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In his paper [5], E. Schenkman pointed out the similarity between
the properties of the set of normal subgroups of a group with the
maximal condition for normal subgroups and the properties of ideals of a
commutative Noetherian ring. This was based on making the analogy in
the following way : the sum of ideals corresponds to the product of normal
subgroups; the product of ideals corresponds to the commutator of normal
subgroups; and the residual quotient of ideals has an analogue introduced
there. The concepts of prime ideals, irreducible ideals, and radical of
an ideal have analogues for normal subgroups.

From such a point of view, we can consider naturally a decomposi-
tion of normal subgroups of a group on the analogy of the primary
decomposition of ideals in a commutative Noetherian ring. Let us con-
sider, for example, the direct product of the symmetric group &, of
degree 5 with itself. Then it can be easily seen that the lattice of its
normal subgroups is as follows:

1x1

In this group the normal subgroup ;X1 can be written, in two ways,
as intersections of primary subgroups:

A x1 = (S, x1)[)(Us x Sy)
= (@5X1)ﬂ(a5><215).
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This suggests problems to us that, for any normal subgroup A in an
arbitrary group G with a certain finiteness condition for normal sub-
groups, whether A can be written as an intersection of primary sub-
groups of G or not, and that if there exists such a decomposition, then
whether this decomposition is determined uniquely by A as in the case
of ideals in commutative Noetherian rings or not.

It is the main purpose of this paper to present necessary and
sufficient conditions that such a decomposition exists, and to discuss the
question of the uniqueness theorem.

We shall define, in §1, the concepts of prime subgroups and radicals
of normal subgroups in an arbitrary group along the same line as ideals
in an associative ring due to N. H. McCoy [3]. The concept of an m-
system will be introduced here as an analogue for associative rings.
The radical of a normal subgroup A, denoted by 7(A), will be defined,
in this paper, as the intersection of all minimal prime subgroups belonging
to A and is somewhat different from Schenkman’s one [5].

In §2, we shall define the concept of primary subgroups in an ar-
bitrary group along the same line as ideals in a commutative Noetherian
ring. This is also different from Schenkman’s one [5]. For any two
normal subgroups A and B, the residual quotient of A by B will be
defined and some useful properties concerning the residual quotients will
be considered.

In §3, the concepts of tertiary radicals and tertiary subgroups in
an arbitrary group will be introduced by the analogy of R. Croisot [1].
We shall show here that every normal subgroup in a group with the
maximal condition for normal subgroups can be written always as an
intersection of a finite number of tertiary subgroups (Theorem 3.9).

We shall collect, in §4, certain results of normal subgroups in a
group G with the maximal condition for normal subgroups. One of the
interesting results is as follows : for any normal subgroup A, there exists
a suitable integer # such that (A< A, where 7(A)™ denotes zn-th
derived group of 7(A) (Proposition 4.5). We may remark from this that
the Schenkman’s radical coincides with our radical, and that every primary
subgroup in our sense is always one of the primary subgroups in
Schenkman’s sense.

In §5, applying the notion of the Artin-Rees property of J. A. Riley
[4] to our case, we shall give necessary and sufficient conditions that
every normal subgroup in a group with the maximal condition for normal
subgroups can be represented as an intersection of a finite number of
primary subgroups (Theorem 5.4). This is one of the main theorems.

In §6, we shall prove another main theorem that if a normal sub-
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group A has a primary decomposition, then in any two normal decom-
positions of A the number of primary components is the same and the
radicals of these coincide in some order (Theorem 6.1). This is also a
generalization of a theorem due to E. Schenkman [5]. And in §7, we
shall show that a similar result holds in the tertiary decompositions
(Theorem 7.2).

Finally, in §8, we shall prove the second uniqueness theorem for
normal decompositions. Suppose that A is a decomposable subgroup,
and let A=Q,(]Q.() () Q. be a normal decomposition. If {+(Q,), 1Q,), -,
r(Q,)} is an isolated set of A, then @,()Q.[]-:()®. depends only on
Q) 1(@,), -, 7(@,,) and not on the particular normal decomposition con-
sidered (Theorem 8. 7).

The author wishes to thank Professors K. Murata and O. Nagai for
many helpful discussions and suggestions during this work.

1. Prime subgroups and radicals

Let G be an arbitrary group and let @ be an element in G. Through-
out this paper, (a) will denote the normal subgroup in G generated by
a, that is, the smallest normal subgroup which contains @. For any two
normal subgroups A and B in G, we shall define the commutator subgroup
[ A, B] of these normal subgroups as the subgroup generated by all
commutators of the form

[a, b] = aba'b,

where ¢ is in A and b is in B. More generally, for any # normal sub-
groups A,, A,,-, A, in G, we shall define by recurrence a complex
commutator of weight m in the components A,, A4,,*:,A,. The complex
commutators of weight 1 are the normal subgroups A,, A4,,-:-, A, them-
selves. Suppose that the complex commutators of all weight less than
m have been defined already. Then those of weight m consist of all the
commutator subgroups [A, B], where A and B are any complex com-
mutators of weight m, and m, in the components A,, A,,, A, respectively,
such that m,+m,=m.

