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Abstract

Pull-back transformations between Heun and Gauss hypeefeic equations
give useful expressions of Heun functions in terms of bettederstood hyper-
geometric functions. This article classifies, up to Mébiusomorphisms, the cov-
erings P! — P! that yield pull-back transformations from hypergeometdcHeun
equations with at least one free parameter (excluding tsescaith Liouvillian so-
lutions). In all, 61 parametric hypergeometric-to-Heuansformations are found, of
maximal degree 12. Among them, 28 are compositions of smaégree transform-
ations between hypergeometric and Heun functions. Thedifiormations are real-
ized by 48 different Belyi coverings (though 2 coveringsddabe counted twice as
their moduli field is quadratic). 38 of these coverings appeaHerfurtner’s list of
elliptic surfaces ovei®® with four singular fibers, as theij-invariants. In passing,
we show in an elegant way that there are no coverings with dmmanreching patterns.

1. Context and overview

The Gauss hypergeometric equation

d?y(2) (C N A+B-C+ 1) dy(2) AB

(1.1) y(2) =0

dz? z z—-1 dz z(z—1)

and the Heun equation ([23])

dZY(x)+(c+ d a+b—c—d+1)dY(x) abx—q
X

dx? -1 + X —t dx X(X —1)(x — 1)

(1.2) Y(x) =0
are canonical second-order Fuchsian differential equstin the Riemann sphei@,
with 3 and 4 regular singularities, respectively. Transfations among these equations
give identities between their standard hypergeometrictd@dn solutions. For example,
there is a single coverin®! — P! of degree 2 (up to Mdbius transformations). It
induces the classical quadratic transformations of hygmrgetric functions, such as

2A, 2B A B
1.3 F 1|x]|=2F 1|4x(1—x)].
(2.3) 2 A+B+ 3 2t A+B+ 3 (1=x)
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Moreover, the same covering induces the well-known HeuHdon quadratic trans-
formation [19, Theorem 4.1], and an identification of the epah,F;(A, B; C | 4x(1—
x)) function with a standard local solution of Heun's equatiwith the parameters
(t,q,a, b, c,d) = (1/2, 2AB, 2A, 2B, C, C). These transformations amgarametrig
since they have at least one free parameter such,as.

The aim of this paper is classification of parametric pultbb&ransformations be-
tween hypergeometric and Heun functions. The considerdieback transformations
are of the form

(1.4) Z9(X), Y(2) = Y(X) = 0(x)y(e(x)),

where(x) is a rational function and(x) is a radical function, i.e., a product of pow-
ers of rational functions. Geometrically, transformat{@) lifts or pulls backa Fuchs-

ian equation on the curvB}! to one on the curvé®}, along the covering: P! — P..

The gauge prefactorf(x) is usually chosen such that the pulled-back equation has
fewer singularities and canonical values of some local egpts.

Pull-back transformations between Gauss hypergeomequi@tmns were recently
classified by Vidunas [31]. Next to the classical quadratidyic and Goursat [9] trans-
formations, a few sets of unpredicted transformations viewad, including parametric
transformations from hypergeometric equations with cyoli dihedral monodromy (that
is, Liouvillian solutions). Moreover, the hypergeometiicHeun transformations with-
out the prefacto(x) have been classified by Maier [18]. In both classificatiohg, t
heart of the problem is determining the covering mays) that can appear. They are
typically Belyi maps in the sense that (apart from dull exceptions of Proposid3
here) they have at most 3 critical values on the Riemann edhgr In fact, the crit-
ical values of thosep(x) are typically the singular pointg = 0, z = 1, z = oo of
the hypergeometric equation, and the branching pointaidecthe singularitiex = 0,

X =1, x = o0 (andx =t) of the pulled-back hypergeometric (or Heun) equation. The
approaches of [18, 31] include:

(i) determining thebranching patternghat ¢ can have;

(i) determining which of those patterns can kealized by a rational functionp(x);

(iii) normalizing the pointsx = 0, x = 1, X = oo of ¢(x), and deriving identities be-
tween hypergeometric and Heun functions by identifyingr&sponding local solutions
of thereby related differential equations.

This article follows this strategy and the techniques of] [Rlgenerate a complete list
of coveringsy that can appear in parametric Heun-to-hypergeometricctexhs. We
find 61 different transformations (excluding infinite faied of pull-backs from hyper-
geometric equations with Liouvillian solutions) realizeg 48 different Belyi cover-
ings. An explicit formula for each covering is given in Takle The Belyi maps are
not normalized for Step (iii). The induced identities betwehypergeometric and Heun
functions are comprehensively presented in the paraltedl@f32]. Here we not con-
cerned with the technical issues of determining the prefag{x), identifying local



COVERINGS YIELDING HEUN-TO-HYPERGEOMETRICREDUCTIONS 869

solutions, symmetries of the hypergeometric and Heun @nstnor even introducing
Heun functions.

By the Grothendieck correspondence [24] any Belyi mafP! — P! corresponds
bijectively to adessin tenfanton P, up to isotopy and Mébius isomorphisms &g.
Generally, the dessins are defined combinatorially as ioebiaolored graphs. For our
purposes, thelessins &nfantof a Belyi mapg(x) is the graph orP! obtained as the
pre-image of the line segment [0, 1] @Y, up to isotopy. The vertices abowe= 0
are colored black, and the vertices abave- 1 are colored white. The order of each
vertex is equal to the branching order at the correspongipgint. Fig. 1 depicts the
dessins for all 48 encountered Belyi coverings. Most of théevhoints have order 2,
and then they are not depicted. Black points of order 3 or 4natedepicted either,
unless they are connected to a white point of order 1. A thigeedonnects a pair
of displayed black and white vertices. A thick edge connéets black points (either
displayed or clearly branching) with an implicit white pbisomewhere in the middle.
Eachcell (i.e., a two-dimensional connected component of the comete onP?, pos-
sibly the outer one) represents a point abave co. The branching order of each cell
is determined by counting the number of black points met avhiacing a loop along
its boundary.

It is instructive to follow the branching orders and incidea on the dessins while
following our classification of possible coverings in Table-3. In principle, the pull-
back Belyi coverings can be classified by generating and tomyurihe dessins satis-
fying the suitable branching patterns. However, it is difficco ensure completeness
of a large list of dessins. We first computed the Belyi cowgsiexplicitly, then eas-
ily generated the required dessins by combinatorial cematibn. For each possible
branching pattern, there is at most one Belyi covering eixfmpthe coveringsH,; and
H44. Therefore completeness and identification of the dessinguickly established.
The coveringsHy1, Has are defined oveQ(+/—3) and Q(i), respectively. All other
coverings are defined ove® and R, hence their dessins have a reflection symmetry.
The dessins foH,;, Hag should actually be counted twice, as the complex conjugatio
gives non-isotopic dessins. The proper count of dessinsBahd coverings is therefore
50, not 48.

Many of the encountered Belyi coverings occur in other cdstegarticularly in
the theory of elliptic surfaces and Picard—Fuchs equatidiee coverings fromH; to
Hgzg occur in Herfurtner’s list [11] of elliptic surfaces with dio singular fibers, up to
Mébius transformations. The order of these coverings falgdl, Table 3], and the
numbering is used in [21] where the corresponding pull-backHeun equations (spe-
cializable to Picard—Fuchs equations for the elliptic acek) are observed. The cov-
erings H; to Hg have the maximal degree 12, and produce the Beauville lisbf2
the coverings generatingemi-stableelliptic surfaces with four singular fibers. Their
branching orders above= 0 are all 3, and above = 1 they are all 2, as can be seen
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Fig. 1. Dessins tknfant of the Belyi coverings for parametric
Heun-to-hypergeometric reductions.
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from the dessins. The branching patterntbf is written by us as follows:
(1.5) 2k=[38]la=9+1+1+1.

The four singular fibers of the corresponding elliptic soefdnave the Kodaira typds,

I1, 11, 11. This covering is also described asDavenport—Stothers triplg27]: it can

be written asF3/G2?, where F, G are polynomials of degree 4 and 6 (respectively),
such that the polynomiaF3 — G2 has the minimal possible degree 3.

A pull-back transformation defined ov@ can be nicely illustrated by subdivisions
of the Schwarz quadrangle for the pulled-back Heun equatitnSchwarz triangles for
the initial hypergeometric equations, following [12, 13[n the hyperbolic geometry
setting, these ar€oxeter decompositiong’] or divisible tilings [5] of a hyperbolic
quadrangle into mutually similar hyperbolic triangles. \Mlescribe these picturesque
illustrations in Section 4.3 and Fig. 2.

This article is structured as follows. Section 2 estabBspi&otal lemmas on the
behavior of singularities and local exponents of Fuchsignadons under pull-back
transformations. Section 3 presents the main results ite$ab-4, and explains them
(and the notation) in a few steps. Of the three mentioned rgéna steps (i)—(iii),
the first step is elaborated in Sections 3.1, 3.2, while cdatjuns for Step (ii) are
reviewed in Section 4.1. Step (iii) is thoroughly consideie the parallel paper [32].
Furthermore, Section 4 relates our classification to Heréuis list [11] and Felikson’s
list of Coxeter decompositions [7], and Section 4.4 examithee composite transform-
ations. Section 5 presents an elegant approach to provexistence (or uniqueness)
of Belyi coverings with some branching patterns, and appiienot only to the ob-
tained list of branching patterns, but also to the Mirandas$ts classification [20] of
K3 semi-stable elliptic surfaces with six singular fibers.

2. Pull-backs and local exponents

The singular points and the local exponents of Gauss hyperggic equation (1.1)
are usefully encoded in the Riemann P-symbol scheme

0 1 0 |z
(2.1) P 0 0 a
l1-c c—a—-b b

The local exponent differences at the 3 singular points laeeefore

(2.2) l-¢c, c—a—b, a—h
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Similarly, the Riemann scheme of the Heun equation (1.2) is

0 1 t o | x
(2.3) P{ O 0 0 a :
1

—c 1-d c+d—a—-b b

The parameters, b, ¢, d determine the local exponents, while the paramqtés ac-
cessory In particular, the 4 exponent differences are

(2.4) l1-¢, 1-d, c+d—a—b, a-—bh

The Heun equation contains many interesting special caselsding the Lamé equa-
tion [6]. The Heun equation and its solutions appear in potsl of diffusion, wave
propagation, heat and mass transfer, magneto-hydrodgeaiparticle physics, and the
cosmology of the very early universe.

Let E(a, B, y) denote a Gauss hypergeometric equation of the form (1.1 thi
exponent differences (2.2) equaldoB,y in some order. Similarly, letE(«, 8,y,8) de-
note a Heun equation of the form (1.2) with its exponent diffees equal te,,y,d in
some order. These notations do not assign local exponemarticular singular points,
nor they specify the accessory parameger

The degree of a pull-back transformation (1.4) between §iachequations is the
degree of the rational functiop(x). Existence of a pull-back from som&(wx, 81, y1)
to someHE(way, B2, v2, §2) of degreeD will be indicated by

(2.5) E(er1, B1, y1) 2 HE(az2, B2, v2, 82).

Sometimes the pull-back covering or the transformatior el indicated more specif-
ically by a subscript on the degrde. Similarly,

E(ai, B1, 1) 2 E(az2, B2, v2),  HE(a1, B1, y1, 82) > HE(c2, B2, v2, 82)

will indicate pull-back transformations between hypemetric or between Heun equa-
tions. For brevity, we refer to these three types of tramsfdions asGauss-to-Heun
Gauss-to-Gausgor just hypergeometric and Heun-to-Heunpull-back transformations.
In particular, the 3 quadratic transformations mentionetha beginning of this article
actually are:

(2.6) E(1/2,a, ) < E(a, a, 28),
2.7) HE(1/2, 12, a, B) 2 HE(, a, B, B),

(2.8) E(a, B, ) < HE(a, a, 28, 2y).
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As in the notation ¢, B1, y1) 2 (o2, B2, y2) of [31], the arrows follow the direction of
the coveringgp: P! — PL. To emphasize: these notations indicate the existencemk
differential equations with the stated exponent diffeemnthat are related by a pull-
back transformation, rather than the existence of a pukhbaetweenany equations
with the specified exponent differences.

