A COMPARISON PRINCIPLE AND APPLICATIONS TO ASYMPTOTICALLY p-LINEAR BOUNDARY VALUE PROBLEMS

DANG DINH HAI

(Received January 16, 2013, revised November 18, 2013)

Abstract

Consider the problems
\[
\begin{cases}
-\Delta_p u = f \text{ in } \Omega, & u = 0 \text{ on } \partial \Omega, \\
-\Delta_p v = g \text{ in } \Omega, & v = 0 \text{ on } \partial \Omega,
\end{cases}
\]
where Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$. $\Delta_p z = \text{div}(|\nabla z|^{p-2}\nabla z)$, $p > 1$. We prove a strong comparison principle that allows $f - g$ to change sign. An application to singular asymptotically p-linear boundary problems is given.

1. Introduction

Consider the problems
\[
\begin{cases}
-\Delta_p u = f \text{ in } \Omega, & u = 0 \text{ on } \partial \Omega, \\
-\Delta_p v = g \text{ in } \Omega, & v = 0 \text{ on } \partial \Omega,
\end{cases}
\]
where Ω is a bounded domain in \mathbb{R}^n with a smooth boundary $\partial \Omega \in C^{2, \alpha}$ for some $\alpha \in (0, 1)$, $\Delta_p z = \text{div}(|\nabla z|^{p-2}\nabla z)$, $p > 1$, and $f, g : \Omega \to \mathbb{R}$.

In this paper, we shall establish a strong comparison principle
\[
\begin{align*}
u > v \text{ in } \Omega \quad &\text{and} \quad \frac{\partial u}{\partial v} < \frac{\partial v}{\partial v} \text{ on } \partial \Omega,
\end{align*}
\]
without requiring that $f \geq g$ a.e. in Ω. Here v denotes the outer unit normal vector on $\partial \Omega$. It should be noted that the assumptions $f \geq g$ and $f \neq g$ in Ω are needed in previous literature (see e.g. [9] and the references therein). We also provide an application to the existence of positive solutions for a class of singular p-Laplacian boundary value problems with asymptotically p-linear nonlinearity.

Let $d(x) = d(x, \partial \Omega)$ be the distance from x to $\partial \Omega$, we prove the following result:
Theorem 1.1. Let \(f, g, g_0 \in L^1(\Omega) \) with \(g \geq g_0 \geq 0 \), and \(g_0 \neq 0 \). Suppose there exist constants \(C > 0 \) and \(\gamma \in (0, 1) \) such that

\[
|f(x)|, g(x) \leq \frac{C}{d^\gamma(x)}
\]

for a.e. \(x \in \Omega \), and there exist a function \(h \in C(\Omega) \), \(h > 0 \), and constants \(\varepsilon \geq 0 \), \(m, M > 0 \) with \(m \leq M \) such that

\[
f - g \geq m \left(h - \frac{\varepsilon}{d^\gamma} \right) \text{ in } \Omega.
\]

Let \(u, v \in W_0^{1,p}(\Omega) \) be solutions of (1.1). Then there exists a positive constant \(\varepsilon_0 \) depending on \(n, \Omega, p, \gamma, C, M, h, g_0 \) (but not on \(m \)), such that

\[
u > v \text{ in } \Omega \text{ and } \frac{\partial u}{\partial \nu} \leq \frac{\partial v}{\partial \nu} \text{ on } \partial \Omega
\]

for \(\varepsilon < \varepsilon_0 \). If \(\varepsilon = 0 \), the result holds under the weaker condition that \(h \) is a nonnegative nontrivial measurable function in \(\Omega \).

Remark 1.1. When \(g \equiv 0 \), the conclusion of Theorem 1.1 holds under the weaker assumption that \(h \) is a nonnegative nontrivial measurable function in \(\Omega \). In this case, \(\varepsilon_0 \) is independent of \(M \). Indeed, let \(\tilde{u}, \tilde{v} \) be the solutions of

\[
-\Delta_p \tilde{u} = \tilde{h} - \frac{\varepsilon}{d^\gamma} \text{ in } \Omega, \quad \tilde{u} = 0 \text{ on } \partial \Omega,
\]

\[
-\Delta_p \tilde{v} = \tilde{h} \text{ in } \Omega, \quad \tilde{v} = 0 \text{ on } \partial \Omega,
\]

respectively, where \(\tilde{h} = \min(h, 1/d^\gamma) \). By the strong maximum principle [12, 14], there exists a constant \(\delta > 0 \) such that \(\tilde{v} \geq \delta d \) in \(\Omega \). Using Lemma 2.3 in Section 2, we deduce that

\[
\tilde{u} \geq \tilde{v} - \frac{\delta}{2} \geq \frac{\delta}{2} d
\]

if \(\varepsilon \) is sufficiently small. This implies

\[
u \geq m^{1/(p-1)} \tilde{u} > m^{1/(p-1)} \frac{\delta}{2} d > 0 \text{ in } \Omega
\]

and \(\partial u/\partial \nu < 0 \) on \(\partial \Omega \).

As an application of Theorem 1.1, consider the boundary value problem

\[
(1.2)
\begin{align*}
-\Delta_p u &= \frac{q(x)}{u^\beta} + \lambda f(u) \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{align*}
\]
where $\beta \in (0, 1)$, q, f satisfy the following assumptions:

(A1) $f : (0, \infty) \to \mathbb{R}$ is continuous and there exists a constant $k > 0$ such that

$$\lim_{u \to \infty} \frac{f(u)}{u^{p-1}} = k.$$

(A2) There exists a constant $\delta \in (0, 1)$ such that

$$\limsup_{u \to 0^+} u^\delta |f(u)| < \infty.$$

(A3) There exist constants $A, \varepsilon_0 > 0$ such that

$$f(u) \geq ku^{p-1} + \varepsilon_0 \quad \text{for} \quad u > A.$$

(A4) $q : \Omega \to \mathbb{R}$ is measurable and there exist constants $\eta, L > 0$ with $\beta + \eta < 1$, such that

$$|q(x)| \leq \frac{L}{d^n(x)}$$

for a.e. $x \in \Omega$.