DErFINITION 1.1. A normal subgroup P in G is a prime subgroup of
G or simply P is prime in G, if whenever [(a), (b))]EP at least one of
a and b belongs to P.

From this definition we have

Proposition 1.2. In order that a normal subgroup P in G is a prime
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subgroup of G, it is necessary and sufficient that if whenever [ A, B]=P
at least one of A and B is contained in P.

More generally, applying this proposition, we can prove1easi1y the
following by the induction on the weight of the complex commutators.

Proposition 1.3. Let A,, A,,--+, A, be any n normal subgroups in G,
and let C[A,, A,,-+,A,] be a complex commutator of weight m in the
components A,, A,,--+,A,. Then any prime subgroup of G which contains
C[A,, A, A,] must contain at least one of the A;.

Corollary 1.4. Let A, A,, -, A, be any n normal subgroups in G.
Then any prime subgroup of G which contains the intersection A,[) A,(] ()
A, must contain at least one of the A;.

Proposition 1.5. (E. Schenkman [5]) Let A be a normal subgroup
in G and let P,, P,,---,P, be prime subgroups none of which contains A,
then there exists an element a in A such that no P; contains a.

Proof. We use induction on the number » of prime subgroups. If
n=1, the assertion is trivial. Let us now assume that the proposition
is true for #—1 prime subgroups, -then for each i, 1<"i<#, there exists
an element a; in A, which is not contained in any of P,, P,,---,P;_;,
P;i1,,P,. It is clear that we need only to consider the case in which
a;€P; for all i. For a fixed prime subgroup P,, there exist in (@,) and
(a,) two elements a] and aj respectively such that [af, @] is contained
in P,(\P,() A but not in P,. Then there exist in ([a}, @5]) and (a;) two
elements @, and a} respectively such that [a;, @¢i] is contained in
P,\P,\P,()A but not in P,. Continuing an exactly similar argument,
we obtain two elements «;_, and a;_, such that [a;-,, @;_,] is contained
in P,(\P,)+-(P:.1(JA but not in P,. Therefore there exist in
([ai-z, ai-1]) and (a,.,) two elements a;-, and a;.; respectively such that
[ai-1, @i.1] is contained in P.[\P,() (1 Pi-1[)Pss1[) A but not in P,.
Finally, using an exactly similar argument repeatedly, we obtain two
elements a@,_, and a;, such that b,=[a,_., a,] is contained in P,(|P,(]---()
P, NPrii[) -V P.[) A but not in P,. If we put a=b,b,--b,, then a is
contained in A but not contained in any of P,, P,,---,P,. This completes
the proof.

To give another characterization of a prime subgroup P, we shall
consider the set theoretic complement C(P) of P in G. This is an m-
system in the following sense:

DErFINITION 1.6. A subset M (s=¢) of G is an m-system, if for any
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two elements m, and m, in M there exist in (m,) and (m,) two elements
mi and m; respectively such that [m], mj] is in M. The empty set ¢
to be considered as an m-system.

This concept plays in the present paper the same role as those
defined by N. H. McCoy [3] in associative rings, and so we can translate
some of results due to McCoy into ours. First we have from the defini-
tion of prime subgroups the following :

Proposition 1.7. A normal subgroup P in G is a prime subgroup of
G if and only if its complement C(P) is an m-system.

Moreover, in this proposition we can weaken the assumption that P
is a normal subgroup. We shall prepare a definition and several lemmas.

DerFmviTION 1.8. A prime subgroup P is called a minimal prime sub-
group belonging to a normal subgroup A, if it contains A, and if there
is no prime subgroup containing A which is strictly contained in P.

Lemma 1.9. Let A be a normal subgroup in G, and let M be an m-
system which does not meet A. Then M is contained in an m-system M*
which is maximal in the class of m—-systems which do not meet A.

This is, of course, an immediate consequence of Zorn’s lemma and
is merely stated in the form of a lemma for convenience of reference.

Now let A and B be two normal subgroups in G, then AB will
denote the subgroup generated by A and B.

Lemma 1.10. Let M be an m-system in G and let A be a normal
subgroup in G which does not meet M. Then A is contained in a normal
subgroup P* in G which is maximal in the class of normal subgroups
which do not meet M. The normal subgroup P* is necessarily a prime
subgroup of G.

