maintenance 3.4 2.5 3% 

Pesticide manufacture and breakdown 0.7 0.7 1% 

    Emissions from land use, land-use change and forestry (LULUCF) 
 LULUCF emissions per UK GHG inventory 4.0 -3.6 -5% 

Additional emissions from drained fen 0.6 0.4 0% 

Emissions from drained bog 5.7 5.7 8% 

    Total of all emissions* 100.4 73.9 
 

    Emissions target: 80% below 1990 levels 20.1     

 

Tabulated values are the reported and estimated emissions in 1990 and the mean annual emissions over the three 

years 2009-11, centred on 2010 and used as the starting point in our projections. Emissions sources are 

described in the Supplementary Methods. The contribution of each emissions source to the total is shown as a 

percentage. *The decline in reported emissions between 1990 and 2009-11 arose in large part due to reduced 

fertiliser application rates in the UK, particularly on improved grassland, and a decline in the domestic 

production of beef in the UK
12

 (offset by an increase in beef imports). 
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Supplementary Table 2: Assumed growth in population, demand and production 

a. Projected population growth 

Population in 2010 (millions; ref 32)   62.3 
Projected population in 2050 (millions; principal projection in ref.32) 78.4 
Projected change in population between 2010 and 2050 26% 

b. Growth in demand and production 

Commodity 

Production in 2010 
(kt; food and 

industrial uses but 
excluding feed) 

Projected change 
in demand per 

capita between 
2010 and 2050  

(%) 

Assumed  
production in 2050 

(kt; food and 
industrial uses but 

excluding feed) 

Increase in 
production 

between  
2010 and 2050 

(%) 

Cereals 11,485 14% 16,489 44% 
Oilseeds 2,366 69% 5,021 112% 
Potatoes 6,254 -4% 7,525 20% 
Sugar beet 7,829 6% 10,483 34% 
Fruit and vegetables 3,022 10% 4,204 39% 
Beef meat 884 -6% 1,045 18% 
Milk 13,699 5% 18,153 33% 
Pig meat 717 8% 975 36% 
Sheep meat 300 -4% 363 21% 
Poultry meat 1,529 18% 2,279 49% 
Eggs 646 12% 910 41% 

Total 48,732   67,447 38% 

a. Projected population growth between 2010 and 2050 (ref. 32). b. Baseline production in 2010 (ref. 31); 

projected change in demand per capita between 2010 and 2050 (J. Bruinsma (pers. comm.) and consistent with 

ref. (5); assumed production in 2050; and production growth between 2010 and 2050. Figures exclude livestock 

feed which is treated separately in our projections. The large increase in oilseed demand reflects an assumed 

increase in biofuel production in the European Union
5
.  
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Supplementary Table 3: Regional characteristics of spared land 

a. Cumulative area of land spared between 2010 and 2050 under upper-bound yield increases with no demand management 

  Origin   End-use 

(000 ha) Arable 
Impr. 
grass 

Rough 
grazing 

 

Peat-
land 

Forest or 
bioenergy 

East of England 258 89 3   29 322 

West Midlands 124 198 2 
 

6 317 

North West 64 264 21 
 

37 312 

North East 50 128 18 
 

16 180 

Yorkshire & The Humber 147 165 19 
 

23 307 

East Midlands 185 142 5 
 

11 321 

South East & London 150 196 4 
 

4 346 

South West 197 449 12 
 

32 626 

Wales 67 506 38 
 

84 527 

Scotland 353 474 346 
 

360 813 

Northern Ireland 72 328 16 
 

91 325 

UK total 1,669 2,939 482   694 4,396 

 b. Forestry yield class and mean annual carbon sequestration in forest biomass by region 

  Broadleaved species   Coniferous species 

Region Species 

Yield 
class 

Mean annual 
sequestration 

in biomass 

 
Species 

Yield 
class 

Mean annual 
sequestration in 

biomass 

(m
3
 ha

-1
 

yr
-1

) (t C ha
-1

 yr
-1

) 
(m

3
 ha

-1
 

yr
-1

) (t C ha
-1

 yr
-1

) 

