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Abstract
In this paper, we investigate a class of multi-group epidemic models with general

exposed distribution and relapse. Nonlinear incidence rate is used between compart-
ments. It is showed that global dynamics are completely determined by the threshold
parameterR0 under suitable conditions. More specifically, the disease will die out
if R0 � 1 and that if R0 > 1, the disease persists in all groups. The approaches
used here, are the theory of non-negative matrices, persistence theory in dynamical
systems and graph-theoretical approach to the method of Lyapunov functionals. Fur-
thermore, our results demonstrate that heterogeneity and nonlinear incidence rate do
not alter the dynamical behavior of the SIR model with general exposed distribution
and relapse. On the other hand, our global dynamical resultsexclude the existence
of Hopf bifurcation leading to sustained oscillatory solutions.

1. Introduction

For classical SIR epidemic models, the host population is divided into three dis-
joint classes called susceptible (S), infective (I) and removed (R). However, it is pointed
that many diseases have latency [1]. Susceptible individuals infected with the disease
but not yet infective are in the exposed (latent) class. After surviving the latent period,
these individuals pass into the infective class, and then recover into the removed class.
A fixed latent period can be considered as an approximation ofthe mean latent period,
and this would be appropriate for those diseases whose latent periods vary only rela-
tively slightly. For example, poliomyelitis has a latent period of 1–3 days comparing
to its much longer infectious period of 14–20 days (see e.g.,Table 3.1 in Anderson
and May [1]). However, disease such as tuberculosis, including bovine tuberculosis
(a disease spread from animal to animal mainly by direct contact) may take months
to develop to the infectious stage, and also can relapse. Since the time it takes from
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the moment of new infection to the moment of becoming infectious may differ from
disease to disease; even for the same disease, it differs from individual to individual,
it is thus of interest to account for length of the latent period as a random variable.
Many relapse phenomenon of disease observed in clinical study is an important fea-
ture of some animal and human diseases (see details in [3, 10,17, 27]), for example,
herpes, removed individuals may revert back to the infective class due to reactivation
of the latent infection or incomplete treatment [8, 32].

Van den Driessche et al. [31] formulated and studied following more realistic model
by considering a general exposed distribution function forthe length of the latent period
and the possibility of relapse:

(1.1)
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dS(t)

dt
D bN � �S(t)

I (t)

N
� bN,

E(t) D
Z t

0
�S(� )

I (� )

N
e�b(t�� ) P(t � � ) d� ,

d R(t)

dt
D r I (t) � (� C b)R(t),

I (t) D N � S(t) � E(t) � R(t),

whereN is the size of the population;S(t), E(t), I (t) and R(t) are the population sizes
of susceptible, exposed, infective, and removed classes, respectively;� > 0 is a constant
rate at which an individual in the recovered class reverts tothe infective class;b > 0
is the recruitment rate and the removal rate (this guarantees that N can be assumed as
a constant populations);� > 0 denotes the average number of effective contacts of an
infective individual per unit time, andr > 0 is the rate at which infective individuals
recover. P(t) is the probability (without taking death into account) that an exposed in-
dividual still remains in the exposed classt time units after entering the exposed class.
It is biologically reasonable to assume in [31] thatP(t) satisfies the following reason-
able properties:
(H1) P W [0,1)! [0, 1] is nonincreasing, piecewise continuous with possibly finitely
many jumps and satisfiesP(0C) D 1; limt!1

P(t) D 0 with
R

1

0 P(t) dt is positive
and finite.

For model (1.1), van den Driessche et al. [31] have shown thatthe disease-free
equilibrium (DFE) is globally asymptotically stable (GAS)if R0 < 1 (see Theorem 3.1
in [31]). One special case with a constant exposed period (the resulting model reduces
to a discrete delay differential equation system), they have proved that the system is
uniformly persistent and the endemic equilibrium (EE) is locally asymptotically stable
(LAS) if R0 > 1 (see Theorems 5.1 and 5.2 in [31]).
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Incorporating a nonlinear incidence function into (1.1), Liu et al. [23] studied the
following model

(1.2)

8

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

:

dS(t)

dt
D b� f (S(t))I (t) � bS(t),

d E(t)

dt
D f (S(t))I (t)C

Z t

0
f (S(� ))I (� )e�b(t�� ) dt P(t � � ) d� � bE(t),

d I (t)

dt
D �

Z t

0
f (S(� ))I (� )e�b(t�� ) dt P(t � � ) d� C �R(t) � (r C b)I (t),

d R(t)

dt
D r I (t) � (� C b)R(t),

where integrals are in the Riemann–Stieltjes sense and the nonlinear function f (S(t)) is
assumed to satisfy:
(H2) f W R

C

! R

C

is continuously differentiable withf (0)D 0, f 0(S) > 0 for all S> 0.
The authors in [23] shown that global threshold dynamics determined in terms of the

basic reproduction numberR0 of the model: if R0 < 1, the disease-free equilibrium is
globally asymptotically stable, whereas ifR0 > 1, a unique endemic equilibrium exists
and is globally asymptotically stable.

In recent years, multi-group epidemic models have been proposed to describe the dis-
ease transmission dynamics of many infectious disease in heterogeneous environment,
such as measles, mumps, gonorrhea, or to investigate infectious disease with multiple
hosts such as West-Nile virus and vector borne diseases suchas Malaria [11, 12]. For
a heterogeneous host population, the disease can transmit within the same group as well
as between groups. Thus host population can be divided into several homogeneous groups
in terms of modes of transmission, contact patterns, education levels, ethnic backgrounds,
gender, and professions etc. They can also be formed geographically, such as by schools,
communities and cities. So that within-group and inter-group interactions could be mod-
eled separately [21, 33, 34]. For more and detailed justifications for multi-group disease
models and many different types of heterogeneity epidemic models, see, for example,
[7, 11, 12, 14, 19, 21, 28, 33, 34] and the references cited therein.

