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Abstract
Pull-back transformations between Heun and Gauss hypergeometric equations

give useful expressions of Heun functions in terms of betterunderstood hyper-
geometric functions. This article classifies, up to Möbius automorphisms, the cov-
eringsP1

! P

1 that yield pull-back transformations from hypergeometricto Heun
equations with at least one free parameter (excluding the cases with Liouvillian so-
lutions). In all, 61 parametric hypergeometric-to-Heun transformations are found, of
maximal degree 12. Among them, 28 are compositions of smaller degree transform-
ations between hypergeometric and Heun functions. The 61 transformations are real-
ized by 48 different Belyi coverings (though 2 coverings should be counted twice as
their moduli field is quadratic). 38 of these coverings appear in Herfurtner’s list of
elliptic surfaces overP1 with four singular fibers, as theirj -invariants. In passing,
we show in an elegant way that there are no coverings with somebranching patterns.

1. Context and overview

The Gauss hypergeometric equation
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and the Heun equation ([23])
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are canonical second-order Fuchsian differential equations on the Riemann sphereP1,
with 3 and 4 regular singularities, respectively. Transformations among these equations
give identities between their standard hypergeometric andHeun solutions. For example,
there is a single coveringP1

! P

1 of degree 2 (up to Möbius transformations). It
induces the classical quadratic transformations of hypergeometric functions, such as
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Moreover, the same covering induces the well-known Heun-to-Heun quadratic trans-
formation [19, Theorem 4.1], and an identification of the general 2F1(A, BIC j 4x(1�
x)) function with a standard local solution of Heun’s equation with the parameters
(t, q, a, b, c, d) D (1=2, 2AB, 2A, 2B, C, C). These transformations areparametric,
since they have at least one free parameter such asA, B.

The aim of this paper is classification of parametric pull-back transformations be-
tween hypergeometric and Heun functions. The considered pull-back transformations
are of the form

(1.4) z 7! '(x), y(z) 7! Y(x) D �(x)y('(x)),

where'(x) is a rational function and�(x) is a radical function, i.e., a product of pow-
ers of rational functions. Geometrically, transformation(1.4) lifts or pulls backa Fuchs-
ian equation on the curveP1

z to one on the curveP1
x , along the covering' W P1

x ! P

1
z .

The gauge prefactor�(x) is usually chosen such that the pulled-back equation has
fewer singularities and canonical values of some local exponents.

Pull-back transformations between Gauss hypergeometric equations were recently
classified by Vidunas [31]. Next to the classical quadratic,cubic and Goursat [9] trans-
formations, a few sets of unpredicted transformations werefound, including parametric
transformations from hypergeometric equations with cyclic or dihedral monodromy (that
is, Liouvillian solutions). Moreover, the hypergeometric-to-Heun transformations with-
out the prefactor�(x) have been classified by Maier [18]. In both classifications, the
heart of the problem is determining the covering maps'(x) that can appear. They are
typically Belyi maps, in the sense that (apart from dull exceptions of Proposition 2.3
here) they have at most 3 critical values on the Riemann sphere P1

z . In fact, the crit-
ical values of those'(x) are typically the singular pointsz D 0, z D 1, z D 1 of
the hypergeometric equation, and the branching points include the singularitiesx D 0,
x D 1, x D1 (and x D t) of the pulled-back hypergeometric (or Heun) equation. The
approaches of [18, 31] include:
(i) determining thebranching patternsthat ' can have;
(ii) determining which of those patterns can berealizedby a rational function'(x);
(iii) normalizing the pointsx D 0, x D 1, x D 1 of '(x), and deriving identities be-
tween hypergeometric and Heun functions by identifying corresponding local solutions
of thereby related differential equations.
This article follows this strategy and the techniques of [31] to generate a complete list
of coverings' that can appear in parametric Heun-to-hypergeometric reductions. We
find 61 different transformations (excluding infinite families of pull-backs from hyper-
geometric equations with Liouvillian solutions) realizedby 48 different Belyi cover-
ings. An explicit formula for each covering is given in Table4. The Belyi maps are
not normalized for Step (iii). The induced identities between hypergeometric and Heun
functions are comprehensively presented in the parallel article [32]. Here we not con-
cerned with the technical issues of determining the prefactor �(x), identifying local
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solutions, symmetries of the hypergeometric and Heun equations, nor even introducing
Heun functions.

By the Grothendieck correspondence [24] any Belyi map' W P

1
x ! P

1
z corresponds

bijectively to adessin d’enfanton P1
x , up to isotopy and Möbius isomorphisms onP1

x .
Generally, the dessins are defined combinatorially as certain bicolored graphs. For our
purposes, thedessins d’enfantof a Belyi map'(x) is the graph onP1

x obtained as the
pre-image of the line segment [0, 1] onP1

z , up to isotopy. The vertices abovez D 0
are colored black, and the vertices abovezD 1 are colored white. The order of each
vertex is equal to the branching order at the correspondingx-point. Fig. 1 depicts the
dessins for all 48 encountered Belyi coverings. Most of the white points have order 2,
and then they are not depicted. Black points of order 3 or 4 arenot depicted either,
unless they are connected to a white point of order 1. A thin edge connects a pair
of displayed black and white vertices. A thick edge connectstwo black points (either
displayed or clearly branching) with an implicit white point somewhere in the middle.
Eachcell (i.e., a two-dimensional connected component of the complement onP1

x , pos-
sibly the outer one) represents a point abovezD1. The branching order of each cell
is determined by counting the number of black points met while tracing a loop along
its boundary.

It is instructive to follow the branching orders and incidences on the dessins while
following our classification of possible coverings in Tables 1–3. In principle, the pull-
back Belyi coverings can be classified by generating and counting the dessins satis-
fying the suitable branching patterns. However, it is difficult to ensure completeness
of a large list of dessins. We first computed the Belyi coverings explicitly, then eas-
ily generated the required dessins by combinatorial consideration. For each possible
branching pattern, there is at most one Belyi covering except for the coveringsH21 and
H44. Therefore completeness and identification of the dessins is quickly established.
The coveringsH21, H44 are defined overQ(

p

�3) andQ(i ), respectively. All other
coverings are defined overQ and R, hence their dessins have a reflection symmetry.
The dessins forH21, H44 should actually be counted twice, as the complex conjugation
gives non-isotopic dessins. The proper count of dessins andBelyi coverings is therefore
50, not 48.

Many of the encountered Belyi coverings occur in other contexts, particularly in
the theory of elliptic surfaces and Picard–Fuchs equations. The coverings fromH1 to
H38 occur in Herfurtner’s list [11] of elliptic surfaces with four singular fibers, up to
Möbius transformations. The order of these coverings follows [11, Table 3], and the
numbering is used in [21] where the corresponding pull-backs to Heun equations (spe-
cializable to Picard–Fuchs equations for the elliptic surfaces) are observed. The cov-
erings H1 to H6 have the maximal degree 12, and produce the Beauville list [2] of
the coverings generatingsemi-stableelliptic surfaces with four singular fibers. Their
branching orders abovezD 0 are all 3, and abovezD 1 they are all 2, as can be seen
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Fig. 1. Dessins d’enfant of the Belyi coverings for parametric
Heun-to-hypergeometric reductions.
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from the dessins. The branching pattern ofH1 is written by us as follows:

(1.5) [2]6 D [3]4 D 9C 1C 1C 1.

The four singular fibers of the corresponding elliptic surface have the Kodaira typesI9,
I1, I1, I1. This covering is also described as aDavenport–Stothers triple[27]: it can
be written asF3

=G2, where F , G are polynomials of degree 4 and 6 (respectively),
such that the polynomialF3

� G2 has the minimal possible degree 3.
A pull-back transformation defined overR can be nicely illustrated by subdivisions

of the Schwarz quadrangle for the pulled-back Heun equationinto Schwarz triangles for
the initial hypergeometric equations, following [12, 13].In the hyperbolic geometry
setting, these areCoxeter decompositions[7] or divisible tilings [5] of a hyperbolic
quadrangle into mutually similar hyperbolic triangles. Wedescribe these picturesque
illustrations in Section 4.3 and Fig. 2.

This article is structured as follows. Section 2 establishes pivotal lemmas on the
behavior of singularities and local exponents of Fuchsian equations under pull-back
transformations. Section 3 presents the main results in Tables 1–4, and explains them
(and the notation) in a few steps. Of the three mentioned generation steps (i)–(iii),
the first step is elaborated in Sections 3.1, 3.2, while computations for Step (ii) are
reviewed in Section 4.1. Step (iii) is thoroughly considered in the parallel paper [32].
Furthermore, Section 4 relates our classification to Herfurtner’s list [11] and Felikson’s
list of Coxeter decompositions [7], and Section 4.4 examines the composite transform-
ations. Section 5 presents an elegant approach to prove non-existence (or uniqueness)
of Belyi coverings with some branching patterns, and applies it not only to the ob-
tained list of branching patterns, but also to the Miranda–Persson classification [20] of
K3 semi-stable elliptic surfaces with six singular fibers.

2. Pull-backs and local exponents

The singular points and the local exponents of Gauss hypergeometric equation (1.1)
are usefully encoded in the Riemann P-symbol scheme

(2.1) P

8

<

:

0 1 1 z
0 0 a

1� c c� a� b b

9

=

;

.

The local exponent differences at the 3 singular points are therefore

(2.2) 1� c, c� a� b, a� b.
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Similarly, the Riemann scheme of the Heun equation (1.2) is

(2.3) P

8

<

:

0 1 t 1 x
0 0 0 a

1� c 1� d cC d � a� b b

9

=

;

.

The parametersa, b, c, d determine the local exponents, while the parameterq is ac-
cessory. In particular, the 4 exponent differences are

(2.4) 1� c, 1� d, cC d � a� b, a� b.

The Heun equation contains many interesting special cases,including the Lamé equa-
tion [6]. The Heun equation and its solutions appear in problems of diffusion, wave
propagation, heat and mass transfer, magneto-hydrodynamics, particle physics, and the
cosmology of the very early universe.

Let E(�, �, 
 ) denote a Gauss hypergeometric equation of the form (1.1) with the
exponent differences (2.2) equal to�,�,
 in some order. Similarly, letHE(�,�,
 ,Æ) de-
note a Heun equation of the form (1.2) with its exponent differences equal to�,�,
 ,Æ in
some order. These notations do not assign local exponents toparticular singular points,
nor they specify the accessory parameterq.

The degree of a pull-back transformation (1.4) between Fuchsian equations is the
degree of the rational function'(x). Existence of a pull-back from someE(�1, �1, 
1)
to someHE(�2, �2, 
2, Æ2) of degreeD will be indicated by

(2.5) E(�1, �1, 
1)
D
 HE(�2, �2, 
2, Æ2).

Sometimes the pull-back covering or the transformation will be indicated more specif-
ically by a subscript on the degreeD. Similarly,

E(�1, �1, 
1)
D
 E(�2, �2, 
2), HE(�1, �1, 
1, Æ2)

DH
 HE(�2, �2, 
2, Æ2)

will indicate pull-back transformations between hypergeometric or between Heun equa-
tions. For brevity, we refer to these three types of transformations asGauss-to-Heun,
Gauss-to-Gauss(or just hypergeometric) and Heun-to-Heunpull-back transformations.
In particular, the 3 quadratic transformations mentioned at the beginning of this article
actually are:

E(1=2, �, �)
2
 E(�, �, 2�),(2.6)

HE(1=2, 1=2, �, �)
2H
 HE(�, �, �, �),(2.7)

E(�, �, 
 )
2
 HE(�, �, 2�, 2
 ).(2.8)
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As in the notation (�1, �1, 
1)
D
 (�2, �2, 
2) of [31], the arrows follow the direction of

the covering'W P1
x ! P

1
z . To emphasize: these notations indicate the existence ofsome

differential equations with the stated exponent differences that are related by a pull-
back transformation, rather than the existence of a pull-back betweenany equations
with the specified exponent differences.

Our classification is obtained by considering the behavior of singularities and local
exponents of Fuchsian equations under pull-backs. Any transformation of the form (1.4)
pulls-back a Fuchsian equation to a Fuchsian equation, usually with more singular points.
To pull-back a hypergeometric equation to a Fuchsian equation with just 4 singular points,
special restrictions apply to the covering'(x) and the hypergeometric equation.