Let λ_1 be the first eigenvalue of $-\Delta_p$ with Dirichlet boundary condition, and let ϕ_1 be the corresponding positive eigenfunction with $\|\phi_1\|_\infty = 1$. Note that, since $\partial \phi_1/\partial \nu < 0$ on $\partial \Omega$, Theorem 1.1 holds if d is replaced by ϕ_1. Let $\lambda_\infty = \lambda_1/k$. Then we have

Theorem 1.2. Let (A1)-(A4) hold. Then there exists a constant $\bar{\varepsilon} > 0$ such that for $\lambda_\infty - \bar{\varepsilon} < \lambda < \lambda_\infty$, problem (1.2) has a positive solution $u_\lambda \in C^{1,\kappa}(\bar{\Omega})$ for some $\kappa \in (0, 1)$ with

$$u_\lambda \geq \left(\frac{\lambda_\infty \varepsilon_0}{4k(\lambda_\infty - \lambda)}\right)^{1/(p-1)} \phi_1 \quad \text{in} \quad \Omega.$$

Theorem 1.3. Let $q \geq 0$, $q \neq 0$. Suppose $f \geq 0$, (A2), (A4) hold, and

$$\limsup_{u \to \infty} \frac{f(u)}{u^{p-1}} = k$$

for some $k \in (0, \infty)$. Then problem (1.2) has a positive solution u_λ for $\lambda < \lambda_\infty$. If, in addition,

$$f(u) \geq ku^{p-1} \quad \text{for all} \quad u > 0,$$

then (1.2) has no positive solution for $\lambda \geq \lambda_\infty$, and

$$\|u_\lambda\|_\infty \to \infty \quad \text{as} \quad \lambda \to \lambda_\infty^-.$$
EXAMPLE 1.1. (i) Let \(f(u) = -1/u^\delta + u^{p-1} + u^q \), where \(\delta \in (0, 1) \) and \(0 \leq q < p - 1 \). Then \(f \) satisfies (A1)–(A3) with \(k = 1 \), and so (1.2) has a positive solution when \(\lambda \) is sufficiently close to \(\lambda_1 \) and \(\lambda < \lambda_1 \), by Theorem 1.2.

(ii) Let \(f(u) = 1/u^\delta + u^{p-1}(m|\sin u| + e^{1/(1+u)}) \), where \(\delta \in (0, 1) \), \(m \geq 0 \). Then it follows from Theorem 1.3 that, if \(m > 0 \), (1.2) has a positive solution for \(\lambda < \lambda_1/(m + 1) \), and, if \(m = 0 \), (1.2) has a positive solution if and only if \(\lambda < \lambda_1 \).

REMARK 1.2. It should be noted that Theorem 1.2 may not be true when \(\varepsilon_0 = 0 \). Indeed, by multiplying the equation in (1.2) by \(u \) and integrating, we see that (1.2) has no positive solution for \(q \leq 0 \) and \(f(u) = ku^{p-1} \).

REMARK 1.3. In [15], assuming that \(f \) is continuous and nonnegative on \([0, \infty)\), \(\lim_{u \to \infty} f(u)/u = k \in (0, \infty) \), and \(f \) satisfies some additional conditions at 0, Zhang showed via variational method that (1.2) with \(p = 2 \) has a positive solution for \(\lambda \in (0, \lambda_1/k) \), provided that \(q \geq 0 \), \(q \neq 0 \), \(q\phi_1^\beta \in L'(\Omega) \), where \(n/2 < r \). The result in [15] was improved by Hai in [4], using sub- and super solutions approach. The proof in [4] depends on the linearity of the Laplacian and can not be applied to the general case where \(p > 1 \), except for radial solutions in a ball [6]. Related results on the case where \(f \) is nonsingular can be found in Ambrosetti, Arcaya, and Buffoni [1], Ambrosetti and Hess [2], and Ambrosetti, Garcia Azorero, and Peral [3]. The approach in [1, 2, 3] was via bifurcation theory for \(p = 2 \) in [1, 2] and \(p > 1 \) in [3]. Thus, Theorems 1.2 and 1.3 provide extensions of corresponding results in [1, 2, 3, 4, 6, 15] to the singular \(p \)-Laplacian case. Note that the precise lower bound estimate (*) has not been obtained in previous literature.

2. Preliminary results

Let \(D \) be a bounded domain in \(\mathbb{R}^n \) with a smooth boundary \(\partial D \).

We shall denote the norm in \(C^{k,\alpha}(\bar{D}) \) and \(L^k(D) \) by \(|\cdot|_{k,\alpha} \) and \(\|\cdot\|_k \) respectively. The distance from \(x \) to \(\partial D \) is denoted by \(d(x, \partial D) \).

We first recall the following regularity result in [5, Lemma 3.1], which plays an important role in the proofs of our main results.

