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Abstract
In this paper, we investigate a relation between finite graphs, simplicial flag com-

plexes and right-angled Coxeter groups, and we provide a class of reconstructible
finite graphs. We show that if0 is a finite graph which is the 1-skeleton of some
simplicial flag complexL which is a homology manifold of dimensionn � 1, then
the graph0 is reconstructible.

1. Introduction

In this paper, we investigate a relation between finite graphs, simplicial flag com-
plexes and right-angled Coxeter groups, and we provide a class of reconstructible finite
graphs. This paper treats only “simplicial” graphs. We showthat if 0 is a finite graph
which is the 1-skeleton of some simplicial flag complexL which is a homology mani-
fold of dimensionn � 1, then the graph0 is reconstructible.

A graph0 is said to bereconstructible, if any graph00 with the following prop-
erty (�) is isomorphic to0.
(�) Let S and S0 be the vertex sets of0 and 00 respectively. Then there exists a bi-
jection f W S! S0 such that the subgraphs0S�{s} and00S0�{ f (s)} are isomorphic for any
s 2 S, where0S�{s} and00S0�{ f (s)} are the full subgraphs of0 and00 whose vertex sets
are S� {s} and S0 � { f (s)} respectively.

The following open problem is well-known as the reconstruction conjecture.

PROBLEM (Reconstruction conjecture). Every finite graph with at least three ver-
tices will be reconstructible?

Some classes of reconstructible graphs are known (cf. [3], [20], [21], [22], [23],
[26]) as follows: Let0 be a finite graph with at least three vertices.
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(i) If 0 is a regular graph, then it is reconstructible.
(ii) If 0 is a tree, then it is reconstructible.
(iii) If 0 is not connected, then it is reconstructible.
(iv) If 0 has at most 11 vertices, then it is reconstructible.

Our motivation to consider graphs of the 1-skeletons of somesimplicial flag com-
plexes comes from the following idea on right-angled Coxeter groups and their nerves.

Details of Coxeter groups and Coxeter systems are found in [4], [6] and [19], and
details of flag complexes, nerves, Davis complexes and theirboundaries are found in
[8], [9] and [24].

Let 0 be a finite graph and letS be the vertex set of0. Then the graph0 uniquely
determines a finite simplicial flag complexL whose 1-skeletonL (1) coincide with0.
Here a simplicial complexL is a flag complex, if the following condition holds:
(��) For any vertex set{s0, : : : , sn} of L, if {si , sj } spans 1-simplex inL for any
i , j 2 {0, : : : , n} with i ¤ j then the vertex set{s0, : : : , sn} spansn-simplex in L.

Also every finite simplicial flag complexL uniquely determines a right-angled
Coxeter system (W, S) whose nerveL(W, S) coincide with L (cf. [1], [8], [9], [10],
[12]). Here for any subsetT of S, T spans a simplex ofL if and only if the para-
bolic subgroupWT generated byT is finite (such a subsetT is called aspherical
subset of S).

Moreover it is known that every right-angled Coxeter groupW uniquely determines
its right-angled Coxeter system (W, S) up to isomorphisms ([28], [18]).

By this corresponding, we can identify a finite graph0, a finite simplicial flag
complex L, a right-angled Coxeter system (W, S) and a right-angled Coxeter groupW.

Let 0 and00 be finite graphs, letL and L 0 be the corresponding flag complexes,
let (W, S) and (W0, S0) be the corresponding right-angled Coxeter systems, and let
W and W0 be the corresponding right-angled Coxeter groups, respectively. Then the
following statements are equivalent:
(1) 0 and00 are isomorphic as graphs;
(2) L and L 0 are isomorphic as simplicial complexes;
(3) (W, S) and (W0, S0) are isomorphic as Coxeter systems;
(4) W and W0 are isomorphic as groups.

Also, for any subsetT of the vertex setS of the graph0, the full subgraph0T of
0 with vertex setT corresponds the full subcomplexLT of L with vertex setT , the
parabolic Coxeter system (WT , T) generated byT , and the parabolic subgroupWT of
W generated byT .

Hence we can consider the reconstruction problem as the problem on simplicial
flag complexes and also as the problem on right-angled Coxeter groups.