In the present paper, a general multi-group epidemic model based on (1.2) is proposed
to describe the disease spread in a heterogeneous host population with general exposed
distribution and relapse. The host population is divided into n homogeneous groups. Let
Si , Ei , I i and Ri denote the susceptible, infected but non-infectious, infectious, and re-
moved populations in thei -th group, respectively. The disease incidence rate in thei -th
group can be calculated as

n
X

jD1

�i j f (Si (t))I j (t),

where the sum takes into account cross-infections from all groups and�i j represents the
transmission coefficient between compartmentsSi and I j . Set parameters as:
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bi the recruitment rate and the removal rate in thei -th group;
�i constant rate at which an individual in the removed class reverts to the infectious class
in the i -th group;
r i the rate at which infective individuals recover in thei -th group.

All parameter values are assumed to be nonnegative. Thus, based on system (1.2),
the newn group model is given by the following nonlinear system of 4n-dimensional dif-
ferential and integral equations:

(1.3)
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:

dSi (t)

dt
D bi �

n
X

jD1

�i j f (Si (t))I j (t) � bi Si (t),

d Ei (t)

dt
D

n
X

jD1

�i j f (Si (t))I j (t)

C

n
X

jD1

Z t

0
�i j f (Si (� ))I j (� )e�bi (t�� ) dt Pi (t � � ) d� � bi Ei (t),

d Ii (t)

dt
D �

n
X

jD1

Z t

0
�i j f (Si (� ))I j (� )e�bi (t�� ) dt Pi (t � � ) d�

C �i Ri (t) � (r i C bi )I i (t),
d Ri (t)

dt
D r i I i (t) � (�i C bi )Ri (t), i D 1, 2, : : : , n.

The first term on the right hand side of second equation in (1.3) is the rate at which new
infected individuals come into the exposed class, and the last term explains the natural
deaths. The second term accounts for the rate at which the individuals move to the infec-
tious class.

Examples of f (Si )I j satisfying (H2) include common incidence functions such as
f (Si )I j D Si I j , see e.g., [11, 13, 18];f (Si )I j D �Si I j =(1C �Si ), see e.g., [2];f (Si )I j D

Sq
i I j , see e.g., [36].

SinceEi (t), i D 1, : : : , n, are decoupled from theSi , I i and Ri equations, we only
need to consider the following sub-system of (1.3) consisting of only theSi , I i and Ri

equations of (1.3):

(1.4)
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dSi (t)

dt
D bi �

n
X

jD1

�i j f (Si (t))I j (t) � bi Si (t),

d Ii (t)

dt
D �

n
X

jD1

Z t

0
�i j f (Si (� ))I j (� )e�bi (t�� ) dt Pi (t � � ) d�

C �i Ri (t) � (r i C bi )I i (t),
d Ri (t)

dt
D r i I i (t) � (�i C bi )Ri (t), i D 1, 2, : : : , n.

Assume that eachPi satisfies assumption (H1) and f satisfies (H2). The contact matrix
B D (�i j )n�n encode the patterns of contact and transmission among groups that are built
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into the model. Associated toB, one can construct a directed graphL D G(B) whose
vertexi represents thei -th group,i D 1, 2,: : : , n. A directed edge exists from vertexj to
vertexi if and only if �i j > 0. Throughout the paper,B D (�i j )n�n is assumed to be non-
negative and irreducible. Biologically, this is the same asassuming that any two groupsi
and j have a direct or indirect route of transmission. More specifically, individuals in I j

can infect ones inSi directly or indirectly [11, 12, 21, 33, 34].
The organization of this paper is as follows. In the next section, we give some prelim-

inaries of our main model (1.4). In Section 3, the global asymptotic stability of equilibria
for R0 � 1 andR0 > 1 is investigated, respectively. The proofs of the main results utilize
the persistence theory in dynamical systems, Lyapunov functionals and a subtle grouping
technique in estimating the derivatives of Lyapunov functionals guided by graph theory,
which was recently developed in [11, 12, 21, 22]. For the convenience of the reader, we
include in Appendix A results from graph theory that are needed for our proof.

2. Preliminaries

The initial condition of the model (1.3) is assumed to be given as

(Si (0), Ei (0), I i (0), Ri (0)) 2 R4n
C

I Si (0)C Ei (0)C I i (0)C Ri (0)� 1.

The Volterra integro-differential equation system (1.3) with properties (H1) satisfies the
hypotheses stated by Miller ([24], p. 338) that are sufficientto ensure the existence,
uniqueness and continuity of solutions. Moreover, it can be verified that every solution
of (1.3) with nonnegative initial data remain nonnegative.In particular, Si (t) > 0, for
t > 0. From the first equation of (1.3), it follows thatS0i (t) � bi � bi Si (t). Hence,
lim supt!1

Si (t) � 1. For eachi , adding the four equations in (1.3) gives

S0i (t)C E0

i (t)C I 0i (t)C R0

i (t) D bi � bi (Si (t)C Ei (t)C I i (t)C Ri (t)),

which implies that, for eachi , lim supt!1

(Si (t)C Ei (t)C I i (t)C Ri (t)) D 1. Denote

0 D {(Si , Ei , I i , Ri ) 2 R
4n
W

Si , Ei , I i , Ri > 0, Si � 1, Si C Ei C I i C Ri � 1, i D 1, : : : , n}.

is the feasible region for (1.3), which is positively invariant with respect to model (1.3).
All positive semi-orbits in0 are precompactR4n (see [4]), and thus have non-empty
!-limit sets. We have the following result.

Lemma 2.1. All positive semi-orbits in0 have non-empty!-limit sets.

