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Abstract
We show that if each oK; and K5 is a trefoil knot or a figure eight knot, the
homology 3-sphere defined by the Kirby diagram which is a &niipk of K; and
K2 with framing (0,n) is represented by an-twisted Whitehead double df,.

1. Introduction

We defineW, (K1, Ky) to be the 4-dimensional handlebody represented by Figs 1.1
Kirby daigram, the following Kirby diagram, and defiid, (K1, K5) to bed(W,), where
K; and K, are knots. Note tham,(K3, K5) is a homology 3-sphere.

When K3 and K, are right handed trefoil knot3,3, Y. Matsumoto asked in [5]
whether Mo(T2.3, T2.3) bounds a contractible 4-manifold or not. By Gordon’s resul
[3], if nis odd, Mn(T,3, T2.3) does not bound any contractible 4-manifold. nifis 6,

N. Maruyama [6] proved thaMg(T,.3, T2.3) bounds a contractible 4-manifold. ffis O,
S. Akbulut [1] proved thatMg(T,.3, T2.3) does not bound any contractible 4-manifold.

In this note, we show that if each df; and K, is a trefoil knot or a figure
eight knot, the homology 3-sphere defined by Fig. 1.1 is ssmeed by am-twisted
Whitehead double oK.

NoTATIONS. (i) Let K be a knot, we defind, (K, n) (or D_(K, n)) to be the
n-twisted Whitehead double o with a positive hook (or a negative hook). For ex-
ample, whenK is a right handed trefoil knoT, 3, D, (T3, n) is the knot represented
by Fig. 1.2, andD_(T,3, n) is the knot represented by Fig. 1.3.

(i) We define S2,(K) to be the+1-surgery along a knoK. For example, wheiK is
a figure eight knotsil(D+(K, n)) is represented by Fig. 1.4.

Theorem 1.1. If each of K and K, is a trefoil knot or a figure eight
knot Mn(Ki, Ky) is represented by the second column on the following table.
MS2,(DL(K, n))) is the Casson invariant of 33(D (K, n)).
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Fig. 1.2. D (T2.3, n). Fig. 1.3. D_(T,.3, n). Fig. 1.4. S (D4 (K, n)).

Table 1. Theorem 1.1's table.

Mn(K3, K2) S11(D(K, n) [ A(S1(D=(K, n)))
Ki: right handed trefoil K,: right handed trefoiISil(D+(K2, n)) —n
K1: left handed trefoil K,: right handed trefoil Sfl(D,(Kz, n)) —n

(0. (Kz. )

K1: figure eight knotK,: right handed trefoil o~ n
$}1(D_(K2, n)

Ki: right handed trefoil K,: figure eight knot Sil(D+(K2, n)) —n

K1: figure eight knot,K5: figure eight knot S?;l(D,(Kz, n)) n

We will prove Theorem 1.1 in Section 2.

REMARK. Whenn is 0, S. Akbulut [1] shows essentially the same result of the
first row on the table by a different method.

Corollary 1.2 (Gordon [3], cf. Y. Matsumoto [7] 83.1) Let My(Kj, K2) be one
of the manifolds in the above table. If n is odd,(K1, K2) does not bound any con-
tractible 4-manifold.

Proof. A short proof of this result goes as follows:
The Casson invariant, when reduced modulo 2, is the Rohliarignt:

A(Mn(K1, K2)) = u(Mn(Ky, K2)) mod 2.
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0 n +1
(NN &D
Fig. 1.6. S3,(D. (T2, n)).

Fig. 1.5. Mp(T2.3, T2.3).