Lemma A. Let \(h \in L^\infty_{\text{loc}}(\Omega) \) and suppose there exist numbers \(\gamma \in (0, 1) \) and \(C > 0 \) such that

\[
|h(x)| \leq \frac{C}{d^\gamma(x)}
\]

for a.e. \(x \in \Omega \). Let \(u \in W^{1,p}_0(\Omega) \) be the solution of

\[
\begin{aligned}
-\Delta_p u &= h & &\text{in} & &\Omega, \\
u &= 0 & &\text{on} & &\partial\Omega.
\end{aligned}
\]
Then there exist constants $\alpha \in (0, 1)$ and $\tilde{M} > 0$ depending only on C, γ, Ω such that $u \in C^{1,\alpha}(\tilde{\Omega})$ and $|u|_{1,\alpha} < \tilde{M}$.

Let

$$Lu = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right),$$

where $a_{ij} \in C^{0,\alpha}(\tilde{D}), 1 \leq i, j \leq n$, for some $\alpha \in (0, 1)$, and suppose there exist constants $m_0, m_1 > 0$ such that

$$|a_{ij}|_{0,\alpha} \leq m_1$$

for $1 \leq i, j \leq n$, and

$$\sum_{i,j=1}^{n} a_{ij} \xi_i \xi_j \geq m_0 |\xi|^2$$

for all $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$.

Lemma 2.1. Let $h \in L^1(D)$ and suppose there exist constants $C > 0$ and $\gamma \in (0, 1)$ such that

$$|h(x)| \leq \frac{C}{d^\gamma(x, \partial D)}$$

for a.e. $x \in D$. Let $w \in H_0^1(D)$ be the solution of

$$\begin{cases}
Lw = h & \text{in } D, \\
w = 0 & \text{on } \partial D.
\end{cases}$$

Then there exist constants $\beta \in (0, 1)$ and $\tilde{M} > 0$ depending only on $m_0, m_1, C, \gamma, D, n$, such that $w \in C^{1,\beta}(\tilde{D})$ and $|w|_{1,\beta} \leq \tilde{M}$.

Proof. Let $\phi \in C^1(\tilde{D})$ be the solution of

$$L\phi = 1 \text{ in } D, \quad \phi = 0 \text{ on } \partial D.$$

Then there exists a constant $C_0 > 0$ independent of a_{ij} such that $\phi(x) \leq C_0 d(x, \partial D)$ for all $x \in D$. Let $a = 2^{1/(1-\gamma)} \|\phi\|_\infty$ and $h_0: [0, a] \to \mathbb{R}$ satisfy

$$\begin{cases}
-h_0'' = \frac{1}{t^\gamma}, & 0 < t < a, \\
h_0(0) = 0, & h_0'(a) = 0.
\end{cases}$$
Note that \(h_0(t) = (t/(1 - \gamma))(a^{1-\gamma} - t^{1-\gamma}/(2 - \gamma)) \). A calculation shows that

\[
L(h_0(\phi)) = -h_0^{\gamma}(\phi) \sum_{i,j=1}^{n} a_{ij} \frac{\partial \phi}{\partial x_i} \frac{\partial \phi}{\partial x_j} + h_0(\phi)
\geq \frac{m_0}{\phi^\gamma} |\nabla \phi|^2 + \frac{a^{1-\gamma} - \phi^{1-\gamma}}{1 - \gamma} \geq \frac{m_0}{\phi^\gamma} |\nabla \phi|^2 + \frac{a^{1-\gamma}}{2(1 - \gamma)} \geq \frac{m_2}{d^\gamma(x, \partial D)},
\]

where \(m_2 \) is independent of \(a_{ij} \). By the weak comparison principle ([11, Lemma A.2], [13, Lemma 3.1]),

\[
|w| \leq \frac{C}{m_2} h_0(\phi) \quad \text{in} \quad D,
\]
i.e. \(w \) is bounded in \(D \). By Lemma A, the problem

\[
\begin{aligned}
-\Delta z &= h \quad \text{in} \quad D, \\
 z &= 0 \quad \text{on} \quad \partial D,
\end{aligned}
\]

has a solution \(z \in C^{1,\alpha}(\bar{D}) \) for some \(\alpha \in (0, 1) \). Since \(w \) satisfies

\[
-\text{div}(A(x, \nabla w) - \nabla z) = 0 \quad \text{in} \quad D,
\]

where \(A = (A_1, \ldots, A_n) \), \(A_i(x, \eta) = \sum_{j=1}^{n} a_{ij}(x) \eta_j \), \(\eta = (\eta_1, \ldots, \eta_n) \), the result now follows from Lieberman [8, Theorem 1].

Lemma 2.2. Let \(h \) satisfy (2.3), \(h \geq 0 \), \(h \not\equiv 0 \), and let \(w \in H_0^1(D) \) be the solution of (2.4). Then there exists a constant \(k_0 > 0 \) depending only on \(h \), \(m_0 \), \(m_1 \), \(C \), \(\gamma \), \(D \), \(n \) such that

\[
w(x) \geq k_0 d(x, \partial D)
\]

for all \(x \in D \).

Proof. Let \(\Lambda \) be the set of all solutions \(w \) of (2.4) among the coefficients \(a_{ij} \) that satisfy (2.1) and (2.2). By the strong maximum principle, \(w > 0 \) in \(\Omega \) and \(\partial w/\partial n < 0 \) on \(\partial D \). By Lemma 2.1, \(w \in C^{1,\beta}(\bar{D}) \) and there exists a constant \(\bar{M} > 0 \) such that \(|w|_{1,\beta} \leq \bar{M} \) for all \(w \in \Lambda \). Since \(\Lambda \) is closed in \(C^1(\bar{D}) \), \(\Lambda \) is compact in \(C^1(\bar{D}) \). Define \(G: \Lambda \to \mathbb{R} \) by

\[
G_w = \inf_{x \in \partial D} \frac{w(x)}{d(x, \partial D)}.
\]

Then \(G \) is continuous and positive on \(\Lambda \), and therefore has a positive minimum, which completes the proof.
Lemma 2.3. Let \(f, g \in L^1(D) \) satisfy
\[
|f(x)|, |g(x)| \leq \frac{C}{d^\nu(x, \partial D)}
\]
for a.e. \(x \in \Omega \) for some constant \(C > 0 \). Let \(u, v \) be the solutions of (1.1). Then \(|u - v|_{0,1} \to 0 \) as \(\|f - g\|_1 \to 0 \).