Model (1.4) always admits a disease-free equilibrium (DFE)P0 D (S0
1, 0, 0, 0,: : : ,

S0
n, 0, 0, 0) in0, where (S0

1, : : : , S0
n) D (1, : : : , 1). Let

qi D lim
t!1

Z t

0
e�bi � Pi (� ) d� ,
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which means the average latent period that an individual remains in the exposed class
before becoming infective or dying, and we denote

(2.1) Qi WD � lim
t!1

Z

1

0
e�bi � d

�

Pi (� ) d� .

Then, 0< qi < 1 and Qi D 1� bi qi 2 (0, 1). Define

Ji (t) WD �
Z

1

t
e�bi � d

�

Pi (� ) d� ,

it follows that Ji (t) � 0, 8t > 0 and Ji (0)D Qi > 0.
Following the method of Diekmann et al. [9], the basic reproduction numberR0 is

defined as the expected number of secondary cases produced inan entirely susceptible
population by a typical infected individual during its entire infectious period. Its bio-
logical significance is that ifR0 < 1 the disease dies out while ifR0 > 1 the disease
becomes endemic (also see Thieme [29], van den Driessche andWatmough [30]). For
model (1.4), we obtain

F D

0

B

�

Q1 f (S0
1)�11 � � � Q1 f (S0

1)�1n
...

.. .
...

Qn f (S0
n)�n1 � � � Qn f (S0

n)�nn

1

C

A

and

V D diag

�

bi (�i C bi C r i )

�i C bi

�

,

then the next generation matrix is

FV�1
D

0

B

B

B

B

B

�

Q1 f (S0
1)�11(�1C b1)

b1(�1C b1C r1)
� � �

Q1 f (S0
1)�1n(�n C bn)

bn(�n C bn C rn)
...

. ..
...

Qn f (S0
n)�n1(�1C b1)

b1(�1C b1C r1)
� � �

Qn f (S0
n)�nn(�n C bn)

�n C bn C rn

1

C

C

C

C

C

A

,

and hence the basic reproduction number of model (1.4) is calculated by the spectral
radius of the next generation matrix

R0 D �(FV�1).

It is well known that�(FV�1) D �(V�1F ). Thus

(2.2) R0 D �(M0),
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where

M0
D V�1F D

0

B

B

B

B

B

�

Q1 f (S0
1)�11(�1C b1)

b1(�1C b1C r1)
� � �

Q1 f (S0
1)�1n(�1C b1)

b1(�1C b1C r1)
...

.. .
...

Qn f (S0
n)�n1(�n C bn)

bn(�n C bn C rn)
� � �

Qn f (S0
n)�nn(�n C bn)

�n C bn C rn

1

C

C

C

C

C

A

.

Note that (1.4) may not have an endemic equilibrium (EE) for finite time t . Ac-
cording to statements in [24], if (1.4) has an EE, then it mustsatisfy the limiting sys-
tem given by

(2.3)
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:

dSi (t)

dt
D bi �

n
X

jD1

�i j f (Si (t))I j (t) � bi Si (t),

d Ii (t)

dt
D �

n
X

jD1

Z

1

0
�i j f (Si (� ))I j (� )e�bi (t�� ) dt Pi (t � � ) d�

C �i Ri (t) � (r i C bi )I i (t),
d Ri (t)

dt
D r i I i (t) � (�i C bi )Ri (t), i D 1, 2, : : : , n.

Since the limiting model (2.3) contains an infinite delay, its associated initial condition
needs to be restricted in an appropriate fading memory space. For any �i 2 (0, bi ),
define the following Banach space of fading memory type (see e.g., [15, 16] and ref-
erences therein):

Ci D

�

� 2 C((�1, 0], R) W

�(s)e�i s is uniformly continuous on (�1, 0], and sup
s�0
j�(s)je�i s

<1

�

,

and

Y
1

D {�i 2 Ci W �i (s) � 0 for all s� 0}

with norm k�ki D sups�0j�(s)je�i s. Let �,' 2 Ci be such that�t (s)D �(tCs), 't (s)D
'(t C s), s 2 (�1, 0]. Let �i , 'i 2 Ci and Ri ,0 2 RC such that�i (s) � 0, 'i (s) � 0,
s 2 (�1, 0]. We consider solutions of model (2.3), (S1t , I1t , R1(t), : : : , Snt, Int, Rn(t)),
with initial conditions

(2.4) Si 0 D �i , I i 0 D 'i , Ri (0)D Ri ,0, i D 1, 2, : : : , n.

Standard theory of functional differential equations [16]implies Si t , I i t 2 Ci for t > 0.
We consider model (2.3) in the phase space

X D
n
Y

iD1

(Ci � Ci � R).
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It can be verified that solutions of (2.3) inX with initial conditions (2.4) remain
nonnegative.

An equilibrium P�

D (S�1 , I �1 , R�

1 , : : : , S�n , I �n , R�

n ) in the interior of0 is called an
endemic equilibrium, whereS�i , I �i , R�

i > 0 satisfy the equilibrium equations

bi �

n
X

jD1

�i j f (S�i )I �j � bi S
�

i D 0,(2.5)

n
X

jD1

�i j Qi f (S�i )I �j C �i Ri � (r i C bi )I
�

i D 0,(2.6)

r i I
�

i � (�i C bi )R
�

i D 0.(2.7)

Next we will give our main results.

3. Main results

Denote

(3.1) H (u) D u � 1� ln u, 8u > 0,

then we haveH (u) � 0 and H (u) D 0 if and only if u D 1.

3.1. Global dynamics of disease free equilibrium.

Theorem 3.1. Assume that each Pi satisfies(H1), f satisfies(H2), and the ma-
trix B D (�i j )n�n is irreducible. The following results hold for model(1.4) with R0

given by(2.2):
(i) If R0 � 1, then the DFE is globally asymptotically stable.
(ii) If R0 > 1, then the DFE is unstable.