-1 +1 ﬁ +1
2 CQ)
Fig. 1.7. Sfl(D+(T2,3, 0)). Fig. 1.8. Sil(D_(Tzlg, 0)). Fig. 1.9. Sil(D+(41, 0)).
Therefore ifn is odd, we have

2=

By Theorem 1.1,A(Mp(Kq, K3)) is n or —n.
uw(Mp(Kq, K2)) = 1 mod 2, and soM,(K;, Ky) does not bound any contractible
O
If K; and K, are right handed trefoil knots

4-manifold.
Corollary 1.3 (N. Maruyama [6])
To.3, Me(T2.3, T2.3) bounds a contractiblel-manifold.
By the first row on Theorem 1.1's tabl®,(T>.3, T»3) is represented by
O

Sil(D+(T2_3, n)). If nis 6, D, (T23,6) is known to be a slice knot ([8], p.226). There-

Proof.
fore by [3], Me(T2.3, T2.3) bounds a contractible 4-manifold.
Corollary 1.4. If nis 0, D, (T>3, 0) is not a slice knot.
By [1], Mo(T2.3, T».3) does not bound any contractible 4-manifold. There-
O

Proof.
fore D, (T,.3, 0) is not a slice knot.
M. Hedden [4] showed that ifi is smaller than 2D, (T3, n) is not

REMARK.
a slice knot.
Corollary 1.5. Let T,3 be a right handed trefoil knot and, be a figure eight

knot. The homologp-spheres (D (Tz3, 0)), $3;(D_(T23 0)) and S (D (41, 0)

are pairwise diffeomorphic.
Proof. By the third row and the fourth row on Theorem 1.1'slg¢alif n = O, the
4-dimensional handlebodies defined by Figs. 1.7, 1.8 andhdv@ the same boundaries
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0 q @ n /; |
Fig. 1.11. (D4 (K2, n)).
\ +1

Fig. 1.12. S3,(D_(K2, n)).
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=

Fig. 1.10. Mn(K1, Ko).

Il =

+1

)
G

Flg 1.13. S_gi_l(D_(Tz’:;, 6))
Therefore the homology 3-spher&8, (D (T23,0)), $*,(D-(T23,0)) andS3 (D.(41,0))
]

are pairwise diffeomorphic.
If K1 is a figure eight knot and Kis a right handed trefoil knot

Corollary 1.6.
By the third row on Theorem 1.1's tabl#), (K1, K2) is represented by

O]

S (D4 (K2, n)) and also byS®,(D_(K, n)). If nis 6, D.(Kz, 6) is known to be a

(seeFig. 1.10),then M;(K1, K2) bounds a contractiblel-manifold.
Proof.
slice knot ([8], p.226). Therefore by [3Mg(K1, K2) bounds a contractible 4-manifold

REMARK. By Corollary 1.6, the homology 3-sphel§+1(D,(T2,3, 6)) bounds a
contractible 4-manifold. The author does not know whethwer knot D_(T, 3, 6) is a

slice knot or not.
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QUESTION. Let V! be the 4-dimensional handlebody defined by Fig. 1.12,\4hd
be the 4-dimensional handlebody defined by Fig. 1.11. Sifeg) is diffeomorphic to
3(V,2) by Theorem 1.1, we have a closed 4-manifolflU, (—V2). BecauseD, (T3, 6)
is a slice knot, we have a smoof? with self intersection-1 in V2 representing a gen-
erator of Hy(VZ). Blow down this smoottS? from the V! U, (—V2). Then we are left
with a closed smooth 4-manifold homotopy equivalenti®?. Is this 4-manifold diffeo-
morphic toC P2?

Proposition 1.7. V! U, (—V?) is diffeomorphic toCP? #C P2

We show this fact in Section 3.

It seems that Theorem 1.1 is related to [6] Corollary 8 (3), thhe author could
not understand the relationship clearly.

The author does not know whether there is an even numbgrO, 6, such that
Mn(T2,3, T2,3) bounds a contractible 4-manifold or not. M. Tange [10] pbubat
if nis smaller than 2M,(T» 3, T2,3) does not bound any contractible 4-manifold by
computing the Heegaard Floer homologhF+ (M, (T, 3, T2 3)) and the correction term

d(Mn(T2,3, T2,3)).

2. Proof of Theorem 1.1

In this section, first we show tha¥l,(K1, Ky) is represented by, (D4 (Kz, n)).
Next we compute the Casson invariar(S} ,(D.(Kz, n))).