Our classification is obtained by considering the behavfasigularities and local
exponents of Fuchsian equations under pull-backs. Anytoamation of the form (1.4)
pulls-back a Fuchsian equation to a Fuchsian equation)lysuigh more singular points.
To pull-back a hypergeometric equation to a Fuchsian eguatith just 4 singular points,
special restrictions apply to the coveripgx) and the hypergeometric equation.

The following definitions are taken from [31]. Aimrelevant singular pointof a
Fuchsian equation is a non-logarithmic singular point whigte local exponent differ-
ence is equal to 1. For comparison, ardinary (i.e., non-singular) point is a non-
logarithmic point with the local exponents 0 and 1, andagparent singularityis a
non-logarithmic singular point with the local exponentsr@an integek > 1. A rel-
evant singular poinis one that is not irrelevant. Any irrelevant singular podatn be
turned into an ordinary point by a pull-back (1.4) which igfactor-only, i.e., one with
¢(X) = x. Hence, what is of primary importance is how mamjevantsingular points
the pulled-back equation has. This number is affected oglyhle choice of covering
¢(X), and not by the choice of prefacté(x).

The following two lemmas describe the crucial behavior efgsiarities and local
exponents under pull-backs.

Lemma 2.1. Let ¢: P! — P} be a finite covering. Let £denote a Fuchsian
equation onP2, and let & denote the pull-back o} of E; by transformation(1.4).
For any Se P}, let k:= ord,(P) denote the branching order af at S.

(@) The exponents of Fat S equal k; + y, kay + v, where

o a,ay are the exponents of jEat ¢(S) € PL;

o y is the exponent of the radical functigi{x) at S.

(b) If (S is an ordinary point of k, then S will fail to be a relevant singular point
for E, if and only if k=1 (i.e, the coveringy does not branch at S.e, S is not a
branching point ofp).

(c) If ¢(S) is a singular point of g, then S will fail to be a relevant singular point
of E, if and only if

o k> 1 and the exponent difference @fS) is equal tol/k; or,

o k=1andg(9 is irrelevant.

In either case S will be an irrelevant singular point or an rary point.

Proof. The first statement is mentioned in the proof of [31mbea 2.4]. The
other two statements are parts 2 and 3 of [31, Lemma 2.4]. ]
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Lemma 2.2. Lety: P! — P} be a covering of degree ,Cand let A denote a set
of 3 points onP..
(@) If all branching points ofy lie aboveA, i.e, no point of P} \ A is a critical value
of ¢, then there are exactly B 2 distinct points onP} aboveA. Otherwise there are
more than D+ 2 distinct points aboveA.
(b) If there are exactly D+ 3 distinct points aboveA, there is only one branching
point that is not aboveA.

Proof. The first statement is part 1 of [31, Lemma 2.5]. Itdaé from the
Hurwitz formula [10, Corollary 1V.2.4], which says that trsim of org,(P) — 1 over
the branching point® € P! must equal 2D — 1). The second statement is a slight
extension (utilized in [14]). ]

Suppose one starts with a hypergeometric equaligron P}. Let A denote the
set{0, 1,00} containing the singularities oE;. It follows from the above lemmas that
to minimize the number of singular points of a pull-back Bf, one should typically
allow branching points of only aboveA. Otherwise, there would be more th&nh+
2 distinct points aboveA, and generically, each of thede + 2 points would be a
singular point of the pulled-back equation. By Lemma 2.1 {ajther minimization is
possible if one or more of the exponent differencesEgfin A are restricted to be of
the form I/k.

Recall that a coveringo: P — P! is a Belyi covering[26] if it is unbranched
above the complement of a set of three points, sucli0ag, oo}. By the above con-
sideration, one expects that the pull-back coverings foussdo-Heun transformations
will typically be Belyi coverings. The following proposith classifies the rather degen-
erate situations in which non-Belyi coverings can occur.

Proposition 2.3. Suppose there is a pull-back transformati¢h4) of a hyper-
geometric equation E£to a Fuchsian equation with at modtsingular points and the
covering defined by the rational functian(x) is not a Belyi map. Then one of the
following statements must hold
(i) Two of the three exponent differences qf &e equal to1/2; or
(i) E; has a basis of solutions consisting of algebraic functiohz.o

Proof. LetD = degg, and A = {0, 1,00} C P}. Sinceg: P} — P} is not a
Belyi map, there is a branching poif, that doesnot lie above A. By part (a) of
Lemma 2.2, there are at leaBt + 3 distinct points aboveA. At most 3 of them
can be singularities of the pulled-back equation, beca®@seavill be a singularity by
Lemma 2.1 (b). Therefore there are at leBsbrdinary points above\.

One or more of the 3 exponent differencesEf must be of the form Ak for an
integerk > 1, because only then ordinary points occur abaveby Lemma 2.1 (c).
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Above a point of A with the exponent difference/k, there may be at modd /k ordi-
nary points. LetM denote the number of restricted exponent difference&of There
are three possibilities:

o M = 1. One must havik = 1, and by Lemma 2.1 (c), this point is not a rel-
evant singularity forE;. Let m denote the number of distinct points above the two
(generally) relevant singularities d&;. If m = 2, the covering is cyclic (i.e., Mdbius-
equivalent top(x) = xP). If m = 3, there is only one branching point not above the
relevant singularities oE;, by Lemma 2.2 (b) basically. Henge is a Belyi covering
for m < 3. If m > 3, the pulled-back equation will have more than 4 singuksit

o M = 2. The exponent differences will be/K, 1/I with k, | positive integers and
D/k + D/l = D. One must have /k, 1/| = 1/2, which is case (i).

o M = 3. The exponent differences will be’l, 1/I, 1/m with k, |, m positive inte-
gers andD/k+ D/l + D/m= D, i.e., Yk+ 1/l +1/m > 1. The subcase/k + 1/| +
1/m =1 is ruled out, because getting ordinary points aboveA leaves no space for
other > 3 points, contradicting Lemma 2.2 (a). It is known [6, 22]ttivathe subcase
1/k+ 1/l +1/m > 1, the equatiorE; has only algebraic solutions. O

REMARK. In case (i), the projective monodromy group Ef is generally an in-
finite dihedral group. As we recall in Section 5, the possimiejective monodromies
in case (ii) are: a finite cyclic, a finite dihedrad, (tetrahedral),S, (octahedral) orAs
(icosahedral) groups. IM = 1, the monodromy is generally an infinite cyclic group.
Fuchsian equations with these monodromy groups hawavillian solutions and can
be solved by the Kovacic algorithm [16].

3. Main result: Generation and classification

Here we present the method and the results of classificati@aoss-to-Heun trans-
formations with at least one free parameter. Following farbf Lemma 2.1, we restrict
m € {0, 1, 2 local exponent differences of the general hypergeometyimton (1.1) to
the reciprocals of integets> 1. Thereby we hav® = 3—m free parameters. Basically,
the free parameters are the unrestricted exponent diffesen

We ignore the cases when an exponent difference is restrictel at a non-
logarithmic singularity, or when two exponent differenca® restricted to 2, as we
have Liouvillian solutions then. Apart from this, Tables 2,, 3 below give a full list
of Gauss-to-Heun pull-back transformations with a freeapaater in terms of the ex-
ponent differences (in the first two columns), the degree thedbranching pattern of
the pull-back covering (in the next two columns) among th&ies where a covering
is indicated by theH-notation in the last column. Table 4 gives a full list of the-e
countered Belyi maps (up to Mdbius transformations and cermpgbnjugation), and
the introductory Fig. 1 depicts thdessins tknfant of those Belyi maps. The paral-
lel article [32] identifies the pulled-back Heun equationsdieetail, and gives a repre-
sentative list of transformation formulas between hypengetric and Heun functions.
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Table 1. Possible branching patterns of hypergeometrideton
transformations with 2 or 3 free parameters.

Exponent differences Deg. Branching pattern  Covering asttarization,

hyperg. Heun D above singularities composition
o, B,y a,a, 2u, 2y 2 2=1+4+1=1+1 Hsp, F1, F;, indecomposable
1/2,a,8 o,a,20,48 4 [2,=4=2+1+4+1 Hss5F4,F,2:2
a, 3, 8,38 [2]0=34+1=3+4+1 Hg, F; F{, indecomposable
2u, 20, B, 3B [2]2=34+1=2+2 no covering,Ny7
20, 200, 28, 28 [2]0=24+2=2+2 Hay, F3, F;, 2x2
1/2,a, 20, 38 3 [21+1=2+1=3 Ha4 F, FJ, indecomposable

w

1/3,a,8 «,2x,8,28 [Bl1=2+1=241 Hay4, FJ, F§, indecomposable
a,o,o,3B [8]1=3=1+1+1 Hgs indecomposable

A supplementingMaple package [8] contains the list of Belyi function of Table 4 and
transformation formulas of [32].

We proceed to explain the results and notation in Tables 1ket. » denote a
primitive cubic root of unity, say» = exp(2ri/3). In particular,w? + w + 1 = 0.

The pull-back transformations from a hypergeometric dqualE; to a Heun equa-
tion E, are classified and demonstrated in the following four stéfisey parallel the
principal steps (i)—(iii) outlined in the introduction, thithe only difference that Step (i)
is split into two steps.

STEP 1 is determination of possible restrictions on the exportifierences ofE;
and the degree of the pull-backs. This step is elaborate@datich 3.1. The restrictions
on the exponent differences determine tipe of possible branching patterns, which
is by definition an unordered list of the integeks> 1 that determine the restricted
exponent differences/k. The following list of types is obtained:

3.1 (), (@, (3), (2,3), (2,4), (2,5), (2,6), (3,3), (3,44 4).

The first type () means no restrictions on the parameters;ofWe skipped the cyclic
and dihedral types (1) and (2,2) as mentioned. The typesdieated by the exponent
differences ofE; in the first columns of Tables 1, 3, and the whole Table 2 is @0
to the type (2, 3). The entries of different types are sepdréiy horizontal lines. The
pull-back degree is given in the third columns of Tables laig the second column
of Table 2. The maximal degree is 12. It occurs for the type3[Znly.

STEP 2 is determination of possible branching patterns. The atkib explained
in Section 3.2. The result is presented by the fourth columhgables 1, 3, and
the third column of Table 2. Generally, we indicate a branghpattern by an (un-
ordered) list of three unordered partitions of its degiee separated by the equal-
ity signs. The partitions specify the branching indices atte of the three branching
fibers of a Belyi covering. Besides, we use the abbreviatidp for a partition block
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Table 2. Possible branching patterns for pull-back tramsédions
from E(1/2, 1/3, @) to a Heun equation, of degrde > 7.