Proof. SinceB D (�i j )n�n is irreducible, the nonnegative matrix

M0
D

�

Qi�i j f (S0
i )(�i C bi )

bi (�i C r i C bi )

�

n�n

is also irreducible, andM0 has a positive left eigenvector (!1,!2, : : : ,!n) corresponding
to the spectral radiusR0 D �(M0) � 1. Let

ci D
!i (�i C bi )

bi (�i C bi C r i )
> 0.

Consider a Lyapunov functional

LDFE D

n
X

iD1

ci

"

Qi f (S0
i )H

�

f (Si (t))

f (S0
i )

�

C I i (t)C
n
X

jD1

�i j UC

C

�1

�i C bi
Ri (t)

#

,
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whereUC is given as
R t

0 Ji (� ) f (Si (t � � ))I j (t � � ) d� .
By (3.1) and assumption (H2), we know thatL1 � 0 with equality if and only if

Si (t) D S0
i , I i (t) D 0, Ri (t) D 0 and Ji (� ) f (Si (t � � ))I j (t � � ) D 0 for almost all� � 0.

Differentiating U
C

along the solution of model (1.4) and using integration by parts,
we obtain

�

�t

�

Z t

0
Ji (� ) f (Si (t � � ))I j (t � � ) d�

�

D Ji (t)Si (0)I j (0)C
Z t

0
Ji (� )

�

�t
( f (Si (t � � ))I j (t � � )) d�

D Ji (t)Si (0)I j (0)�
Z t

0
Ji (� )

�

��

( f (Si (t � � ))I j (t � � )) d�

D Qi f (Si (t))I j (t)C
Z t

0
f (Si (t � � ))I j (t � � )e�bi � d

�

Pi (� ) d� .

Thus the derivative ofLDFE is given as

(3.2)

L 0DFEj(1.4)D

n
X

iD1

ci

"

Qi

�

f (Si (t))� f (S0
i )

f (Si (t))

�

"

bi �bi Si (t)�
n
X

jD1

�i j f (Si (t))I j (t)

#

�

n
X

jD1

Z t

0
�i j f (Si (t�� ))I j (t�� )e�bi (� ) d

�

Pi (� ) d�

C�i Ri (t)� (r i Cbi )I i (t)C
n
X

jD1

�i j Qi f (Si (t))I j (t)

C

n
X

jD1

Z t

0
�i j f (Si (t�� ))I j (t�� )e�bi � d

�

Pi (� ) d�

C

�i

�i Cbi
(r i I i (t)� (�i Cbi )Ri (t))

#

D

n
X

iD1

ci Qi

�

f (Si (t))� f (S0
i )

f (Si (t))

��

bi �bi Si (t)

�

C

n
X

iD1

!i (�i Cbi )

bi (�i Cbi Cr i )

 

n
X

jD1

�i j Qi f (S0
i )I j �

bi (�i Cbi Cr i )

(�i Cbi )
I i (t)

!

D

n
X

iD1

ci Qi

�

f (Si (t))� f (S0
i )

f (Si (t))

�

[bi �bi Si (t)]C (!1, !2, : : : ,!n)(M0 I � I )

� (�(M0)�1)(!1,!2, : : : , !n)I �0, if R0�1.
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Here I (t) D (I1(t), I2(t), : : : , In(t))T . Let

Y D {(S1, I1, R1, : : : , Sn, In, Rn) W L 0DFEj(1.4)D 0},

and Z be the largest compact invariant set inY. We will show Z D (S0
1, 0, 0, : : : ,

S0
n, 0, 0). From inequality (3.2) andci > 0, L 0DFEj(1.4)D 0 implies

�

f (Si (t)) � f (S0
i )

f (Si (t))

�

[bi � bi Si (t)] D 0,

and thusSi (t) D S0
i D 1. Hence, from the first equation of (1.4), we obtain

n
X

jD1

�i j f (Si (t))I j (t) D 0,

and thus

�i j f (Si (t))I j (t) D 0,

for all t � 0 and 1� i , j � n. Then, by irreducibility ofB, for each j , there exists
i ¤ j such that�i j ¤ 0, thus I j (t)D 0, j D 1,: : : ,n. ThereforeZ D (S0

1,0,0,: : : ,S0
n,0,0).

Using Lemma 2.1 and the LaSalle–Lyapunov theorem (see Theorem 3.4.7 of [20] or
Theorem 5.3.1 of [15]), we conclude that (S0

1, 0, 0,: : : , S0
n, 0, 0) globally attracts all the

solutions of model (1.4) ifR0 � 1.
If R0 > 1 and I (t) ¤ 0, it follows that (�(M0) � 1)(!1, !2, : : : , !n)I > 0, which

implies that, in a sufficiently small enough neighborhood of(S0
1, 0, 0, : : : , S0

n, 0, 0),
L 0DFEj(1.4) > 0. Therefore, (S0

1, 0, 0, : : : , S0
n, 0, 0) is unstable whenR0 > 1.

3.2. Disease persistence.In this subsection, we obtain some global information
about the disease in terms of persistence and show that if�(M0) > 1, the disease will
persist in all groups. This conclusion together with a well-known result for persistent
systems actually implies the existence of an endemic equilibrium for the model (2.3).

For convenience, the positive solution of (2.3) is denoted by

S(t, �, ', R(0)), I (t, �, ', R(0)), R(t, �, ', R(0))

D (S1(t, �, ', R(0)), : : : , Sn(t, �, ', R(0)),

I1(t, �, ', R(0)), : : : , In(t, �, ', R(0)),

R1(t, �, ', R(0)), : : : , Rn(t, �, ', R(0))),

whose components are all positive and bounded fort > 0.