Moreover, the right-angled Coxeter system (W, S) associated by the graph0 de-
fines the Davis complex6 which is a CAT(0) space and we can consider the ideal
boundary�6 of the CAT(0) space6 (cf. [1], [2], [5], [8], [9], [10], [12], [15], [16],
[24]). Then the topology of the boundary�6 is determined by the graph0, and the
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topology of �6 is also a graph invariant.
Based on the observations above, we can obtain the followinglemma from results

of F.T. Farrell [13, Theorem 3], M.W. Davis [10, Theorem 5.5] and [17, Corollary 4.2]
(we introduce details of this argument in Section 3).

Lemma 1.1. Let (W,S) be an irreducible Coxeter system where W is infinite and
let L D L(W, S) be the nerve of(W, S). Then the following statements are equivalent:
(1) W is a virtual Poincaré duality group.
(2) L is a generalized homology sphere.
(3) QH i (LS�T ) D 0 for any i and any non-empty spherical subset T of S.

Here a generalized homologyn-sphere is a polyhedral homologyn-manifold with
the same homology as ann-sphereSn (cf. [10, Section 5], [11], [25, p. 374], [27]).
Also detail of (virtual) Poincaré duality groups is found in[7], [10], [11], [13].

In Lemma 1.1, we particularly note that the statement (3) is alocal condition ofL
which determines a global structure ofL as the statement (2). From this observation,
it seems that the following theorem holds. (However the proof is not so obvious.)

Theorem 1.2. Let 0 be a finite graph with at least3 vertices and let(W, S)
be the right-angled Coxeter system associated by0 (i.e. the 1-skeleton of the nerve
L(W, S) of (W, S) is 0). If the Coxeter group W is an irreducible virtual Poincaré
duality group, then the graph0 is reconstructible. Hence,
(i) if 0 is the 1-skeleton of some simplicial flag complex L which is a generalized
homology sphere, then the graph0 is reconstructible, and
(ii) in particular, if 0 is the 1-skeleton of some flag triangulation L of some n-sphere
S

n (n � 1), then the graph0 is reconstructible.

Here, based on this motivation, we investigate a finite graphwhich is the 1-skeleton
of some simplicial flag complex which is ahomology manifoldas an extension of a
generalized homology sphere, and we prove the following theorem. (Hence as a corol-
lary, we also obtain Theorem 1.2.)

Theorem 1.3. Let 0 be a finite graph with at least3 vertices.
(i) If 0 is the 1-skeleton of some simplicial flag complex L which is a homology
n-manifold (n � 1), then the graph0 is reconstructible.
(ii) In particular, if 0 is the1-skeleton of some flag triangulation L of some n-manifold
(n � 1), then the graph0 is reconstructible.

Here detail of homology manifolds is found in [10, Section 5], [11], [25, p. 374], [27].



1176 T. HOSAKA

2. Proof of Theorem 1.3

We prove Theorem 1.3.

Proof of Theorem 1.3. Let0 be a finite graph with at least 3 vertices which is
the 1-skeleton of some simplicial flag complexL which is a homology manifold of
dimensionn � 1. Then we show that the graph0 is reconstructible.

Let 00 be a finite graph and letL 0 be the finite simplicial flag complex associated
by 00. Also let S and S0 be the vertex sets of the graphs0 and00 respectively.

Now we suppose that the condition (�) holds:
(�) There exists a bijectionf W S! S0 such that the subgraphs0S�{s} and 00S0�{ f (s)}

are isomorphic for anys 2 S.
To show that the graph0 is reconstructible, we prove that the two graphs0 and

0

0 are isomorphic, i.e., the two simplicial flag complexesL and L 0 associated by0
and00 respectively are isomorphic.

Let v0 2 S and let v00 D f (v0). Then the two subgraphs0S�{v0} and 00S0�{v00}
are

isomorphic by the assumption (�), and the two subcomplexesLS�{v0} and L 0

S0�{v00}
are

isomorphic. Let� be an isomorphism fromLS�{v0} to L 0

S0�{v00}
.

