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Abstract
We establish an estimate on weaklyq-convex domains inCn which provides a

unified approach to various existence results for theN�-problem. We also prove a
Diederich–Fornaess type result for weaklyq-convex domains.

1. Introduction

Let � � Cn be a pseudoconvex domain and let� 2 C2(�) be a strictly pluri-
subharmonic function. A variant of Hörmander’s theorem ([10]) states that for any
N

�-closed (0, 1)-form f D f
Nj dzj 2 L2

0,1(�, loc) there exists a solution ofN�u D f
satisfying

Z

�

juj2e�� �
Z

�

j f j2p
�1 � N��

e��

where j f j2p
�1� N��

WD �

Nj k f
Nj f
Nk and (� Nj k) WD (� j Nk)�1. A geometric observation is that

p

�1� N�� is the curvature form of the Hermitian metrice�� on the trivial line bun-
dle. As proved in [9], the length of the (0, 1)-form could be calculated w.r.t. another
curvature form. The pointwise normj f j2p

�1� N� 
is used in [9] instead ofj f j2p

�1� N�'

where is any strictly plurisubharmonic function such that�e� is plurisubharmonic.
The latter result was then further generalized to non-plurisubharmonic weights ([7], [8],
[2], [3]), i.e., the curvature of the Hermitian metric on trivial bundle is not necessar-
ily positive. Berndtsson–Błocki–Donnelly–Fefferman type results are closely related to
the Ohsawa–Takegoshi extension theorem and Bergman metric(see [4], [5], [2], [8]).

We will consider, in the present paper, theN�-problem onq-convex domains. We
follow [11] in defining the notions ofq-convexity andq-subharmonicity. We begin by
recalling some basic notions and related preliminaries on exterior algebra. We prove
a Diederich–Fornaess type result for weaklyq-convex domains (Theorem 1). Let' 2
C1(�) be aq-subharmonic function and let 2 C1(�)) be a function such that the
real (1,1)-formÆ

p

�1� N�'�
p

�1� ^ N� is q-positive semi-definite (see Definition 3)
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for some constantÆ 2 [0, 4), we will establish the following a priori estimate

k

N

�

�

'�(1=2) gk2
'

C k

N

�gk2
'

�

(2�
p

Æ)2

4

Z

�

hF
'

g, gie�' ,(�)

for any (p, q)-form g 2 Dom(N��)\C1

p,q(�) on weaklyq-convex domains with smooth
boundary. Here we have used the notationF

'

D ' j Nk dzk ^ �=�zj y. When D 0 we
can chooseÆ D 0, so (�) generalizes Hörmander’s estimate toq-convex domains and
q-subharmonic weight functions. Actually, (�) also implies the following Donnelly–
Fefferman type estimate.

k

N

�

�

'C� 

gk2
'C 

C k

N

�gk2
'C 

� �

2
Z

�

hF
 

g, gie�'� ,(��)

for any g 2 Dom(N��) \ C1

p,q(�) where' 2 C1(�) is a q-subharmonic function, 2

C1(�) with �e� being q-subharmonic and� 2 (0, 1=2] is a constant. This esti-
mate implies an existence theorem of Berndtsson–Błocki–Donnelly–Fefferman type
(see Corollary 2 below). This kind of theorems may help produce a desired curva-
ture term without the contribution of the metric which has important applications (e.g.,
Ohsawa–Takegoshi type extension theorems). The curvatureoperator F

'

of a certain
Hermitian metric will play an important role in our formulation of main results. Ap-
plications for p-convex Riemannian manifolds can be found in [12].

Here are the main results of the present paper:

Theorem 1. Let � b C

n be a weakly q-convex domain with smooth boundary
and let r 2 C1(�) be a defining function for�. Then for any strictly q-subharmonic
function � 2 C1(�), there exist constants K> 0, �0 2 (0, 1) such that for any� 2
(0, �0) the function� WD �(�re�K�)� is strictly q-subharmonic on�.