Theorem 3.2. Assume that�(M0) > 1. Then there exist anN" such that for every
(�,', R(0))2 Y

1

�Y
1

�R with '(0)> 0, the solution(S(t), I (t), R(t)) of (2.3) satisfies

lim inf
t!1

I i (t, �, ', R(0))� N", i D 1, 2, : : : , n.
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Moreover, the model(2.3) admits at least one positive equilibrium.

Proof. Define

X D {(�, ', R(0)) 2 Y
1

� Y
1

� R},

X0 D {(�, ', R(0)) 2 Y
1

� Y
1

� R 2 X W 'i (0)> 0, i D 1, 2, : : : , n},

and

�X0 D XnX0.

It then suffices to prove that (2.3) is uniformly persistent with respect to (X0, �X0).
Let 8(t) W X ! X be the solution semiflow of (2.3), that is,

8(t)(�, ', R(0))D (St (�, ', R(0)), I t (�, ', R(0), R(t, R(0))).

It follows from Lemma 2.1 that bothX and X0 are positively invariant for8(t). Clearly,
�X0 D {(�, ', R(0)) 2 X W 'i (0)D 0} for at least onei 2 {1, 2,: : : , n} and it is relatively
closed inX. Furthermore, model (2.3) is point dissipative in0.

Define

�

�

D {(�, ', R(0)) 2 X W (St (�, ', R(0)), I t (�, ', R(0), R(t, R(0))) 2 �X0}.

We next show that

(3.3) �

�

D {(�, ', R(0)) 2 �X0 W I i (t, �, ', R(0))D 0, 8t � 0}.

Assume (�, ', R(0)) 2 �
�

. It suffices to show thatI i (t, �, ', R(0)) D 0, 8t � 0.
Suppose this is not true, then there exists ani0, 0 � i0 � n, and a t0 � 0 such that
I i0(t0) > 0. Thus set{1, 2, : : : , n} can be departed intoQ1 and Q2 such that

I i (t0, �, ', R(0))D 0, 8i 2 Q1I I i (t0, �, ', R(0))> 0, 8i 2 Q2.

Obviously, Q1 is non-empty due to the definition of�
�

and Q2 is also non-empty
since I i0(t0, �, ', R(0)) > 0. For any j 2 Q1, by the irreducibility of the matrix (�i j ),
there is ani1 2 Q2 such that

d I j (t)

dt
jtDt0 D �

n
X

iD1

Z

1

0
� j i f (Sj (t0 � � ))I i (t0 � � )e�bi (� ) d

�

Pi (� ) d�

C � j Ri (t0) � (r i C bi )I j (t0) > 0.

It follows that there is an�0 such thatI j (t)> 0 for j 2 Q1 and t0 < t < t0C�0. Clearly,
we can restrict�0 > 0 small enough such thatI i (t) > 0 for i 2 Q2 and t0 < t < t0C �0.
This means that (St (�, ', R(0)), I t (�, ', R(0), R(t, R(0))) � �X0 for t0 < t < t0 C �0,
which contradicts the assumption that (�, ', R(0)) 2 �

�

. This proves (3.3).
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Let us consider the following linear system

(3.4)
dSi (t)

dt
D bi �

n
X

jD1

�i j f (Si (t)) N" � bi Si (t), i D 1, 2, : : : , n.

Note that for anyN" > 0 small enough such that (3.4) admits a unique positive equilib-
rium (S0

1( N"), : : : , S0
n( N")) which is globally asymptotically stable. By the implicitfunction

theorem, it follows that (S0
1( N"), : : : , S0

n( N")) is continuous in�1. Thus, we can further
restrict N" small enough such that (S0

1( N"), : : : , S0
n( N")) > (S0

1 � �, : : : , S0
n � �).

Next we claim that

(3.5) lim sup
t!1

max{I i (t, �, ', R(0))} > N", for all (�, ', R(0)) 2 X0.

Otherwise, there is a large enoughT1 > 0 such that 0< I i (t, �, ', R(0)) � N", i D
1, 2, : : : , n, for all t � T1. Then for t � T1, we have

(3.6)
dSi (t)

dt
� bi �

n
X

jD1

�i j f (Si (t)) N" � bi Si (t), i D 1, 2, : : : , n.

Since the equilibrium (S0
1( N"), : : : , S0

n( N")) of (3.6) is globally asymptotically stable and
S0( N") > S0

��, there is aT2 such thatS(t) > S0
�� for t � T1CT2. By the continuity of

the function f , there exists a positive constantT3 > T1CT2 such thatf (S(t))> f (S0)��
for t � T3. Further, we can chooseT4 > T3 large enough such that�

R t
0 e�bi � d

�

Pi (� ) >
Qi � � > 0, 8t > T4. Thus, we can get

�(M0(�)) D �

�

(Qi � �)�i j ( f (S0
i ) � �)(�i C bi )

bi (�i C r i C bi )

�

n�n

> 1, for sufficiently small�.

Consequently, fort � T4,

8

�

�

�

�

�

<

�

�

�

�

�

:

d Ii (t)

dt
� �

n
X

jD1

Z T4

0
�i j f (Si (t � � ))I j (t � � )e�bi (� ) d

�

Pi (� ) d�

C �i Ri (t) � (r i C bi )I i (t),
d Ri (t)

dt
D r i I i (t) � (�i C bi )Ri (t), i D 1, 2, : : : , n.

Choose sufficiently largeT5 > T4 such that f (Si (t � � )) > f (S0
i ) � �, 8t � T5 and

� 2 [0, T4]. Hence we have

d Ii (t)

dt
� �( f (S0

i ) � �)
n
X

jD1

Z T4

0
�i j I j (t � � )e�bi (� ) d

�

Pi (� ) d�

C �i Ri (t) � (r i C bi )I i (t),
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for all t � T5. By the mean value theorem for integrals we obtain that for any t , there
exists a�t 2 [t � T1, t ] such that

Z T4

0
I j (t � � )e�bi (� ) d

�

Pi (� ) d� D �I j (�t )
Z T4

0
e�bi (� ) d

�

Pi (� ) d�

> I j (�t )(Qi � ").