Exponent differences Deg. Branching pattern

Covering atttarization,

of the Heun equation D above singularities composition

a, o, a, X 12 [2ls=[3]la=9+1+1+1 Hy, -4

o, o, 20{, 80[ [2]62[3]4:8+2+1+1 H2, F23, F§k4, 223

a, o, 3o, Ta [2]6 =[3la=7+3+1+1 no covering,N;

a, 20, 20, Ta [2l6 =[3]a=7+2+2+1 no covering,N,

a, o, 4o, 6o [2l6=[3]a=6+4+1+1 no covering,N3

a, 20, 3o, 6o [2]l6 =[3]a=6+3+2+1 Hs, Fu, Fj5 3-4, 43

20, 20, 20, 6x [2l6 =[3]a=6+2+2+2 no covering,Ny

o, a, 5a, ba [2]62[3]4:5+5+1+1 Hy, Foa, Fékz, 24 -6

a, 20, da, 5o [2]6 =[3]la=5+4+4+2+1 no covering,Ns

a, 3o, 3, Sa [2]6 =[3]a=5+3+3+1 no covering,Ng

20, 20, 3o, 5 [2]6 =[3]la=54+3+2+2 no covering,N7

a, 3o, da, da [2]6 =[3]la=4+4+3+1 no covering,Ng

20, 20, da, Ao [2]6:[3]4:4+4+2+2 Hs, Fyo, F;l’ 2-3c-2,2x2-3
20, 3, 3o, 4o [2]6 =[3]a =443+ 342 no covering,Ng

3, 3, 3o, 3 [2l6 =[3]a=34+3+3+3 Hs 3c-4, 24-21-3c

1/3, a, a, 8« 10 [2]s=[3]3+1=8+1+1 H indecomposable

1/3, a, 2a, Ta [2ls =[38]3+1=7+4+2+1 Hg, Fa1, Fj5 indecomposable
1/3, a, 3, [2]s=[3]3+1=6+3+1 no covering,Nio

1/3, 2, 2a, [2]s =[3]s+1=6+2+2 no covering,Ni;

1/3, a, [2]ls =[38]3+1=5+4+4+1 Hg, Fi9, Fj, indecomposable
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1/2, 1/3,

[2]s=[3]s+1=5+3+2
[2ls=[3]s+1=4+4+2
[2ls=[3]s+1=4+3+3
2la+1=[3]3=7+1+1
[2l4+1=[3]3=6+2+1
[2l4+1=[3]3=5+3+1
[2]l4+1=[3]3=5+2+2
la+1=[8]z=4+4+1
[2l4+1=[3]3=4+3+2
[2]l4+1=[3]3=3+3+3
[2ls=[3]2+2=6+1+1
[2la=[8]2+2=5+2+1
[2la=[32+2=4+3+1
[2la=[3]2+2=4+2+2
[2la=[3]2+2=3+4+3+2
[214=[3]2+1+1=7+1
[Rla=Bl2+1+1=6+2
[Rla=[3]2+1+1=5+3
Rla=[Bl2+1+1=4+4
2ls+1=[3]2+1=6+1
[2]s+1=[3]2+1=5+2
[ls+1=[3lo+1=4+3

Hio, Foe, F3o indecomposable

no covering,Ni2
no covering,Ni3

Hi1, indecomposable
Hiz2, Fao, F5, 3-3
His, Fis, FJ indecomposable

no covering,Ni4
no covering,Nis

Hia, F2s, F5, 3:3

no covering,Nsg

His, F14, 2-4
Hi6, F17, indecomposable

no covering,N;7
no covering,Nig

Hi7, Fi3, 2-4
His, indecomposable
Hio, Fie, FJ1, 48-2, 2-4

no covering,Ng

Hoo, Fis, For 4-2, 21 -4n

Hoy,
Haz,
H231

indecomposable
Fi1, Fjy indecomposable
F12, FJo indecomposable
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Table 3. The other possible branching patterns of Gausteto:
transformations with one free parameter.

Exponent differences

hyperg.

Heun

Deg. Branching pattern
D above singularities

Coveringatttarization,
composition

1/2,1/3,a 1/3,2/3,a, 5

6 [=[Bl+2+1=5+1

Ha4, Fo, indecomposable

1/3, 2/3, 2u, 4a [213=[3]14+2+1=4+2 Hys, F10, 3:2
1/3, 2/3, 3, 3u [2]5=[3]1+2+1=3+3 no covering Nz
1/3,1/3, 1/3, 6x [2]:=[3]1+1+1+1=6 Hzs 3c-2
1/2,1/2,«, 5a [2]2+141=[3],=5+1 Hy indecomposable
1/2,1/2, 20, 4o [22+14+1=[3],=4+2 Hy, F7, F5, 2-3
1/2,1/2, 3, 3« [2]2+1+1=[3], =343 Hag, Fs, F}5% 21 -3¢
1/2,2/3,a, 4 5 [22+1=[3]1+2=4+41 Hyg, Fg, indecomposable
1/2,2/3, 2u, 3« [2],+1=[3]1+2=3+2 Hgp, Fs, indecomposable
1/2,1/3,1/3, 5 [2]2+1=[3]1+14+1=5 Hsz, indecomposable
1/2,1/2,1/3,4 4 [2]14+1+1=[3]1+1=4 Hse indecomposable
1/2, 1/4, @ o, a, a, 5 8 [2]la=[4]o=5+1+1+1 no coveringNz1
o, o, 20, do [2la=[4]2=4+4+24+14+1 Ha, F§, Fyy, 2:2:2
o, o, 30{, 3(]{ [2]4= [4]2 =3+3+ 1+l Hzo, FS/’ F2*3, 4-2, 2H ‘4A
a, 2o, 20, 3 [2]4=[4]2=34+24+2+1 no coveringNz»
20, 200, 20, 20 [2la=[4]2=24+24+2+42 Ha, F;, F),, 2x2x2
1/2,a, o, 4a 6 [2]3=[4]1+2=4+1+1 no coveringNy3
1/2,a, 20, 32 [2l3=[4]1+2=3+4+2+4+1 Hys, F, Ff5, 3-2
1/2, 20, 20, 20 [2]3=[4]1+2=2+2+2 no coveringNy4
1/4,1/4, o, 5x [2]3=[4]1+14+1=5+1 Hyp, indecomposable
1/4,1/4, 20, da [2]3=[4]1+14+1=4+42 no coveringNz3
1/4, 1/4, 3, 3u [2]3=[4]1+14+1=3+43 Has, F{,, F{% 213
1/2,1/4, o, da 5 [2l24+1=[4]1+1=4+4+1 Hga4, indecomposable
1/2,1/4, 20, 3x [2]2+1=[4]1+1=342 Hyg, F{;, F};, indecomposable
1/2,1/2,a, 3 4 [2]1+1+1=[4]1 =341 Hs indecomposable
1/2,1/2, 2u, 2v [2l1+1+1=[4]; =242 Hss, Fjy, F/, 242
1/2, 1/5, @ 1/5,a, «, 4 6 [2]l3=[5]1+1=4+1+1 Hgp, indecomposable
1/5,«, 20, 3o [213=[5]1+1=34241 Hy4, F{s, F% indecomposable
1/5, 2v, 20, 200 [2]3=[5]1+1=2+42+2 no coveringNzs
1/2,a, o, 3 5 [2]2+1=[5]1=3+1+1 Hs; indecomposable
1/2,a, 20, 2x [2]o+1=[5]1 =2+241 Hgs, F{,, F}, indecomposable
1/2, 1/6, ¢ a,«, «, 3 6 [2[z=[6]1=3+1+1+1 Hzg 32
o, a, 20, 20 [2]3:[6]1=2+2+1+1 Hsg, Fi3, Ff7, 32,243
1/3, 1/3, @ «a, a, o, 3 6 [32=[3]2=3+1+1+1 no coveringNazs
o, a, 20, 20 [Bl2=[3]2=2+2+1+1 Hyg, 2-3¢
1/3,1/3,«, 3« 4 [8l1+1=[3]1+1=3+1 Hu, F,, Fg, indecomposable
1/3,1/3, 2u, 20 [Bl1+1=[3]1+1=2+42 Hay, F}, F§, indecomposable
1/3, /4, @ 1/3,a, o, 20 4 [3]1+1=[4]1=2+1+1 Hze indecomposable
14, Y4, a a,a,a, a 4 [A1i=[@li=1+1+1+1 Hag 242
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Table 4. The Belyi coverings appearing in Gauss-to-Heur pul
backs, up to Moébius transformations.

Id Deg. Branching pattern A rational expression §g(x)

Hi 12 [2=[B]2=9+1+1+1 643(x3—1)%/(8x>—9)

H, Rle=[3la=8+2+1+1 273(x*>—4)/(4(x* — 4x? + 1))

Hs 26 =[3]4=6+3+2+1 4x3(x3—6x +6)%/(27(x — 1)*(2x — 3)’(x + 3))
Ha [2ls=[3la=5+5+1+1 1728&5(x2 —11x —1)/(x* — 12x3 + 14x? + 12x + 1)
Hs Rls=[3la=4+4+2+2 24 (X% —1P/(4(x* — x>+ 1)3)

He [2l6 =[3]4=3+3+3+3 —64x3(x3—1)%/(8x3 + 1)

Hy 10 [25=[3]s+1=8+1+1 —4(x+ 2)(x3+ 3x + 2)3/(27(2 — 2x + 11))
Hg ls=[3ls+1=7+24+1 4 +4)(x>—6x—2)3/(27(4x — 11)(X + 4)?)
Ho [2ls=[3]3+1=5+4+1 —(x+ 10)(4x® — 15x + 10)*/((5x — 4)(3x — 2)°)
Hio [2ls=[3]3+1=5+3+2 4x(9x%—20x% 4 10x 4+ 10)*/((5x — 8)*(4x — 1)°)
Hii 9 [2ls+1=[3]3=7+1+1 4(x34 4x? 4+ 10x + 6)3/(27(4x? + 13x + 32))
Hi2 Rl4a+1=[3z=6+2+1 273(x —3)/(4(x® —3x> + 1)%)

His [2la+1=[3]3=5+3+1 27(4x —3)°/(4(x® — 12x2 —54x — 2)%)

Hia Rl +1=[3]3=4+3+2 273(3x + 4% /(4(x® — 3x — 4)®)

His 8 [2la=[3]2+2=6+1+1 64x3(x*>—1)3/(8x>—9)

His 2la=[3]2+2=5+2+1 4x3(x®—8x + 108/(27(4 — 27)(2 — 1))
Hi7 Rla=[3]2+2=3+3+2 —64x3(x*>—1)%/(8x* + 1)

His Rla=[Blo+1+1=7+1 (x2+ 13x + 49)(x? + 5x + 1)3/(1728&)

Hio 2l4a=[38l2+1+1=6+2 —64x%/((x2—1)*(x*>—9))

Hao Rla=[Bl2+1+1=4+4 163(2x + 1)(x —4)/(x> —2x — 2)*

Hin 7 [24+1=[3824+1=64+1 4x—1)((1+ 20)x*> —3x — 0)3/(4 — (1 + 3w)X)
Hao [2]34+1=[3]24+1=5+2 4x(4x?>—35x 4 70)*/(27(28& — 125Y)

Has [23+1=[32+1=4+3 x(9x>—14x — 7)*/(4(7x — 1)%)

Hoas 6 [23=[3]1+2+1=5+1 x3(x+5)’(x + 8)/(64(3x —1))

Has Rlz=[3]1+2+1=4+2 —4x3(x —1)’(x + 2)/(3x — 2)*

Hos 2l24+1+1=[3]2=5+1 (x>*—5)*/(27(x% —5))

Hyy Rlo+1+1=[32=4+2 27?/(4(x2—1)3)

Hos [2]2+14+1=[3]o =343 36x(x°+ 3)?/(x? + 6x —3)°

Hyoy 5 2+424+1=3+2=44+1 4x3(x—=5)?/(27(5x +2))

Hao 24241=342=3+2 x3(4x+50%/(5x + 4y

Ha 4 242=242=242 —4x2/(x% — 1)

H, 2 2=2=1+1 x2

H33 3 3=3=1+1+1 X3

Hag 3=2+1=2+1 X(4x — 3

Hs 4 4=2+2=2+1+1 4x%(1—x?)