If for any a 2 Lk(v0, L)(0), �(a) 2 Lk(v00, L 0)(0) then we obtain an isomorphism
N

� W L ! L 0 from N

�jLS�{v0}
D � and N�(v0) D v00 (since degv0 D degv00), henceL and L 0

are isomorphic.
Now we suppose that there existsa0 2 S� {v0} such thata0 � Lk(v0, L)(0) and

a00 WD �(a0) 2 Lk(v00, L 0)(0).
Here if there does not existu00 2 S0 � St(a00, L 0)(0), then St(a00, L 0)(0)

D S0, where

St(a00, L 0) means the closed star ofa00 in L 0. Hence [a00,b0] 2 L 0

(1) for any b0 2 S0�{a00}.
Since dega0D dega00 and jSj D jS0j, [a0,b] 2 L (1) for any b 2 S�{a0}. This particularly
implies [a0, v0] 2 L (1). This is a contradiction because it meansa0 2 Lk(v0, L)(0).

Thus we suppose that there existsu00 2 S0 � St(a00, L 0)(0).
Let u0 WD f �1(u00). Then by the assumption (�), the two subcomplexesLS�{u0} and

L 0

S0�{u00}
are isomorphic and let be an isomorphism fromLS�{u0} to L 0

S0�{u00}
.

Then

Lk( �1(a00), LS�{u0}) � Lk(a00, L 0

S0�{u00}
)

� Lk(a00, L 0),

since is an isomorphism andu00 � St(a00, L 0). Also we obtain

St( �1(a00), LS�{u0}) � St(a00, L 0

S0�{u00}
)

� St(a00, L 0).

Then

St(a00, L 0

S0�{v00}
) ¤ St(a00, L 0) � St( �1(a00), LS�{u0}).
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Here we note that St( �1(a00), LS�{u0}) is either
(a) the closed star St( �1(a00), L) of the vertex �1(a00) in the homologyn-manifold
L, or
(b) St( �1(a00), L) � u0 whereu0 2 Lk( �1(a00), L),
and also note that St(a00, L 0

S0�{v00}
) D St(a00, L 0) � v00. Hence we obtain that

(I) St(a00, L 0

S0�{v00}
) is isomorphic to some closed star deleted one or two vertices from

its link in the homologyn-manifold L.
On the other hand,

St(a00, L 0

S0�{v00}
) � St(a0, LS�{v0}) � St(a0, L),

since� is an isomorphism anda0 � St(v0, L). Here we note that St(a0, L) is the closed
star in the homologyn-manifold L. Hence we obtain that
(II) St(a00, L 0

S0�{v00}
) is isomorphic to some closed star in the homologyn-manifold L.

Then (I) and (II) imply the contradiction. Indeed the following claim holds.

Claim. Let AD St(a) be a closed star of a vertex a in a homology n-manifold
and let BD St(b)� {c1, c2} be a closed star of a vertex b deleted one or two vertices
{c1, c2} � Lk(b) in a homology n-manifold. Then the simplicial complexes A and B
are not isomorphic.

We first note that every triangulated homologyn-manifold is a union ofn-simplexes
([25, Corollary 63.3 (a)]). HenceAD St(a) and St(b) are unions ofn-simplexes contain-
ing a andb respectively. Then there exists ann-simplex�0 such thatc1 2 �0 � St(b).

Here if c1 ¤ c2 then we can take�0 as c2 � �0. Indeed if c1 ¤ c2 and c2 2 �0

then [c1, c2] � �0 and we can consider (n � 1)-simplex � as � (0)
D �

(0)
0 � {c2}. Then

by [25, Corollary 63.3 (b)], there exist precisely twon-simplexes containing� as a
face. Hence we can take ann-simplex � 00 containing� as a face and� 00 ¤ �0. Then
c1 2 �

0

0 � St(b) and c2 � �
0

0. Hence in this case we retake�0 as � 00.
Now �0 is an n-simplex such thatc1 2 �0 � St(b) and if c1 ¤ c2 then c2 � �0.

Let �0 be the (n � 1)-simplex as� (0)
0 D �

(0)
0 � {c1}. Then we note that�0 � St(b) �

{c1, c2} D B.
Now we suppose thatA and B are isomorphic and there exists an isomorphism

g W B ! A. Then g(�0) is an (n � 1)-simplex in A. By [25, Corollary 63.3 (b)],
there exist precisely twon-simplexes N�1 and N�2 containingg(�0) as a face inA. Then
g�1( N�1) and g�1( N�2) are n-simplexes containing�0 as a face inB, sinceg W B! A is
an isomorphism. Hereg�1( N�1), g�1( N�2) and �0 are distinctn-simplexes containing�0

as a face in St(b). This contradicts to [25, Corollary 63.3 (b)].
Thus the simplicial complexesA and B are not isomorphic.