The following definitions are taken from [31]. Anirrelevant singular pointof a
Fuchsian equation is a non-logarithmic singular point where the local exponent differ-
ence is equal to 1. For comparison, anordinary (i.e., non-singular) point is a non-
logarithmic point with the local exponents 0 and 1, and anapparent singularityis a
non-logarithmic singular point with the local exponents 0 and an integerk > 1. A rel-
evant singular pointis one that is not irrelevant. Any irrelevant singular pointcan be
turned into an ordinary point by a pull-back (1.4) which is prefactor-only, i.e., one with
'(x) D x. Hence, what is of primary importance is how manyrelevantsingular points
the pulled-back equation has. This number is affected only by the choice of covering
'(x), and not by the choice of prefactor�(x).

The following two lemmas describe the crucial behavior of singularities and local
exponents under pull-backs.

Lemma 2.1. Let ' W P1
x ! P

1
z be a finite covering. Let E1 denote a Fuchsian

equation onP1
z , and let E2 denote the pull-back onP1

x of E1 by transformation(1.4).
For any S2 P1

x , let k WD ord
'

(P) denote the branching order of' at S.
(a) The exponents of E2 at S equal k�1C 
 , k�2C 
 , where:
Æ �1, �2 are the exponents of E1 at '(S) 2 P1

z ;
Æ 
 is the exponent of the radical function�(x) at S.

(b) If '(S) is an ordinary point of E1, then S will fail to be a relevant singular point
for E2 if and only if kD 1 (i.e., the covering' does not branch at S, i.e., S is not a
branching point of').
(c) If '(S) is a singular point of E1, then S will fail to be a relevant singular point
of E2 if and only if
Æ k > 1 and the exponent difference at'(S) is equal to1=k; or,
Æ k D 1 and '(S) is irrelevant.

In either case S will be an irrelevant singular point or an ordinary point.

Proof. The first statement is mentioned in the proof of [31, Lemma 2.4]. The
other two statements are parts 2 and 3 of [31, Lemma 2.4].
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Lemma 2.2. Let ' W P1
x ! P

1
z be a covering of degree D, and let1 denote a set

of 3 points onP1
z .

(a) If all branching points of' lie above1, i.e., no point ofP1
z n1 is a critical value

of ', then there are exactly DC2 distinct points onP1
x above1. Otherwise, there are

more than DC 2 distinct points above1.
(b) If there are exactly DC 3 distinct points above1, there is only one branching
point that is not above1.

Proof. The first statement is part 1 of [31, Lemma 2.5]. It follows from the
Hurwitz formula [10, Corollary IV.2.4], which says that thesum of ord

'

(P) � 1 over
the branching pointsP 2 P1

x must equal 2(D � 1). The second statement is a slight
extension (utilized in [14]).

Suppose one starts with a hypergeometric equationE1 on P1
z . Let 1 denote the

set {0, 1,1} containing the singularities ofE1. It follows from the above lemmas that
to minimize the number of singular points of a pull-back ofE1, one should typically
allow branching points of' only above1. Otherwise, there would be more thanDC
2 distinct points above1, and generically, each of theseD C 2 points would be a
singular point of the pulled-back equation. By Lemma 2.1 (c), further minimization is
possible if one or more of the exponent differences ofE1 in 1 are restricted to be of
the form 1=k.

Recall that a covering' W P1
! P

1 is a Belyi covering [26] if it is unbranched
above the complement of a set of three points, such as{0, 1,1}. By the above con-
sideration, one expects that the pull-back coverings for Gauss-to-Heun transformations
will typically be Belyi coverings. The following proposition classifies the rather degen-
erate situations in which non-Belyi coverings can occur.

Proposition 2.3. Suppose there is a pull-back transformation(1.4) of a hyper-
geometric equation E1 to a Fuchsian equation with at most4 singular points, and the
covering defined by the rational function'(x) is not a Belyi map. Then one of the
following statements must hold:
(i) Two of the three exponent differences of E1 are equal to1=2; or
(ii) E1 has a basis of solutions consisting of algebraic functions of z.

Proof. Let D D deg', and1 D {0, 1,1} � P1
z . Since' W P1

x ! P

1
z is not a

Belyi map, there is a branching pointP0 that doesnot lie above1. By part (a) of
Lemma 2.2, there are at leastD C 3 distinct points above1. At most 3 of them
can be singularities of the pulled-back equation, becauseP0 will be a singularity by
Lemma 2.1 (b). Therefore there are at leastD ordinary points above1.

One or more of the 3 exponent differences ofE1 must be of the form 1=k for an
integer k > 1, because only then ordinary points occur above1 by Lemma 2.1 (c).
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Above a point of1 with the exponent difference 1=k, there may be at mostD=k ordi-
nary points. LetM denote the number of restricted exponent differences ofE1. There
are three possibilities:
Æ M D 1. One must havek D 1, and by Lemma 2.1 (c), this point is not a rel-
evant singularity forE1. Let m denote the number of distinct points above the two
(generally) relevant singularities ofE1. If mD 2, the covering is cyclic (i.e., Möbius-
equivalent to'(x) D xD). If m D 3, there is only one branching point not above the
relevant singularities ofE1, by Lemma 2.2 (b) basically. Hence' is a Belyi covering
for m6 3. If m> 3, the pulled-back equation will have more than 4 singularities.
Æ M D 2. The exponent differences will be 1=k, 1=l with k, l positive integers and
D=kC D=l > D. One must have 1=k, 1=l D 1=2, which is case (i).
Æ M D 3. The exponent differences will be 1=k, 1=l , 1=m with k, l , m positive inte-
gers andD=kC D=l C D=m> D, i.e., 1=kC 1=l C 1=m> 1. The subcase 1=kC 1=l C
1=mD 1 is ruled out, because gettingD ordinary points above1 leaves no space for
other> 3 points, contradicting Lemma 2.2 (a). It is known [6, 22] that in the subcase
1=kC 1=l C 1=m> 1, the equationE1 has only algebraic solutions.

REMARK . In case (i), the projective monodromy group ofE1 is generally an in-
finite dihedral group. As we recall in Section 5, the possibleprojective monodromies
in case (ii) are: a finite cyclic, a finite dihedral,A4 (tetrahedral),S4 (octahedral) orA5

(icosahedral) groups. IfM D 1, the monodromy is generally an infinite cyclic group.
Fuchsian equations with these monodromy groups haveLiouvillian solutions, and can
be solved by the Kovacic algorithm [16].

3. Main result: Generation and classification

Here we present the method and the results of classification of Gauss-to-Heun trans-
formations with at least one free parameter. Following part(c) of Lemma 2.1, we restrict
m 2 {0, 1, 2} local exponent differences of the general hypergeometric equation (1.1) to
the reciprocals of integersk > 1. Thereby we haveM D 3�m free parameters. Basically,
the free parameters are the unrestricted exponent differences.

We ignore the cases when an exponent difference is restricted to 1 at a non-
logarithmic singularity, or when two exponent differencesare restricted to 1=2, as we
have Liouvillian solutions then. Apart from this, Tables 1,2, 3 below give a full list
of Gauss-to-Heun pull-back transformations with a free parameter in terms of the ex-
ponent differences (in the first two columns), the degree andthe branching pattern of
the pull-back covering (in the next two columns) among the entries where a covering
is indicated by theH -notation in the last column. Table 4 gives a full list of the en-
countered Belyi maps (up to Möbius transformations and complex conjugation), and
the introductory Fig. 1 depicts thedessins d’enfant of those Belyi maps. The paral-
lel article [32] identifies the pulled-back Heun equations in detail, and gives a repre-
sentative list of transformation formulas between hypergeometric and Heun functions.
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Table 1. Possible branching patterns of hypergeometric-to-Heun
transformations with 2 or 3 free parameters.

Exponent differences Deg. Branching pattern Covering characterization,
hyperg. Heun D above singularities composition
�,�,
 �,�, 2�, 2
 2 2D1C1D1C1 H32, F1, F�

1 , indecomposable
1=2,�,� �,�, 2�, 4� 4 [2]2D4D2C1C1 H35, F4, F�

5 , 2�2
�, 3�,�, 3� [2]2D3C1D3C1 H47, F 0

4, F�

6 , indecomposable
2�, 2�,�, 3� [2]2D3C1D2C2 no covering,N27

2�, 2�, 2�, 2� [2]2D2C2D2C2 H31, F3, F�

4 , 2�2
1=2,�, 2�, 3� 3 [2]1C1D2C1D3 H34, F2, F�

2 , indecomposable
1=3,�,� �, 2�,�, 2� 3 [3]1D2C1D2C1 H34, F 00

2 , F�

3 , indecomposable
�,�,�, 3� [3]1D3D1C1C1 H33, indecomposable

A supplementingMaple package [8] contains the list of Belyi function of Table 4 and
transformation formulas of [32].

We proceed to explain the results and notation in Tables 1–4.Let ! denote a
primitive cubic root of unity, say! D exp(2� i =3). In particular,!2

C !C 1D 0.
The pull-back transformations from a hypergeometric equation E1 to a Heun equa-

tion E2 are classified and demonstrated in the following four steps.They parallel the
principal steps (i)–(iii) outlined in the introduction, with the only difference that Step (i)
is split into two steps.

STEP 1 is determination of possible restrictions on the exponentdifferences ofE1

and the degree of the pull-backs. This step is elaborated in Section 3.1. The restrictions
on the exponent differences determine thetype of possible branching patterns, which
is by definition an unordered list of the integersk > 1 that determine the restricted
exponent differences 1=k. The following list of types is obtained:

(3.1) ( ), (2), (3), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (4, 4).

The first type ( ) means no restrictions on the parameters ofE1. We skipped the cyclic
and dihedral types (1) and (2,2) as mentioned. The types are indicated by the exponent
differences ofE1 in the first columns of Tables 1, 3, and the whole Table 2 is devoted
to the type (2, 3). The entries of different types are separated by horizontal lines. The
pull-back degree is given in the third columns of Tables 1, 3,and the second column
of Table 2. The maximal degree is 12. It occurs for the type (2,3) only.

STEP 2 is determination of possible branching patterns. The method is explained
in Section 3.2. The result is presented by the fourth columnsof Tables 1, 3, and
the third column of Table 2. Generally, we indicate a branching pattern by an (un-
ordered) list of three unordered partitions of its degreeD, separated by the equal-
ity signs. The partitions specify the branching indices in each of the three branching
fibers of a Belyi covering. Besides, we use the abbreviation [k]n for a partition block
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Table 2. Possible branching patterns for pull-back transformations
from E(1=2, 1=3, �) to a Heun equation, of degreeD > 7.