2.1. Proof of the first row on Theorem 1.1's table. K; andK; are right handed
trefoil knots.

Proof. We show that the 4-manifolds represented by Figsafd 2.17 have the
same boundaries by following Kirby calculus:
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Fig. 2.1. Mn(Ky, K2). Fig. 2.2.
o &y
2 2 DOy dAD
m @ L)\J +1 m +1 U\J +1
Fig. 2.3. Fig. 2.4.
+1 +1 0 wf }”
0 n -
B (tJJ\QJ
Fig. 2.5. Fig. 2.6.

n

OLE/{
-

Fig. 2.7.
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0 i n
_J
+1 n :
+1 ( )
handle slide g& J
Fig. 2.8.

+1 -t +1
=S (-

~ ~

=~ +1 O =
su;jgery w blow down +1 Q '\—i:fj' _D
z:gncelling

Fig. 2.9.

= nCoo T =

isotopy M isotopy

—_—
handle slide handle slide

Fig. 2.13. Fig. 2.14.
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blow down isotopy

Fig. 2.15. Fig. 2.16.

+1
/
- v =
-
isotopy P

Fig. 2.17. S3,(D (K2, n)).
O

2.2. Proof of the second row on Theorem 1.1's table.K; is a left handed tre-
foil knot and K5 is a right handed trefoil knot.

Proof. We show that the 4-manifolds represented by Fig®8 arid 2.23 have the
same boundaries. ]

2.3. Proof of the third row on Theorem 1.1's table. K; is a figure eight knot
and K is a right handed trefoil knot.
Proof. We show that the 4-manifolds represented by Figs4, 22229 and 2.35
have the same boundaries.
Fig. 2.30 is the same diagram of Fig. 2.24, but by using thertihility of the fig-
ure eight knot, we can show that they can be represented biffesedit doubled knot.
O

2.4. Proof of the fourth row on Theorem 1.1's table. K; is a right handed
trefoil knot andK; is a figure eight knot.

Proof. We show that the 4-manifolds represented by Fig$ arl 2.47 have the
same boundaries.
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Fig. 2.18. Mn(K1, K»).

II2°>

blow up

Fig. 2.20.

=

isotopy

iy

Fig. 2.22.

G &

Fig. 2.19.

A
u Q

IIZ-)

blow up

_—
by the same process
except for the sign

of this sign of

the framing

Figs. 2.5-2.17

Fig. 2.23. &%, (D_(Kz, ).
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AN DA
(N = (T

Fig. 2.24. Mn(K1, K»). Fig. 2.25.
0 n -1 +1
G NN
—>é +p (L)H _>é +1¢k) Ql
blow up J blow up \J
Fig. 2.26. Fig. 2.27.

the sing of the

-1 +1 ) -1
0 - f n
- @:D C\)] 2 S
isotopy o l / * by the same
\’/‘/ \J process except for { >

framing

. Figs. 2.5-2.17
Fig. 2.28. Fig. 2.29. (D, (K2, n)).
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Fig. 2.30. Mp(K1, K2). Fig. 2.31.
0 n
J = T
|sotopy blow up \)
Fig. 2.32. Fig. 2.33.

il
- =
by the same
process except for

the sign of the

framing
; Figs. 2.4-2.17
Fig. 2.34. Fig. 2.35. &%, (D_(Kz, ).
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Flg 2.36. Mn(Kl, Kz).

blow up

Fig. 2.37.
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Fig. 2.39.

ez ey
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Fig. 2.38.

isotopy by the same \/
process except for \/

the sign of the

framing

Figs. 2.5-2.11

_—
isotopy handle slide

_—>
handle slide blow down
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+1

(D

Fig. 2.47. $3,(D. (K2, n)).

~

e
isotopy

O]

2.5. Proof of the fifth row on Theorem 1.1's table. K; and K, are figure
eight knots.

Proof. We show that the 4-manifolds represented by Fig®8 antl 2.55 have the
same boundaries.

Since Fig. 2.53 is the same diagram of Fig. 2.51, we can shaivttiey can be
represented by a different double knot. ]

Next we compute the Casson invariar{iM, (K1, K2)). Now suppose thaK_, K,
and K are links in S® which have projections which differ at a single crossingkof
as depicted Fig. 2.56.