Proof. The existence of P* follows at once from Zorn’s lemma.
We now show that P* is a prime subgroup of G. If M is empty, then
P* coincides with G and P* is a prime subgroup of G. Suppose that
M is not empty, and that, for i=1, 2, ¢; ¢ P*. Then the maximal prop-
erty of P* implies that P*(a;) contains an element m; of M. Thus there
exists an element &; in (¢;) such that b,=m; (mod P*). Since M is an
m-system, we can choose m; in (m;) such that [mg, ms;] is in M, and
hence [m{, mji]¢ P* since P* does not meet M. Since each m; is con-
tained in (m;), it has an expression of the form m}=J[, x,mix;*. Then
=[] xebiexy’ is in (b;) and b;=m}] (mod P*). Thus &; is in (a;) and
[8;, bi1=[m], ms]==1 (mod P*), and hence [(a,), (a,)] is not contained
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in P*. This shows that P* is a prime subgroup of G.
We now prove

Proposition 1.11. A set P of elements of G is a minimal prime
subgroup belonging to a normal subgroup A in G if and only if its com-
plement C(P) is maximal in the class of m-systems which do not meet A.

Proof. Let P be a set of elements of G with a property that
M=C(P) is a maximal m-system which does not meet A. If M is the
empty set, then P=G is a prime subgroup of G and the maximal property
of M implies that P is a minimal prime subgroup belonging to A.
Suppose that M is not empty. By Lemma 1.10, A is contained in a
prime subgroup P* of G which is maximal in the class of normal sub-
groups which do not meet M. P* does not equal to G and C(P*) is an
m-system which contains M and does not meet A. The maximal property
of M implies that C(P*)=M, and hence P*=P. Thus P is a prime sub-
group of G containing A. Clearly, there can exist no prime subgroup
P’ of G such that ACP'SP, since this would imply that C(P’) is an
m-system which does not meet A and properly contains M. This is
impossible because of the maximal property of M. Hence P is a minimal
prime subgroup belonging to A.

Conversely, if P is a minimal prime subgroup belonging to A, then
M=C(P) is an m-system which does not meet A, and Lemma 1.9 shows
the existence of a maximal m-system M* which contains M and does
not meet A. By the part of the proposition just proved, C(M*)=P* is
a minimal prime subgroup belonging to A. Since M*2M, it follows
that P*CP. Thus ACP*CP, from which it follows that P¥=P and
M=M?*. This shows that M is a maximal m-system which does not
meet A, and completes the proof of the proposition.

If P is any prime subgroup of G containing a normal subgroup A
in G, then M=C(P) is an m-system which does not meet A. By Lemma
1.9, M is contained in an m-system M?* which is maximal in the class
of m-systems which do not meet A. Proposition 1.11 shows that C(M*)
is a minimal prime subgroup belonging to A. Since C(P)SM?*, it follows
that AC C(M*)ZP. This proves that any prime subgroup which contains
A contains a minimal prime subgroup belonging to A. As a special case
in which P=G, for any normal subgroup A in G there exists at least
one minimal prime subgroup belonging to A.

Applying this remark, we now define

DerniTION 1.12. The radical »(A) of a normal subgroup A in G is
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the intersection of all minimal prime subgroups belonging to 4. If A
is its own radical, then A will be called a radical subgroup or simply a
radical.

From the above remark, we have

Proposition 1.13. The radical r(A) of a normal subgroup A in G is
the intersection of all prime subgroups containing A.

Let A be a normal subgroup in G. Then we shall define
AP = A, A =[A, A] and A™ =[A" D, A" V]

for any positive integer »>>1. The Schenkman’s radical of A, denoted
by Rad A, is the group union of all normal subgroups B in G such that
for some n, B is contained in A. It follows from Proposition 1.3 that
Rad A is contained in 7(A4). However, in the later section (§4) we shall
show that Rad A coincides with 7{A) under the assumption that G
satisfies the maximal condition for normal subgroups.

Proposition 1.14. Let A and B be any two normal subgroups in G.
Then

(1) nA2A4,

(2) ADB implies v(A)22r(B),

(3) r(r(A)=rA),

(4) (LA BD)=r(A[)B)=r(A)\r(B).

Proof. (1) and (2) follow from Definition 1.12 and Proposition 1.13
respectively.

(3) By (1) and (2) above we have 7(7(A)=27(A). Since any minimal
prime subgroup P belonging to A is a prime subgroup containing 7(A),
we have 7(r(A))S7(A), and hence we have 7(r(A))=r(A).

(4) Since [ A, B]Z A[) B, we have by (2) above ([ 4, B)) &7 A(|B)&
r(A)(\7(B). Conversely, since any prime subgroup containing [A, B]
contains 7(A)()7(B), it follows that #([ A, B])=27(r(A)(| #(B)), and hence by
(1) above we have #([ 4, B])27(A)()7(B), which completes the proof.