Exponent differences Deg. Branching pattern Covering characterization,
of the Heun equation D above singularities composition
�, �, �, 9� 12 [2]6D [3]4D 9C1C1C1 H1, 3C �4
�, �, 2�, 8� [2]6D [3]4D 8C2C1C1 H2, F23, F�

34, 2�2 �3
�, �, 3�, 7� [2]6D [3]4D 7C3C1C1 no covering,N1

�, 2�, 2�, 7� [2]6D [3]4D 7C2C2C1 no covering,N2

�, �, 4�, 6� [2]6D [3]4D 6C4C1C1 no covering,N3

�, 2�, 3�, 6� [2]6D [3]4D 6C3C2C1 H3, F27, F�

33, 3�4, 4�3
2�, 2�, 2�, 6� [2]6D [3]4D 6C2C2C2 no covering,N4

�, �, 5�, 5� [2]6D [3]4D 5C5C1C1 H4, F24, F�

32, 2H �6
�, 2�, 4�, 5� [2]6D [3]4D 5C4C2C1 no covering,N5

�, 3�, 3�, 5� [2]6D [3]4D 5C3C3C1 no covering,N6

2�, 2�, 3�, 5� [2]6D [3]4D 5C3C2C2 no covering,N7

�, 3�, 4�, 4� [2]6D [3]4D 4C4C3C1 no covering,N8

2�, 2�, 4�, 4� [2]6D [3]4D 4C4C2C2 H5, F22, F�

31, 2�3C �2, 2�2 �3
2�, 3�, 3�, 4� [2]6D [3]4D 4C3C3C2 no covering,N9

3�, 3�, 3�, 3� [2]6D [3]4D 3C3C3C3 H6, 3C �4, 2H �2H �3C

1=3, �, �, 8� 10 [2]5D [3]3C1D 8C1C1 H7, indecomposable
1=3, �, 2�, 7� [2]5D [3]3C1D 7C2C1 H8, F21, F�

28, indecomposable
1=3, �, 3�, 6� [2]5D [3]3C1D 6C3C1 no covering,N10

1=3, 2�, 2�, 6� [2]5D [3]3C1D 6C2C2 no covering,N11

1=3, �, 4�, 5� [2]5D [3]3C1D 5C4C1 H9, F19, F�

29, indecomposable
1=3, 2�, 3�, 5� [2]5D [3]3C1D 5C3C2 H10, F26, F�

30, indecomposable
1=3, 2�, 4�, 4� [2]5D [3]3C1D 4C4C2 no covering,N12

1=3, 3�, 3�, 4� [2]5D [3]3C1D 4C3C3 no covering,N13

1=2, �, �, 7� 9 [2]4C1D [3]3D 7C1C1 H11, indecomposable
1=2, �, 2�, 6� [2]4C1D [3]3D 6C2C1 H12, F20, F�

27, 3�3
1=2, �, 3�, 5� [2]4C1D [3]3D 5C3C1 H13, F18, F�

26, indecomposable
1=2, 2�, 2�, 5� [2]4C1D [3]3D 5C2C2 no covering,N14

1=2, �, 4�, 4� [2]4C1D [3]3D 4C4C1 no covering,N15

1=2, 2�, 3�, 4� [2]4C1D [3]3D 4C3C2 H14, F25, F�

25, 3�3
1=2, 3�, 3�, 3� [2]4C1D [3]3D 3C3C3 no covering,N16

2=3, �, �, 6� 8 [2]4D [3]2C2D 6C1C1 H15, F14, 2�4
2=3, �, 2�, 5� [2]4D [3]2C2D 5C2C1 H16, F17, indecomposable
2=3, �, 3�, 4� [2]4D [3]2C2D 4C3C1 no covering,N17

2=3, 2�, 2�, 4� [2]4D [3]2C2D 4C2C2 no covering,N18

2=3, 2�, 3�, 3� [2]4D [3]2C2D 3C3C2 H17, F13, 2�4
1=3, 1=3, �, 7� [2]4D [3]2C1C1D 7C1 H18, indecomposable
1=3, 1=3, 2�, 6� [2]4D [3]2C1C1D 6C2 H19, F16, F�

21, 4B �2, 2�4
1=3, 1=3, 3�, 5� [2]4D [3]2C1C1D 5C3 no covering,N19

1=3, 1=3, 4�, 4� [2]4D [3]2C1C1D 4C4 H20, F15, F�

20, 4�2, 2H �4A

1=2, 1=3, �, 6� 7 [2]3C1D [3]2C1D 6C1 H21, indecomposable
1=2, 1=3, 2�, 5� [2]3C1D [3]2C1D 5C2 H22, F11, F�

18, indecomposable
1=2, 1=3, 3�, 4� [2]3C1D [3]2C1D 4C3 H23, F12, F�

19, indecomposable
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Table 3. The other possible branching patterns of Gauss-to-Heun
transformations with one free parameter.

Exponent differences Deg. Branching pattern Covering characterization,
hyperg. Heun D above singularities composition
1=2, 1=3, � 1=3, 2=3, �, 5� 6 [2]3D [3]1C2C1D5C1 H24, F9, indecomposable

1=3, 2=3, 2�, 4� [2]3D [3]1C2C1D4C2 H25, F10, 3�2
1=3, 2=3, 3�, 3� [2]3D [3]1C2C1D3C3 no covering,N20

1=3, 1=3, 1=3, 6� [2]3D [3]1C1C1C1D6 H38, 3C �2
1=2, 1=2, �, 5� [2]2C1C1D [3]2D5C1 H26, indecomposable
1=2, 1=2, 2�, 4� [2]2C1C1D [3]2D4C2 H27, F7, F�

13, 2�3
1=2, 1=2, 3�, 3� [2]2C1C1D [3]2D3C3 H28, F6, F�

12, 2H �3C

1=2, 2=3, �, 4� 5 [2]2C1D [3]1C2D4C1 H29, F8, indecomposable
1=2, 2=3, 2�, 3� [2]2C1D [3]1C2D3C2 H30, F5, indecomposable
1=2, 1=3, 1=3, 5� [2]2C1D [3]1C1C1D5 H37, indecomposable
1=2, 1=2, 1=3, 4� 4 [2]1C1C1D [3]1C1D4 H36, indecomposable

1=2, 1=4, � �, �, �, 5� 8 [2]4D [4]2D5C1C1C1 no covering,N21

�, �, 2�, 4� [2]4D [4]2D4C2C1C1 H40, F 0

9, F�

24, 2�2�2
�, �, 3�, 3� [2]4D [4]2D3C3C1C1 H20, F 0

8, F�

23, 4�2, 2H �4A

�, 2�, 2�, 3� [2]4D [4]2D3C2C2C1 no covering,N22

2�, 2�, 2�, 2� [2]4D [4]2D2C2C2C2 H41, F 0

7, F�

22, 2�2�2
1=2, �, �, 4� 6 [2]3D [4]1C2D4C1C1 no covering,N23

1=2, �, 2�, 3� [2]3D [4]1C2D3C2C1 H25, F 0

6, F�

15, 3�2
1=2, 2�, 2�, 2� [2]3D [4]1C2D2C2C2 no covering,N24

1=4, 1=4, �, 5� [2]3D [4]1C1C1D5C1 H42, indecomposable
1=4, 1=4, 2�, 4� [2]3D [4]1C1C1D4C2 no covering,N23

1=4, 1=4, 3�, 3� [2]3D [4]1C1C1D3C3 H43, F 0

14, F�

14, 2H �3
1=2, 1=4, �, 4� 5 [2]2C1D [4]1C1D4C1 H44, indecomposable
1=2, 1=4, 2�, 3� [2]2C1D [4]1C1D3C2 H29, F 0

11, F�

10, indecomposable
1=2, 1=2, �, 3� 4 [2]1C1C1D [4]1D3C1 H36, indecomposable
1=2, 1=2, 2�, 2� [2]1C1C1D [4]1D2C2 H35, F 0

10, F�

7 , 2H �2
1=2, 1=5, � 1=5, �, �, 4� 6 [2]3D [5]1C1D4C1C1 H42, indecomposable

1=5, �, 2�, 3� [2]3D [5]1C1D3C2C1 H24, F 0

15, F�

16, indecomposable
1=5, 2�, 2�, 2� [2]3D [5]1C1D2C2C2 no covering,N25

1=2, �, �, 3� 5 [2]2C1D [5]1D3C1C1 H37, indecomposable
1=2, �, 2�, 2� [2]2C1D [5]1D2C2C1 H45, F 0

12, F�

11, indecomposable
1=2, 1=6, � �, �, �, 3� 6 [2]3D [6]1D3C1C1C1 H38, 3C �2

�, �, 2�, 2� [2]3D [6]1D2C2C1C1 H39, F 0

13, F�

17, 3�2, 2H �3
1=3, 1=3, � �, �, �, 3� 6 [3]2D [3]2D3C1C1C1 no covering,N26

�, �, 2�, 2� [3]2D [3]2D2C2C1C1 H28, 2�3C

1=3, 1=3, �, 3� 4 [3]1C1D [3]1C1D3C1 H46, F 00

4 , F�

9 , indecomposable
1=3, 1=3, 2�, 2� [3]1C1D [3]1C1D2C2 H47, F 00

3 , F�

8 , indecomposable
1=3, 1=4, � 1=3, �, �, 2� 4 [3]1C1D [4]1D2C1C1 H36, indecomposable
1=4, 1=4, � �, �, �, � 4 [4]1D [4]1D1C1C1C1 H48, 2H �2
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Table 4. The Belyi coverings appearing in Gauss-to-Heun pull-
backs, up to Möbius transformations.

Id Deg. Branching pattern A rational expression for'(x)
H1 12 [2]6 D [3]4 D 9C1C1C1 64x3(x3

�1)3=(8x3
�9)

H2 [2]6 D [3]4 D 8C2C1C1 27x2(x2
�4)=(4(x4

�4x2
C1)3)

H3 [2]6 D [3]4 D 6C3C2C1 4x3(x3
�6xC6)3=(27(x�1)3(2x�3)2(xC3))

H4 [2]6 D [3]4 D 5C5C1C1 1728x5(x2
�11x�1)=(x4

�12x3
C14x2

C12xC1)3

H5 [2]6 D [3]4 D 4C4C2C2 27x4(x2
�1)2=(4(x4

� x2
C1)3)

H6 [2]6 D [3]4 D 3C3C3C3 �64x3(x3
�1)3=(8x3

C1)3

H7 10 [2]5 D [3]3C1D 8C1C1 �4(xC2)(x3
C3xC2)3=(27(3x2

�2xC11))
H8 [2]5 D [3]3C1D 7C2C1 4(xC4)(x3

�6x�2)3=(27(4x�11)(3xC4)2)
H9 [2]5 D [3]3C1D 5C4C1 �(xC10)(4x3

�15xC10)3=((5x�4)(3x�2)5)
H10 [2]5 D [3]3C1D 5C3C2 4x(9x3

�20x2
C10xC10)3=((5x�8)2(4x�1)5)

H11 9 [2]4C1D [3]3 D 7C1C1 4(x3
C4x2

C10xC6)3=(27(4x2
C13xC32))

H12 [2]4C1D [3]3 D 6C2C1 27x2(x�3)=(4(x3
�3x2

C1)3)
H13 [2]4C1D [3]3 D 5C3C1 27x(4x�3)5=(4(x3

�12x2
�54x�2)3)

H14 [2]4C1D [3]3 D 4C3C2 27x3(3xC4)2=(4(x3
�3x�4)3)

H15 8 [2]4 D [3]2C2D 6C1C1 64x2(x2
�1)3=(8x2

�9)
H16 [2]4 D [3]2C2D 5C2C1 4x2(x2

�8xC10)3=(27(4x�27)(2x�1)2)
H17 [2]4 D [3]2C2D 3C3C2 �64x2(x2

�1)3=(8x2
C1)3

H18 [2]4 D [3]2C1C1D 7C1 (x2
C13xC49)(x2

C5xC1)3=(1728x)
H19 [2]4 D [3]2C1C1D 6C2 �64x2

=((x2
�1)3(x2

�9))
H20 [2]4 D [3]2C1C1D 4C4 16x3(2xC1)(x�4)=(x2

�2x�2)4

H21 7 [2]3C1D [3]2C1D 6C1 4(x�1)((1C2!)x2
�3x�!)3

=(4� (1C3!)x)
H22 [2]3C1D [3]2C1D 5C2 4x(4x2

�35xC70)3=(27(28x�125)2)
H23 [2]3C1D [3]2C1D 4C3 x(9x2

�14x�7)3=(4(7x�1)4)
H24 6 [2]3 D [3]1C2C1D 5C1 x3(xC5)2(xC8)=(64(3x�1))
H25 [2]3 D [3]1C2C1D 4C2 �4x3(x�1)2(xC2)=(3x�2)2

H26 [2]2C1C1D [3]2 D 5C1 (x2
�5)3=(27(2x�5))

H27 [2]2C1C1D [3]2 D 4C2 27x2
=(4(x2

�1)3)
H28 [2]2C1C1D [3]2 D 3C3 36x(x2

C3)2=(x2
C6x�3)3

H29 5 2C2C1D 3C2D 4C1 4x3(x�5)2=(27(5xC2))
H30 2C2C1D 3C2D 3C2 x3(4xC5)2=(5xC4)2

H31 4 2C2D 2C2D 2C2 �4x2
=(x2

�1)2

H32 2 2D 2D 1C1 x2

H33 3 3D 3D 1C1C1 x3

H34 3D 2C1D 2C1 x(4x�3)2

H35 4 4D 2C2D 2C1C1 4x2(1� x2)
H36 4D 3C1D 2C1C1 �x3(3xC4)
H37 5 5D 2C2C1D 3C1C1 4x3(4x2

C5xC10)=27
H38 6 [2]3 D 6D 3C1C1C1 4x3(1� x3)
H39 6 [2]3 D 6D 2C2C1C1 x2(4x2

�3)2

H40 8 [2]4 D [4]2 D 4C2C1C1 4x2(x2
�2)=(x2

�1)4

H41 [2]4 D [4]2 D 2C2C2C2 �4x4
=(x4

�1)2

H42 6 [2]3 D 4C1C1D 5C1 x4(x2
C2xC5)=(4(2x�1))

H43 [2]3 D 4C1C1D 3C3 27(x2
�4)=(4(x2

�3)3)
H44 5 4C1D 4C1D 2C2C1 x(x�1�2i )4

=((1C2i )x�1)4

H45 5D 2C2C1D 2C2C1 x(x2
�5xC5)2=4

H46 4 3C1D 3C1D 3C1 x3(xC2)=(2xC1)
H47 3C1D 3C1D 2C2 64x(x�1)3=(8x�9)
H48 4D 4D 1C1C1C1 x4
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kC� � �Ck (n times). In Tables 1, 2, 3, the symbol [k]n specifically means presence of
n points of E2 with the branching orderk above a singular point ofE1 with the the
exponent difference 1=k. By part (c) of Lemma 2.1, each of then points will be either
ordinary or an irrelevant singularity forE2. By the described convention, the branch-
ing patterns for pull-back transformations withM free parameters have 3�M numbers
(i.e., branching orders) inclosed in square brackets, and exactly 4 non-bracketed num-
bers representing the 4 singular points ofE2.