Then we get

d Ii (t)

dt
� ( f (S0

i ) � �)(Qi � ")
n
X

jD1

�i j I j (�t )C �i Ri (t) � (r i C bi )I i (t),

for all t � T5.

Then by a standard comparison argument and the nonnegativity, we know that the as-
sumption�(M0(�)) > 1 implies that the trivial solution of linear system

8

�

�

<

�

�

:

d Ii (t)

dt
� ( f (S0

i ) � �)(Qi � ")
n
X

jD1

�i j I j (�t )C �i Ri (t) � (r i C bi )I i (t),

d Ri (t)

dt
D r i I i (t) � (�i C bi )Ri (t), i D 1, 2, : : : , n, for all t � T5

is unstable. This together with (3.7) and the comparison theorem implies that there
is at least onei 2 1, : : : , n such that I i (t) ! 1 as t ! 1, a contradiction to the
boundedness of solutions. Therefore (3.5) holds.

Note that (S0
1, : : : , S0

n) is globally asymptotically stable inRn
C

={0} for system (3.6).
By the afore-mentioned claim, it then follows that (S0, 0, 0) is an isolated invariant set
in X, and Ws(S0, 0, 0)\ X0 D ;. Clearly, every orbit in�

�

converge to (S0, 0, 0),
and (S0, 0, 0) is the only invariant set in�

�

. By Theorem 4.6 in [29] for a stronger
repelling property of�X0, we conclude that system (2.3) is indeed uniformly persis-
tent with respect to (X0, �X0). Moreover, by theorem 2.4 in [35], system (2.3) has an
equilibrium (S�1 , : : : , S�n , I �1 , : : : , I �n , R�

1 , : : : , R�

n ) 2 X0.
Let X(t) D (�i t , 'i t , Ri (t)) be a solution of (2.3). By Lemma 2.1 and Theorem 3.2

and using similar arguments to [26], it follows that the!-limit set � of X is non-
empty, compact, and invariant and that� is the union of orbits of (2.3). By a similar
argument as Lemma 4.1 in [26], we have:

Corollary 3.1. Suppose that R0 > 1 and (�i t ,'i t ,Ri (t)) be a solution of(2.3) that
lies in �, then there exists a positive constantN" > 0 such that N" < S(t), I (t), R(t) < 1
for all t > 0.

REMARK 3.1. Uniform persistence of (2.3), together with uniform boundedness
of solutions in the interior of0, implies the existence of a positive equilibrium of (2.3)
(see Theorem 2.8.6 in [5]).
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3.3. Global dynamics of endemic equilibrium.

Theorem 3.3. Consider system(2.3). Assume that each Pi satisfies(H1), f sat-
isfies (H2), and the matrix BD (�i j )n�n is irreducible. If R0 > 1 and (�i t , 'i t , Ri (t))
is a solution to(2.3) that lies in0, then

lim
t!1

(�i t , 'i t , Ri (t)) D P�

D (S�1 , I �1 , R�

1 , : : : , S�n , I �n , R�

n ).

Proof. Let P�

D (S�1 , I �1 , R�

1 ,: : : ,S�n , I �n , R�

n ) denote the unique endemic equilibrium
of model (2.3). Define a Lyapunov functional as

L E E D Qi LSC L I CU
�

C

�i

�i C bi
L R,

where

LSD

Z Si (t)

S�i

f (�) � f (S�i )

f (�)
d�, L I D I �i H

�

I i

I �i

�

, L R D R�

i H

�

Ri

R�

i

�

,

and

U
�

D

n
X

jD1

Z

1

0
�i j f (S�i )I �i Ji (� )H

�

f (Si (t � � ))I j (t � � )

f (S�i )I �j

�

d� .

The definition of the fading memory space, Lemma 2.1 and Corollary 3.1 imply L E E

is well-defined, that is,L E E is bounded for allt � 0. It follows from Lemma 2.1
and assumption (H2) that L E E � 0 with equality if and only ifSi (t) D S�i , I i (t) D I �i ,
Ri (t) D R�

i and Si (t � � ) D S�i , I i (t � � ) D I �i for almost all� � 0.
Differentiating LS along the solution of model (2.3) and using equilibrium equa-

tions (2.5)–(2.7), we obtain

(3.7)

dLS

dt
j(2.3)

D

f (Si ) � f (S�i )

f (Si )

"

bi S
�

i C

n
X

jD1

�i j f (S�i )I �j �
n
X

jD1

�i j f (Si (t))I j (t) � bi Si (t)

#

D

f (Si ) � f (S�i )

f (Si )
[bi S

�

i � bi Si (t)] C
n
X

jD1

�i j f (S�i )I �j �
n
X

jD1

�i j f (Si (t))I j (t)

�

n
X

jD1

�i j

f 2(S�i )I �j
f (Si )

C

n
X

jD1

�i j f (S�i )I j (t).
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Differentiating L I along the solution of model (2.3), we obtain

(3.8)

dL I

dt

�

�

�

�

(2.3)

D

I i � I �i
I i

"

�

n
X

jD1

Z

1

0
�i j f (Si (t � � ))I j (t � � )e�bi (� ) d

�

Pi (� ) d�

C �i Ri (t) �

 

n
X

jD1

�i j Qi f (S�i )
I �j
I �i
C

�i R�

i

I �i

!

I i (t)

#

D

n
X

jD1

Z

1

0
�i j

I �i � I i

I i
f (Si (t � � ))I j (t � � )e�bi (� ) d

�

Pi (� ) d�

C �i Ri (t) �
�i Ri (t)I �i

I i

�

n
X

jD1

�i j Qi f (S�i )
I �j
I �i

I i (t)C
n
X

jD1

�i j Qi f (S�i )I �j �
�i R�

i

I �i
I i (t)C �i R�

i .