Theorem 2. Let � be a weakly q-convex domain inCn (1� q � n) and let' 2
C2(�) be a q-subharmonic function on� and 2 C1(�). Assume that the real(1, 1)-
form Æ

p

�1� N�'�
p

�1� ^ N� is q-positive semi-definite for some constantÆ 2 [0,4).
Then for anyN�-closed(p, q)-form f 2 L2

p,q(�, loc) (0� p � n), if

Z

�

hF�1
'

f, f ie�'C <1,

there exists a(p, q � 1)-form u2 L2
p,q�1(�, ' �  ) such that

N

�u D f , kuk2
'� 

�

4

(2�
p

Æ)2

Z

�

hF�1
'

f, f ie�'C ,

where F�1
'

is defined by(8) and it is required implicitly that F�1
'

f is defined almost
everywhere in�.
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Corollary 1. Let � be a weakly q-convex domain inCn (1 � q � n) and let '
be a q-subharmonic function on�. Then for anyN�-closed(p,q)-form f 2 L2

p,q(�, loc)
(0� p � n), if

Z

�

hF�1
'

f, f ie�' <1,

there exists a(p, q � 1)-form u2 L2
p,q�1(�, ' �  ) such that

N

�u D f , kuk2
'

�

Z

�

hF�1
'

f, f ie�'.

Corollary 2. Let � be a weakly q-convex domain inCn (1 � q � n) and let
' be a q-subharmonic function on�,  2 C2(�) be a function such that�e� is
q-subharmonic. For any constantÆ 2 [0, 1) and N�-closed(p, q)-form f 2 L2

p,q(�, loc)
(0� p � n), if

Z

�

hF�1
 

f, f ie�'CÆ <1

then there exists a(p, q � 1)-form u2 L2
p,q�1(�, ' � Æ ) such that

N

�u D f , kuk2
'�Æ 

�

4

(1� Æ)2

Z

�

hF�1
 

f, f ie�'CÆ .

Corollary 3. Let � be a weakly q-convex domain inCn (1 � q � n) and let '
be a q-subharmonic function on�,  2 C2(�) be a strictly plurisubharmonic function
such that�e� is q-subharmonic. For any constantÆ 2 [0, 1) and N�-closed(p,q)-form
f 2 L2

p,q(�, loc) (0� p � n), if

Z

�

 

Nj k f I , j K f I ,kKe�'CÆ <1

then there exists a(p, q � 1)-form u2 L2
p,q�1(�, ' � Æ ) such that

N

�u D f , kuk2
'�Æ 

�

4

q2(1� Æ)2

Z

�

 

Njk f I , j K f I ,kKe�'CÆ 

where ( Nj k) WD ( j Nk)�1.

Corollary 4. Let � be a weakly q-convex domain inCn (1 � q � n) and let '
be a q-subharmonic function on�,  2 C2(�) be a q-subharmonic function such that
�e� is q-subharmonic. For anyN�-closed(p, q)-form f 2 L2

p,q(�, loc) (0� p � n), if

Z

�

hF�1
 

f, f ie�' <1
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then there exists a(p, q � 1)-form u2 L2
p,q�1(�, ') such that

N

�u D f , kuk2
'

� 4
Z

�

hF�1
 

f, f ie�'.

Corollary 5. Let � be a bounded weakly q-convex domain inCn (1 � q � n)
and let ' be a q-subharmonic function on�. For any N�-closed (p, q)-form f 2
L2

p,q(�, ') (0� p � n), there exists a(p, q � 1)-form u2 L2
p,q�1(�, ') such that

N

�u D f , kuk
'

�

2d

q
k f k

'

where d is the diameter of�.