In total, we get a list of 89 branching patterns, though some of the patterns differ
only by the square-brackets specification of ordinary points of E2. For example, two
degree 3 branching patterns in Table 1 are the same, leading to the same cubic covering
H34 (identified in the last column). The exponent differences ofE2 are determined by
E1 and the branching pattern, and are given by the second columns of Tables 1, 3 and
the first column of Table 2.

STEP 3 is computation of the Belyi coverings' W P1
x ! P

1
z . Generally, computa-

tion of Belyi maps with a given branching pattern is a difficult problem. However, the
maximal degree of the possible branching patterns is just 12. With the aid of modern
computer algebra systems this problem is tractable for coverings of degree 12 or less,
even using a straightforward Ansatz method with undetermined coefficients. Most of
the Belyi maps are actually known in the literature, if only because the Belyi maps
of the type (2, 3) occur in Herfurtner’s list [11] of ellipticsurfaces with four singular
fibers. Specifically, theJ (X, Y)-expressions in [11, Table 3] are homogeneous expres-
sions of the Belyi mapsH1, : : : , H38 up to Möbius transformations. Also, these cover-
ings appear in pull-backs between hypergeometric equations, because a free parameter
can always be specialized so to reduce the Heun equationE2 to a hypergeometric (or
simpler) equation.

The computational issues of Step 3 are discussed in Section 3.2. Complementarily,
Section 5 presents an elegant approach to show non-existence of Belyi maps with many
branching patterns. The full list of computed Belyi maps is given in Table 4, and fur-
ther commented in Section 4. The last columns of Tables 1, 2, 3identify the Belyi map
for each possible pull-back transformation. These columnsalso specify theCoxeter de-
compositions[7] and divisible tilings [5] for the Schwarz maps associated to the pulled-
back Heun’s equationE2 (by variousF-numbers, as explained in Section 4.3), and de-
scribe composite transformations by product expressions indicating degrees of occurring
indecomposable transformations. The product notation hasto be followed from right
to left to trace the composition from the starting hypergeometric equation. The fac-
tor 2H denotes quadratic Heun-to-Heun transformation (2.7). Here is the meaning of
other indexed degrees: 3C denotes the cyclic coveringH33 with the branching pattern
3D 3D 1C1C1, while 4A and 4B stand for the coveringsH36 (4D 3C1D 2C1C1)
and H46 (3C1D 3C1D 3C1), respectively. The unindexed numbers 3 and 4 denote
the frequent coveringsH34 (3D 2C1D 2C1) andH47 (3C1D 3C1D 2C2), respect-
ively. In any composition, there is exactly one factor representing an indecomposable
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Gauss-to-Heun transformation; it is the first one from the left which is not 2H . The
other factors to the right represent pull-backs between hypergeometric equations. The
notation 2�2 indicates a composition of quadratic transformations that can be realized
in multiple ways, possibly including 2H ; see (4.3) below for the most typical example.
The compositions are considered more thoroughly in Section4.4 and in [32, Appen-
dix B].

There are 27 different branching patterns for which there isno Belyi map. The
non-existence in all these cases can be elegantly shown by considering implied (but not
possible) pull-back transformations between Fuchsian equations, as explained in Sec-
tion 5. The indexedN-notation refers to Table 5 below. For each branching pattern
except two leading toH21 and H44, there is at most one covering (and one pull-back)
up to Möbius transformations. The coveringsH21 and H44 are defined, respectively,
over Q(!) andQ(i ). In either of these cases, we actually have a complex-conjugated
pair of Belyi coverings. Table 4 lists 48 different coverings, thoughH21 and H44 should
be properly counted twice. It is instructive to compare the branching pattern and the
orders of vertices and cells of thedessins d’enfant in Fig. 1. In total, we count 61
parametric pull-backs among the entries of Tables 1, 2, 3. Ofthem, 28 are composite.
Evidently, some of the 48 coverings appear in more than one pull-back. Accordingly,
the symbol [k]n in Table 4 merely indicates presence ofn points of branching orderk
in the same fiber. The coveringsH20, H24, H25, H28, H29, H34, H35, H37, H38, H42,
H47 appear twice in Tables 1, 2, 3, whileH36 three times.

STEP 4 is derivation of identities between standard2F1(z) and Hn(x) solutions of
the related hypergeometric and Heun equations, withz D '(x). This givesHeun-to-
hypergeometric reductionformulas, expressing found Heun functions in terms of the
better understood Gauss hypergeometric functions. This final step is comprehensively
considered in the parallel paper [32] by the same authors. Inparticular, [32, Section 3]
explains the technical issue of choosing the gauge prefactor �(x) in pull-back trans-
formations (1.4). The transformations without a prefactor(i.e., �(x) D 1) are classi-
fied by Maier in [18]. The branching patterns for these pull-backs typically have a
fiber with just one point, and that point is a singularity forE2. There are 7 of these
pull-back transformations. Their type is ( ), (2), (3) or (2,3), and the coverings are
numbered consequently fromH32 to H38. Formulas without a prefactor arise from the
transformations of Tables 1, 2 realized by these coverings,except for the type (3) trans-
formation with the coveringH34. The well-known quadratic transformation (2.8) is de-
scribed at the beginning of this article.

Hereby we complete the description of four classification steps. At the same time,
we explained the results and notation in Tables 1–4. The nexttwo subsections give a
methodical proof of Steps 1 and 2. Computational issues of Step 3 are discussed in
Section 4.1.

3.1. Step 1: possible restricted exponent differences and degree. We are look-
ing for the Belyi coverings' W P1

x ! P

1
z that pull-back a hypergeometric equationE1 to
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Heun’s equationE2. We assume thatE1 is not specifically of the formE(1, �, �) or
E(1=2, 1=2, �), because then either it has a logarithmic singularity (if� ¤ �� by [31,
Lemma 5.1]) or Liouvillian solutions.

We restrictm 2 {0, 1, 2} exponent differences of the general hypergeometric equa-
tion (1.1) to the reciprocals of integersk > 1, and look for particular cases when
part (c) of Lemma 2.1 allows enough non-singular points above {0, 1,1} � P1

z . The
degree of' is denoted byD.

First, assume thatm D 0. This puts no restriction on the exponent differences of
E1, so all points abovezD 0, 1,1 are singularities ofE2. There will be exactlyDC2
singular points by Lemma 2.2. We wishD C 2 6 4, henceD 6 2. If D D 1 then'
is a Möbius transformation, andE2 will have only 3 singularities. IfD D 2, then' is
the well-known quadratic transformation (2.8). We do not need to consider quadratic
transformations subsequently.

For m 2 {1, 2}, the number of non-singular points above the restricted singularities
of E1 must be at least (D C 2)� 4D D � 2.

If m D 1, we allow two free parameters. Just one exponent difference of E1 is
restricted to equal 1=k, with integerk > 1. The pulled-back equationE2 will have at
most bD=k
 ordinary points above{0, 1,1} � P1

z by Lemma 2.1, and one must have

(3.2)

�

D

k

�

> D � 2.

This leads to the Diophantine inequality

(3.3)
2

D
C

1

k
> 1.

For k > 1 and D > 2, we have the following possibilities:

(3.4) (k, D) 2 {(2, 3), (2, 4), (3, 3)}.

The resulting branching patterns are of types (2), (3), according to k.
If mD 2, we allow one free parameter. Suppose that the restricted exponent differ-

ences ofE1 equal 1=k, 1=l , wherek, l are integers. We assume 1< k 6 l 6 D without
loss of generality; the last inequality allows actual utilization of the restriction 1=l . The
transformed equation has at mostbD=k
CbD=l
 ordinary points above{0,1,1} � P1

z .
Similarly to the above, one must have

(3.5)

�

D

k

�

C

�

D

l

�

> D � 2,

which leads to the weaker Diophantine inequality

(3.6)
2

D
C

1

k
C

1

l
> 1.
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Discarding k D l D 2, we get the following possibilities fork, l and for the upper
bound Dmax on the degreeD:

(3.7) (k, l , Dmax) 2 {(2, 3, 12), (2, 4, 8), (2, 5, 6), (2, 6, 6), (3, 3, 6), (3, 4, 4), (4, 4, 4)}.

The resulting branching patterns are the seven types (2, 3),(2, 4), (2, 5), (2, 6), (3, 3),
(3, 4), (4, 4), respectively.

3.2. Step 2: possible branching patterns. Here we look at each possible type
and degree, and determine all branching patterns fitting them. The constraint that there
must be at leastD�2 ordinary points above{0, 1,1} � P1

z will usually require taking
the number of ordinary points above the points with restricted exponent differences is
maximal, i.e., equal tobD=k
 or bD=l
. The a priori possible branching patterns for
the casemD 1 are straightforward to determine. They are listed in the fourth column
of Table 1. That table is comparable to [21, Table 1b].

In the casemD 2, we start with the coverings of the type (2,3) of the maximalde-
gree D D 12 as in Table 2. There must be 12� 2D 10 ordinary points above the two
singular points ofE(1=2, 1=3, �) with exponent differences 1=2 or 1=3; all x-points
in these two fibers must be ordinary, asb12=2
 C b12=3
 D 10. The third fiber is a
partition of 12 with 4 parts. There are 15 such partitions, and they are all listed in
the third column of Table 2. Next, there are no transformations of degree 11, because
11� 2 > b11=2
 C b11=3
 and there would not be enough ordinary points in the two
fibers. In a similar way, the pull-back coverings of degreeD D 10, 9, 8 or 7 must have
the maximal number of ordinary points in the two restricted fibers; and all branching
patterns consistent with this constraint are listed. The branching patterns of type (2, 3)
continue in Table 3. The degreesD D 6, 4 require less thanbD=2
 C bD=3
 ordinary
points in the restricted fibers, and there is some choice of how to split a bracketed
number [2] or [3] into a pair of non-bracketed numbers, though at least one brack-
eted number must remain in the two restricted fibers. ForD D 5, there is a choice of
splitting (or not splitting) the number 2 in the [3] fiber. In total, we get 53 branching
patterns of the type (2, 3), all different.

The other types (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (4, 4) similarly give less numer-
ous sets of branching patterns, some of them coinciding mutually or with previously
encountered ones.

4. The Belyi coverings

First, this section briefly explains computation of Belyi maps and utilizing special-
ization of parametric Gauss-to-Heun transformations to transformations between hyper-
geometric equations. In Sections 4.2 and 4.3, we explain howthe H -numbering of
Table 4 comes partly from an algebraic-geometric classification of Herfurtner [11],
and clarify the variousF-numbers in the last columns of Tables 1–3 as representing
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Coxeter decompositionsof Felikson [7] anddivisible tilings of [5]. Lastly, in Sec-
tion 4.4 we examine the composite transformations among ourresults.