Proof. Note that \(f, g \in L^1(D) \) (see [7, p. 6]). By Lemma A, \(u, v \in C^{1,\alpha}(\tilde{D}) \) for some \(\alpha \in (0, 1) \), and there exists a constant \(\tilde{M} > 0 \) independent of \(u, v \), such that \(|u|_{1,\alpha}, |v|_{1,\alpha} \leq \tilde{M} \). Multiplying the equation
\[
-(\Delta u - \Delta v) = f - g \quad \text{in} \quad \Omega
\]
by \(u - v \) and integrating, we obtain
\[
\int_{\Omega} (|\nabla u|^{p-2}\nabla u - |\nabla u|^{p-2}\nabla u) \cdot \nabla(u - v) \, dx = \int_{\Omega} (f - g)(u - v) \, dx.
\]
Using the inequality [10, Lemma 30.1],
\[
(|x| + |y|)^{2-\min(p,2)}(|x|^{p-2}x - |y|^{p-2}y) \cdot (x - y) \geq c |x - y|^{\max(p,2)}
\]
for \(x, y \in \mathbb{R}^n \), where \(c \) is a positive constant depending only on \(p \), we obtain
\[
\int_{\Omega} |\nabla(u - v)|^r \, dx \leq c_1 \|f - g\|_{L^1} \|u - v\|_{\infty} \leq c_2 \|f - g\|_{L^1},
\]
where \(r = \max(p, 2) \) and \(c_1, c_2 \) are constants depending only on \(p, \tilde{M} \).

Hence
\[
\|u - v\|_2 \to 0
\]
as \(\|f - g\|_1 \to 0 \), and since \(C^{1,\alpha}(\tilde{D}) \) is compactly imbedded in \(C^1(\tilde{D}) \), Lemma 2.3 follows.

3. Proofs of the main results

Proof of Theorem 1.1. By the strong maximum principle, there exists a constant \(\delta > 0 \) such that \(v \geq \delta d \) in \(\Omega \). Let \(\varepsilon \in (0, 1) \), \(m_\varepsilon = \min(m, \varepsilon) \) and \(\tilde{h} = \min(h, 1/d^\nu) \). Then
\[
f \geq g + m_\varepsilon \tilde{h} - \frac{M\varepsilon}{d^\nu} \equiv \tilde{f} \quad \text{in} \quad \Omega.
\]
Let \(\tilde{u} \) satisfy
\[
-(\Delta \tilde{u}) = \tilde{f} \quad \text{in} \quad \Omega, \quad \tilde{u} = 0 \quad \text{on} \quad \partial \Omega.
\]
Then \(u \geq \tilde{u} \) in \(\Omega \), by the weak comparison principle. Since

\[
|\tilde{f}| \leq \frac{C + 1 + M}{d^\gamma} = \frac{\tilde{C}}{d^\gamma}
\]

and

\[
\int_{\Omega} |\tilde{f} - g| \, dx \leq \varepsilon(1 + M) \int_{\Omega} \frac{1}{d^\gamma} \, dx,
\]

it follows that \(\tilde{f} \rightarrow g \) in \(L^1(\Omega) \) as \(\varepsilon \rightarrow 0 \). Here we have used the fact that \(1/d^\gamma \in L^1(\Omega) \) (see e.g. [7, p. 6]). Using Lemma 2.3, we see that \(\tilde{u} \rightarrow v \) in \(C^1(\tilde{\Omega}) \) as \(\varepsilon \rightarrow 0 \).

Hence

\[
u \geq \tilde{u} \geq \frac{\delta d}{2} \quad \text{in} \quad \Omega
\]

if \(\varepsilon \) is sufficiently small, which we shall assume.

By Lemma A, there exist constants \(\tilde{M} > 0 \) and \(\alpha \in (0, 1) \) independent of \(u, v \) such that \(|u|_{1,\alpha}, |v|_{1,\alpha} \leq \tilde{M} \). Thus

\[
(3.1) \quad \frac{\delta d}{2} \leq u, \quad v \leq \tilde{M}d \quad \text{in} \quad \Omega,
\]

and therefore

\[
u \geq c_0 v \quad \text{in} \quad \Omega,
\]

where \(c_0 = \delta/(2\tilde{M}) \).

Let \(c \) be the largest number such that \(u \geq cv \) in \(\Omega \), and suppose that \(c \leq 1 \). From (3.1), it follows that

\[
\frac{\partial u}{\partial v}, \frac{\partial v}{\partial v} \leq -\frac{\delta}{2} \quad \text{on} \quad \partial \Omega.
\]

For \(t \in [0, 1] \), let \(w_t = t\nabla u + (1 - t)c\nabla v \). Then

\[
w_t \cdot v = t \frac{\partial u}{\partial v} + (1 - t)c \frac{\partial v}{\partial v} \leq \frac{tc\delta}{2} - \frac{(1 - t)c\delta}{2} = -\frac{c\delta}{2} \leq -\frac{c_0\delta}{2} \quad \text{on} \quad \partial \Omega,
\]

which implies

\[
(3.2) \quad |w_t| \geq \frac{c_0\delta}{2} = c_1 \quad \text{on} \quad \partial \Omega
\]

for all \(t \in [0, 1] \).