East of England Sycamore, Ash, Birch* 6 3.8   Douglas fir 16 5.3 

West Midlands Sycamore, Ash, Birch* 8 4.7 
 

Douglas fir 18 5.7 

North West Birch 6 3.8 
 

Sitka spruce 14 4.2 

North East Birch 6 3.8 
 

Sitka spruce 14 4.2 

Yorkshire & The Humber Sycamore, Ash, Birch* 6 3.8 
 

Douglas fir 12 4.2 

East Midlands Birch 8 4.7 
 

Douglas fir 16 5.3 

South East & London Birch 8 4.7 
 

Douglas fir 16 5.3 

South West Beech 8 4.1 
 

Douglas fir 14 4.8 

Wales Birch 6 3.8 
 

Sitka spruce 16 4.8 

Scotland Birch 4 2.9 
 

Sitka spruce 10 3.0 

Northern Ireland Birch 6 3.8   Sitka spruce 14 4.2 

a. Entries show the cumulative area of land spared between 2010 and 2050 under upper-bound yield increases,  

categorised by origin (arable, improved (Impr.) grass or rough grazing) and use (peatland or forestry/bioenergy 

crops). No demand management was assumed in deriving these entries. b. Entries show the tree species assessed 

as having the highest carbon sequestration potential in each region, the corresponding forestry yield class and 

the mean annual carbon sequestration in forest biomass over the 40 year period following planting. *Sycamore, 

Ash and Birch are each predicted to have the same carbon sequestration potential in these regions.  
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Supplementary Table 4: Key parameter values and uncertainties 

Parameter Parameter value and source Uncertainty range and source 

Enteric fermentation methane emissions factor  
(kg CH4 head

-1
 yr

-1
)  

Beef cattle: 43 

Dairy cattle: 111 

Sheep: 5 

Pigs: 1.5 

Poultry: nil
12

 

± 50%
13

 

Manure management methane conversion factor (%)  Liquid system: 39.0% 

Daily spread: 0.1% 

Solid storage and dry lot: 1.0% 

Pasture, range & paddock: 1.0% 

Poultry systems: 1.5%
12

 

± 30%
13

 

Manure management nitrous oxide emissions factor (EF3; 
kg N2O-N kg N

-1
) 

Liquid system: 0.001 

Solid storage and dry lot: 0.02 

Pasture, range & paddock: 0.02  

Poultry systems: 0.017
12

 

-70% / +200%
13

 

Emissions factor for nitrous oxide from synthetic fertilisers 
and animal manure applied to soils (EF1) 

0.0125 kg N2O-N kg N
-1 (12)

 -70% / +200%
13

 

Atmospheric deposition fraction volatilised Synthetic fertiliser (FracGASF): 0.1 

Organic sources (FracGASM): 0.2
12

 

-70% / +200%
13

 

Atmospheric deposition emissions factor (EF4) 0.01 kg N2O-N kg N
-1 (12)

  -80% / +400%
13

 

Nitrogen runoff and leaching: fraction leached (FracLEACH) 0.3
12

 -67% / +167%
13

 

Nitrogen runoff and leaching emissions factor (EF5) 0.025 kg N2O-N kg N
-1 (12)

 -93% / +233%
13

 

Farm energy use 7 Mt CO2e yr
-1(57)

 growing with total 
agricultural production 

± 50% (authors’ assumption) 

Imported livestock feed emissions factor 
(kg CO2e kg feed

-1
) 

Concentrates: 1.54  

Maize grain: 0.66 

± 50% (authors’ assumption) 

Manufacture of synthetic fertiliser 6.2 kg N2O-N kg N
-1 (59)

 declining to 3.5 kg 
N2O-N kg N

-1
 by 2050 due to nitrous oxide 

abatement technology
60

 

Declining to 2.7 kg N2O-N kg N
-1

 by 2050
60

 / no 
decline

 

Machinery manufacture and maintenance 35% of farm energy emissions (based on ref. 
37

, see text) 
± 50% (authors’ assumption) 

Drained fen carbon dioxide 7.0 t CO2e ha
-1

 yr
-1 (12)

 -18% / +19%
56

 

Drained fen dissolved organic carbon 1.1 t CO2e ha
-1

 yr
-1 (56)

 -39% / +48%
56

 

Drained fen methane 1.2 t CO2e ha
-1

 yr
-1 (56)

 -76% / +76%
56

 

Drained fen nitrous oxide 6.3 t CO2e ha
-1

 yr
-1 (56)

 -37% / +38%
56

 

Drained bog carbon dioxide 1.8 t CO2e ha
-1

 yr
-1 (62–65)

 -30% / +30%
56

 

Drained bog dissolved organic carbon 1.1 t CO2e ha
-1

 yr
-1 (56)

 -39% / +48%
56

 

Drained bog methane 1.3 t CO2e ha
-1

 yr
-1 (56)