4.1. Computational issues. To compute the Belyi maps' W P1
x ! P

1
z with a

given branching pattern means to find all rational functions'(x) such that the numer-
ators of'(x), 1� '(x) and the denominator of'(x) factor according to the branching
pattern. A straightforward Ansatz method with undetermined coefficients can be used
for low degree coverings. Modern computer algebra systems (such asMaple and Math-
ematica) can handle the resulting systems of algebraic equations easily if the degree of
'(x) is 12 or less. More cannily, one can consider factorization of the numerators of
the logarithmic derivatives of'(x) and '(x) � 1 as in [28, Section 3]. For example,
to determineH1, one is looking for a constantc and monic polynomialsP, Q, R of
degree 4, 3, 6, respectively, such that'(x) D cP3

=Q and '(x) � 1D cR2
=Q. To find

these polynomials, one considers

(4.1)
'

0(x)

'(x)
D

3P0

P
�

Q0

Q
!
D

9R

P Q
,

('(x) � 1)0

'(x) � 1
D

2R0

R
�

Q0

Q
!
D

9P2

RQ
.

Zeroes of the derivatives are the branching points other than in the denominators, and
the factor 9 is determined by local consideration atx D 1. The whole polynomialR
can be eliminated symbolically using the first identification, and the resulting equation
system for the undetermined coefficients ofP, Q is rather transparent. In general, a
covering with a given branching pattern may not exist, or there may be several Belyi
maps (up to Möbius equivalence) or even severalQ=Q-Galois orbits of Belyi maps
with the same branching pattern. The Galois action on the Belyi maps and theirdessins
dénfant is of primary interest to Grothendieck’s theory [24], [26].

Less demandingly, we notice that the free parameter of our Gauss-to-Heun trans-
formations can be specialized so that to the pulled-back Heun equation has actually less
than 4 singular points. In principle, the Belyi coverings must appear in the classification
[31] of Gauss-to-Gauss transformations. Infinite familiesof transformations for Liouvill-
ian 2F1 functions (power, dihedral, algebraic ones or elliptic integrals) should not be ig-
nored here. Each branching pattern of Table 1 can be found in [31, Table 1], except

for 2C 2D 2C 2D 2C 2 which corresponds to the transformationE(1=2, 1=2, �)
4
 

E(1, 2�, 2�) briefly mentioned in [31, p. 161]. The branching patterns ofTables 2 and 3
(with m D 1 free parameter) can be handled similarly, yielding reductions of one-
parameter Gauss-to-Heun transformations to zero-parameter pull-backs between hyper-
geometric functions. For example, the coveringH27 implies the hypergeometric trans-

formationsE(1=2, 1=3, 1=2)
6
 E(1=2, 1=2, 2) andE(1=2, 1=3, 1=4)

6
 E(1=2, 1=2, 1=2).

These specializations reductions are possible whenever there is abranchingpoint with
a free exponent difference. Among the relevant branching patterns, only the last one
(4 D 4 D 1C 1C 1C 1) in Table 3 does not satisfy this condition. But even it rep-

resents a nominally hypergeometric transformation, namely E(�, �, 1)
4
 E(4�, 4�, 1).
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Section 5 gives more details for obtaining the list of Gauss-to-Heun pull-backs from the
classification in [31]. In particular, the non-unique coverings H21 and H44 come from
Lemma 5.3 there.

4.2. The Herfurtner classification. Pull-back transformations from hyper-
geometric equations of the formE(1=2, 1=3, �) to Heun equations have a close rela-
tion to elliptic surfaces overC(x) with 4 singular fibers [11, 21]. The Belyi coverings
zD '(x) that induce these transformations appear as thej -invariants of these elliptic
surfaces, withz equal toJ WD j =1728, the traditional Kleinj -invariant.

The elliptic surfaces with 4 singular fibers are classified byHerfurtner [11]. His ar-
ticle lists 50 configurations of singular fibers which give such elliptic surfaces, and for
each configuration, supplies a formulaJ D J (X, Y) which is a projectivized version
of z D '(x), up to a Möbius transformation ofx and a permutation ofz D 0, 1,1.
Heun equations arise from 38 of his 50 cases, as Movasati and Reiter [21] recently
observed. We adopt the enumeration of [21, Table 1], and denote these 38 Belyi cov-
erings of Herfurtner, which were not originally numbered, by H1 to H38. The ordering
is by degree in two ranges, as evident in Table 4: decreasing in the rangeH1, : : : , H31,
and increasing in the rangeH32, : : : , H38.

The coveringsH1, : : : , H30 and H36, : : : , H38 induce Gauss-to-Heun pull-backs of
the type (2, 3) with one free parameter, as given by Table 2 andthe upper part of
Table 3. These transformations use each of these 34 coverings exactly once, and no
other coverings appear. The ordering by decreasing degree make theH -numbers appear
ordered in Table 2. By examining Table 1, one finds Herfurtner’s coveringsH31,:::,H35

(with H34 appearing twice) and a “new” coveringH47. The coveringH47 cannot pull-
back E(1=2, 1=3, �) to a Fuchsian equation with exactly 4 singularities. The pattern
[3]1 D 2C1D 2C1 for H34 cannot be refined to such a pull-back fromE(1=2, 1=3,�)
either, but this is possible for the otherH34 parsing [2]1C1D 2C1D 3. This explains
why H34 appears in Herfurtner’s list once.

Some of Herfurtner’s coverings additionally induce Gauss-to-Heun transformations
of types (2, 4), (2, 5), etc., as evident in Table 3. But 10 extra coverings appear in
that table; they have no interpretation in terms of ellipticsurfaces. We denote them
H39, : : : , H48, ordered somewhat arbitrarily in the lower part of Table 4. The covering
H47 induces transformations of the types (2) and (3, 3).

4.3. Coxeter decompositions. Recall that aSchwartz mapfor a second order
differential equation in the complex plane is a mapC ! C defined as the ratio of
two independent solutions of the differential equation [3]. Consider a hypergeometric
equation with real exponent differences (�, �, 
 ) satisfying 06 �, �, 
 < 1. The im-
age of the upper half plane under its Schwarz map is a curvilinear Schwarz triangle;
the sides are line or circle segments, and the angles are equal to ��, ��, �
 . Simi-
larly, consider a Heun equation with real exponent differences (�, �, 
 , Æ) satisfying
0 � �, �, 
 , Æ < 1. The image of the upper half plane under its Schwarz map is a



886 R. VIDUNAS AND G. FILIPUK

curvilinear Schwarz quadrangle, with the same kind of sides, and angles are equal to
��, ��, �
 , �Æ.

It was noticed by Hodgkinson [12, 13] that if the covering'(x) of a pull-back
transformation between hypergeometric equations is defined overR, the analytic con-
tinuations of their solutions according to the Schwarz reflection principle are compat-
ible. Consequently, the covering' (of degreeD, say) will induce a subdivision of a
Schwarz triangle of the pulled-back hypergeometric equation into D Schwarz triangles
of the original hypergeometric equation. Examples of such subdivisions are given in
[28, Fig. 1].

Similarly, suppose we have a Gauss-to-Heun transformationdefined overR. In par-
ticular, the fourth singular pointx D t is real. Then the analytic continuations of the
hypergeometric and Heun solutions by the Schwarz reflectionprinciple are compatible,
and the covering' (of degreeD) will induce a subdivision of Heun’s Schwarz quad-
rangle into D Schwarz triangles of the hypergeometric equation.

In the context of hyperbolic geometry, the possible subdivisions of curvilinear quad-
rangles (or triangles) into curvilinear triangles have been classified by Felikson [7]; they
are calledCoxeter decompositions. The triangles have angles��, ��, �
 satisfying
�C � C 
 < 1. The Coxeter decompositions with a free (angle) parameterare depicted
in Figures 10, 11, 14 in [7]. The subdivisions of Schwarz quadrangles into Schwarz
triangles induced by our Gauss-to-Heun transformations defined overR have the same
shape. In Tables 1–3,
Æ the notationFk refers to thek-th subdivision picture in [7, Fig. 14]; these subdi-
visions are applicable to Gauss-to-Heun pull-backs of the type (2, 3);
Æ F 0

k similarly refers to [7, Fig. 11]; these subdivisions are applicable the pull-backs
of the types (2), (2, 4), (2, 5), (2, 6);
Æ F 00

k similarly refers to [7, Fig. 10]; these subdivisions are applicable the pull-backs
of the type (3) or (3, 3).

Fig. 2 (a) depicts the Coxeter dexompositionF 0

13 of a quadrangle with the angles
��, ��, 2��, 2�� into 6 hyperbolic triangles with the angles�=2, �=6, ��. It gives
a decomposition of a Schwarz quadrangle forHE(�, �, 2�, 2�) into Schwarz triangles
for E(1=2, 1=6,�) induced by the type (2, 6) transformation with the coveringH39. The
Schwarz reflection principle is applied to a few edges intersecting at a common vertex.
The decompositions 3� 2 and 2H � 3 are clearly visible in the Coxeter decomposition,
so the picture also illustrates the decompositionF 00

2 of the same quadrangle into 3 tri-
angles with the angles�=3, ��, ��, and the decompositionF2 of a quadrangle with
the angles�=2, �=2, �, 2�. Both decompositions are induced by the cubic covering
H34. The factor 2H represents a Schwarz reflection between two smaller quadrangles.

Fig. 2 (b) is not a quadrangle, of course. But it contains two Coxeter decompos-
itions for Gauss-to-Heun transformations of the type (3, 3). If we remove the upper
black triangle, we get the decompositionF 00

3 of a quadrangle with the angles�=3, �=3,
2��, 2��. If the left white triangle is removed, the decompositionF 00

4 of a quadrangle
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Fig. 2. Coxeter decompositions for the parametric Gauss-to-Heun
transformations defined overR.

with the angles�=3, �=3, ��, 3�� is obtained. The coverings areH47 and H46, re-
spectively.

Similarly, Fig. 2 (c) includes all Coxeter decompositions for the Gauss-to-Heun
transformations of the types (2,4) and (2,5). Here we identify the quadrangles (and the
corresponding Belyi coverings) for the Coxeter decompositions F 0

6 to F 0

12, respectively:

ABCF(H25), ABFH(H41), ABDF(H20), BDFH(H40),

ABML(H35), ABCL(H29), OCEG(H45).

The quadrangles (and coverings) for the Coxeter decompositions F 0

14 and F 0

15 are
KCFH(H43) and OCEH(H24), respectively.

Finally, Fig. 2 (c) includes all Coxeter decompositions for the Gauss-to-Heun trans-
formations specifically of the type (2, 3). They are numberedfrom F5 to F27 by [7,
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Fig. 10]. Here are their quadrangles (and coverings), respectively:

AOEX(H30), AXEZ(H28), AXEY(H27), AFOY(H29), AFOQ(H24),

AOEP(H25), AXEQ(H22), AXER(H23), AFEO(H17), AFOB(H15),

APER(H20), APEQ(H19), AOEG(H16), AXED(H13), APED(H9),

AXEB(H12), APEB(H8), ACEF(H5), ABEG(H2), ADEG(H4),

AXEC(H14), APEC(H10), ACEG(H3).

In total, there are (27�4)C (15�5)C (4�2)D 35 subdivisionsFk, F 0

k, F 00

k representing
Gauss-to-Heun transformations with exactly one parameter.

The subdivisions for the Gauss-to-Heun transformations with 2 or 3 parameters are
the following:
Æ The Coxeter decomposition for quadratic transformation (2.8) is represented by a
single Schwarz reflection. It can be discerned in many placesin Fig. 2, for example
as the quadrangleOYC Z in picture (d). It appears several times in Felikson’s figures,
in particular asF1 D F 0

1 D F 00

1 .
Æ There are two degree 3 decompositionsF2 D F 0

2 and F 00

2 . They are both repre-
sented by the coveringH34, as we mentioned discussing picture (a). The other cubic
transformation (with the coveringH33) is not defined overR in the normalized form
[32, Section 4.4.4] but overQ(!), hence there is no Coxeter decomposition for it.
Æ There are three degree 4 decompositions,F3 D F 0

3, F 0

4 and F4 D F 0

5. They can
be discerned, for example, as the following quadrangles in picture (c), respectively:
OBCF(H31), OABC(H47), OCEF(H35).