Hag 4=34+1=2+1+1 —x3(3x + 4)

H3z 5 5=2+2+1=3+1+1 4x3(4x%+5x+10)/27

Hsg 6 [23=6=3+1+1+1 4x3(1-x3)

Hyy 6 [23=6=2+2+1+1 x%(4x>-3)

Hio 8 [2lh=[42=44+2+1+1 4x3(x>2—2)/(x>—1)*

Ha1 [2]4:[4]2:2+2+2+2 —4X4/(X4—].)2

Hiz 6 [2k=4+1+1=5+1 x*x%+2x+5)/(4(2x—1))

Haz 21s=4+1+1=34+3 27K%>—4)/(4(x*—3))

Hae 5 4+1=44+1=2+2+1 x(x—1-2)%/((1+2)x—1)*

Has 5=24+2+1=2+2+1 x(x2—5x+5)/4

Hige 4 3+1=3+1=3+1 x3(x +2)/(2x + 1)

Ha7 3+1=3+1=2+2 %MX—DW@X—Q

4=4=1+1+1+1

X
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k+---+k (ntimes). In Tables 1, 2, 3, the symbd]] specifically means presence of
n points of E, with the branching ordek above a singular point oE; with the the
exponent difference /k. By part (c) of Lemma 2.1, each of thepoints will be either
ordinary or an irrelevant singularity foE,. By the described convention, the branch-
ing patterns for pull-back transformations with free parameters have-3M numbers
(i.e., branching orders) inclosed in square brackets, aadtly 4 non-bracketed num-
bers representing the 4 singular points Ex.

In total, we get a list of 89 branching patterns, though sorthe patterns differ
only by the square-brackets specification of ordinary ot E,. For example, two
degree 3 branching patterns in Table 1 are the same, leadliting tsame cubic covering
Haz4 (identified in the last column). The exponent differencesEgfare determined by
E; and the branching pattern, and are given by the second celaihmables 1, 3 and
the first column of Table 2.

STEP 3 is computation of the Belyi coverings: P — P1. Generally, computa-
tion of Belyi maps with a given branching pattern is a difficoptoblem. However, the
maximal degree of the possible branching patterns is justVith the aid of modern
computer algebra systems this problem is tractable forrooy® of degree 12 or less,
even using a straightforward Ansatz method with undetegthinoefficients. Most of
the Belyi maps are actually known in the literature, if onlgchuse the Belyi maps
of the type (2, 3) occur in Herfurtner’s list [11] of elliptisurfaces with four singular
fibers. Specifically, the7(X, Y)-expressions in [11, Table 3] are homogeneous expres-
sions of the Belyi map#;, ..., Hzg up to Mdébius transformations. Also, these cover-
ings appear in pull-backs between hypergeometric equatioecause a free parameter
can always be specialized so to reduce the Heun equé&joto a hypergeometric (or
simpler) equation.

The computational issues of Step 3 are discussed in SecrC®mplementarily,
Section 5 presents an elegant approach to show non-exstérigelyi maps with many
branching patterns. The full list of computed Belyi maps ieg in Table 4, and fur-
ther commented in Section 4. The last columns of Tables 1,i@eify the Belyi map
for each possible pull-back transformation. These coluaiss specify theCoxeter de-
compositiong7] and divisible tilings[5] for the Schwarz maps associated to the pulled-
back Heun'’s equatior, (by variousF-numbers, as explained in Section 4.3), and de-
scribe composite transformations by product expressiodisating degrees of occurring
indecomposable transformations. The product notationtbdse followed from right
to left to trace the composition from the starting hypergetiim equation. The fac-
tor 2 denotes quadratic Heun-to-Heun transformation (2.7).eHsrthe meaning of
other indexed degrees.c denotes the cyclic coveringlzz with the branching pattern
3=3=1+1+1, while 44 and 4 stand for the coveringslzs (4=3+1=2+1+1)
and Hgs (34+1 = 3+ 1= 3+ 1), respectively. The unindexed numbers 3 and 4 denote
the frequent coveringslzs (3=2+1=2+1) andHy; (34+1= 341 = 2+2), respect-
ively. In any composition, there is exactly one factor reprging an indecomposable
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Gauss-to-Heun transformation; it is the first one from thié \Wehich is not 3y. The
other factors to the right represent pull-backs betweerelggometric equations. The
notation 2x 2 indicates a composition of quadratic transformations taa be realized
in multiple ways, possibly including 2 see (4.3) below for the most typical example.
The compositions are considered more thoroughly in Sectidnand in [32, Appen-
dix B].

There are 27 different branching patterns for which theredsBelyi map. The
non-existence in all these cases can be elegantly shownnsjdesing implied (but not
possible) pull-back transformations between Fuchsiaratopus, as explained in Sec-
tion 5. The indexedN-notation refers to Table 5 below. For each branching patter
except two leading tdH,; and Hag, there is at most one covering (and one pull-back)
up to Moébius transformations. The coveringls; and Hy4 are defined, respectively,
over Q(w) and Q(i). In either of these cases, we actually have a complex-gatgal
pair of Belyi coverings. Table 4 lists 48 different coversnghoughH,; and Ha4 should
be properly counted twice. It is instructive to compare tmanibhing pattern and the
orders of vertices and cells of thdessins @nfantin Fig. 1. In total, we count 61
parametric pull-backs among the entries of Tables 1, 2, 3th&f, 28 are composite.
Evidently, some of the 48 coverings appear in more than oriebpak. Accordingly,
the symbol k], in Table 4 merely indicates presencerofpoints of branching ordek
in the same fiber. The coverindszo, Hz4, Hzs, Hos, Hog, Haa, Hss, Hsz, Hss, Hao,
H47 appear twice in Tables 1, 2, 3, whildsg three times.

STEP 4 is derivation of identities between standafel(z) and Hnk) solutions of
the related hypergeometric and Heun equations, with ¢(x). This givesHeun-to-
hypergeometric reductiofiormulas, expressing found Heun functions in terms of the
better understood Gauss hypergeometric functions. Théd fitep is comprehensively
considered in the parallel paper [32] by the same authorgatticular, [32, Section 3]
explains the technical issue of choosing the gauge prefagtg in pull-back trans-
formations (1.4). The transformations without a prefadfce., 6(x) = 1) are classi-
fied by Maier in [18]. The branching patterns for these pultksatypically have a
fiber with just one point, and that point is a singularity fs. There are 7 of these
pull-back transformations. Their type is (), (2), (3) or 8, and the coverings are
numbered consequently froids, to Hig. Formulas without a prefactor arise from the
transformations of Tables 1, 2 realized by these coveriegsept for the type (3) trans-
formation with the coveringHs4. The well-known quadratic transformation (2.8) is de-
scribed at the beginning of this article.

Hereby we complete the description of four classificatia@pst At the same time,
we explained the results and notation in Tables 1-4. The twextsubsections give a
methodical proof of Steps 1 and 2. Computational issues ep St are discussed in
Section 4.1.

3.1. Step 1: possible restricted exponent differences andedree. We are look-
ing for the Belyi coverings: P} — P} that pull-back a hypergeometric equatiia to
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Heun’s equationE,. We assume thak; is not specifically of the formE(1, «, B) or
E(1/2, 1/2, @), because then either it has a logarithmic singularity( +« by [31,
Lemma 5.1]) or Liouvillian solutions.

We restrictm € {0, 1, 2 exponent differences of the general hypergeometric equa-
tion (1.1) to the reciprocals of integeds > 1, and look for particular cases when
part (c) of Lemma 2.1 allows enough non-singular points abi@; 1,00} C PL. The
degree ofp is denoted byD.

First, assume thatn = 0. This puts no restriction on the exponent differences of
E1, so all points above = 0, 1,00 are singularities oE,. There will be exactlyD + 2
singular points by Lemma 2.2. We widb + 2 < 4, henceD < 2. If D =1 theng
is a Mobius transformation, anH, will have only 3 singularities. IfD = 2, theng is
the well-known quadratic transformation (2.8). We do noédéo consider quadratic
transformations subsequently.

Form € {1, 2}, the number of non-singular points above the restricteduarities
of E; must be at leastl¥ +2)—4=D — 2.

If m= 1, we allow two free parameters. Just one exponent differefcE; is
restricted to equal /K, with integerk > 1. The pulled-back equatiok, will have at
most | D/k| ordinary points abovg0, 1,00} C P} by Lemma 2.1, and one must have

D
(3.2) {—J =>D-2
k
This leads to the Diophantine inequality
2 1
3.3 —+-=1
(3.3) otk

Fork > 1 andD > 2, we have the following possibilities:
(3.4) k D) €{(2,3),(2,4), 3, 3).

The resulting branching patterns are of types (2), (3), @liog to k.

If m=2, we allow one free parameter. Suppose that the restricteagnent differ-
ences ofE; equal ¥k, 1/1, wherek, | are integers. We assume<lk <| < D without
loss of generality; the last inequality allows actual a&lion of the restriction A. The
transformed equation has at mg® /k]| + | D/I] ordinary points abovg0, 1,00} C P2
Similarly to the above, one must have

(35) {%J ; LEJ ~p-2,

which leads to the weaker Diophantine inequality

(3.6) S+

211>1
D k |~ 7
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Discardingk = | = 2, we get the following possibilities fok, | and for the upper
bound Dpax ON the degreeD:

(3.7) kI, Dmav) € {(2, 3,12), (2, 4, 8), (2, 5, 6), (2, 6, 6), (3, 3, 6), (3, 4, 4),444).

The resulting branching patterns are the seven types (223%), (2, 5), (2, 6), (3, 3),
(3, 4), (4, 4), respectively.

3.2. Step 2: possible branching patterns. Here we look at each possible type
and degree, and determine all branching patterns fittingnthEhe constraint that there
must be at leasb — 2 ordinary points abov¢0, 1,00} C P} will usually require taking
the number of ordinary points above the points with restdcexponent differences is
maximal i.e., equal to|D/k| or [D/I]. The a priori possible branching patterns for
the casem = 1 are straightforward to determine. They are listed in thetfo column
of Table 1. That table is comparable to [21, Table 1b].

In the casam = 2, we start with the coverings of the type (2,3) of the maxiche
gree D = 12 as in Table 2. There must be 42 = 10 ordinary points above the two
singular points ofE(1/2, 1/3, «) with exponent differences/2 or 1/3; all x-points
in these two fibers must be ordinary, §62/2] + |12/3] = 10. The third fiber is a
partition of 12 with 4 parts. There are 15 such partitionsd #mey are all listed in
the third column of Table 2. Next, there are no transfornmstiof degree 11, because
11-2 > [11/2] 4+ [11/3] and there would not be enough ordinary points in the two
fibers. In a similar way, the pull-back coverings of degi2e= 10,9, 8 or 7 must have
the maximal number of ordinary points in the two restrictdzefs; and all branching
patterns consistent with this constraint are listed. Thendiing patterns of type (2, 3)
continue in Table 3. The degre&> = 6, 4 require less thapnD /2| + | D/3] ordinary
points in the restricted fibers, and there is some choice of tw split a bracketed
number [2] or [3] into a pair of non-bracketed numbers, tHowg least one brack-
eted number must remain in the two restricted fibers. Boe 5, there is a choice of
splitting (or not splitting) the number 2 in the [3] fiber. Iotal, we get 53 branching
patterns of the type (2, 3), all different.

The other types (2, 4), (2,5), (2, 6), (3, 3), (3,4), (4, 4) iwny give less numer-
ous sets of branching patterns, some of them coinciding atiyter with previously
encountered ones.

4. The Belyi coverings

First, this section briefly explains computation of Belyi pgsaand utilizing special-
ization of parametric Gauss-to-Heun transformations aodformations between hyper-
geometric equations. In Sections 4.2 and 4.3, we explain tievH-numbering of
Table 4 comes partly from an algebraic-geometric classificaof Herfurtner [11],
and clarify the various=-numbers in the last columns of Tables 1-3 as representing



884 R. VIDUNAS AND G. FLIPUK

Coxeter decompositionsf Felikson [7] anddivisible tilings of [5]. Lastly, in Sec-
tion 4.4 we examine the composite transformations amongresults.