Hence, there does not exista0 2 S� {v0} such thata0 � Lk(v0, L)(0) and �(a0) 2
Lk(v00, L 0)(0), that is, fora 2 S�{v0}, a 2 Lk(v0, L)(0) if and only if �(a) 2 Lk(v00, L 0)(0),
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since degv0D degv00. Hence the mapN�W S! S0 defined by N�jS�{v0} D � and N�(v0)D v00
induces an isomorphism of the two graphs0 and00.

Therefore the graph0 is reconstructible.

3. Virtual Poincaré duality Coxeter groups and reconstructible graphs

We introduce a relation of virtual Poincaré duality Coxetergroups and reconstruct-
ible graphs, which is our motivation of this paper.

DEFINITION 3.1 (cf. [7], [10], [11], [13]). A torsion-free groupG is called an
n-dimensional Poincaré duality group, if G is of type FP and if

H i (GI ZG) �

�

0 (i ¤ n),
Z (i D n).

Also a groupG is called avirtual Poincaré duality group, if G contains a torsion-free
subgroup of finite-index which is a Poincaré duality group.

On Coxeter groups and (virtual) Poincaré duality groups, the following results
are known.

Theorem 3.2 (Farrell [13, Theorem 3]). Suppose that G is a finitely presented
group of type FP, and let n be the smallest integer such that Hn(GI ZG) ¤ 0. If
Hn(GIZG) is a finitely generated abelian group, then G is an n-dimensional Poincaré
duality group.

REMARK . It is known that every infinite Coxeter groupW contains some torsion-
free subgroupG of finite-index in W which is a finitely presented group of type FP
and H�(GIZG) is isomorphic toH�(WIZW). Hence ifn is the smallest integer such
that Hn(WI ZW) ¤ 0 and if Hn(WI ZW) is finitely generated (as an abelian group),
then W is a virtual Poincaré duality group of dimensionn.

Theorem 3.3 (Davis [10, Theorem 5.5]). Let (W, S) be a Coxeter system. Then
the following statements are equivalent:
(1) W is a virtual Poincaré duality group of dimension n.
(2) W decomposes as a direct product WD WT0 � WT1 such that T1 is a spherical
subset of S and the simplicial complex LT0 D L(WT0, T0) associated by(WT0, T0) is a
generalized homology(n� 1)-sphere.

Theorem 3.4 ([17, Corollary 4.2]). Let (W, S) be an infinite irreducible Coxeter
system, let L D L(W, S) and let0� i 2 Z. Then the following statements are equivalent:
(1) H i (WI ZW) is finitely generated.
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(2) H i (WI ZW) is isomorphic to QH i�1(L).
(3) QH i�1(LS�T ) D 0 for any non-empty spherical subset T of S.
Here LS�T D L(WS�T , S� T).

We obtain the following lemma from results above.

Lemma 3.5. Let (W,S) be an irreducible Coxeter system where W is infinite and
let L D L(W, S). Then the following statements are equivalent:
(1) W is a virtual Poincaré duality group.
(2) L is a generalized homology sphere.
(3) QH i (LS�T ) D 0 for any i and any non-empty spherical subset T of S.

Proof. (1), (2): We obtain the equivalence of (1) and (2) from Theorem 3.3,
since (W, S) is irreducible.

(1)) (3): We obtain this implication from Theorem 3.4, because ifW is a virtual
Poincaré duality group thenH i (WI ZW) is finitely generated for anyi .

(3)) (1): Suppose that QH i (LS�T ) D 0 for any i and any non-empty spherical
subsetT of S. Then by Theorem 3.4,H iC1(WI ZW) is finitely generated for anyi .
Since W is infinite, H i0(WI ZW) is non-trivial for somei0 (cf. [7], [14]). Hence by
Theorem 3.2,W is a virtual Poincaré duality group.

We obtain Theorem 1.2 from Theorem 1.3. In particular, we obtain the following.

Theorem 3.6. Let 0 be a finite graph with at least3 vertices and let(W, S)
be the right-angled Coxeter system associated by0. If the Coxeter group W is an
irreducible virtual Poincaré duality group, then the graph0 is reconstructible.
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