Whether a Gauss-to-Heun transformation is realized by a Coxeter decomposition,
is determined by a close inspection in Step 4 of Section 3. A necessary and sufficient
condition is that the Belyi covering has to be defined overR after a normalization (by
Möbius transformations) that locates 3 of the 4 singular points of Heun’s equation as
x D 0, x D 1, x D 1. In particular, the fourth singular pointx D t has to be real,
though this is not a sufficient condition. For example, a proper normalization ofH48

for the type (4, 4) transformation is 8i x(x2
� 1)=(x C i )4. This givest D �1, but the

covering is not defined overR. There is one other example of this type: a proper
normalization of H28 for a type (3, 3) pull-back is 3(1C 2!)x2(x2

� 1)=(x2
C !)3.

On the other hand, a proper normalization of the sameH28 for a type (2, 3) pull-back
is defined overQ(

p

3), giving the Coxeter decompositionF6. There are two different
Coxeter decompositions for each of the following coverings: H20, H24, H25, H29, H34,
H35, H47. Comparison of our classification and Felikson’s list [7] provides a useful
mutual confirmation.

The considered Coxeter decompositions areparametrized, in that one or more of
the triangular vertex angles are free to vary. For somewhat larger real values of the
free parameter(s), the Coxeter decompositions are transfigured to spherical geometry
of the Riemann sphere (if angles larger than� are allowed), as subdivisions of spheri-
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cal quadrangles into spherical triangles with the angles satisfying �� C �� C 
� > � .
Most of the Coxeter decompositions can be transfigured to the plain Euclidean geom-
etry (where�� C �� C 
� D �) as well. The exceptions areF14, F16, F20, F27, F 0

9,
F 00

4 , for which the quadrangles degenerate to flat triangles.
Broughton et al. [5] classify similar geometric objects:divisible tilingsof the hyper-

bolic plane. Compared with Felikson’s pictures, divisibletilings form a proper subset
of Coxeter decompositions. The condition for a Coxeter decomposition to be a divisible
tiling is that the quadrangle angles be equal to�=k, with k an integer. In general Coxeter
decompositions,rational multiples of� are also allowed. The one-parameter divisible
tilings relevant here are depicted in [5, Table 6.6]. There are 34 of them; the first 6 cor-
respond to Gauss-to-Heun transformations with 2 or 3 parameters. Divisible tilings are
indicated in Tables 1–3 by the notationF�

7 , : : : , F�

34, where the subscripts refer to the
numbering in [5, Table 6.6]. There are 35�(34�6)D 7 relevant Coxeter decompositions
with one parameter that are not divisible tilings; they all have the angle 2�=3.

4.4. Composite transformations. The composite Gauss-to-Heun transformations
can be inductively deduced from a smaller set of pull-back transformations among hyper-
geometric and Heun functions. Due to the associativity of the composition operation, one
can always decompose a Gauss-to-Heun transformation as a product of the following:
Æ A possibly composite Gauss-to-Gauss transformation with afree parameter, exclud-
ing Möbius fractional-linear transformations and pull-backs from E(1, �, �) or
E(1=2, 1=2, �). This could be the quadratic transformation (2.6) and one of 6 clas-
sical transformations (of degrees 3, 4 and 6) worked out by Goursat [9] and listed in
[31, Table 1].
Æ An indecomposableGauss-to-Heun transformation with at least one free parameter.
This could be the quadratic transformation (2.8); one of 4 other indecomposable trans-
formations of Table 1; or an indecomposable transformationof Table 2 or 3 of degree
at most 6, as only they can fit a Gauss-to-Gauss or Heun-to-Heun transformation.
Æ A Heun-to-Heun transformation with at least one free parameter. This could be the
quadratic transformation (2.7), or the degree 4 composite transformation

HE(1=2, 1=2, 1=2, �)
2H
 HE(1=2, 1=2, �, �)

2H
 HE(�, �, �, �),(4.2)

realized by the coveringH31. See [32, Section 4.3] for an overview.
Fig. 3 graphically depicts all possible compositions of considered coverings. The two
longest boxes, centrally placed, represent quadratic transformations based onH32. The
following objects and information are included in the figure.

There are 7 boxes with double edges on the sides, representing the classical Gauss-
to-Gauss transformations. The quadratic transformation appears as the long box in the
lower part; two indecomposable transformations (of degree3 or 4) appear in the central
part; and the remaining four classical transformations (ofdegrees 3, 4 or 6) are repre-
sented in the upper part. Of the latter, only the cubic transformation is indecomposable.
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Fig. 3. Compositions of pull-back transformations betweenhyper-
geometric and Heun equations.
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The transformation near the upper-right corner can be decomposed in two different
ways; its covering does not occur in Tables 1–3 so it has noH -number. These 7 boxes
will be called E! E boxes.

The 10 other boxes represent indecomposable Gauss-to-Heuntransformations. Quad-
ratic transformation (2.6) is represented by the long box inthe upper part; the other four
indecomposable transformations of Table 1 appear in the central part. The three isolated
boxes near the lower right corner represent the indecomposable pull-backs of Table 3, to
each of which the quadratic Heun-to-Heun transformation (2.7) can be applied. The other
two lowest boxes represent pull-backs in Table 3 that can be composed with the quadratic
E! E transformation. These 10 boxes will be calledE! HE boxes.

The vertical lines connectE! E and E! HE boxes whose transformations can
be composed (perhaps after a specialization of parameters). The composed coverings
are labeled byH numbers on the left side of each vertical line. Relevant specializa-
tions of the quadraticE ! E transformation are given as well. The specializations
p D 1=2 and q D 1=2 of the quadraticE ! E transformation are omitted, because
(as stated above) the dihedral family is not considered here. The number of possible
compositions between anE ! E box and anE ! HE box depends on the number
of ways to identify (without degeneracy) the exponent differences of the intermediate
hypergeometric equation. Compositions of the quadraticE ! E and E ! HE trans-
formations are the quartic coveringsH35, H31 in Table 1.

The) symbols outside the boxes indicate application of the quadratic Heun-to-
Heun transformation (2.7). If this transformation can be applied after an indecomposable
Gauss-to-Heun transformation, the relevant parameter specializations and composite cov-
erings are indicated to the right (or near the lower right corner) of the respective box.
If (2.7) can be applied after a composite Gauss-to-Heun transformation, this is indicated
by the) symbol to the right of theH number of the composite covering (and to the
right of the respective vertical line).

Some boxes of the same kind touch each other, but that does nothave a particular
meaning. The box for the quadraticE ! HE transformation (2.8) is connected to all
E ! E boxes, since this transformation can always be applied without restrictions on
the exponent differences. The box for the quadraticE ! E transformation (2.6) is
connected to allE! HE boxes, except for the isolated three.

To show completeness of Fig. 3, one must:
Æ Check whether the set ofE ! HE boxes is complete. All indecomposable pull-
backs of Table 1 are included, and the indecomposable pull-backs of Tables 2, 3 to
which the quadratic Gauss-to-Gauss and Heun-to-Heun transformation can be applied.
The figure includes all classicalE! E transformations of [31, Table 1], but they can
be composed only with the pull-backs of Table 1 without loosing the parameter.
Æ If a pair of E! E and E! HE boxes is not connected by a vertical line, check
that the respective transformations cannot be composed.
Æ Check completeness of coverings for each vertical line.
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Æ Check possible compositions with the Heun-to-Heun transformations of degrees 2
and 4.

The information of Fig. 3 is given in the rightmost columns ofTables 1, 2, 3.
The compositions are spelled out more explicitly in [32, Appendix B]. A multiple oc-
currence of a covering in Fig. 3 means either that it can be decomposed in more than
one way (as forH3, H5, H6, H19, H31, H39, H41); or that it appears in more than one
composition (as forH25, H28, H35, H38); or both (as forH20).

The following cases are worth mentioning. Firstly, there are three ways to decom-
pose the quartic coveringH31 in Table 1:

(4.3) H31 W

8

�

�

�

�

<

�

�

�

�

:

E(1=2, �, �)
2
 E(�, �, 2�)

2
 HE(2�, 2�, 2�, 2�),

E(1=2, �, �)
2
 E(2�, �, �)

2
 HE(2�, 2�, 2�, 2�),

E(1=2, �, �)
2
 HE(1=2, 1=2, 2�, 2�)

2H
 HE(2�, 2�, 2�, 2�).

This is indicated by the 2� 2 in the rightmost column. The coveringH31 occurs as
a part of the larger compositionsH5 and H41; see their composition lattices in [32,
(B.5), (B.4)]. Besides, the coveringH31 induces the degree 4 Heun-to-Heun transform-
ation (4.2).

The transformationE(1=2,1=4,�)
4
 HE(1=2,1=2,2�,2�) is induced by two distinct

coverings: H31 and H35. Induced byH31, this transformation is the� D 1=4 special-
ization of (4.3); induced byH35, this transformation is a new one suggested by the
branching pattern given in Table 3. Both transformations have the factorization

(4.4) E(1=2, 1=4, �)
2
 HE(1=2, 1=2, 1=2, 2�)

2H
 HE(1=2, 1=2, 2�, 2�),

but they have different sets oft parameters. BothH31 and H35 appear as parts of the
degree 8 composite transformationH41.

5. Existence and uniqueness of coverings

This section presents an elegant way to conclude that there are no Belyi cover-
ings with some branching patterns. The idea is to deduce a pull-back transformation
of Fuchsian equations that is not possible, because it wouldrelate an equation with
finite monodromy to an equation with infinite monodromy group, or the pulled-back
equation would not exist. We apply this idea to all cases of non-existent coverings
of Tables 1, 2, 3. Moreover, in Section 5.3 this approach is applied to most cases of
non-existent coverings in the Miranda–Persson list [20] of K3 elliptic surfaces.

As an immediate example, consider the non-existent covering of degree 4 in Table 1.
If it would exist, the specialization� D 1=2 would give a pull-back fromE(1=2,1=2,�) to
a Fuchsian equation with two singularities and (generally)non-equal exponent differences
�, 3� at them, contradicting part (ii) of Lemma 5.1 below. Or one can further specialize
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� D 1 or� D 1=3 and get a contradiction with part (i) of the same lemma. In Section 5.1
we prove several assertions from which we make non-existence conclusions. Table 5 out-
lines the non-existence proofs. In Section 5.4, we seek to show uniqueness (up to Möbius
transformations) of the Belyi coverings with the encountered branching patterns, by con-
sidering implied pull-backs between Fuchsian equations with finite monodromy groups.

5.1. Principal lemmas. The easiest way to conclude non-existence of a Belyi
covering with a certain branching pattern is to deduce a pull-back transformation to a
non-existent Fuchsian equation. Here are two basic situations.

Lemma 5.1. (a) There is no Fuchsian equation onP1 that has exactly one rel-
evant singular point.
(b) If a Fuchsian equation onP1 has exactly2 singular points, their exponent differ-
ences are equal.

Proof. If a Fuchsian equation has just one relevant singularity, we can move it to
infinity and make all points inC ordinary. The differential equation then has the form
y00 C Py0 C Qy D 0, where P, Q are polynomials (in the differentiation variablex).
If P D Q D 0, then the local exponents at the infinity are 0,�1, thusx D1 will be
an irrelevant singularity. Otherwisex D1 is an irregular singularity, and the equation
will not be Fuchsian.

If a Fuchsian equation has 2 singularities, we can assume them to be x D 0, x D
1. The Liouville normal form of the equation is thenx2y00 D cy with c 2 C. The
exponent differences of this equation equal

p

1C 4c at both singular points.

Another type of non-existent transformation is a pull-backof a hypergeometric
equation with finite monodromy to a hypergeometric equationwith infinite monodromy.
(A Fuchsian equation has finite monodromy if and only if its solution space has a ba-
sis consisting of algebraic functions.) The following lemma characterizes some hyper-
geometric equations with finite (or infinite) monodromy groups.