REMARK. Our convention in Fig. 2.56 is different from that in [2]. fact, their
K, (respK_.) is our K_ (respK.). We adopt our convention as Fig. 2.56 because by
our conventionA’(T,,3) is computed to be 1, wher& z is a right handed trefoil knot.
While by their conventiom\’(T,,3) is computed to be-1, contradicting the normaliza-
tion A'(T23) = 1 ([2] p148, [9] p.52).

Lemma 2.1 (see [2], p.143) Let K_ be a knot in 8 Let K, and K, be as
above. Then Kis a two component link and

M(K4) =2 (K2) = Tk(Ko)
where A’(K) is the Casson invariant of a knot K.

Lemma 2.2 (Surgery formula, see [9], p.52) Let K be a knot in & The Casson
invariant A(S3,(K)) is equal to’(K).

By Lemmas 2.1, 2.2 and the second column on Theorem 1.1's,tald can com-
pute the Casson invarian{ M, (K1, K3)).
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Fig. 2.48. M (K4, K53). Fig. 2.49.
-1 -1 -1
v ACAY f—ﬁ/ﬁ\ §
LTEEY L
blow up J isotopy V \/

Fig. 2.50. Fig. 2.51.
-1
|
J X
by the same
process except for

the sign of the
framing
Figs. 2.40-2.47
Fig. 2.52. $*,(D4 (K2, n)).
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)

d

~
by the same \
process except for
the sign of the

framing
Figs. 2.40-2.47

Fig. 2.55. %,(D_(K2, n)).

S SRS

Fig. 2.56.
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it
Fig. 2.57. K. Fig. 2.58. K_. Fig. 2.59. Ko.

Fig. 2.60. K. Fig. 2.61. K_. Fig. 2.62. Ko.

2.6. The Casson invariant of the first row on Theorem 1.1's tale.

Proof. K; and K, are right handed trefoil knots. By Section 2.U,(K3, K3)
is diffeomorphic to Sil(DJr(Kz, n)). Therefore A(Mp(K1, Ky)) is equal to
)L(Sil(D+(K2, n))). By Lemmas 2.1 and 2.2, we can compute the Casson invarian
MS2,(D(Kz, 1)) as Figs. 2.57-2.59.

By Lemma 2.10'(K.)— X/ (K2) = Ik(Kp). SinceK_ is a trivial knot,A’(K_) = 0.
Ik(Kp) is —n. Therefore,’(K.) = —n. Then A(M, (K1, K3)) = A(S;”rl(D+(K2, n))) =
M(KL) =-—n. O

2.7. The Casson invariant of the second row on Theorem 1.1'alble.

Proof. Kj is a left handed trefoil knot an&, is a right handed trefoil knot. By
Section 2.2,My (K4, K») is diffeomorphic toS*,(D_(Kz, n)). Thereforer(Mn(K1, K2))
is equal toA(S®,(D_(Kz, n))). SinceA(S?,(D_(Kz, n))) = —A(S3 (D4 (Kz, —n))) (see
[9], p.52, Theorem 3.1.), we compute the Casson invaria(ﬁﬁl(DAKl, —n))) as
Figs. 2.60-2.62.

By Lemma 2.1,A'(K.) — A/(K2) = [k(Kp). SinceK_ is a trivial knot, M'(K_) =
0. Ik(Kg) is n. Therefore,A'(K.) = n. ThenA(M,(Kq, K3)) = A(Sfl(D,(Kg, n))) =
—MS31(D4 (K, —n))) = —V'(K4) = —n. O

2.8. The Casson invariant of the third row on Theorem 1.1's tale.
Proof. Kj is a figure eight knot and, is a right handed trefoil knot. By Sec-
tion 2.3, Mp(K1, K») is diffeomorphic toSil(D,(Kz, n)). ThereforeA(M,(Kq, K2))
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Fig. 2.63. K_. Fig. 2.64. K. Fig. 2.65. K.
) >
W@
Fig. 2.66. K. Fig. 2.67. K_. Fig. 2.68. K.

is equal toA(Sle(D,(Kg, n))). By Lemmas 2.1 and 2.2, we can compute the Casson
invariant A(S3,(D_(Kz, n))) as Figs. 2.63-2.65.