Let \(x \in \Omega \) and \(x_0 \in \partial \Omega \) be such that \(d(x) = |x - x_0| \). Since \(|w_t|_{0,\alpha} \leq \tilde{M} \), it follows that

\[
|w_t(x) - w_t(x_0)| \leq \tilde{M}d^{\alpha}(x),
\]
which, together with (3.2), implies

\[(3.3) \quad |w_t(x)| \geq c_1 - \tilde{M}d^\alpha(x) \geq \frac{c_1}{2} = c_2\]

for \(x \in \Omega_\eta \equiv \{ x \in \Omega : d(x) < \eta \} \), where \(\eta = (c_1/2\tilde{M})^{1/\alpha}\).

Next, we have

\[(3.4) \quad -(\Delta_p u - \Delta_p (c v)) = f - c^{p-1}g \quad \text{in} \quad \Omega,\]

and the left hand side of (3.4) can be linearized as \(L(u - c v)\), where

\[Lw = -\sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial w}{\partial x_j} \right)\]

and \(a_{ij}(x) = \int_0^1 (\partial a'/\partial z_j)(t \nabla u + (1-t)c \nabla v) \, dt, \ a'(z) = |z|^{p-2}z.\)

Note that, in view of (3.3) and the fact that \(\frac{\partial w_t}{\partial \nu} \leq \tilde{M}\) for \(t \in [0, 1]\), the coefficients \(a_{ij}\) satisfy (2.1) and (2.2) in \(\Omega_\eta\) with \(m_0 = (p - 1) \min(\tilde{M}^{p-2}, c^{p-2})\).

Let \(w_0, w_1\) be the solutions of

\[Lw_0 = \tilde{h} \quad \text{in} \quad \Omega_\eta, \quad w_0 = 0 \quad \text{on} \quad \partial \Omega_\eta,\]

and

\[Lw_1 = \frac{1}{d^\gamma(x, \partial \Omega_\eta)} \quad \text{in} \quad \Omega_\eta, \quad w_1 = 0 \quad \text{on} \quad \partial \Omega_\eta\]

respectively. By Lemmas 2.1 and 2.2, there exist positive constants \(M_0\) and \(k_0\) such that

\[(3.5) \quad w_0 \geq k_0 d(x, \partial \Omega_\eta), \quad w_1 \leq M_0 d(x, \partial \Omega_\eta) \quad \text{in} \quad \Omega_\eta.\]

Since \(c \leq 1\) and \(d(x) \geq d(x, \partial \Omega_\eta)\) for \(x \in \Omega_\eta\),

\[L(u - c v) \geq f - g \geq m \left(\tilde{h} - \frac{\epsilon}{d^\gamma(x, \partial \Omega_\eta)} \right) \quad \text{in} \quad \Omega_\eta,\]

and since \(u \geq c v\) on \(\partial \Omega_\eta\), it follows from the weak comparison principle and (3.5) that, for \(x \in \Omega_{\eta/2}\),

\[u - c v \geq m(w_0 - \epsilon w_1) \geq m(k_0 - \epsilon M_0) d(x, \partial \Omega_\eta) = m(k_0 - \epsilon M_0) d(x)\]

\[(3.6) \quad \geq m \left(\frac{k_0}{2} \right) d(x)\]

if \(\epsilon < k_0/2M_0\). In particular,

\[u - c v \geq m \left(\frac{k_0}{2} \right)^2 \leq mk_1 \quad \text{when} \quad d(x) = \frac{\eta}{2}.\]
If \(\varepsilon = 0 \) then it follows from
\[
-\Delta_p u = f \geq c^{p-1} g = -\Delta_p (c v + m k_1) \quad \text{in } \Omega
\]
and \(u \geq c v + m k_1 \) on \(\partial(\Omega \setminus \Omega_{\eta/2}) \) that
\[
(3.7) \quad u \geq c v + m k_1 \quad \text{in } \Omega \setminus \Omega_{\eta/2}.
\]
Suppose \(\varepsilon > 0 \) and \(h \geq a > 0 \) in \(\Omega \setminus \Omega_{\eta/2} \). Then we have
\[
-\Delta_p u = f \geq g + m \left(a - \frac{\varepsilon}{d^\gamma(x)} \right) \geq g + m \left(a - \frac{\varepsilon}{(\eta/2)\gamma} \right) \geq g \quad \text{in } \Omega \setminus \Omega_{\eta/2},
\]
if \(\varepsilon \) is sufficiently small. Hence (3.7) holds by the weak comparison principle. This, together with (3.6), gives the existence of a constant \(\tilde{c} > c \) such that \(u \geq \tilde{c} v \) in \(\Omega \), a contradiction. Hence \(c > 1 \) and therefore \(u > v \) in \(\Omega \) and
\[
\frac{\partial(u - v)}{\partial v} \leq (c - 1)\frac{\partial v}{\partial v} < 0 \quad \text{on } \partial \Omega,
\]
which completes the proof. \(\square \)