Differentiating L R along the solution of model (2.3) and using equilibrium equations
(2.5)–(2.7), we obtain

(3.9)

dLR

dt

�

�

�

�

(2.3)

D

Ri � R�

i

Ri

�

(�i C bi )R�

i

I �i
I i (t) � (�i C bi )Ri (t)

�

D (�i C bi )

�

R�

i � Ri C
R�

i I i

I �i
�

R�2
i I i (t)

I �i Ri (t)

�

.

Differentiating U
�

along the solution of model (2.3) and using integration by parts,
we obtain

(3.10)

dU
�

dt

�

�

�

�

(2.3)

D

n
X

jD1

Z

1

0
�i j f (S�i )I �j Ji (� )

d

dt
H

�

f (Si (t�� ))I j (t�� )

f (S�i )I �j

�

d�

D�

n
X

jD1

Z

1

0
�i j f (S�i )I �j Ji (� )

d

d�
H

�

f (Si (t�� ))I j (t�� )

f (S�i )I �j

�

d�

D

n
X

jD1

�i j f (S�i )I �i Qi H

�

f (Si (t))I j (t)

f (S�i )I �j

�

C

n
X

jD1

Z

1

0
�i j f (S�i )I �j e�bi � d

�

Pi (� )H

�

f (Si (t�� ))I j (t�� )

f (S�i )I �j

�

d�

D

n
X

jD1

�i j Qi f (Si (t))I j (t)

C

n
X

jD1

Z

1

0
�i j e

�bi � d
�

Pi (� )

�

f (Si (t�� ))I j (t�� )

� f (S�i )I �j ln
f (Si (t))I j (t)

f (Si (t�� ))I j (t�� )

�

d� .
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Combining (3.7)–(3.9) yields

(3.11)

dLE E

dt

�

�

�

�

(2.3)

D Qi
f (Si )� f (S�i )

f (Si )
[bi S

�

i �bi Si (t)]C�i R
�

i

�

2�
R�

i I i

I �i Ri
�

Ri I �i
I i R�

i

�

C

n
X

jD1

�i j Qi f (S�i )I �j

�

2�
f (Si (t))I j (t)

f (S�i )I �j
�

f (S�i )

f (Si )
C

I j (t)

I �j
�

I i (t)

I �i

�

C

n
X

jD1

Z

1

0
�i j

I �i � I i

I i
f (Si (t�� ))I j (t�� )e�bi (� ) d

�

Pi (� ) d�

C

dU
�

dt
.

Using (3.10), we rewrite (3.11) as

dLE E

dt

�

�

�

�

(2.3)

D Qi
f (Si ) � f (S�i )

f (Si )
[bi S

�

i � bi Si (t)] C �i R�

i

�

2�
R�

i I i

I �i Ri
�

Ri I �i
I i R�

i

�

C

n
X

jD1

�i j Qi f (S�i )I �j

�

2�
f (S�i )

f (Si )
C

I j (t)

I �j
�

I i (t)

I �i

�

C

n
X

jD1

�i j f (S�i )I �j

�

Z

1

0
e�bi �d

�

Pi (� )

�

f (Si (t � � ))I j (t � � )I �i
f (S�i )I �j I i (t)

C ln
f (Si (t))I j (t)

f (Si (t � � ))I j (t � � )

�

d�

� �

n
X

jD1

�i j Qi f (S�i )I �j

�

H

�

S�i
Si (t)

�

C ln
S�i

Si (t)
C

I j (t)

I �j
�

I i (t)

I �i
� ln

I j (t)

I �j
C ln

I i (t)

I �i

�

C

n
X

jD1

�i j f (S�i )I �j

Z

1

0
e�bi � d

�

Pi (� )H

�

f (Si (t � � ))I j (t � � )I �i
f (S�i )I �j I i (t)

�

d�

�

n
X

jD1

�i j Qi f (S�i )I �j

�

I j (t)

I �j
�

I i (t)

I �i
� ln

I j (t)

I �j
C ln

I i (t)

I �i

�

.

Here we used the facts that

f (Si ) � f (S�i )

f (Si )
[bi S

�

i � bi Si (t)] � 0,

�

2�
R�

i I i

I �i Ri
�

Ri I �i
I i R�

i

�

� 0,(3.12)

H

�

S�i
Si (t)

�

� 0 and H

�

f (Si (t � � ))I j (t � � )I �i
f (S�i )I �j I i (t)

�

� 0.(3.13)
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Set

N

�i j D �i j Qi f (S�i )I �j , 1� i , j � n,

and

NB D

2

6

6

6

6

6

6

6

6

6

6

4

X

l¤1

N

�1l �

N

�21 � � � �

N

�n1

�

N

�12

X

l¤2

N

�2l � � � �

N

�n2

...
...

. ..
...

�

N

�1n �

N

�2n � � �

X

l¤n

N

�nl

3

7

7

7

7

7

7

7

7

7

7

5

.

Note that NB is the Laplacian matrix of the matrix (N�i j )n�n (see Appendix). Since (�i j )n�n

is irreducible, matrices (N�i j )n�n and NB are also irreducible. LetCi j denote the cofac-
tor of the (i , j ) entry of NB. We know that systemNBv D 0 has a positive solutionv D
(v1, v2, : : : , vn), wherevi D Ci i > 0 for i D 1, : : : , n.

Set

L D
n
X

iD1

vi L E E,

then

dL

dt

�

�

�

�

(2.3)

D

n
X

iD1

vi
dLE E

dt
j(2.3)

�

n
X

i , jD1

vi�i j Qi f (S�i )I �j

�

I j (t)

I �j
�

I i (t)

I �i
� ln

I j (t)

I �j
C ln

I i (t)

I �i

�

D

n
X

i , jD1

vi�i j Qi f (S�i )I �j

�

I j (t)

I �j
�

I i (t)

I �i

�

�

n
X

i , jD1

vi�i j Qi f (S�i )I �j

�

ln
I �i I j (t)

I i (t)I �j

�

DW 91 �92.