4.1. Computational issues. To compute the Belyi mapg: Pl — P! with a
given branching pattern means to find all rational functigiis) such that the numer-
ators of p(x), 1— ¢(x) and the denominator af(x) factor according to the branching
pattern. A straightforward Ansatz method with undeterdimeefficients can be used
for low degree coverings. Modern computer algebra systeoch(asMaple and Math-
ematica) can handle the resulting systems of algebraic equatiosityéhthe degree of
@(x) is 12 or less. More cannily, one can consider factorizatibnhe numerators of
the logarithmic derivatives of(x) and ¢(x) — 1 as in [28, Section 3]. For example,
to determineH,, one is looking for a constart and monic polynomials?, Q, R of
degree 4, 3, 6, respectively, such thgk) = cP3/Q and ¢(x) — 1 = cR%/Q. To find
these polynomials, one considers
@y YW QLR (-1 2R Q9P

' 9(X) P Q PQ ¢(x-1 R Q RQ
Zeroes of the derivatives are the branching points othar thahe denominators, and
the factor 9 is determined by local considerationxat co. The whole polynomialR
can be eliminated symbolically using the first identificati@and the resulting equation
system for the undetermined coefficients Bf Q is rather transparent. In general, a
covering with a given branching pattern may not exist, orehmay be several Belyi
maps (up to Mobius equivalence) or even seve@dlQ-Galois orbits of Belyi maps
with the same branching pattern. The Galois action on thgiBehps and theidessins
dénfantis of primary interest to Grothendieck’s theory [24], [26].

Less demandingly, we notice that the free parameter of ows&t-Heun trans-
formations can be specialized so that to the pulled-backnHsguation has actually less
than 4 singular points. In principle, the Belyi coveringsshappear in the classification
[31] of Gauss-to-Gauss transformations. Infinite famitésransformations for Liouvill-
ian ,F; functions (power, dihedral, algebraic ones or elliptieegrals) should not be ig-
nored here. Each branching pattern of Table 1 can be foun@lin Table 1], except

for 242 =2+ 2 = 2+ 2 which corresponds to the transformati&fl/2, 1/2, ) L
E(1, 2x, 2x) briefly mentioned in [31, p. 161]. The branching pattern§albles 2 and 3
(with m = 1 free parameter) can be handled similarly, yielding reiduast of one-
parameter Gauss-to-Heun transformations to zero-paearpetl-backs between hyper-
geometric functions. For example, the coveriHg; implies the hypergeometric trans-
formationsE(1/2, 1/3, 1/2) & E(1/2,1/2,2) andE(1/2, 1/3, 1/4) & E(1/2,1/2,1/2).
These specializations reductions are possible wheneeee ik abranchingpoint with

a free exponent difference. Among the relevant branchirttees, only the last one
4=4=1+1+1+1)in Table 3 does not satisfy this condition. But even it rep-

resents a nominally hypergeometric transformation, naragty, «, 1) il E(4c, da, 1).
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Section 5 gives more details for obtaining the list of Gatassteun pull-backs from the
classification in [31]. In particular, the non-unique cdmgs Hy; and Hyy come from
Lemma 5.3 there.

4.2. The Herfurtner classification. Pull-back transformations from hyper-
geometric equations of the form(1/2, 1/3, «) to Heun equations have a close rela-
tion to elliptic surfaces ove€(x) with 4 singular fibers [11, 21]. The Belyi coverings
z = ¢(x) that induce these transformations appear as jtiariants of these elliptic
surfaces, withz equal to 7 := j/1728, the traditional Kleinj-invariant.

The elliptic surfaces with 4 singular fibers are classifiedHgyfurtner [11]. His ar-
ticle lists 50 configurations of singular fibers which giveeckielliptic surfaces, and for
each configuration, supplies a formula= J(X, Y) which is a projectivized version
of z = ¢(x), up to a Mobius transformation of and a permutation ot = 0, 1, cc.
Heun equations arise from 38 of his 50 cases, as Movasati aitdr R21] recently
observed. We adopt the enumeration of [21, Table 1], andtdethese 38 Belyi cov-
erings of Herfurtner, which were not originally numbereg, i, to Hzg. The ordering
is by degree in two ranges, as evident in Table 4: decreanirtigei rangeHy, ..., Hay,
and increasing in the rangdsy, . .., Hazg.

The coveringsHy, ..., Hzg and Hsg, . . ., Hag induce Gauss-to-Heun pull-backs of
the type (2, 3) with one free parameter, as given by Table 2 taedupper part of
Table 3. These transformations use each of these 34 coseexactly once, and no
other coverings appear. The ordering by decreasing dega&e theH-numbers appear
ordered in Table 2. By examining Table 1, one finds HerfuttneoveringsHas,..., Hss
(with Hs4 appearing twice) and a “new” covering,7. The coveringHy7 cannot pull-
back E(1/2, 1/3, @) to a Fuchsian equation with exactly 4 singularities. Thé&epa
[38]1 =2+ 1=2+1 for Hzs cannot be refined to such a pull-back frdgfl/2, 1/3,«)
either, but this is possible for the otheks, parsing [2] +1 =2+ 1 = 3. This explains
why Hs4 appears in Herfurtner's list once.

Some of Herfurtner's coverings additionally induce Gatgssteun transformations
of types (2, 4), (2, 5), etc., as evident in Table 3. But 10 a&xtoverings appear in
that table; they have no interpretation in terms of elligiafaces. We denote them
Hao, . . ., Hag, ordered somewhat arbitrarily in the lower part of Table #eTcovering
H47 induces transformations of the types (2) and (3, 3).

4.3. Coxeter decompositions. Recall that aSchwartz magdor a second order
differential equation in the complex plane is a m@p— C defined as the ratio of
two independent solutions of the differential equation. [Gonsider a hypergeometric
equation with real exponent differences, 8, y) satisfying 0< «, 8, y < 1. The im-
age of the upper half plane under its Schwarz map is a cuedatiSchwarz triangle
the sides are line or circle segments, and the angles ared tquax, 78, 7y. Simi-
larly, consider a Heun equation with real exponent diffeemng, 8, v, §) satisfying
0<a,B,y,8 < 1. The image of the upper half plane under its Schwarz map is a
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curvilinear Schwarz quadranglewith the same kind of sides, and angles are equal to
o, B, Ty, wo.

It was noticed by Hodgkinson [12, 13] that if the coveripgx) of a pull-back
transformation between hypergeometric equations is defover R, the analytic con-
tinuations of their solutions according to the Schwarz ofibe principle are compat-
ible. Consequently, the covering (of degreeD, say) will induce a subdivision of a
Schwarz triangle of the pulled-back hypergeometric equatinto D Schwarz triangles
of the original hypergeometric equation. Examples of sughdivisions are given in
[28, Fig. 1].

Similarly, suppose we have a Gauss-to-Heun transformalédimed overR. In par-
ticular, the fourth singular poink =t is real. Then the analytic continuations of the
hypergeometric and Heun solutions by the Schwarz reflegiorciple are compatible,
and the coveringy (of degreeD) will induce a subdivision of Heun’s Schwarz quad-
rangle intoD Schwarz triangles of the hypergeometric equation.

In the context of hyperbolic geometry, the possible sulsiivis of curvilinear quad-
rangles (or triangles) into curvilinear triangles haverbekssified by Felikson [7]; they
are calledCoxeter decompositionsThe triangles have anglesx, 78, wy satisfying
a + B+ y < 1. The Coxeter decompositions with a free (angle) paranstdepicted
in Figures 10, 11, 14 in [7]. The subdivisions of Schwarz gaadles into Schwarz
triangles induced by our Gauss-to-Heun transformatiorimet® overR have the same
shape. In Tables 1-3,

o the notationFy refers to thek-th subdivision picture in [7, Fig. 14]; these subdi-
visions are applicable to Gauss-to-Heun pull-backs of ype (2, 3);

o Ky similarly refers to [7, Fig. 11]; these subdivisions are lagable the pull-backs
of the types (2), (2, 4), (2,5), (2, 6);

o K/ similarly refers to [7, Fig. 10]; these subdivisions are laggble the pull-backs
of the type (3) or (3, 3).

Fig. 2 (a) depicts the Coxeter dexompositidf{; of a quadrangle with the angles
wa, T, 2re, 2ra into 6 hyperbolic triangles with the angles/2, 7 /6, m«. It gives
a decomposition of a Schwarz quadrangle t#(«, «, 20, 2¢) into Schwarz triangles
for E(1/2,1/6,«) induced by the type (2,6) transformation with the coveritg. The
Schwarz reflection principle is applied to a few edges imgling at a common vertex.
The decompositions 3 and 2, - 3 are clearly visible in the Coxeter decomposition,
so the picture also illustrates the decompositfe of the same quadrangle into 3 tri-
angles with the angles/3, m«, 7, and the decompositiofr, of a quadrangle with
the anglesrt/2, 7/2, @, 2. Both decompositions are induced by the cubic covering
Hazs. The factor 2, represents a Schwarz reflection between two smaller quglésan

Fig. 2 () is not a quadrangle, of course. But it contains two Coxetarothpos-
itions for Gauss-to-Heun transformations of the type (3, B)we remove the upper
black triangle, we get the decompositiéy of a quadrangle with the angles/3, 7/3,
2w, 2rw. If the left white triangle is removed, the decompositiBfi of a quadrangle
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Fig. 2. Coxeter decompositions for the parametric Gaudseton
transformations defined ové.

with the anglest/3, n/3, na, 3ra is obtained. The coverings atd;; and Hyg, re-
spectively.

Similarly, Fig. 2 €) includes all Coxeter decompositions for the Gauss-torHeu
transformations of the types (2,4) and (2,5). Here we ifietiie quadrangles (and the

!’

corresponding Belyi coverings) for the Coxeter decompmsitF; to F;,, respectively:

ABCHHazs), ABFH(H41), ABDF(Hz0), BDFH(Ha),
ABML(Hss), ABCL(Hz9), OCEQHas).

The quadrangles (and coverings) for the Coxeter deconipasit-;, and Fi; are
KCFH(H43) and OCEH(H,4), respectively.

Finally, Fig. 2 €) includes all Coxeter decompositions for the Gauss-torHeans-
formations specifically of the type (2, 3). They are numbefiein Fs to F,; by [7,
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Fig. 10]. Here are their quadrangles (and coverings), tivedy:

AOEX(Hzp), AXEZHgg), AXEY(Hz7), AFOY(Hzg), AFOQ(Hay),
AOERHzs), AXEQHz), AXERHz3), AFEQH:7), AFOB(H:s),
APERH0), APEQH;9), AOEQHs), AXED(Hi3), APED(Ho),
AXERH;5), APERHg), ACERHs), ABEQH,), ADEG(Hy),
AXEQH14), APEQH;0), ACEQHs).

In total, there are (2#4)+ (15—5)+ (4—2) = 35 subdivisionsFy, F;, F, representing
Gauss-to-Heun transformations with exactly one parameter

The subdivisions for the Gauss-to-Heun transformatiorth @ior 3 parameters are
the following:

o The Coxeter decomposition for quadratic transformatio)(& represented by a
single Schwarz reflection. It can be discerned in many placdsig. 2, for example
as the quadrangl®Y C Zin picture @). It appears several times in Felikson’s figures,
in particular asF, = F; = F/..

o There are two degree 3 decompositiofis = F, and F;. They are both repre-
sented by the coveringlss, as we mentioned discussing pictuid.( The other cubic
transformation (with the coveringss) is not defined ovelR in the normalized form
[32, Section 4.4.4] but ove®(w), hence there is no Coxeter decomposition for it.

o There are three degree 4 decompositiofg,= F;, F, and F4 = F.. They can
be discerned, for example, as the following quadranglesictugg (), respectively:
OBCHHs;), OABQHy47), OCERHss).