Proof of Theorem 1.2. Let \(\lambda > 0 \) be such that \(\lambda_{\infty}/2 < \lambda < \lambda_{\infty} \). Let \(c = (\lambda_{\infty}\varepsilon_0/(4k(\lambda_{\infty} - \lambda)))^{1/(p-1)} \) and \(M \) be a constant such that \(M > c \). Define
\[
K = \{ v \in C(\tilde{\Omega}) : c \phi_1 \leq v \leq M \phi_1 \text{ in } \Omega \}.
\]
For each \(v \in K \), it follows from Lemma A that the problem
\[
\begin{cases}
-\Delta_p u = \frac{q(x)}{w^\beta} + \lambda f(v) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
has a unique solution \(u \equiv T v \in C^{1,\alpha}(\tilde{\Omega}) \) for some \(\alpha \in (0, 1) \) such that \(|u|_{1,\alpha} < \tilde{M} \), where \(\alpha, \tilde{M} \) are independent of \(v \in K \). We shall show that \(T : K \to C(\tilde{\Omega}) \) is a compact operator. In view of the compact embedding of \(C^{1,\alpha}(\tilde{\Omega}) \) into \(C^1(\tilde{\Omega}) \), we need only to show that \(T \) is continuous. Let \((v_n) \) be a sequence in \(K \) such that \(v_n \to v \) in \(C(\tilde{\Omega}) \), and let \(u_n = T v_n, u = T v \). Let \(G(w) = q(x)/w^\beta + \lambda f(w) \) for \(w \in K \). Then
\[
G(v_n) \to G(v) \quad \text{pointwise in } \Omega,
\]
and it follows from (A2) and (A4) that there exist constants \(K, C_0 > 0 \) such that
\[
|G(v_n)| \leq \frac{q(x)}{(c \phi_1)^\beta} + \frac{\lambda_{\infty}K}{(c \phi_1)^{\delta}} \leq C_0 d^\gamma,
\]
for all \(n \), where \(\gamma = \max(\beta + \eta, \delta) \). Hence \(G(v_n) \to G(v) \) in \(L^1(\Omega) \), and Lemma 2.3 implies \(u_n \to u \) in \(C^1(\overline{\Omega}) \), i.e., \(T \) is continuous on \(K \).

Next, we shall show that if \(\lambda \) is sufficiently close to \(\lambda_\infty \) and \(M \) is large enough then \(T \) maps \(K \) into \(K \). By (A2) and (A3), there exists a constant \(M_0 > 0 \) such that

\[
(3.8) \quad f(z) \geq k z^{p-1} + \varepsilon_0 - \frac{M_0}{z^{\gamma}}
\]

for all \(z > 0 \). Let \(v \in K \) and \(u = T v \). Then (3.8) and (A4) imply

\[
-\Delta_p u \geq -\frac{L_1}{(c\phi_1)^p d_\eta} + \lambda \left(k(c\phi_1)^{p-1} + \varepsilon_0 - \frac{M_0}{(c\phi_1)^{\gamma}} \right) \quad \text{in} \quad \Omega.
\]

Consequently,

\[
-\Delta_p \left(\frac{u}{c} \right) \geq -\frac{L_1}{c^{p-1} \phi_1^p} - \frac{\lambda_\infty M_0}{c^{p-1+\delta} \phi_1^\gamma} + \lambda \left(k\phi_1^{p-1} + \frac{\varepsilon_0}{2c^{p-1}} \right) = f_{c,\lambda} \quad \text{in} \quad \Omega,
\]

where \(L_1 \) is a positive constant such that \(d/\phi_1 \geq (L/L_1)^{1/\eta} \).

Let \(\tilde{u}_c, \tilde{z}_c \) be the solutions of

\[
-\Delta_p \tilde{u}_c = f_{c,\lambda} \quad \text{in} \quad \Omega, \quad \tilde{u}_c = 0 \quad \text{on} \quad \partial \Omega,
\]

and

\[
-\Delta_p \tilde{z}_c = \lambda \left(k\phi_1^{p-1} + \frac{\varepsilon_0}{2c^{p-1}} \right) = g_{c,\lambda} \quad \text{in} \quad \Omega, \quad \tilde{z}_c = 0 \quad \text{on} \quad \partial \Omega,
\]

respectively. Then \(u \geq c\tilde{u}_c \) in \(\Omega \). Note that

\[
|f_{c,\lambda}|, |g_{c,\lambda}| \leq \frac{\tilde{C}}{\phi_1^\gamma},
\]

where \(\tilde{C} > 0 \) depends only on \(\varepsilon_0, k, p, L_1, \lambda_\infty, M_0 \). Since

\[
f_{c,\lambda} - g_{c,\lambda} \geq \frac{1}{c^{p-1}} \left(\frac{\lambda_\infty \varepsilon_0}{4} - \left(\frac{L_1}{c^p} + \frac{\lambda_\infty M_0}{c^\delta} \right) \frac{1}{\phi_1^\gamma} \right) \quad \text{in} \quad \Omega,
\]

and

\[
c^{1-p} \leq \frac{2k}{\varepsilon_0},
\]

it follows from Theorem 1.1 with \(m = c^{1-p} \), \(M = 2k/\varepsilon_0 \), \(h = \lambda_\infty \varepsilon_0/4 \), \(g_0 = (\lambda_\infty/2)k\phi_1^{p-1} \), that \(\tilde{u}_c > \tilde{z}_c \) in \(\Omega \) for \(c \gg 1 \), which implies

\[
(3.9) \quad u \geq c\tilde{z}_c \equiv \tilde{z}_c \quad \text{in} \quad \Omega.
\]
By the choice of \(c \),
\[
(\lambda_1 - \lambda k) c^{p-1} = \frac{\lambda_{\infty} \varepsilon_0}{4} \leq \frac{\lambda \varepsilon_0}{2}.
\]
Hence
\[
-\Delta_p \tilde{z}_c = \lambda k \left((c \phi_1)^{p-1} + \frac{\varepsilon_0}{2k} \right) \geq \lambda_1 (c \phi_1)^{p-1} \quad \text{in} \quad \Omega,
\]
and since
\[
-\Delta_p (c \phi_1) = \lambda_1 (c \phi_1)^{p-1} \quad \text{in} \quad \Omega,
\]
it follows that
\[
(3.10) \quad \tilde{z}_c \geq c \phi_1 \quad \text{in} \quad \Omega.
\]
Hence, if \(\lambda \) is sufficiently close to \(\lambda_{\infty} \), it follows from (3.9) and (3.10) that \(u \geq c \phi_1 \) in \(\Omega \).