We first show91 � 0 for all I1, I2, : : : , In > 0. It follows from NBv D 0 that

n
X

jD1

N

� j i v j D

n
X

kD1

N

�ikvi

or using N� j i D � j i Q j f (S�j )I �i ,

n
X

jD1

� j i Qi f (S�j )I �i v j D

n
X

kD1

�ik Qk f (S�i )I �k vi , i D 1, : : : , n.



134 J. WANG, X. L IU , J. PANG AND D. HOU

This implies that

n
X

i , jD1

vi�i j Q j S
�

i I j D

n
X

iD1

Ei

n
X

jD1

� j i Qi S
�

j v j D

n
X

iD1

I i

I �i

n
X

kD1

�ik Qk f (S�i )I �k vi

D

n
X

i , jD1

vi�i j Q j S
�

i I �j
I i

I �i
,

and thus91 � 0 for all I1, I2, : : : , In > 0.
Next we show92 � 0 for all I1, I2, : : : , In > 0. Let G denote the directed graph

associated with matrix (N�i j ). G has vertices 1, 2,: : : , n with a directed arc (i , j ) from
k to j if and only if N�i j ¤ 0. E(G) denotes the set of all directed arcs ofG. Using
Kirchhoff’s Matrix Tree Theorem (see Appendix), we know thatvi D Ci i can be inter-
preted as a sum of weights of all directed spanning subtreesT of G that are rooted at
vertex i . Consequently, each term invi N�i j is the weightw(Q) of a unicyclic subgraph
Q of G, obtained from such a treeT by adding a directed arc (i , j ) from the root i
to vertex j . Note that the arc (i , j ) is part of the unique cycleC Q of Q, and that the
same unicyclic graphQ can be formed when each arc ofC Q is added to a correspond-
ing rooted treeT . Therefore, the double sum in92 can be reorganized as a sum over
all unicyclic subgraphsQ containing vertices 1, 2,: : : , n, that is,92 D

P

Q HQ, where

HQ D w(Q) �
X

(i , j )2E(C Q)

ln
I �i I j

I i I �j
D w(Q) � ln

 

Y

(i , j )2E(C Q)

I �i I j

I i I �j

!

.

Since E(C Q) is the set of arcs of a cycleC Q, we have

Y

(i , j )2E(C Q)

I �i I j

I i I �j
and thus ln

 

Y

(i , j )2E(C Q)

I �i I j

I i I �j

!

D 0,

which implies HQ D 0 for eachQ, it follows that92 � 0, for all I1, I2, : : : , In > 0.
Together with (3.12) and (3.13), we get (dL=dt)j(2.3)� 0 with equality holds if and

only if

Si (t) D Si (t � � ) D S�i , I i (t) D I i (t � � ) D I �i , Ri (t) D R�

i .

Therefore, the only compact invariant subset of the set where (dL=dt)j(2.3) D 0 is the
singleton{P�}. By LaSalles invariance principle,P� globally attracts in the interior
of 0. That is, limt!1

(�i t , 'i t , Ri (t)) D P�

D (S�1 , I �1 , R�

1 , : : : , S�n , I �n , R�

n ). The proof
is complete.

REMARK 3.2. Compared to results in [11] and [12], the group structure in sys-
tem (1.4) and (2.3) greatly increases the complexity exhibited in the derivatives of the
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Lyapunov functionals. The key to our analysis is a complete description of the patterns
exhibited in the derivative of the Lyapunov functionals using graph theory.

Appendix

Given a nonnegative matrixA D (ai j ), the directed graph G(A) associated with
AD (ai j ) has vertices 1, 2,: : : , n with a directed arc (i , j ) from i to j iff ai j D 0. It is
strongly connectedif any two distinct vertices are joined by an oriented path. Matrix
A is irreducible if and only ifG(A) is strongly connected [6]. Atree is a connected
graph with no cycles. A subtreeT of a graphG is said to bespanningif T contains
all the vertices ofG. A directed treeis a tree in which each edge has been replaced
by an arc directed one way or the other. A directed tree is saidto be rooted at a
vertex, called the root, if every arc is oriented in the direction towards to the root. An
oriented cyclein a directed graph is a simple closed oriented path. Aunicyclic graph
is a directed graph consisting of a collection of disjoint rooted directed trees whose
root are on an oriented cycle. We refer the reader to ([25], Theorem 5.5) for more
details of these concepts.

For a given nonnegative matrixAD (ai j ), let

L D

2

6

6

6

6

6

6

6

6

6

6

4

X

l¤1

Na1l �Na21 � � � �Nan1

�Na12

X

l¤2

Na2l � � � �Nan2

...
...

...
...

�Na1n �Na2n � � �

X

l¤n

Nanl

3

7

7

7

7

7

7

7

7

7

7

5

be the Laplacian matrix of the directed graphG(A) and Ci j denote the cofactor of the
(i , j ) entry of L. For the linear system

(3.14) Lv D 0,

the following results hold (see details in [12]).

Theorem 3.4 (Kirchhoff’s matrix tree theorem). Assume that n� 2 and that A
is irreducible. Then following results hold:
(1) The solution space of system(3.14) has dimension1, with a basis(v1,v2, : : : ,vn)D
(C11, C22, : : : , Cnn).
(2) For 1� k � n,

Ckk D
X

T2Tk

w(T) D
X

T2Tk

Y

(r,m)2E(T)

arm > 0,
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whereTk is the set of all directed spanning subtrees of G(A) that are rooted at vertex
k, w(T) is the weight of a directed tree T, and E(T) denotes the set of directed arcs
in T .
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