Since there are plenty ofq-subharmonic functions which are not plurisubharmonic
when q � 2, our results provide more flexibility in choosing weights for L2-estimates.
Such flexibility may help us make generalizations and improvements on existence re-
sults for the N�-problem. Let� be the function in Theorem 1 above, then it is easy
to see that�e� is strictly q-subharmonic on� where WD � log(��), as a conse-
quence, we obtain Theorem 2.4 in [11]. Theorem 1 was originally proved by Diederich
and Fornæss ([6]) for pseudoconvex domains, i.e. the case ofq D 1. Theorem 2 was
obtained by Błocki ([5]) for (0, 1)-forms on pseudoconvex domains. Corollary 1 is a
strengthen version of Theorem 3.1 in [11]. In the case ofq D 1, Corollary 2 recovers
a result due to Błocki ([3]). The arguments used in [3] and [5]do not indicate the esti-
mates (�), (��). Corollary 3 above improves the main result in [1] and our Corollary 5
improves slightly a result due to Hörmander (Theorem 2.2.3 in [10]) whenq � 2.

2. Weakly q-convex domains

We begin by establishing the basic notation.
We will adhere to the summation convention that sum is performed over strictly in-

creasing multi-indices. The coordinates ofCn are chosen such that the standard Kähler
form of Cn is given by

p

�1dzj ^dzj . Let � be a domain inCn and let� 2 C1(�),
we denote byr0,1

� the (0, 1)-part of the gradientr� of � w.r.t. the standard Kähler
metric, i.e.r0,1

� D � j �=�zj . We useh � , � i to denote the induced (pointwise) Hermit-
ian inner product of (p, q)-forms on�. Following [10], the weightedL2 Hermitian
inner product of (p, q)-forms will be denoted by (� , � )

�

and the corresponding Hilbert
space will be denoted byL2

p,q(�, �).
Let � be a domain inCn, 1 � q � n, we recall the notion ofq-subharmonicity

([11], [14] and [13]).

DEFINITION 1. Let ' be an upper semi-continuous function on�, we say' is
q-subharmonic on� if the restriction of' to any q dimensional complex submanifold
of � is subharmonic w.r.t. the induced metric.
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REMARK 1. It is easy to show (see [1], [14]) that for any' 2 C2(�), ' is
q-subharmonic if and only if any sum ofq eigenvalues of the complex Hessian

'i Nj dzi 
 dzj

of ' is nonnegative. If any sum ofq eigenvalues of the complex Hessian is positive,
� is then called strictlyq-subharmonic. Moreover, everyq-subharmonic function could
be approximated by a decreasing sequence of smoothq-subharmonic functions. It is
easy to see that 1-subharmonicity is equivalent to plurisubharmonicity.

Following [11] and [13], we introduce the notion ofq-convexity.

DEFINITION 2. Assume� is a smooth domain, andr a defining function for�,
then we say that� is weakly q-convex if at every pointb 2 �� we have

r i Nj (b)gi K g j K � 0

for every (0,q)-form g D g
NJ dzJ such that

r i gi K D 0

for all multi-indices K with jK j D q � 1. For a general domain� � Cn, we call it
weakly q-convex if it could be exhausted by smooth weaklyq-convex domains.

REMARK 2. It is easy to see thatq-subharmonicity (convexity) implies (qC 1)-
subharmonicity (convexity). The notions ofq-subharmonicity andq-convexity are both
invariant under a unitary change of coordinates, but not preserved by biholomorphic
transformations.

Assume� � Cn is a smooth domain, and r 2 C1(�) is a defining function for�.
Let � 2 C1(�) and g 2 C1

p,q(�) satisfy

r i gI ,i K D 0

for all multi-indices K with jI j D p, jK j D q � 1, then we have the standard Kohn–
Morrey–Hörmander identity

k

N

�gk2
�

C k

N

�

�

�

gk2
�

D

Z

�

� j �Nk�gI , j K gI ,kKe��

C

Z

��

� j �NkrgI , j K gI ,kK

1

jrr j
e��

C

Z

�

j�

Nj gI ,J j
2e��.
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When� is q-convex, we obtain the following inequality

(1) k

N

�gk2
�

C k

N

�

�

�

gk2
�

�

Z

�

� j �Nk�gI , j K gI ,kKe��.