By Lemma 2.10'(K)—1(K_) = Ik(Kg). SinceK, is a trivial knot,’(K,) = 0.
Ik(Ko) is —n. Therefore,’(K_) = n. Then A(My(K1, K2)) = )L(Sfrl(D_(Kz, n))) =
AM(K2) =n. O

2.9. The Casson invariant of the fourth row on Theorem 1.1's d@ble.

Proof. Kj is a right handed trefoil knot anH, is a figure eight knot. By 2(iv),
Mn(Kq, K2) is diffeomorphic toSle(D+(K2, n)). Thereforex(M,(Ky, K2)) is equal to
A(Sil(D+(K2, n))). By Lemmas 2.1 and 2.2, we can compute the Casson intarian
AM(S2,(D4(Kz, n))) as Figs. 2.66—2.68.

By Lemma 2.11'(K.) — X' (K2) = Ik(Kp). SinceK_ is a trivial knot,A’(K_) = 0.
Ik(Ko) is —n. Therefore,A'(K.) = —n. Then A(Mp(Ky, Kp)) = A(Sil(D+(K2, n))) =
AM(KL) = —n. 0

2.10. The Casson invariant of the fifth row on Theorem 1.1's thle.

Proof. K; and K, are figure eight knots. By Section 2.5],(K1, K3) is diffeo-
morphic to S3,(D_(Kz, n)). Thereforer(M,(K1, K2)) is equal toi(S?,(D_(Kz, n))).
By Lemmas 2.1 and 2.2, we can compute the Casson invax(ﬁtl(D_(Kz, n))) as
Figs. 2.69-2.71.
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DA

Fig. 2.69. K_. Fig. 2.70. K. Fig. 2.71. Ko.

=

By Lemma 2.1 (K, )—1(K_) = Ik(Kg). SinceK, is a trivial knot,\’(K,) = 0.
Ik(Ko) is —n. Therefore,A'(K_) = n. Then A(Mp(Kq, K2)) = A(Sil(D_(Kg, n))) =
AM(K2)=n. O

3. Proof of Proposition 1.7

We show thatV! U; (—V?2) is diffeomorphic toC P2 #C P2.
Proof. By Kirby calculus from Figs. 3.1-3.6, we will show ththe Kirby dia-
gram of VI U, (—=V2) is represented by Fig. 3.6. O

4. Appendix

An alternative proof of Corollary 1.2. By [3], i is odd, M(T2 3, T2 3) does not
bound any contractible 4-manifold. In this Section we willggan alternative proof of
this fact. For this purpose, we will prove the following position;

Proposition 4.1. The 4-dimensional handlebodies represented Higs. 4.1, 4.8
and 4.9 have the same boundaries.

Proof. See Figs. 4.1-4.9. O
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Fig. 4.1. Mn(T2,3, T2,3)- Fig. 4.2.
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Fig. 4.3. Fig. 4.4.
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@uxg /Q(% 0

We give an alternative proof of Corollary 1.2.

Proof of Corollary 1.2. Fig. 4.8 gives a smooth 4-manif@d with intersection
form A.

A= (xj), aj=a-3, 1=<i,j=10,

-2 1
21
1 21
1 1 0 1
1 6 1
A= 1 n-6 1
1 01 1
1 21
1 2
1 -2

We have Indexf) = 0. Note thatA is an even type matrix if is even.
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CREIRNINERTS
Fig. 4.11. Q,

Fig. 4.9 gives a smooth 4-manifol@®, with intersection formB.

B=(8j) Bj=hb-b, 1=<i,j=<14

2 1
21
1 21
1 1 21
1 21
1 21
1 21
B= 1 21
1 2 1
1 n-51
1 01 1
1 21
1 2
1 -2

We have IndexB) = 8. Note thatB is an even type matrix ifi is odd.
By Proposition 4.1, we have the Rohlin invarignfMn (T 3, T2,3)) as follows:

__[IndexB) =1 (nis odd)
u(Mn(T2,3, T2,3)) = {Index(A) —0 (nis even) mod 2.

Therefore ifn is odd, Mp(T2,3, T2,3) does not bound any contractible 4-manifold.
]
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