Whether a Gauss-to-Heun transformation is realized by aet@oxdecomposition,
is determined by a close inspection in Step 4 of Section 3. dessary and sufficient
condition is that the Belyi covering has to be defined dReafter a normalization (by
Méobius transformations) that locates 3 of the 4 singular {goof Heun’s equation as
X =0, x =1, X = oco. In particular, the fourth singular point =t has to be real,
though this is not a sufficient condition. For example, a propormalization ofHag
for the type (4, 4) transformation isiX8(x?> — 1)/(x + i)*. This givest = —1, but the
covering is not defined oveR. There is one other example of this type: a proper
normalization of Hog for a type (3, 3) pull-back is 3(% 2w)x?(x? — 1)/(X* + )°.
On the other hand, a proper normalization of the satag for a type (2, 3) pull-back
is defined overQ(+/3), giving the Coxeter decompositiofs. There are two different
Coxeter decompositions for each of the following coveringiso, Ho4, Has, Hog, Haa,
Hss, Hsi7. Comparison of our classification and Felikson’s list [7pyides a useful
mutual confirmation.

The considered Coxeter decompositions pagametrized in that one or more of
the triangular vertex angles are free to vary. For somewdgel real values of the
free parameter(s), the Coxeter decompositions are tramsfigto spherical geometry
of the Riemann sphere (if angles larger tharare allowed), as subdivisions of spheri-
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cal quadrangles into spherical triangles with the angléisfgang an + fr + y7 > 7.
Most of the Coxeter decompositions can be transfigured to thie fguclidean geom-
etry (whereaw + f + ym = ) as well. The exceptions a4, Fis, Foo, F27, Fg,
F,, for which the quadrangles degenerate to flat triangles.

Broughton et al. [5] classify similar geometric objecthvisible tilingsof the hyper-
bolic plane. Compared with Felikson’s pictures, divisiilengs form a proper subset
of Coxeter decompositions. The condition for a Coxeter dgmusition to be a divisible
tiling is that the quadrangle angles be equakd, with k an integer. In general Coxeter
decompositionsrational multiples of 7 are also allowed. The one-parameter divisible
tilings relevant here are depicted in [5, Table 6.6]. Thee 3 of them; the first 6 cor-
respond to Gauss-to-Heun transformations with 2 or 3 paemeDivisible tilings are
indicated in Tables 1-3 by the notatid®, . .., Fj,, where the subscripts refer to the
numbering in [5, Table 6.6]. There are -3834—6) = 7 relevant Coxeter decompositions
with one parameter that are not divisible tilings; they al/d the angle 2/3.

4.4, Composite transformations. The composite Gauss-to-Heun transformations
can be inductively deduced from a smaller set of pull-baakgformations among hyper-
geometric and Heun functions. Due to the associativity efdbmposition operation, one
can always decompose a Gauss-to-Heun transformation asdagbrof the following:

o A possibly composite Gauss-to-Gauss transformation witlee parameter, exclud-
ing Mobius fractional-linear transformations and pull-kecfrom E(1, o, «) or
E(1/2, 1/2, «). This could be the quadratic transformation (2.6) and ohé& elas-
sical transformations (of degrees 3, 4 and 6) worked out byr&x [9] and listed in
[31, Table 1].

o An indecomposabl&auss-to-Heun transformation with at least one free paeme
This could be the quadratic transformation (2.8); one of Bepindecomposable trans-
formations of Table 1; or an indecomposable transformatibiiable 2 or 3 of degree
at most 6, as only they can fit a Gauss-to-Gauss or Heun-to-lttansformation.

o A Heun-to-Heun transformation with at least one free patam&his could be the
quadratic transformation (2.7), or the degree 4 composiesformation

(4.2) HE(1/2, 1/2, 1/2, «) & HE(1/2, 1/2, a, &) 2 HE(e, @, o, @),

realized by the coveringds;. See [32, Section 4.3] for an overview.
Fig. 3 graphically depicts all possible compositions of sidered coverings. The two
longest boxes, centrally placed, represent quadraticfisamations based ohlz,. The
following objects and information are included in the figure

There are 7 boxes with double edges on the sides, repregehérclassical Gauss-
to-Gauss transformations. The quadratic transformatmpears as the long box in the
lower part; two indecomposable transformations (of de@ee 4) appear in the central
part; and the remaining four classical transformationsd@grees 3, 4 or 6) are repre-
sented in the upper part. Of the latter, only the cubic tr@msétion is indecomposable.
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geometric and Heun equations.
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The transformation near the upper-right corner can be dposad in two different
ways; its covering does not occur in Tables 1-3 so it hasiroumber. These 7 boxes
will be called E — E boxes.

The 10 other boxes represent indecomposable Gauss-totHesfiormations. Quad-
ratic transformation (2.6) is represented by the long bothéupper part; the other four
indecomposable transformations of Table 1 appear in thealgrart. The three isolated
boxes near the lower right corner represent the indecorbpmsall-backs of Table 3, to
each of which the quadratic Heun-to-Heun transformation)(@an be applied. The other
two lowest boxes represent pull-backs in Table 3 that carobgosed with the quadratic
E — E transformation. These 10 boxes will be callEd— HE boxes.

The vertical lines connedE — E and E — HE boxes whose transformations can
be composed (perhaps after a specialization of parametéh® composed coverings
are labeled byH numbers on the left side of each vertical line. Relevant isfiza-
tions of the quadraticE — E transformation are given as well. The specializations
p =1/2 andq = 1/2 of the quadraticE — E transformation are omitted, because
(as stated above) the dihedral family is not considered. h€&he number of possible
compositions between akB — E box and anE — HE box depends on the number
of ways to identify (without degeneracy) the exponent défees of the intermediate
hypergeometric equation. Compositions of the quadritie> E and E — HE trans-
formations are the quartic covering$ss, Hzy in Table 1.

The = symbols outside the boxes indicate application of the catadHeun-to-
Heun transformation (2.7). If this transformation can bpliggl after an indecomposable
Gauss-to-Heun transformation, the relevant parameteiazations and composite cov-
erings are indicated to the right (or near the lower rightneoy of the respective box.
If (2.7) can be applied after a composite Gauss-to-Heurstoamation, this is indicated
by the = symbol to the right of thed number of the composite covering (and to the
right of the respective vertical line).

Some boxes of the same kind touch each other, but that dodsameta particular
meaning. The box for the quadratie — HE transformation (2.8) is connected to all
E — E boxes, since this transformation can always be appliedowitihestrictions on
the exponent differences. The box for the quadr&ic> E transformation (2.6) is
connected to alE — HE boxes, except for the isolated three.

To show completeness of Fig. 3, one must:

o Check whether the set &t — HE boxes is complete. All indecomposable pull-
backs of Table 1 are included, and the indecomposable paks of Tables 2, 3 to
which the quadratic Gauss-to-Gauss and Heun-to-Heunforamation can be applied.
The figure includes all classic®f — E transformations of [31, Table 1], but they can
be composed only with the pull-backs of Table 1 without lagsthe parameter.

o If a pair of E — E and E — HE boxes is not connected by a vertical line, check
that the respective transformations cannot be composed.

o Check completeness of coverings for each vertical line.
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o Check possible compositions with the Heun-to-Heun transétions of degrees 2
and 4.

The information of Fig. 3 is given in the rightmost columns Tdbles 1, 2, 3.
The compositions are spelled out more explicitly in [32, Apgdix B]. A multiple oc-
currence of a covering in Fig. 3 means either that it can be@meosed in more than
one way (as forHs, Hs, Hg, Hig, Hs1, Hsg, Has1); or that it appears in more than one
composition (as foHys, Hog, Hss, Hsg); or both (as forHy).

The following cases are worth mentioning. Firstly, there tiree ways to decom-
pose the quartic coveringlz; in Table 1:

E(1/2,a, ) < E(a, a, 28) & HE(2a, 2a, 28, 28),
(4.3) Hai: 4 E(1/2, @, ) < E(2a, B, B) & HE(2x, 20, 28, 28),
E(1/2,a, B) & HE(L/2, 1/2, 2, 28) & HE(2a, 2a, 28, 28).

This is indicated by the Z 2 in the rightmost column. The coverinigs; occurs as

a part of the larger compositionds and Hyz; see their composition lattices in [32,
(B.5), (B.4)]. Besides, the coverinfs; induces the degree 4 Heun-to-Heun transform-
ation (4.2).

The transformatiorE(1/2,1/4,«) bl HE(1/2,1/2,2x,2x) is induced by two distinct
coverings: Hz; and Hss. Induced byHs;, this transformation is thgg = 1/4 special-
ization of (4.3); induced byHss, this transformation is a new one suggested by the
branching pattern given in Table 3. Both transformationgehifie factorization

4.4)  E(1/2, 14 a) & HEL/2, 12, 12, 20) 2 HE(1/2, 1/2, 2x, 2a),

but they have different sets ¢fparameters. BotiHs; and Hss appear as parts of the
degree 8 composite transformatidty;.

5. Existence and uniqueness of coverings

This section presents an elegant way to conclude that threrena Belyi cover-
ings with some branching patterns. The idea is to deduce lebpck transformation
of Fuchsian equations that is not possible, because it woelte an equation with
finite monodromy to an equation with infinite monodromy grpwp the pulled-back
equation would not exist. We apply this idea to all cases af-existent coverings
of Tables 1, 2, 3. Moreover, in Section 5.3 this approach idieghgo most cases of
non-existent coverings in the Miranda—Persson list [20] 8f dliptic surfaces.

As an immediate example, consider the non-existent cay@ifmlegree 4 in Table 1.
If it would exist, the specializatioa = 1/2 would give a pull-back froniE(1/2,1/2,8) to
a Fuchsian equation with two singularities and (generalty)-equal exponent differences
B, 3B at them, contradicting part (ii) of Lemma 5.1 below. Or one &arther specialize
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B =1orB =1/3 and get a contradiction with part (i) of the same lemma. IctiSa 5.1
we prove several assertions from which we make non-existeonclusions. Table 5 out-
lines the non-existence proofs. In Section 5.4, we seekdw siqueness (up to Mébius
transformations) of the Belyi coverings with the encouatiebranching patterns, by con-
sidering implied pull-backs between Fuchsian equationh fimite monodromy groups.

5.1. Principal lemmas. The easiest way to conclude non-existence of a Belyi
covering with a certain branching pattern is to deduce a-lpatk transformation to a
non-existent Fuchsian equation. Here are two basic itusti

Lemma 5.1. (a) There is no Fuchsian equation dpt that has exactly one rel-
evant singular point.
(b) If a Fuchsian equation o®! has exactly2 singular points their exponent differ-
ences are equal.

Proof. If a Fuchsian equation has just one relevant sinijylave can move it to
infinity and make all points irC ordinary. The differential equation then has the form
y" 4+ Py 4+ Qy = 0, whereP, Q are polynomials (in the differentiation variabig.

If P =Q =0, then the local exponents at the infinity are-@,, thusx = oo will be
an irrelevant singularity. Otherwise = oco is an irregular singularity, and the equation
will not be Fuchsian.