We denote by
Vp,q the linear space of (p,q)-forms, i.e.

Vp,q
D span

C

{dzI ^dzJ j

jI j D p, jJj D q}. For any real (1, 1)-form� D
p

�1� j Nk dzj ^ dzk, we introduce a

self-adjoint linear operator on
Vp,q by setting

(2) F
�

D � j Nk dzk ^
�

�zj
y

where y means the interior product. We also set the notationF
�

WD Fp
�1� N�� for a

smooth function�.
With the linear operatorF

�

, we can rewrite the integrand on the right hand side
of (1) as follows

(3)

� j �Nk�gI , j K gI ,kK D

�

� j Nk
�

�zj
yg

�

I , NK

�

�

�

�zk
yg

�

I , NK

D

�

� j Nk
�

�zj
yg,

�

�zk
yg

�

D hF
�

g, gi.

Consequently, we obtain by the Kohn–Morrey–Hörmander identity and (3)

(4) k

N

�gk2
�

C k

N

�

�

�

gk2
�

�

Z

�

hF
�

g, gie�� WD (F
�

g, g)
�

.

Denote the eigenvalues of the matrix (� j Nk) by

�1 � � � � � �n,

after a unitary change of coordinates, we haveF
�

D � j dzj ^ �=�zj y. For any multi-
indices I , J with jI j D p, jJj D q, set

(5) �I ,J WD
X

j2J

� j ,

it holds that

F
�

dzI ^ dzJ D � j dzI ^ dzj ^
�

�zj
y dzJ

D � j dzI ^ dzj ^

q
X

aD1

(�1)a�1
Æ j ja dzj1 ^ � � � ^

bdzja ^ � � � ^ dzjq

D

X

j2J

� j dzI ^ dzJ D �I ,J dzI ^ dzJ
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where the circumflex over a term means that it is to be omitted.Hence eigenvalues of
the mapF

�

are given by

(6) �I ,J , jI j D p, jJj D q.

DEFINITION 3. Let � D
p

�1� j Nk dzj ^dzk be a real (1,1)-form onCn, 1� q � n.
� is said to beq-positive semi-definite (q-positive) if �1 C � � � C �q � 0 (> 0) where
�1 � � � � � �n are the eigenvalues of the matrix (� j Nk).

REMARK 3. By formula (6),� is q-positive semi-definite if and only if the op-
erator F

�

W

Vp,q
!

Vp,q is a positive semi-definite for any 0� p � n. We have the
following criterion for q-subharmonicity of a smooth function�.

� is q-subharmonic (strictlyq-subharmonic) on� if and only if F
�

is q-positive
semi-definite (definite) at each point of�.

Since F
�

W

Vp,q
!

Vp,q is self-adjoint, we have the following orthogonal
decomposition

(7)
p,q̂

D Ker F
�

� Im F
�

,

which implies thatF
�

induces an isomorphismF
�

jIm F
�

W Im F
�

! Im F
�

. We can there-
fore define

(8) F�1
�

WD (F
�

jIm F
�

)�1
W Im F

�

! Im F
�

for any real (1, 1)-form� . Notice thatF
�

itself is not required to be invertible in the
above definition.

When � is q-positive, we know by (6)

(9) (F�1
�

g)I , NJ D �
�1
I ,JgI , NJ

holds for anyg D gI , NJ dzI ^ dzJ 2
Vp,q and any given multi-indicesI , J satisfying

jI j D p, jJj D q.
If the function� is further assumed to be strictly plurisubharmonic, we denote by

(� Njk) the inverse matrix of the complex Hessian matrix (� j Nk), then we have

(10)

hF�1
�

g, gi D ��1
I ,J jgI , NJ j

2

D

 

X

j2J

� j

!