Lemma 5.2. Consider a hypergeometric equation ED E(�, �, 
 ) on P1.
(a) Suppose that�, �, 
 are rational numbers, each having denominator3. Then the
monodromy of E will be finite if and only if the sum of the numerators of �, �, 

is even.
(b) If � is a half-odd-integer, and�, 
 are rational numbers, each having denominator
4, then the monodromy of E is not finite.
(c) Suppose that�, �, 
 are integers. Then the monodromy of E will be trivial if and
only if the sum�C�C 
 is odd, and the triangle inequalities
 < �C �, � < �C 
 ,
� < � C 
 are satisfied; otherwise the monodromy is not finite.
(d) Suppose that� is an integer while�,
 are half-odd-integers. The set{j��
 j,�C

 } contains two integers of different parity; let k be the integer in this set such that
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kC� is odd. Then the monodromy group of E will be isomorphic toZ=2Z if and only
if k < �; otherwise the monodromy will not be finite.

Proof. We use the Schwarz classification of hypergeometric equations with finite
monodromy for the first two statements; see [25] or [6, Section 2.7.2]. The only pos-
sible projective monodromy in statement (a) is the tetrahedral group A4. There are two
Schwarz types (II and III) for this group: the hypergeometric equation must be contigu-
ous either toE(1=2, 1=3, 1=3) or to E(1=3, 1=3, 2=3). We must have the latter Schwarz
type III. Contiguous relations shift the exponent differences by integers whose sum is
even. That does not change the parity of the numerator sum (ofthe three integers div-
ided by 3), even if an exponent difference is multiplied by�1.

We do not find the denominator pattern of the statement (b) in the Schwarz list.
In particular, the two Schwarz types (IV and V) for the octahedral group S4 are con-
tiguous toE(1=2, 1=3, 1=4) or E(2=3, 1=4, 1=4).

For the claim (c), a representative solution of the generic hypergeometric equation
with trivial monodromy is2F1(�n, l C 1I � n � m j z), with n, m, l non-negative
integers; see [29, Theorem 2.4(5)]. Up to a permutation, onehas that� D nCmC 1,
� D nC l C 1, 
 D mC l C 1; that is

(5.1) n D
� C � � 
 � 1

2
, mD

� C 
 � � � 1

2
, l D

� C 
 � � � 1

2
.

If one of these three numbers is a negative integer, the singular point with the largest
exponent difference is logarithmic [29, Section 9]. If eachof the above three numbers
is a half-odd-integer, all three singular points are logarithmic [29, Section 5].

The assertion (d) is a reformulation of [30, Theorem 5.1], stated in the con-
text of hypergeometric equations with either logarithmic solutions or theZ=2Z mono-
dromy group.

Existence (and uniqueness) of coverings with a given branching pattern can also
be decided on the basis of transformations of some hypergeometric equations with in-
finite monodromies. The following lemma implies that there are no transformations of
E(1=2,1=4,1=4) into itself of degrees 6, 12, 14, 21, 22, 24, or generally, of degrees� 3
(mod 4), even if suitable branching patterns of these degrees exist. Similarly, there are
no transformations ofE(1=2, 1=3, 1=6) or E(1=3, 1=3, 1=3) into themselves of degrees
6, 10, 15, 18, 22, 24, or generally, of degrees� 2 (mod 3). This lemma eludicates the
non-uniqueness ofH44 and H21.

Lemma 5.3. (a) Up to Möbius transformations, the number of degree-D pull-
back coverings of E(1=2,1=4,1=4) into itself is equal to the number of integer solutions
(a, b) with a> 0, b > 0, of the equation DD a2

C b2.
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(b) Up to Möbius transformations, the number of degree-D pull-back coverings of
E(1=2, 1=3, 1=6) or E(1=3, 1=3, 1=3) into itself is equal to the number of integer solu-
tions (a, b) with a> 0, b > a, of the equation DD a2

� abC b2.

Proof. According to [31, Section 8], the transformations ofE(1=2, 1=4, 1=4) into
itself correspond to isogenies of thej D 1728 elliptic curvey2

D x3
� x. The ring

of isogenies is isomorphic to the ringZ[i ] of Gaussian integers, and the degree of a
pull-back is equal to the norma2

C b2 of the correspondingaC bi . In particular, the
trivial and fractional-linear transformations correspond to the units�1, �i . Therefore
one must countaC bi 2 Z[i ] such thatjaC bi j2 D D and arg(aC bi) 2 [0, �=2).

Similarly [31, Section 8], the transformations ofE(1=2,1=3,1=6) or E(1=3,1=3,1=3)
into itself correspond to isogenies of thej D 0 elliptic curvesy2

D x3
�1 or x3

Cy3
D 1.

The ring of isogenies is isomorphic to the ring of EisensteinintegersZ[!]. The degree
of a pull-back is equal to the norma2

�abCb2 of the correspondingaCb!. Trivial or
Möbius transformations correspond to the units�1,�!, �(!C1). Therefore one must
countaC b! 2 Z[!] such thatjaC b!j2 D D and arg(aC b!) 2 [0, �=3).

5.2. Nonexistence of coverings.Tables 2, 3 have 27 entries with nonexistent
Belyi coverings. One branching pattern appears twice amongthe type (2, 4) candi-
dates, hence the two tables actually have 26 different branching patterns with no cover-
ing. They are labeledN1, : : : , N26. The repeating branching pattern is labelledN23.
Nonexistence is in each case an immediate consequence of some lemma in Section 5.1.
Mostly by specialization of the free parameter, one either derives a pull-back from a
hypergeometric equation to a nonexistent Fuchsian equation, or a pull-back of a hyper-
geometric equation with finite monodromy to a hypergeometric equation with infinite
monodromy, or a nonexistent pull-back ofE(1=2, 1=3, 1=6) into itself. The unrealizable
branching patterns and the applicable lemmas are listed in Table 5.

The non-existent covering of Table 1 is given the last numberN27. Its non-existence
was already demonstrated at the beginning of this section.

Only for N21 and N23 the used implied transformation is not a specialization of a
respective Gauss-to-Heun pull-back of the classification in Section 3. To proveN21 by
the specialization� D 1=5, one would need to inspect the 10 icosahedral Schwarz types
in [6, Section 2.7.2]. The caseN23 can be proved using the specialization� D 1=4 of
either of the two candidate transformations in Table 3, by invoking Lemma 5.3 (b).
Note that to use a hypergeometric equation with only two relevant singularities, one
must ensure that it is of the formE(1, �, �). In particular, Lemma 5.1 (b) does not
apply to the branching covering [2]6 D [3]4 D 9C 1C 1C 1 and its pull-backs from
E(1=2,1=3,1), because logarithmic singularities rather than ordinary points appear. And
indeed, the coveringH1 exists.

5.3. The Miranda–Persson classification. The lemmas of Section 5.1 can be
applied to the problem of the existence of Belyi maps that would yield semi-stable
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Table 5. Unrealizable branching patterns, with a proof indication.

Nonexistent Deg. Branching pattern Lemma Exponent differences
covering D above singular points hypergeom. pulled-back

N1 12 [2]6D [3]4D7C3C1C1 5.2 (a) 1=2, 1=3, 1=3 7=3, 1=3, 1=3
N2 [2]6D [3]4D7C2C2C1 5.1 (b) 1=2, 1=3, 1=2 1=2, 7=2
N3 [2]6D [3]4D6C4C1C1 5.2 (b) 1=2, 1=3, 1=4 3=2, 1=4, 1=4
N4 [2]6D [3]4D6C2C2C2 5.1 (a) 1=2, 1=3, 1=2 3
N5 [2]6D [3]4D5C4C2C1 5.2 (d) 1=2, 1=3, 1=2 2, 1=2, 5=2
N6 [2]6D [3]4D5C3C3C1 5.1 (b) 1=2, 1=3, 1=3 1=3, 5=3
N7 [2]6D [3]4D5C3C2C2 5.1 (b) 1=2, 1=3, 1=2 3=2, 5=2
N8 [2]6D [3]4D4C4C3C1 5.1 (b) 1=2, 1=3, 1=4 1=4, 3=4
N9 [2]6D [3]4D4C3C3C2 5.1 (b) 1=2, 1=3, 1=3 2=3, 4=3
N10 10 [2]5D [3]3C1D6C3C1 5.3 (b) 1=2, 1=3, 1=6 1=2, 1=3, 1=6
N11 [2]5D [3]3C1D6C2C2 5.1 (b) 1=2, 1=3, 1=2 1=3, 3
N12 [2]5D [3]3C1D4C4C2 5.1 (b) 1=2, 1=3, 1=4 1=3, 1=2
N13 [2]5D [3]3C1D4C3C3 5.1 (b) 1=2, 1=3, 1=3 1=3, 4=3
N14 9 [2]4C1D [3]3D5C2C2 5.1 (b) 1=2, 1=3, 1=2 1=2, 5=2
N15 [2]4C1D [3]3D4C4C1 5.1 (b) 1=2, 1=3, 1=4 1=2, 1=4
N16 [2]4C1D [3]3D3C3C3 5.1 (a) 1=2, 1=3, 1=3 1=2
N17 8 [2]4D [3]2C2D4C3C1 5.2 (a) 1=2, 1=3, 1=3 1=3, 2=3, 4=3
N18 [2]4D [3]2C2D4C2C2 5.1 (b) 1=2, 1=3, 1=2 2, 2=3
N19 [2]4D [3]2C1C1D5C3 5.2 (a) 1=2, 1=3, 1=3 1=3, 1=3, 5=3
N20 6 [2]3D [3]1C2C1D3C3 5.1 (b) 1=2, 1=3, 1=3 1=3, 2=3
N21 8 [2]4D [4]2D5C1C1C1 5.2 (c) 1=2, 1=2, 1 2, 2, 5
N22 [2]4D [4]2D3C2C2C1 5.1 (b) 1=2, 1=4, 1=2 1=2, 3=2
N23 6 [2]3D [4]1C2D4C1C1 5.1 (b) 1=2, 1=2, 1 4, 2
N24 [2]3D [4]1C2D2C2C2 5.1 (a) 1=2, 1=4, 1=2 1=2
N25 6 [2]3D [5]1C1D2C2C2 5.1 (a) 1=2, 1=5, 1=2 1=5
N26 6 [3]2D [3]2D3C1C1C1 5.1 (a) 1=3, 1=3, 1 3
N27 4 [2]2D3C1D2C2 5.1 (a) 1=2, 1=3, 1=2 1=3
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elliptic fibrations of K3 surfaces with 6 singular fibers, sorted out by Miranda, Person
[20] and Beukers, Montanus [4]. The degree of the relevant Belyi maps is 24, and their
branching patterns have the form [2]12D [3]8 D P, where P D aC bC cC dC eC f
is a partition of 24 with exactly 6 parts. There are 199 of these branching patterns in
total. Miranda and Persson [20] proved that Belyi coverings (and elliptic K3 surfaces)
exist in 112 cases, and do not exist in the remaining 87 cases.Beukers and Montanus
[4] computed all1 those Belyi maps and checked non-existence for the 87 partitions.

The non-existence proof in [20] broadly relies on two techniques. First, Miranda
and Persson widen the space of considered branching patterns to include partitionsP
with more than six parts2 and conclude non-existence of coverings for a partitiona1C

� � �Cas from non-existence for a partitiona1C � � �Cas�1Ca0sCa00s with as D a0sCa00s ,
using [20, Lemma (2.4)]. Secondly, they get contradicting conclusions about the torsion
of the assumed elliptic surfaces in several non-existing cases. In [4], non-existence is
concluded either by using a sum over the characters ofS24 that counts coverings (not
necessarily connected, with some rational weights) with a given branching pattern, or
by direct computation. Let6 denote the counting character sum just mentioned, given
in [4, Theorem 3.2]. The large table in [4] does not list the 47partitions (out of the
total 87) for which6 D 0.

Here we show that most of the non-existent cases in the Miranda–Persson list can
be deduced using the methods of Section 5.1. Here are 22 partitions out of the 40
ones with6 ¤ 0 for which the non-existence can be proved by using Lemmas 5.1,
5.2, 5.3 directly:

14C [2]5, 9C [3]5, 15C [2]4C 1, 13C 3C [2]4, 12C 4C [2]4, 11C 5C [2]4,

10C 6C [2]4, 11C [3]4C 1, 10C [3]4C 2, 8C 4C [3]4, 13C 4C [2]3C 1,

11C 6C [2]3C 1, 11C 4C 3C [2]3, 10C 4C 4C [2]3, 9C 8C [2]3C 1,

9C 6C 3C [2]3, 8C 7C 3C [2]3, 8C 5C 5C [2]3, 7C 7C 4C [2]3,

10C [4]3C 1C 1, 6C [4]3C 3C 3, [6]3C 3C 2C 1.