Next, let \(\tilde{\lambda}_{\infty} > 0 \) and \(b > 1 \) be such that \(\lambda b < \tilde{\lambda}_{\infty} < \lambda_{\infty} \). In view of (A1) and (A2), there exists a constant \(D > 0 \) such that
\[
f(z) \leq k b z^{p-1} + \frac{D}{z^\delta}
\]
for all \(z > 0 \). Hence
\[
-\Delta_p u \leq \lambda b (M \phi_1)^{p-1} + \frac{\lambda_{\infty} D + L_1}{\phi_1^\gamma} \quad \text{in} \quad \Omega,
\]
for \(c > 1 \), which implies
\[
-\Delta_p \left(\frac{u}{M} \right) \leq \lambda b \phi_1^{p-1} + \frac{\lambda_{\infty} D + L_1}{M^{p-1} \phi_1^\gamma} \equiv f_M \quad \text{in} \quad \Omega.
\]
Let \(\tilde{u}_M \) be the solution of
\[
-\Delta_p (\tilde{u}_M) = f_M \quad \text{in} \quad \Omega, \quad \tilde{u}_M = 0 \quad \text{on} \quad \partial \Omega.
\]
Then \(u \leq M \tilde{u}_M \) in \(\Omega \). Since
\[
-\Delta_p \phi_1 = \lambda_1 \phi_1^{p-1} \quad \text{in} \quad \Omega,
\]
and
\[
\lambda_1 \phi_1^{p-1} - f_M = (\lambda_1 - \lambda k b) \phi_1^{p-1} - \frac{\lambda_{\infty} D + L_1}{M^{p-1} \phi_1^\gamma} \geq k (\lambda_{\infty} - \tilde{\lambda}_{\infty}) \phi_1^{p-1} - \frac{\lambda_{\infty} D + L_1}{M^{p-1} \phi_1^\gamma},
\]
it follows from Theorem 1.1 with \(u = \phi_1, \, v = \tilde{u}_M, \, m = 1, \, h = k(\lambda_\infty - \tilde{\lambda}_\infty) \phi_1^{p-1} \) that \(\tilde{u}_M \leq \phi_1 \) in \(\Omega \) for \(M \gg 1 \). Hence \(u \leq M \phi_1 \) in \(\Omega \) for \(M \gg 1 \). Thus \(T: K \to K \) and the result now follows from the Schauder fixed point theorem.

Proof of Theorem 1.3. Let \(z \in C^1(\tilde{\Omega}) \) be the solution of

\[-\Delta_p z = \frac{cq(x)}{\phi_1^p} \quad \text{in} \quad \Omega, \quad z = 0 \quad \text{on} \quad \partial \Omega,
\]

where \(c \in (0, 1) \). By Lemma 2.3, \(z \leq \phi_1 \) in \(\Omega \) if \(c \) is sufficiently small, which we assume. Let \(M > 1 \) be a large constant to be determined later and define

\[C = \{ v \in C(\tilde{\Omega}) : v \leq M \phi_1 \ \text{in} \ \Omega \}.
\]

Fix \(\lambda \in (0, \lambda_\infty) \) and choose \(b > 1 \) so that \(\lambda b < \lambda_\infty \). For each \(v \in C \), the problem

\[
\begin{cases}
-\Delta_p u = \frac{q(x)}{\phi_1^{p-1}} + \lambda f(\max(v, z)) \quad \text{in} \quad \Omega, \\
u = 0 \quad \text{on} \quad \partial \Omega,
\end{cases}
\]

has a unique solution \(u = Sv \in C^{1,\alpha}(\tilde{\Omega}) \) for some \(\alpha \in (0, 1) \) such that \(|u|_{1,\alpha} < \tilde{M} \), where \(\alpha, \tilde{M} \) are independent of \(v \in C \). Since \(z \geq \epsilon_1 d \) in \(\Omega \) for some \(\epsilon_1 > 0 \), it follows as in the proof of Theorem 1.2 that \(S: C \to C(\tilde{\Omega}) \) is a compact operator. We shall show that \(S: C \to C \) if \(M \) is large enough. Note that any fixed point of \(S \) is positive in \(\Omega \), by the strong maximum principle. Let \(v \in C \) and \(u = Sv \). Since there exists a constant \(D > 0 \) such that

\[f(t) \leq kbt^{p-1} + \frac{D}{t^\delta}
\]

for \(t > 0 \), it follows that

\[-\Delta_p u \leq \frac{L_1}{z^{\beta+\eta}} + \lambda \left(kb(M \phi_1)^{p-1} + \frac{D}{z^\delta} \right) \quad \text{in} \quad \Omega,
\]

where \(L_1 \) is defined in the proof of Theorem 1.2. This implies

\[-\Delta_p \left(\frac{u}{M} \right) \leq \lambda kb \phi_1^{p-1} + \left(\frac{L_1 + \lambda_\infty D}{M^{p-1}} \right) \frac{1}{z^\gamma} = g_M,
\]

where \(\gamma = \max(\beta + \eta, \delta) \). Let \(u_M \) be the solution of

\[-\Delta_p (u_M) = g_M \quad \text{in} \quad \Omega, \quad u_M = 0 \quad \text{on} \quad \partial \Omega.
\]