�1

jgI , NJ j
2

�

1

q2

X

j2J

�

�1
j jgI , NJ j

2

(3) (5)
D

1

q2
�

NjkgI , j K gI ,kK
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for arbitrary g D gI , NJ dzI ^ dzJ 2
Vp,q.

We conclude this section by proving a Diederich–Fornaess type result for smooth
bounded weaklyq-convex domains.

Proof of Theorem 1. By Remark 3, it suffices to show thathF
�

g, gi > 0 for any

0¤ g 2
V0,q. A direct computation gives

(11)

hF
�

g, gi D �(�r )��2e��K�
� [Kr 2(hF

�

g, gi � �K jr0,1
�ygj2)

� r (hFr g, gi � 2�K<hr0,1
�yg, r0,1r ygi)

C (1� �)jr0,1r ygj2].

Throughout the proof, we denote byA1, A2,: : : various constants which are independent
of �, K .

Since the boundary of� is assumed to be smooth, for any sufficiently small" > 0
there is a smooth map� W N

"

! �� such that

(12) dist(z, ��) D jz� �(z)j, z 2 N
"

where N
"

WD {z 2 � j r (z) > �"}. As the functionr 2 C1(�) is a defining function
for �, there exists a constantA1 > 0 which only depends on" such that

(13) dist(z, ��) � �A1r (z), A1 � jrr (z)j, z 2 N
"

.

For any g 2
V0,q, z 2 N

"

, set

g1(z) D
1

jr

0,1r (z)j2
r

0,1r (z)y N�r (z) ^ g, g2(z) D
1

jr

0,1r (z)j2
N

�r (z) ^ r0,1r (z)yg,

then we haveg D g1(z)C g2(z), jgj2 D jg1(z)j2C jg2(z)j2 and

(14) r

0,1r (z)yg1(z) D 0, jg2(z)j �
1

jr

0,1r (z)j
jr

0,1r (z)ygj

for every z 2 N
"

. From (12) and the first inequality in (13), there is a constant A2 > 0
such that

(15)
jhFr g1, g1i(z) � hFr g1, g1i(�(z))j D

�

�

�

�

Z 1

0

d

dt
hFr g1, g1i(tzC (1� t)�(z)) dt

�

�

�

�

� �A2r (z)jgj2

holds for anyz 2 N
"

. By (3), the identity in (14) and Definition 2, we get

hFr g1, g1i(�(z)) � 0, z 2 N
"

.
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Therefore, for anyz 2 N
"

, the following estimate follows from (15)

hFr g1, g1i(z) � A2r (z)jgj2.

Taking into account of the inequality in (14) andjg1(z)j � jgj, the above estimate im-
plies that

(16) hFr g, gi(z) � A2r (z)jgj2 �
A3

jr

0,1r (z)j
jr

0,1r (z)ygjjgj

holds for anyz 2 N
"

where A3 > 0 is another constant.
Since� is strictly q-subharmonic on�, there is a constant� > 0 such that

(17) hF
�

g, gi(z) � �K jr0,1
�(z)ygj2 � (� � A4�K )jgj2

holds for anyz 2 � where A4 WD sup
�

jr

0,1
�j

2. From (11) and (17), there exists a
constantA5 > 0 such that

(18) hF
�

g, gi(z) � �(�r )��2e��K�

�

Kr 2(z)

�

� �

�

1� �
A4K

�

� A5

�

jgj2

holds for anyz 2 �.
When K > 4A5=(�"2) and � 2 (0, �=(2A4K C � )), (18) implies that

(19) hF
�

g, gi �
1

4
�(�r )��2e��K�K "2

� jgj2

holds on� n N
"

.
Similarly, for any constants� 2 (0, �=(2A4K )) and K > (4=� )(A2C (� 2

=(4A4))C
2A2

6 C �

2), A6 WD A3=(2A1), from (11), (16) and (17) it follows that the following
inequality holds onN

"

(20)

hF
�

g, gi � �(�r )��2e��K�[K (� � A4�K ) � A2]r 2
jgj2

C 2(A6C A4�K )jr0,1r ygjr jgj

C (1� �)jr0,1r ygj2

� �(�r )��2e��K�

�

K (� � A4�K ) � A2 �
2A2

6C 2A2
4�

2K 2

1� �

�

r 2
jgj2

� �(�r )��2e��K�

�

K�

2
� A2 � 4A2

6 � �
2

�

r 2
jgj2

�

1

4
�(�r )��2e��K�Kr 2

� jgj2.