If a Fuchsian equation has 2 singularities, we can assunm thebex = 0, X =
oo. The Liouville normal form of the equation is thetfy” = cy with ¢ € C. The
exponent differences of this equation equél + 4c at both singular points. O

Another type of non-existent transformation is a pull-baadka hypergeometric
equation with finite monodromy to a hypergeometric equatigth infinite monodromy.
(A Fuchsian equation has finite monodromy if and only if itduton space has a ba-
sis consisting of algebraic functions.) The following lemmharacterizes some hyper-
geometric equations with finite (or infinite) monodromy gusu

Lemma 5.2. Consider a hypergeometric equation £ E(x, S, ) on P2
(a) Suppose thatr, 8, y are rational numberseach having denominatd. Then the
monodromy of E will be finite if and only if the sum of the nunmsof o, 8, y
is even.
(b) If « is a half-odd-integerand g8, y are rational numberseach having denominator
4, then the monodromy of E is not finite.
(c) Suppose that, B, y are integers. Then the monodromy of E will be trivial if and
only if the sumx + 8 + y is odd and the triangle inequalitey <o+ 8, 8 <o +y,
a < B+ y are satisfied otherwise the monodromy is not finite.
(d) Suppose tha is an integer whileg,y are half-odd-integers. The sét8 —y|,8+
y} contains two integers of different parjtyet k be the integer in this set such that
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k+« is odd. Then the monodromy group of E will be isomorphi@@z if and only
if kK < «; otherwise the monodromy will not be finite.

Proof. We use the Schwarz classification of hypergeometjiaions with finite
monodromy for the first two statements; see [25] or [6, Secfd/.2]. The only pos-
sible projective monodromy in statement (a) is the tetradlegroup A4. There are two
Schwarz types (Il and IlI) for this group: the hypergeontegquation must be contigu-
ous either toE(1/2, 1/3, 1/3) or to E(1/3, 1/3, 2/3). We must have the latter Schwarz
type lll. Contiguous relations shift the exponent differes by integers whose sum is
even. That does not change the parity of the numerator surthéothree integers div-
ided by 3), even if an exponent difference is multiplied b¥.

We do not find the denominator pattern of the statement (bhénSchwarz list.
In particular, the two Schwarz types (IV and V) for the octda¢ group S, are con-
tiguous toE(1/2, 1/3, 1/4) or E(2/3, 1/4, 1/4).

For the claim (c), a representative solution of the geneyizelgeometric equation
with trivial monodromy is,Fi(—n, | + 1; —n —m| z), with n, m, | non-negative
integers; see [29, Theorem 2.4(5)]. Up to a permutation, lmeethate = n+ m+ 1,
B=n+l+1y=m+1+1; thatis

I_ﬂ—l—y—a—l
2 B 2 '

(5.1) n=a+,8—y—1, m=a+y—ﬂ—1,
2

If one of these three numbers is a negative integer, the singwint with the largest
exponent difference is logarithmic [29, Section 9]. If eaxfhthe above three numbers
is a half-odd-integer, all three singular points are ladanic [29, Section 5].

The assertion (d) is a reformulation of [30, Theorem 5.1jtest in the con-
text of hypergeometric equations with either logarithmidusons or theZ/2Z mono-
dromy group. ]

Existence (and uniqueness) of coverings with a given biiagcpattern can also
be decided on the basis of transformations of some hyperegienequations with in-
finite monodromies. The following lemma implies that there ao transformations of
E(1/2,1/4,1/4) into itself of degrees 6, 12, 14, 21, 22, 24, or generafyjegrees= 3
(mod 4), even if suitable branching patterns of these degesést. Similarly, there are
no transformations o&(1/2, 1/3, 1/6) or E(1/3, 1/3, 1/3) into themselves of degrees
6, 10, 15, 18, 22, 24, or generally, of degree® (mod 3). This lemma eludicates the
non-unigueness o0H,4 and Ha;.

Lemma 5.3. (a) Up to Mobius transformationsthe number of degree-D pull-
back coverings of E/2,1/4,1/4) into itself is equal to the number of integer solutions
(a, b) with a= 0, b > 0, of the equation D= a? + b?.
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(b) Up to Mobius transformationsthe number of degree-D pull-back coverings of
E(1/2, 1/3, 1/6) or E(1/3, 1/3, 1/3) into itself is equal to the number of integer solu-
tions (a, b) with a= 0, b > a, of the equation D= a? —ab + b?.

Proof. According to [31, Section 8], the transformationskdfL/2, 1/4, 1/4) into
itself correspond to isogenies of the= 1728 elliptic curvey? = x® — x. The ring
of isogenies is isomorphic to the ring[i] of Gaussian integers, and the degree of a
pull-back is equal to the norra? + b? of the corresponding + bi. In particular, the
trivial and fractional-linear transformations corresgaio the units+1, +i. Therefore
one must count + bi € Z[i] such that|a + bi|> = D and argé + bi) € [0, 7/2).

Similarly [31, Section 8], the transformations B{1/2,1/3,1/6) or E(1/3,1/3,1/3)
into itself correspond to isogenies of the= 0 elliptic curvesy? = x3—1 or x> +y3 = 1.
The ring of isogenies is isomorphic to the ring of EisensiategersZ[w]. The degree
of a pull-back is equal to the noraf —ab+ b? of the correspondin@ + bw. Trivial or
M®obius transformations correspond to the unit$, +w, £(w + 1). Therefore one must
counta + bw € Z[w] such thatja 4+ bw|?> = D and argé + bw) € [0, 7/3). O]

5.2. Nonexistence of coverings.Tables 2, 3 have 27 entries with nonexistent
Belyi coverings. One branching pattern appears twice antbegtype (2, 4) candi-
dates, hence the two tables actually have 26 different hiaggatterns with no cover-
ing. They are labeledNy, ..., Nyg. The repeating branching pattern is labellisgs.
Nonexistence is in each case an immediate consequence efleaima in Section 5.1.
Mostly by specialization of the free parameter, one eithaivde a pull-back from a
hypergeometric equation to a nonexistent Fuchsian equatioa pull-back of a hyper-
geometric equation with finite monodromy to a hypergeoroedquation with infinite
monodromy, or a nonexistent pull-back B{1/2,1/3,1/6) into itself. The unrealizable
branching patterns and the applicable lemmas are listedlieT5.

The non-existent covering of Table 1 is given the last nunibgr Its non-existence
was already demonstrated at the beginning of this section.

Only for Np; and N3 the used implied transformation is not a specialization of a
respective Gauss-to-Heun pull-back of the classificatio®éction 3. To proveNy; by
the specializatiomx = 1/5, one would need to inspect the 10 icosahedral Schwarz types
in [6, Section 2.7.2]. The casM,3 can be proved using the specializatiern= 1/4 of
either of the two candidate transformations in Table 3, byoking Lemma 5.3 (b).
Note that to use a hypergeometric equation with only twoveeie singularities, one
must ensure that it is of the forrk(1, «, «). In particular, Lemma 5.1 (b) does not
apply to the branching covering R¥ [3]l4 =9+ 1+ 1+ 1 and its pull-backs from
E(1/2,1/3,1), because logarithmic singularities rather than @dirpoints appear. And
indeed, the coverindd; exists.

5.3. The Miranda—Persson classification. The lemmas of Section 5.1 can be
applied to the problem of the existence of Belyi maps that ldigueld semi-stable
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Table 5. Unrealizable branching patterns, with a proofdaton.

Nonexistent Deg. Branching pattern Lemma Exponent diffezs
covering D above singular points hypergeom. pulled-back
N1 12 [2s=[3]la=7+3+1+1 52 (a) ¥2, 1/3, 1/3 7/3, 1/3, 1/3

N2 [2le=[3]la=7+2+2+1 5.1 (b) Y2, 1/3, /2 1/2,7/2

N3 [2le=[3]la=6+4+14+1 5.2 (b) ¥2, 1/3, 1/4 3/2, 1/4, 1/4
Na4 [2le=[3]la=6+2+2+2 51 (a) ¥2, 1/3,1/2 3

Ns [2l6=[3]la=5+4+2+1 52 d) ¥2, 1/3, 1/2 2, 1/2,5/2
Ns [2l6=[3]a=5+3+3+1 51 (b) ¥2, 1/3, 1/3 1/3, 53

N [2l6=[3]4=5+3+24+2 5.1 (b) Y2, 1/3, 1/2 3/2, 5/2

Ns [2l6=[3]l4a=4+4+3+1 51 (b) Y2, 1/3, 1/4 1/4, 3/4

Ng [2l6=[3]4=4+3+34+2 5.1 (b) Y2, 1/3, 1/3 2/3, 4/3

N1o 10 [2s=[3]3+1=6+3+1 53 (b) ¥2, 1/3, 1/6 1/2, 1/3, 1/6
N11 [2]5=[3]s+1=6+2+2 5.1 (b) Y2, 1/3, 1/2 1/3, 3

N1o [2]5=[3]s+1=4+4+2 5.1 (b) Y2, 1/3, 1/4 1/3, 1/2

Ni3 [2]5=[3]3+1=4+3+3 5.1 (b) Y2, 1/3, 1/3 1/3, 4/3

Ni4 9 [24+1=[3]3=5+2+2 5.1 (b) ¥2, /3, 1/2 1/2,5/2

Nis [2]4+1=[3]3=4+4+1 5.1 (b) Y2, 1/3, 1/4 1/2, 1/4

Nig [2]la+1=[3]3=3+3+3 51 (a) ¥2, 1/3, 1/3 1/2

N17 8 [2l4=[3]2+2=4+3+1 5.2 (a) ¥2, 1/3, 1/3 1/3, 2/3, 4/3
Nisg [2]14=[3]2+2=4+2+2 5.1 (b) Y2, 1/3, 1/2 2, 2/3

Ni1g [2]4=[3],+1+1=5+4+3 5.2 (a) %2, 1/3, 1/3 1/3, 1/3, 5/3
N2o 6 [2]3=[3]1+2+1=3+3 51 (b) ¥2, /3, 1/3 1/3, 2/3

N21 8 [2]l4=[4]2=5+1+14+1 52 () ¥2,1/2,1 2,2,5

N2z [2]la=[4].=3+2+2+1 51 (b) ¥2, 1/4, 1/2 1/2, 3/2

Nas 6 [2]z3=[4]1+2=4+1+1 51 (b) ¥2,1/2,1 4,2

N24 [2]s=[41+2=2+2+2 51 (a) Y2, 1/4, 1/2 1/2

Na2s 6 [2lz=[Bl1i+1=2+2+2 5.1 (a) ¥2, 1/5, 1/2 1/5

N2g 6 [3:=[38]=3+1+1+1 51() ¥3,1/3, 1 3

N7 4 [2;=3+1=2+2 5.1 (a) Y2, /3, 1/2 1/3
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elliptic fibrations of K3 surfaces with 6 singular fibers, tgar out by Miranda, Person
[20] and Beukers, Montanus [4]. The degree of the relevanyiBehps is 24, and their
branching patterns have the form {2} [3]s = P, whereP =a+b+c+d+e+ f
is a partition of 24 with exactly 6 parts. There are 199 of ¢hbsanching patterns in
total. Miranda and Persson [20] proved that Belyi coverireysd(elliptic K3 surfaces)
exist in 112 cases, and do not exist in the remaining 87 c&mskers and Montanus
[4] computed aft those Belyi maps and checked non-existence for the 87 ipasit

The non-existence proof in [20] broadly relies on two tecleis. First, Miranda
and Persson widen the space of considered branching mattermclude partitionsP
with more than six parfsand conclude non-existence of coverings for a partitiga-
-+« 4 as from non-existence for a partitiosy, + - - -+ as_1 +a +a; with as = a, +a,
using [20, Lemma (2.4)]. Secondly, they get contradictingatusions about the torsion
of the assumed elliptic surfaces in several non-existingegaln [4], non-existence is
concluded either by using a sum over the character§;pthat counts coverings (not
necessarily connected, with some rational weights) withivargbranching pattern, or
by direct computation. LeE denote the counting character sum just mentioned, given
in [4, Theorem 3.2]. The large table in [4] does not list the pbftitions (out of the
total 87) for whichx = 0.