 -71% / +71%
56

 

Drained bog nitrous oxide 2.1 t CO2e ha
-1

 yr
-1 (56)

 -56% / +58%
56

 

Re-wetted fen carbon dioxide 1.8 t CO2e ha
-1

 yr
-1 (56)

 -242% / +242%
56

 

Re-wetted fen dissolved organic carbon 0.9 t CO2e ha
-1

 yr
-1 (56)

 -42% / +50%
56

 

Re-wetted fen methane 6.0 t CO2e ha
-1

 yr
-1 (56)

 -100% / +296%
56

 

Re-wetted fen nitrous oxide Nil
56

 NA 

Re-wetted bog carbon dioxide -0.8 t CO2e ha
-1

 yr
-1 (56)

 -178% / +178%
56

 

Re-wetted bog dissolved organic carbon 0.9 t CO2e ha
-1

 yr
-1 (56)

 -42% / +50%
56

 

Re-wetted bog methane 2.6 t CO2e ha
-1

 yr
-1 (56)

 -97% / +384%
56

 

Re-wetted bog nitrous oxide Nil
56

 NA 

Methane spike on re-wetting 2.5 t CO2e ha
-1

 yr
-1

 for 10 years
48,79

 Nil / 5 t CO2e ha
-1

 yr
-1

 for 10 years (authors’ 
assumption) 

Forest yield class All broadleaves per Supplementary Table 3 -2 / +2 change in yield class, all regions 

Forest type All broadleaves per Supplementary Table 3 All conifers per UK inventory (Sitka spruce yield class 
12 in Britain and 14 in N. Ireland)

12
 

 / all conifers per Supplementary Table 3 

Soil carbon gains on afforestation Soil carbon gains on former cropland only 
(see Supplementary Methods) 

Nil / soil carbon gains in both former cropland and 
former grassland 

Soil carbon gains time constants 

(years) 

525 (Scotland), 200 (elsewhere), see 
Supplementary Table 7

12
 

750 (Scotland), 300 (elsewhere) /  
300 (Scotland), 100 (elsewhere)

12
 

Table entries indicate the key parameters used in our projections including the value of each parameter and its 

uncertainty range. Calculations are described in the Supplementary Methods. The sensitivity of our results to the 

uncertainty in each parameter is shown in Supplementary Fig. 2. 
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Supplementary Table 5: Qualitative assessment of technologies to increase yield 

Technology 
Yield 

impact 

GHG 
impact 

per 
tonne Evidence 

Crop management    

Optimise crop nutrition + - *** 

Improve crop protection + - ** 

Improve sowing, treatment and harvesting operations + - * 

    

    Crop genetic improvement    

Increase harvestable ratio (the useful proportion of crop biomass) + - *** 

Increase radiation use efficiency / photosynthetic efficiency ++ -- * 

Improve nutrient capture and nutrient use efficiency ++ --- ** 

Increase water use efficiency ++ -- * 

    

Livestock genetic improvement    

Select for higher growth rates and productivity +++ -- *** 

Improve reproductive rates in breeding stock + - ** 

    

Livestock nutrition    

Increase the nutrition quality of diets ++ --- *** 

Dietary additives + - ** 

    

Livestock disease    

Improve drugs and vaccines + - ** 

Enhanced disease surveillance and control + - * 

Table entries are assessments of the capacity of the principal technologies expected to increase future crop and 

livestock yields in the UK. The magnitude and direction of the effect on yields and greenhouse gas emissions 

(per tonne of product) are indicated by the number of "+" and "-" symbols. The strength of evidence in favour of 

yield increases being realised from a given measure is indicated by the number of "*" symbols. Based on refs. 

8,121,122,124,126–128,163–165. 
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Supplementary Table 6: Livestock diet assumptions  

a. Estimated feed consumed by livestock in the UK in 2010 (thousand tonnes dry matter) 

 All animals  Breeding animals  Producing animals 

 
Beef 

cattle 
Dairy 
cattle Sheep Pigs 

Poultry 
(meat) 

Poultry 
(eggs)  

Beef 
cattle 

Dairy 
cattle Sheep Pigs 

Poultry 
(meat) 

Poultry 
(eggs) 

 Beef 
cattle 

Dairy 
cattle Sheep Pigs 

Poultry 
(meat) 

Poultry 
(eggs) 

Cereals 2,084 277 71 1,911 3,177 1,358  512 34 34 760 282 214  1,572 243 38 1,151 2,895 1,144 