By combining (19) and (20), we know Theorem 1 is true for any constant K >

(4=� )(A2C �
2
=(4A4)C A5="

2
C 2A2

6C �
2) and �0 WD �=(2A4K C � ).
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3. Donnelly–Fefferman type estimate

We will prove, in this section, the existence results in the present paper. The key
for our proofs is to establish an a priori estimate of Donnelly–Fefferman type from
which we get the existence theorem 1. Since the constantÆ involved in this estimate
would be allowed to have value zero, we also obtain an existence result of Donnelly–
Fefferman type and Hömander type (with one weight function). We first recall a basic
lemma from functional analysis which is due to Hörmander (see [10]).

Lemma. Let H1
T
�! H2

S
�! H3 be a complex of closed and densely defined opera-

tors between Hilbert spaces. For any f2 Ker S and any constant C> 0, the following
conditions are equivalent.
1. There exists some u2 H1 such that T uD f and kukH1 � C.
2. j( f, g)H2j

2
� C2(kT�gk2H1

C kSgk2H3
) holds for each g2 Dom(T�) \ Dom(S).

Proof of Theorem 2. We consider first the case where� is a bounded domain in
C

n with smooth boundary and',  2 C1(�)
We will apply the above lemma to following weightedL2-spaces of differential

forms

H1 D L2
p,q�1

�

�, ' �
1

2
 

�

, H2 D L2
p,q

�

�, ' �
1

2
 

�

, H3 D L2
p,qC1

�

�, ' �
1

2
 

�

and the operators

T D N� Æ e�(1=4) , SD e�(1=4) 
Æ

N

�.

In order to use the above lemma, we need to show that the following estimate

(21)

j( f, g)
'�(1=2) j

2

�

4(F�1
'

f, f )
'� 

(2�
p

Æ)2
(ke(�1=4) 

N

�

�

'�(1=2) gk2
'�(1=2) C ke

�(1=4) 
N

�gk2
'�(1=2) )

holds for arbitraryg 2 Dom(N��) \ C1

p,q(�).

Let g 2 DomN�� \ C1

p,q(�), from

N

�

�

'

g D N��
'�(1=2) gC

1

2
r

0,1
 yg,

by using Cauchy’s inequality with", it follows that

k

N

�

�

'

gk2
'

�

1C �

�

k

N

�

�

'�(1=2) gk2
'

C

1C �

4
kr

0,1
 ygk2

'
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for any positive constant�. For any" 2 [0, 4), let

� D

2
p

Æ

� 1,

then the above inequality becomes

(22) k

N

�

�

'

gk2
'

�

2

2�
p

Æ

k

N

�

�

'�(1=2) gk2
'

C

1

2
p

Æ

kr

0,1
 ygk2

'

.

Since Æ
p

�1� N�' �
p

�1� ^ N� is q-positive semi-definite, we get the following
inequality

(23) ÆhF
'

g, gi � jr0,1
 ygj2.