1As pointed out in the AMS MathSciNet review by David P. Roberts,the table in [4] omits one
Belyi covering for the partition 10C 6C 4C 2C 1C 1. Our computation confirms existence of two
(rather than one) Belyi coverings for this partition:

(144x8
C 384x7

C 1120x6
� 784x3

C 756x2
� 240x C 25)3

108x6(14x � 5)4(4x � 1)2(9x2
C 24x C 70)

,

(144x8
� 1536x7

C 5248x6
� 5568x5

� 720x4
C 512x3

C 192x2
C 24x C 1)3

108(8x C 1)6x4(x � 3)2(9x2
� 42x � 5)

.

The second covering is missing in the Beukers–Montanus list.In total, there are 59 branching patterns
(among the 112 indicated by Miranda and Persson) with a uniqueBelyi map up to Möbius transform-
ations; 125 Galois orbits of the Belyi maps, of size at most 4;and 191 different Belyi maps ordessins
dénfant.

2Therefore coverings with more than 3 branching fibers are allowed. Instead of the coverings,
permutation representations of their monodromy are considered in [20].
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The choice of the startingE(1=2, 1=3, 1=k) that yields a non-existent covering is indi-
cated by the [k]n notation. Next, here are 22 partitions out of the 47 ones with6 D 0
to which our lemmas apply directly:

9C 7C [2]4, 7C 5C [3]4, 7C [4]4C 1, 6C [4]4C 2, 5C [4]4C 3, [5]4C 3C 1,

9C 5C 4C [2]3, 7C 6C 5C [2]3, 13C [3]3C 1C 1, 11C [3]3C 2C 2,

10C 4C [3]3C 1, 8C 6C [3]3C 1, 8C 5C [3]3C 2, 7C 7C [3]3C 1,

7C 6C [3]3C 2, 7C 4C 4C [3]3, 6C 5C 4C [3]3, 5C 5C 5C [3]3,

9C [4]3C 2C 1, 6C 5C [4]3C 1, 7C [4]3C 3C 2, 5C 5C [4]3C 2.

Additionally, the four cases 7C [5]3 C 1C 1, 6C [5]3 C 2 C 1, [5]3 C 4C 4 C 1,
[5]3C4C3C2 with 6 D 0 are concluded by inspecting the icosahedral hypergeometric
equations in the Schwarz table [6, Section 2.7.2]. In total,this shows 48 out of the
87 cases.

More cases of non-existence can be deduced from implied pull-backs to Fuchs-
ian equations with 3 non-apparent singularities and a few apparent singularities. These
equations are gauge “contiguous” to target hypergeometricequations (with infinite or
infinite monodromy) as the local exponent differences differ at all points by integers.
The total shift of the exponent differences, including those from the difference 1 for
ordinary points of hypergeometric equations, must be an even integer. In this way, non-
existence for the following 7 partitions with6 ¤ 0 can be shown:

10C 6C [3]2C 1C 1, 9C 9C [3]1C 1C 1C 1, 8C 6C [3]2C 2C 2,

7C 6C 6C [3]1C 1C 1, 7C 6C 4C [3]2C 1, 6C 5C 5C [3]2C 2,

8C 6C [4]2C 1C 1.

In each case, the apparent singularities are represented bythe branching orders that are
integer multiples of the bracketed numbers. And here are 7 partitions with 6 D 0 that
can be handled in the same way:

9C 7C [3]2C 1C 1, 9C 5C [3]2C 2C 2, 9C 4C 4C [3]2C 1,

6C 6C 5C [3]1C 2C 2, 6C 6C 4C 4C [3]1C 1, 8C 5C [4]2C 2C 1,

8C [4]2C 3C 3C 2.

Besides, a pull-back fromE(1=2, 1=3, 1=3) can be applied to show the non-existence
for 9 + 6 + 6 + 1 + 1 + 1, with6 ¤ 0. It is trickier to combine parts (c), (d) of
Lemma 5.2 with gauge shifts.

Of the remaining 87� 48� 7� 7� 1D 24 partitions, the following 6 (with6 ¤
0) and 11 (with6 D 0) partitions could be handled with a full knowledge of Heun
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equations with finite monodromy (that are not classified yet):

10C 8C [2]2C 1C 1, 13C [4]2C 1C 1C 1, 11C [4]2C 2C 2C 1,

9C [4]2C 3C 2C 2, 9C [5]2C 3C 1C 1, 8C [5]2C 4C 1C 1I

9C 6C 4C [2]2C 1, 8C 8C 3C [2]2C 1, 7C 7C 5C [2]2C 1,

7C 6C 4C 3C [2]2, 10C 5C [3]2C 2C 1, 7C 5C 5C [3]2C 1,

9C 5C [4]2C 1C 1, 7C 5C [4]2C 2C 2, 8C [5]2C 3C 2C 1,

6C [5]2C 4C 3C 1, 6C [5]2C 4C 2C 2.

Besides, a pull-back fromE(1=2, 1=3, 1=4) could be then applied to two partitions with
6 D 0: 12C 8C 1C 1C 1C 1, 8C 8C 5C 1C 1C 1. Other 3 partitions (with6 ¤ 0)

12C 5C [4]1C 1C 1C 1, 10C [5]1C 4C 3C 1C 1, 9C 8C [4]1C 1C 1C 1,

could be decided by Fuchsian equations with 4 + 1 singularities (i.e., 4 non-apparent
and 1 apparent). There remain only two partitions: 7 + 7 + 6 + 2 +1 + 1 with6 ¤ 0,
and 7C 7C 4C 3C 2C 1 with 6 D 0. Their non-existence might be decided by using
implied pull-backs fromE(1=2, 1=3, 1=2) to Fuchsian equations with 4C1 singularities
and the monodromy groupD2 or Z=2Z.

5.4. Uniqueness of coverings. Uniqueness of Gauss-to-Heun transformations
(and of their coverings) with a plausible branching patterncan be concluded from
uniqueness of specialized Gauss-to-Gauss transformations. In particular, the coverings
H32–H35, H43, H47 appear in the classical hypergeometric transformations listed by
Goursat [9]. The coveringsH1, H2, H7, H8, H11, H18, H42 appear in the hyper-
geometric transformations fromE(k,l ,m) with k, l , m positive integers satisfying 1=kC
1=l C 1=m < 1. As determined in [28] (and [31, Section 9]), these pull-backs are
unique up to Möbius transformations as well. The coveringsH31, H39, H41, H45 ap-
ply to hypergeometric transformations fromE(1=2,1=2,�) with infinite dihedral mono-
dromy [33, Section 4]. The pulled-back equations have infinite cyclic or dihedral
monodromy. They are, respectively,

E(1, 2�, 2�), E(1=2, 1=2, 6�), E(1, 4�, 4�), E(1=2, 1=2, 5�).

The cyclic coveringH48 gives the pull-backE(1,�,�)
4
 E(1,4�,4�) of hypergeometric

equations with infinite cyclic monodromy.
Non-unique Gauss-to-Gauss transformations appear when hypergeometric equations

E(k, l ,m) are pulled-back, withk, l , m positive integers satisfying 1=kC1=lC1=m> 1.
It the equality holds, these hypergeometric functions are integrals of holomorphic dif-
ferentials on j D 1728 or j D 0 elliptic curves [31, Section 8]. Lemma 5.3 counts
the coveringsH3, H12, H21, H40, H44, H46. If can be established (by identifying trans-
formations of holomorphic differentials on the curvesy2

D x3
� 1 and x3

C y3
D 1,
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y2
D x6

C 1) that the transformations fromE(1=2, 1=3, 1=6) to E(1=3, 1=3, 1=3) or
E(2=3,1=6,1=6) are compositions of the pull-backs of Lemma 5.3 with quadratic trans-
formations. This applies to the coveringsH15, H19, H38.

The hypergeometric equationsE(k,l ,m) with 1=kC1=lC1=m> 1 have finite mono-
dromy groups. The hypergeometric solutions are thereby algebraic functions. These
equations play a fundamental role in the classical theory ofalgebraic solutions of sec-
ond order Fuchsian equations:
Æ E(1, 1=k, 1=k), with the finite cyclic monodromyCk.
Æ E(1=2, 1=2, 1=k), with the dihedral projective monodromyDk.
Æ E(1=2, 1=3, 1=3), with the tetrahedral projective monodromyA4.
Æ E(1=2, 1=3, 1=4), with the octahedral projective monodromyS4.
Æ E(1=2, 1=3, 1=5), with the icosahedral projective monodromyA5.
By a celebrated theorem of Klein [15], all second order Fuchsian equations onP1 with
a finite monodromy group are pull-backs of one of these standard hypergeometric equa-
tions, with the same projective monodromy group. TheseKlein transformationsare
known to be unique up to Möbius transformations [1]. However,pull-back transform-
ations between hypergeometric equations with different projective monodromy need not
to be unique. Liţcanu [17, Theorem 2.1] noted non-uniqueness of the pull-backs from
E(1=2, 1=3, 1=4) to E(1=2, 1=2, 1=2) and E(1, 1=2, 1=2), of degree 6 and 12 respect-
ively. The non-uniqueness is caused by pairs of different branching patterns though,
e.g., 2C2C2D 3C3D 2C2C2 and 2C2C1C1D 3C3D 4C2. The example of

E(1=2, 1=2, 1=5)
10
 E(1=2, 1=2, 2) in [33, Section 5.4] shows that non-unique coverings

with the same branching pattern easily occur for pull-backsto equations with apparent
singularities. Besides, many compositions of

(5.2) H37W E(1=2, 1=3, 1=5)
5
 E(1=2, 1=3, 1=3)

with transformations from the tetrahedral equation are notunique either, because the
properly normalizedH37 is defined overQ(

p

�15); see formula [31, (50)].
In Table 4, the coveringsH9, H10, H13, H16, H22, H24 give Klein transformations

of E(1=2, 1=3, 1=5) to the following hypergeometric equations, respectively:

E(1=3, 1=5, 4=5), E(1=3, 2=5, 3=5), E(1=2, 1=5, 3=5),

E(2=3, 1=5, 2=5), E(1=2, 1=3, 2=5), E(1=3, 2=3, 1=5).

This illustrates the Schwarz types VIII, XV, IX, X, XIV, XII,respectively. The other
icosahedral Schwarz types are represented byE(1=3, 1=3, 2=5), E(1=5, 1=5, 4=5),
E(2=5, 2=5, 2=5), and the standardE(1=2, 1=3, 1=5). Uniqueness of the coveringsH14,
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H17, H23, H29, H30 is established by noting these Klein transformations:

E(1=2, 1=3, 1=3)
9
 E(1=2, 2=3, 4=3), E(1=2, 1=2, 1=3)

8
 E(3=2, 3=2, 2=3),

E(1=2, 1=3, 1=4)
7
 E(1=2, 1=3, 3=4), E(1=2, 1=3, 1=4)

5
 E(1=2, 2=3, 1=4),

E(1=2, 1=3, 1=3)
5
 E(1=2, 2=3, 2=3).

These considerations of reduction to hypergeometric transformations do not imme-
diately establish uniqueness of 10 coverings in Table 4. Those coverings induce rather
attractive transformations between hypergeometric equations with different finite mono-
dromy. In particular,H6, H28 pull-back E(1=2,1=3,1=3) to E(1,1,1) andE(1,1=2,1=2);
then H5, H20, H25, H27, H36 transformE(1=2,1=3,1=4) to E(1,1=2,1=2), E(1,1=3,1=3),
E(1=2, 1=3, 2=3), E(1=2, 1=2, 1=2), E(1=2, 1=2, 1=3), respectively; and finally,H4, H26,
H37 pull-back E(1=2, 1=3, 1=5) to E(1, 1=5, 1=5), E(1=2, 1=2, 1=5) and (5.2). Many of
the coverings pull-backE(1=2, 1=3, 1=2) or other dihedral hypergeometric equations to
hypergeometric equations with simpler dihedral or cyclic monodromy.
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