Here we show that most of the non-existent cases in the MirdPeesson list can
be deduced using the methods of Section 5.1. Here are 22igastiout of the 40
ones with X # 0 for which the non-existence can be proved by using Lemmas 5.
5.2, 5.3 directly:

14+ [2]s, 9+ [3]5, 154 [2]4 + 1, 13+ 3+ [2]4, 12+ 4 + [2]4, 114 5+ [2]4,
10+ 6+ [2]4, 114+ [3]4+ 1, 10+ [3]4 + 2, 8+ 4 + [3]4, 13+ 4+ [2]3 + 1,
1146+ [23+1, 11+ 4+ 3+ [2]3, 10+ 4+ 4+ [2]5, 9+ 8+ [2]s + 1,
9+6+3+[2384+7+3+[2]3,8+5+5+[2s 7+ 7+4+[2]s,
10+[4]3+1+1,6+[4]s+3+3,[6s+3+2+ 1.

1As pointed out in the AMS MathSciNet review by David P. Robet® table in [4] omits one
Belyi covering for the partition 18- 6 + 4 + 2+ 1 + 1. Our computation confirms existence of two
(rather than one) Belyi coverings for this partition:

(1448 + 384x7 + 11208 — 784x3 + 756x2 — 240x + 25)
108x5(14x — 5)*(4x — 1)2(9x2 + 24x + 70)
(144x8 — 1536¢7 + 524858 — 55685 — 720x* 4+ 5123 + 1922 4 24x + 1)°
108(8 + 1)6x4(x — 3)2(9x2 — 42x — 5) '

The second covering is missing in the Beukers—Montanusliistotal, there are 59 branching patterns
(among the 112 indicated by Miranda and Persson) with a uriisah map up to Mobius transform-
ations; 125 Galois orbits of the Belyi maps, of size at mosary 191 different Belyi maps atessins
dénfant

2Therefore coverings with more than 3 branching fibers arewaitl. Instead of the coverings,
permutation representations of their monodromy are censitlin [20].
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The choice of the starting(1/2, 1/3, 1/k) that yields a non-existent covering is indi-
cated by the ], notation. Next, here are 22 partitions out of the 47 ones Witk 0
to which our lemmas apply directly:

9474 [2l4, 7+5+[3l4, 7+ [4]la + 1,6+ [4]4 + 2,5+ [4]4 + 3, [Bls + 3 + 1,
94+5+4+[2]5,7+6+5+[2]3, 13+ [3)3+1+1, 11+ [3]3+2+2,
10+4+[3]3+1,8+6+[33+1,8+5+[3]s+2, 7+ 7+[3]z+ 1,
74+6+[33+2,7+4+4+[3]3,6+5+4+[3]3,5+5+5+[3]s,

9+ [4ls+2+1,6+5+[4s+1, 7+ [4]s+3+2,5+5+[4]s+2.

Additionally, the four cases # [5]s + 1+ 1, 6+ [5]s+2+ 1, B+ 4+ 4+ 1,
[5]3+4+3+2 with X = 0 are concluded by inspecting the icosahedral hypergeametr
equations in the Schwarz table [6, Section 2.7.2]. In tdafak shows 48 out of the
87 cases.

More cases of non-existence can be deduced from impliedbpaks to Fuchs-
ian equations with 3 non-apparent singularities and a fepaagmt singularities. These
equations are gauge “contiguous” to target hypergeometyications (with infinite or
infinite monodromy) as the local exponent differences ditie all points by integers.
The total shift of the exponent differences, including #adsom the difference 1 for
ordinary points of hypergeometric equations, must be an é@weger. In this way, non-
existence for the following 7 partitions witlk % 0 can be shown:

10+6+[3]o+1+1,94+9+[3]1+1+14+1,8+6+[3]2+2+2,
74+64+6+[3]1+1+1,7+6+4+[3]2+1,6+5+5+[3]2+2,
8+6+[4,+1+1
In each case, the apparent singularities are representéfieldyranching orders that are
integer multiples of the bracketed numbers. And here arerfitipas with ¥ = 0 that
can be handled in the same way:
94+ 7+1[38]2+1+1,9+5+[3]2+2+2,9+4+4+[3],+1,
6+6+5+[3]1+2+2,6+6+4+4+[3]1+1,8+5+[4],+2+1,
8+[4]2+3+3+2.
Besides, a pull-back fronie(1/2, 1/3, 1/3) can be applied to show the non-existence
foro+6+6+1+1+1 withX #0. It is trickier to combine parts (c), (d) of
Lemma 5.2 with gauge shifts.

Of the remaining 87 48— 7 — 7 — 1 = 24 partitions, the following 6 (with> #
0) and 11 (withX = 0) partitions could be handled with a full knowledge of Heun
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equations with finite monodromy (that are not classified:yet)
1048+ 2], +1+1,134+[4>+1+1+1,11+[4],+2+ 2+ 1,
9+ 4], +34+24+2,9+[5],+3+1+1,8+[5]o+4+1+1;
9+6+4+[2],+1,8+8+3+[2,+1,7+7+5+[2]2+ 1,
7+6+4+3+[2]2,10+5+[32+2+1,7+5+5+[3]>+1,
9+5+[4]2+1+1,7+5+[42+2+2,84+[5]+3+2+1,
6+[5l,+4+3+1,6+[5],+4+2+2.

Besides, a pull-back fronk(1/2,1/3,1/4) could be then applied to two partitions with
¥=0:12+8+1+1+1+1, 84+8+5+1+1+1. Other 3 partitions (withz # 0)

124+5+[4]14+1+1+1,10+[5]1+4+3+1+1,9+8+ 41 +1+1+1,

could be decided by Fuchsian equations with 4 + 1 singuarifi.e., 4 non-apparent
and 1 apparent). There remain only two partitions: 7 + 7 + 6 + R+ 1 with X # 0,
and 7+ 7+ 443+ 2+ 1 with ¥ = 0. Their non-existence might be decided by using
implied pull-backs fromE(1/2, 1/3, 1/2) to Fuchsian equations with441 singularities
and the monodromy group, or Z/2Z.

5.4. Uniqueness of coverings. Uniqueness of Gauss-to-Heun transformations
(and of their coverings) with a plausible branching patteem be concluded from
uniqueness of specialized Gauss-to-Gauss transformsationparticular, the coverings
Hso—Hss, Ha3, Hi7 appear in the classical hypergeometric transformatiosiedi by
Goursat [9]. The covering$d;, Hy, H7z, Hg, Hii, Hig, Hsx appear in the hyper-
geometric transformations frofa(k,l,m) with k, |, m positive integers satisfying/k+
1/ +1/m < 1. As determined in [28] (and [31, Section 9]), these puliksaare
unique up to Mobius transformations as well. The coverihlyg, Hzg, Ha1, Has ap-
ply to hypergeometric transformations froB(1/2,1/2,«) with infinite dihedral mono-
dromy [33, Section 4]. The pulled-back equations have itirgyclic or dihedral
monodromy. They are, respectively,

EQ, 2, 2¢), E(1/2, 1/2, 6x), E(L, 4o, 4a), E(1/2, 1/2, 5).

The cyclic coveringHag gives the pull-backe(1,«,«) & E(1,4x,4a) of hypergeometric
equations with infinite cyclic monodromy.

Non-unique Gauss-to-Gauss transformations appear whagrggometric equations
E(k,I,m) are pulled-back, witt, |, m positive integers satisfying/k+ 1/l +1/m > 1.
It the equality holds, these hypergeometric functions ategrals of holomorphic dif-
ferentials onj = 1728 or j = 0 elliptic curves [31, Section 8]. Lemma 5.3 counts
the coveringsHs, Hiz, Hz1, Hao, Has, Hae. If can be established (by identifying trans-
formations of holomorphic differentials on the curvgd = x3 — 1 and x® + y® = 1,
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y? = x® 4 1) that the transformations fror&(1/2, 1/3, 1/6) to E(1/3, 1/3, 1/3) or
E(2/3,1/6,1/6) are compositions of the pull-backs of Lemma 5.3 with qatidrtrans-
formations. This applies to the coveringtis, Hig, Hss.

The hypergeometric equatiofigk,l,m) with 1/k+1/l4+1/m > 1 have finite mono-
dromy groups. The hypergeometric solutions are therebgbatgc functions. These
equations play a fundamental role in the classical theorglgébraic solutions of sec-
ond order Fuchsian equations:

E(1, 1/k, 1/k), with the finite cyclic monodromyCy.

E(1/2, 1/2, 1/k), with the dihedral projective monodromiy.

E(1/2, 1/3, 1/3), with the tetrahedral projective monodrory.

E(1/2, 1/3, 1/4), with the octahedral projective monodronsy.

E(1/2, 1/3, 1/5), with the icosahedral projective monodromay.

By a celebrated theorem of Klein [15], all second order Fiazhgquations ofP! with

a finite monodromy group are pull-backs of one of these standgpergeometric equa-
tions, with the same projective monodromy group. Th&sein transformationsare
known to be unique up to Mébius transformations [1]. Howeyet)-back transform-
ations between hypergeometric equations with differenjgative monodromy need not
to be unique. Litcanu [17, Theorem 2.1] noted non-unigaena the pull-backs from
E(1/2, 1/3, 1/4) to E(1/2, 1/2, 1/2) and E(1, 1/2, 1/2), of degree 6 and 12 respect-
ively. The non-uniqueness is caused by pairs of differeantning patterns though,
eg.,2+2+2=34+3=2+2+2and 2+2+1+1=3+3=4+2. The example of
E(1/2,1/2,1/5) b E(1/2,1/2,2) in [33, Section 5.4] shows that non-unique coverings
with the same branching pattern easily occur for pull-backequations with apparent
singularities. Besides, many compositions of

O O O O o

(5.2) Har: E(1/2, 1/3, 1/5) < E(1/2, 1/3, 1/3)

with transformations from the tetrahedral equation are untutjue either, because the
properly normalizedHs; is defined overQ(+/—15); see formula [31, (50)].

In Table 4, the covering$lg, Hio, Hi3, His H22, Ho4 give Klein transformations
of E(1/2, 1/3, 1/5) to the following hypergeometric equations, respedcfivel

E(1/3, 1/5, 4/5), E(1/3,2/5,3/5), E(1/2, 1/5, 3/5),
E(2/3, 1/5,2/5), E(1/2,1/3,2/5), E(1/3,2/3,1/5).
This illustrates the Schwarz types VIII, XV, IX, X, XIV, Xllrespectively. The other

icosahedral Schwarz types are representedB§%/3, 1/3, 2/5), E(1/5, 1/5, 4/5),
E(2/5, 2/5, 2/5), and the standar&(1/2, 1/3, 1/5). Uniqueness of the coverings,4,
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Hi7, Has, Hag, Hgp is established by noting these Klein transformations:

E(1/2, /3, 3) < E(1/2, 2/3, 4/3), E(1/2, 1/2, 1/3) < E(3/2, 3/2, 2/3),
E(1/2, /3, 1/4) < E(1/2, /3, 3/4), E(1/2, /3, 1/4) < E(1/2, 2/3, 1/4),
E(1/2, 13, 1/3) < E(1/2, 2/3, 2/3).

These considerations of reduction to hypergeometric foamstions do not imme-
diately establish uniqueness of 10 coverings in Table 4.s&hmverings induce rather
attractive transformations between hypergeometric énpsmtwith different finite mono-
dromy. In particularHe, Hpg pull-back E(1/2,1/3,1/3) to E(1,1,1) andE(1,1/2,1/2);
then Hs, Hyo, Hos, Ho7, Hse transformE(1/2,1/3,1/4) to E(1,1/2,1/2), E(1,1/3,1/3),
E(1/2,1/3, 2/3), E(1/2,1/2,1/2), E(1/2, 1/2, 1/3), respectively; and finallyHs, Hag,
Hs7 pull-back E(1/2, 1/3, 1/5) to E(1, 1/5, 1/5), E(1/2, 1/2, 1/5) and (5.2). Many of
the coverings pull-baclE(1/2, 1/3, 1/2) or other dihedral hypergeometric equations to
hypergeometric equations with simpler dihedral or cyclicnmdromy.
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