Substituting (22) and (23) into Hörmander’s estimate (4), the q-subharmonicity of
' gives

2

2�
p

Æ

k

N

�

�

'�

1
2 

gk2
'

C k

N

�gk2
'

� k

N

�

�

'

gk2
'

C k

N

�gk2
'

�

1

2
p

Æ

kr

0,1
 ygk2

'

�

2�
p

Æ

2

Z

�

hF
 

g, gie�'

which further implies the desired estimate (�) as follows

ke�(1=4) 
N

�

�

'�(1=2) gk2
'�(1=2) C ke

�(1=4) 
N

�gk2
'�(1=2) D k

N

�

�

'�(1=2) gk2
'

C k

N

�gk2
'

� k

N

�

�

'�(1=2) gk2
'

C

2�
p

Æ

2
k

N

�gk2
'

�

(2�
p

Æ)2

4

Z

�

hF
'

g, gie�'.

Since' is q-subharmonic, the Cauchy–Schwarz inequality applied to the positive semi-
definite Hermitian form (F

'

� , � )
'

gives

j( f, g)
'�

1
2 
j

2
D j(F

'

Æ F�1
'

e(1=2) f, g)
'

j

2

� (e(1=2) f, e(1=2) F�1
'

f )
'

(F
'

g, g)
'

�

4(F�1
'

f, f )
'� 

(2�
p

Æ)2
(ke�(1=4) 

N

�

�

'�(1=2) gk2
'�

1
2 
C ke�(1=4) 

N

�gk2
'�(1=2) )

where F�1
'

is defined by (8). Thus the estimate (21) has been proved forg 2 DomN��\

C1

p,q(�). By using the density lemma (Proposition 1.2.4 in [10]), weknow that (22)
holds for anyg 2 Dom(T�) \ Dom(S). Consequently, by the lemma we mentioned at
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the beginning of this section, there exists somev 2 L2
p,q�1(�, ' � (1=2) ) such that

Tv D f , kvk2
'�(1=2) �

4

(2�
p

Æ)2
(F�1
'

f, f )
'� 

.

Set u D e�(1=4) 
v, then we getu 2 L2

p,q�1(�, ' �  ) and

(24) N

�u D f , kuk2
'� 

D kvk

2
'�(1=2) �

4

(2�
p

Æ)2
(F�1
'

f, f )
'� 

.

Theorem 2 now follows, in its full generality, from (24), thestandard argument of
smooth approximation and taking weak limit (see e.g. [10]).

Proof of Corollary 1. Corollary 1 follows from Theorem 2 by choosing Æ D 0
and D 0.

Proof of Corollary 2. Let '1 D ' C  and  1 D (1 C Æ) , then '1 is
q-subharmonic. Since

(1C Æ)2
p

�1 � N�'1 �
p

�1 � 1 ^ N� 1 D (1C Æ)2[
p

�1 � N�' C
p

�1e � N�(�e� )],

the assumption that' and �e� are both q-subharmonic functions implies that
(1C Æ)2

p

�1 � N�'1 �
p

�1 � 1 ^ N� 1 is q-positive semi-definite. Applying Theorem 2
to the weights'1 and 1, we obtain Corollary 2.

Proof of Corollary 3. Corollary 3 follows directly from Corollary 2 and the point-
wise inequality (10).

Proof of Corollary 4. Corollary 4 follows directly from Corollary 2 by choosing the
constantÆ to be 0.

Proof of Corollary 5. Without loss of generality, we assume that � contains the
origin of Cn. Let  D qjzj2=d2, then (9) implies thatF�1

 

D (d2
=q2)Id on (p,q)-forms.

Since the complex Hessian of�e� is given by

q

d2
e� 

�

dzi 
 dzi �
q

d2
zi dzi 
 zj dzj

�

,

we know that any sum ofq eigenvalues of the complex Hessian of�e� is no less than

q

d2
e� 

��

1�
q

d2
jzj2

�

C q � 1

�

D

q2

d2
e� 

�

1�
jzj2

d2

�

� 0.
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So �e� is, by definition, aq-subharmonic function on� (but not plurisubharmonic).
Applying Corollary 4 with the weight D qjzj2=d2, we obtain the following estimate
for the solutionu

kuk2
'

�

4d2

q2
k f k2

'

.

This completes the proof of Corollary 5.
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