Forage maize 0 1,132 0 0 0 0  0 0 0 0 0 0  0 1,132 0 0 0 0 

Maize grain 113 218 1 63 48 23  28 27 0 24 4 4  85 191 0 39 43 19 

Rapeseed meal 212 326 84 131 141 0  52 40 39 35 13 0  160 286 44 96 129 0 

Forage legumes 144 269 88 63 0 0  35 33 42 24 0 0  109 236 47 39 0 0 

Other forage crops 0 286 151 0 0 0  0 73 71 0 0 0  0 212 80 0 0 0 

Co- and by-products 981 1,342 386 114 283 25  241 166 181 33 25 4  740 1,176 204 81 257 21 

Concentrates 399 1,065 153 772 1,118 657  98 132 72 267 99 104  301 933 81 505 1,019 554 

Grass 5,787 6,265 9,387 0 0 0  1,421 1,608 4,411 0 0 0  4,366 4,657 4,976 0 0 0 

Wheat straw 204 224 80 0 0 0  50 28 38 0 0 0  154 196 43 0 0 0 

Silage and hay 5,389 5,096 358 0 0 0  1,323 1,453 168 0 0 0  4,066 3,643 190 0 0 0 

b. Assumed changes in diet composition for ruminant livestock (producing animals only) 

  Beef cattle   Dairy cattle   Sheep 

 

    2050 
 

    2050 
 

    2050 

  2010 Eff. 
Lower-
bound 

Upper-
bound   2010 Eff. 

Lower-
bound 

Upper-
bound   2010 Eff. 

Lower-
bound 

Upper-
bound 

Cereals 17% 47% 17% 32% 
 

2% 2% 2% 2% 
 

1% 0% 1% 1% 

Forage maize 0% 0% 0% 0% 
 

9% 18% 9% 14% 
 

0% 0% 0% 0% 

Maize grain 1% 1% 1% 1% 
 

2% 2% 2% 2% 
 

0% 0% 0% 0% 

Rapeseed meal 2% 2% 2% 2% 
 

3% 3% 3% 3% 
 

1% 1% 1% 1% 

Forage legumes 1% 1% 1% 1% 
 

2% 2% 2% 2% 
 

1% 1% 1% 1% 

Other forage crops 0% 0% 0% 0% 
 

2% 2% 2% 2% 
 

2% 4% 2% 3% 

Co- and by-products 7% 7% 7% 7% 
 

10% 10% 10% 10% 
 

4% 5% 4% 4% 

Concentrates 3% 4% 3% 3% 
 

8% 8% 8% 8% 
 

2% 2% 2% 2% 

Grass 38% 18% 38% 28% 
 

36% 35% 36% 36% 
 

87% 78% 87% 82% 

Wheat straw 1% 1% 1% 1% 
 

1% 1% 1% 1% 
 

0% 1% 0% 0% 

Silage and hay 32% 20% 32% 26% 
 

25% 16% 25% 21% 
 

3% 8% 3% 5% 

Summarised as: 
              Cereals 17% 47% 17% 32% 

 
2% 2% 2% 2% 

 
1% 0% 1% 1% 

Concentrates 12% 14% 12% 13% 
 

23% 23% 23% 23% 
 

6% 8% 6% 7% 

Forage crops 1% 1% 1% 1% 
 

13% 22% 13% 18% 
 

3% 5% 3% 4% 

Grass 70% 38% 70% 54%   62% 52% 62% 57%   90% 86% 90% 88% 

c. Emissions intensity of imported livestock concentrate feed 

Feed component 

Proportion 
by mass 

Emissions 
factor 

(kg CO2e kg
-1

) Refs. 

Rice bran extractions 0% 0.11 81,166 

Maize gluten feed 3% 0.34 37 

Soya cake and meal 31% 3.54 37,58,167–
170 

Sunflower cake and meal 7% 0.75 81,167 

Other oilseed cake and meal 12% 0.72 58,167 

Dried sugar beet pulp 7% 0.82 58,171 

Molasses 7% 0.11 167,171 

Fish, poultry & other meal 3% 1.17 167,172 

Minerals 12% 0.02 171 

Oil and fat 5% 0.80 81 

Protein concentrates
*
 0% 3.54  

Other materials
†
 7% 1.08  

Confectionery by-products
†
 5% 1.08  

Weighted average  1.54  

Maize grain  0.66 37,58 

Co- and bi-products  0.05 37 

a. Estimated tonnage of feed consumed by livestock in the UK in 2010, sub-divided into breeding and producing 

animals. b. Assumed changes in diet composition for ruminant producing animals. Entries correspond to the 

proportion (in energy terms) of each feedstuff in the diet (Di,j as defined in the Supplementary Methods). 