Then \(u \leq Mu_M \) in \(\Omega \). Since

\[\lambda_1 \phi_1^{p-1} - g_M \geq k(\lambda_\infty - \lambda b) \phi_1^{p-1} - \left(\frac{L_1 + \lambda_\infty D}{M^{p-1}} \right) \frac{1}{z^\gamma}, \]
it follows from Theorem 1.1 that \(u_M \leq \phi_1 \) in \(\Omega \) for \(M \gg 1 \), which implies

\[
 u \leq Mu_M \leq M\phi_1 \quad \text{in} \quad \Omega
\]

i.e. \(u \in C \) for \(M \gg 1 \). By the Schauder fixed point theorem, \(S \) has a fixed point \(u_\lambda \) in \(C \). We claim that \(u_\lambda \geq z \) in \(\Omega \). Let \(D = \{ x \in \Omega : u_\lambda(x) < z(x) \} \) and suppose that \(D \neq \emptyset \). Then, since \(f \geq 0 \),

\[
 -\Delta_p u_\lambda \leq \frac{q(x)}{|u_\lambda|^{\beta}} \geq \frac{q(x)}{z^{\beta}} \geq \frac{q(x)}{\phi_1^{\beta}} \geq -\Delta_p z \quad \text{in} \quad D.
\]

Since \(u_\lambda = z \) on \(\partial D \), this implies \(u_\lambda \geq z \) in \(D \), a contradiction. Hence \(D = \emptyset \) and therefore \(u_\lambda \geq z \) in \(\Omega \) as claimed. Thus \(u_\lambda \) is a positive solution of (1.2).

Next, suppose \(f(u) \geq ku^{p-1} \) for \(u > 0 \). Let \(\lambda \geq \lambda_\infty \) and let \(u \) be a positive solution of (1.2). Then \(u > 0 \) in \(\Omega \) and \(\partial u/\partial v < 0 \) on \(\partial \Omega \) by the strong maximum principle. Let \(c > 0 \) be the largest number so that \(u \geq c\phi_1 \) in \(\Omega \). Then

\[
 -\Delta_p u \geq \frac{q(x)}{|u|^{\beta}} + \lambda k(c\phi_1)^{p-1} \geq \frac{q(x)}{|u|^{\beta}} + \lambda_1 (c\phi_1)^{p-1} \quad \text{in} \quad \Omega,
\]

and since

\[
 -\Delta_p (c\phi_1) = \lambda_1 (c\phi_1)^{p-1} \quad \text{in} \quad \Omega,
\]

it follows from Theorem 1.1 with \(\varepsilon = 0 \) that \(u > c\phi_1 \) in \(\Omega \) and

\[
 \frac{\partial u}{\partial v} < \frac{\partial (c\phi_1)}{\partial v} < 0 \quad \text{on} \quad \partial \Omega.
\]

Hence there exists a constant \(\tilde{c} > c \) such that \(u \geq \tilde{c}\phi_1 \) in \(\Omega \), a contradiction. Thus (1.2) has no positive solution for \(\lambda \geq \lambda_\infty \). We shall verify next that \(\lim_{\lambda_\to \lambda_\infty} \|u_\lambda\|_\infty = \infty \).

Suppose otherwise, then there exist a sequence \((\lambda_n) \subset (0, \lambda_\infty) \) and a constant \(C > 0 \) such that \(\lambda_n \to \lambda_\infty \) and \(\|u_\lambda\|_\infty < C \) for all \(n \), where \(u_n \equiv u_{\lambda_n} \). Since

\[
 -\Delta_p u_n \geq \frac{q(x)}{|u_n|^{\beta}} \geq \frac{q(x)}{C^{\beta}} \quad \text{in} \quad \Omega,
\]

it follows that there exists a constant \(\tilde{k} > 0 \) such that \(u_n \geq \tilde{k}\phi_1 \) in \(\Omega \) for all \(n \). Hence there exists a constant \(\tilde{C} > 0 \) such that

\[
 \frac{q(x)}{|u_n|^{\beta}} + \lambda f(u_n) \leq \frac{\tilde{C}}{\phi_1^{\beta}} \quad \text{in} \quad \Omega
\]

for all \(n \). By Lemma A, there exist constants \(\alpha \in (0, 1) \) and \(\tilde{M} > 0 \) such that \(u_n \in C^{1,\alpha}(\overline{\Omega}) \) and \(|u_n|_{1,\alpha} < \tilde{M} \) for all \(n \). By going to a subsequence, we assume that there
exists \(u \in C^1(\bar{\Omega}) \) such that \(u_n \to u \) in \(C^1(\bar{\Omega}) \). Let \(\psi \in W^{1,\rho}_0(\Omega) \). Then

\[
\int_{\Omega} |\nabla u_n|^{\rho-2} \nabla u_n \cdot \nabla \psi \, dx = \int_{\Omega} \left(\frac{q(x)}{u_n^\rho} + \lambda_n f(u_n) \right) \psi \, dx
\]

for all \(n \). Let \(n \to \infty \) in (3.11) and using the Lebesgue dominated convergence theorem, we obtain

\[
\int_{\Omega} |\nabla u|^{\rho-2} \nabla u \cdot \nabla \psi \, dx = \int_{\Omega} \left(\frac{q(x)}{u^\rho} + \lambda_\infty f(u) \right) \psi \, dx
\]

i.e. \(u \) is a positive solution of

\[
\begin{cases}
-\Delta u = \frac{q(x)}{u^\rho} + \lambda_\infty f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}
\]

a contradiction. This completes the proof of Theorem 1.3.

ACKNOWLEDGEMENT. The author thanks the referee for pointing out some errors in the original manuscript along with suggestions for improvement.

References

Department of Mathematics and Statistics
Mississippi State University
Mississippi State
MS 39762
U.S.A.