Columns show average diets in 2010, the diets of the most efficient present day animals (Eff.; see methods text), 

and 2050 diets under lower- and upper-bound yield growth. c. Entries indicate the components of concentrate 
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feed imported to the UK. 
*
Assumed equal to soya cake and meal. 

†
No data available so assumed to equal the 

arithmetic average of other components.  
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Supplementary Table 7: Soil carbon assumptions 

  England Scotland Wales 
Northern 

Ireland 

Carbon density to 1 m in mineral soils (t C ha
-1

)  

Forestland 150 341 177 335 

Cropland 120 154 122 215 

Grassland 146 246 164 276 

     
Time constant (years for 99% change) 

Loss of soil carbon 100 100 100 100 

Gain of soil carbon 200 525 200 200 

Entries show the average soil carbon density for mineral soils in the UK, to 1 metre depth, by country and land-

cover, sourced from the UK greenhouse gas inventory (ref. 53, Table 1-22 and based on refs. 52,54,55) and the 

time constants used to model soil carbon change, specified differently for soil carbon gains and losses, also from 

the UK inventory. 

 

Supplementary Table 8: Emissions factors for imported food 

  
Emissions per kg of 

commodity (kg CO2e kg
-1

) 

Commodity 

Farming 
and 

transport 

Land 
use 

change Total 

Cereals 0.6 0.5 1.1 

Oilseeds 2.2 0.8 3.0 

Potatoes 0.5 0.1 0.6 

Sugar beet 0.1 0.0 0.1 

Fruit and vegetables 2.0 0.1 2.1 

Forage legumes 3.2 0.5 3.8 

Beef 22.1 52.7 74.8 

Poultry 2.8 2.6 5.3 

Pig 4.6 3.4 7.9 

Sheep 11.6 50.3 61.9 

Milk 1.0 0.7 1.7 

Eggs 3.0 2.0 5.0 

Entries show the assumed emissions intensity of food imported into the UK. Emissions arise overseas and are 

broken down into emissions from farming and transportation and emissions due to overseas land-use change. 

Sourced from ref. 81. 
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Supplementary Figure 1: Yield scenarios for six major crops. The upper figure for each 

crop indicates realised UK yields during the period 1961 to 2010 (ref. 173) and (in grey 

shading) the range from the lower- to the upper-bound projected under our scenarios. The 

lower figures indicate the historic rate of yield growth (ten-year, backwards-looking rolling 

mean) and (in grey shading) the range in yield growth projected under our scenarios. The six 

crops shown together occupy approximately 95% of UK cropland area. *The decline in 

oilseed yields in historic periods was due the introduction of new varieties more suitable for 

use as livestock feed; the consequent decline in yields was a one-off
122

 and we do not reflect 

this in our projections. 
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Supplementary Figure 2: Sensitivity analysis. Figure shows the effect of uncertainty in key 

parameters on our results at two levels of yield growth: a. Yield growth mid-way between the 

lower- and upper-bounds shown in Table 1; b. Yield growth at the upper-bound. The charts 

are centred on the reduction in 2050 emissions relative to 2010 under each yield growth 

assumption (corresponding to the results in Fig. 1). Bars show the range in the result when 

parameter values are varied in sequence and non-cumulatively over the range of uncertainty 

presented in Supplementary Table 4. 
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Supplementary Figure 3: Regional differences in yield gaps and demand growth. 

Projected demand growth between 2010 and 2050 (black bars; ref. 5) and existing scope for 

yield growth based on current yield gaps (grey bars; ref. 30). 
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Supplementary Figure 4: Simplified logical structure of calculations. Boxes indicate the 

core calculations involved in our projections and the logical structure of the model used. 

Arrows indicate the flow of information between calculations. Full detail is provided in the 

Supplementary Information. 
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Supplementary Figure 5: Sequestration in managed broadleaved forests and natural 

regeneration on spared land. Per hectare annual sequestration under upper-bound yield 

assumptions in a: the managed broadleaved scenario; and b: natural regeneration. The 

contribution due to biomass, soils, natural disturbance and site preparation (the latter two 

grouped as “other”) are separately identified. Positive values indicate a net carbon uptake by 

the ecosystem. 
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