We shall say that a normal subgroup A in G is meet-irreducible, if
whenever A=B(|C, where B and C are normal subgroups in G, then
either A=B or A=C.

It is evident that a prime subgroup is always meet-irreducible. On
the other hand, if a normal subgroup A is meet-irreducible and is a
radical such that [B, C] is contained in A, then we have [AB, AC]
=[A4, A4, C][B, A][B, C]<A. AB[)AC contains A and is abelian
mod [ AB, AC], and hence is abelian mod A. Since A is a radical, it
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follows from Proposition 1.3 that AB[) AC=A, and since A is meet-
irreducible, either AB or AC is equal to A, and hence either B or C is
contained in A, whence it follows that A is prime in G. We may con-
clude from this remark that a normal subgroup P in G is prime if and
only if it is a radical and is meet-irreducible.

Proposition 1.15. The radical r(A) of a normal subgroup A consz?ts
of those elements a of G with the property that every m-system which
contains a contains an element of A.

Proof. Suppose that there exists an m-system M which contains a
but does not meet A. By Lemma 1.9, M is contained in an m-system
M* which is maximal in the class of m-systems which do not meet A.
By Proposition 1.11, C(M*) is a minimal prime subgroup belonging to
A, and clearly C(M*) does not contain a. Hence a can not be in the
radical #(A).

Conversely, let P be any minimal prime subgroup belonging to A.
Then C(P) is an m-system which does not meet A4, and hence C(P) does
not contain ¢ by our assumption, that is,  is contained in P. Thus a
is in 7(A), which completes the proof.

DErINITION 1.16. The radical of G will be defined as the radical
7r(E) of the unit subgroup E of G.

Proposition 1.17. Let A be a normal subgroup in G. Then the
radical of the factor group G|A is equal to r(A)/A. In particular, if A
is a radical, the radical of the factor group G|/A is the unit subgroup.

Proof. It follows from Proposition 1.13 that the radical of G/A is
the intersection (){P/A:P is a prime subgroup of G containing A}, and
hence is equal to the factor group ([J{P:P is a prime subgroup of G
containing A})/A. Thus it coincides with »(A)/A.

2. Primary subgroups and residual quotients

DeriNiTION 2.1. A normal subgroup @ in G is called a primary
subgroup of G if the conditions [(@), (b))]=Q and a ¢ Q always imply that
ben@Q).

Let us note that prime subgroups are always primary subgroups.
Slightly similar to Proposition 1.2 we have

Proposition 2.2. A normal subgroup Q in G is a primary subgroup
of G if and only if [A, B1=Q and ALQ, then B 7(Q).
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In the later section (§ 4), we shall prove that if G satisfies the maximal
condition for normal subgroups, then there exists a suitable integer »
such that Q2 #(Q)™. Hence, if this is the case, a condition that B is
contained in #(@) is equivalent to a condition that B™ is contained in
Q@ for some integer .

As is easily seen, P is a prime subgroup of G if and only if P
is a primary subgroup and is a radical. Hence by the remark in the
preceding section, if P is a radical, then the following conditions are
equivalent :

(1) P is a prime subgroup of G,

(2) P is a primary subgroup of G,

(3) P is meet-irreducible.

There are some properties of primary subgroups that we shall need.
First, we prove

Proposition 2.3. If Q, and Q, are primary subgroups of G such
that 7(Q,)=r(Q,), then Q=Q,(\Q, is also a primary subgroup of G such
that 1(Q)=r(Q)=r(Q).

Proof. By Proposition 1.14 (4), 7(Q)=r(Q,()Q.)=r(Q,) ) 7(®,), and
hence 7(Q)=r(Q,)=r(Q,). We now show that @ is a primary subgroup.
Assume that [(a@), ())]SQ and that b¢#(Q), then for each i=1,2,
[(@), (0)]=Q; and b ¢ 7(Q,), and hence ¢ is in Q;. Thus a is in Q. This
completes the proof.

If a normal subgroup A in G can be expressed in the form

A=0Q.NQ.N @,

where each Q; is a primary subgroup of G, we shall say that we have
a primary decomposition of A, and the individual @; will be called the
primary components of the decomposition. Those normal subgroups which
can be written in the form above will be called decomposable subgroups.
A decomposition in which no @; contains the intersection of the remaining
Q; is called irredundant.

Proposition 2.4. Let A be a normal subgroup in G. If A=Q,()
Q.- Q, is an irredundant primary decomposition of A such that not
all of Q; have the same radical, then A is not a primary subgroup of G.

Proof. For each j, 1<j<n, we have [ (] .+; Q: @;]& A. Since the
decomposition is irredundant, [).+;®Q:9€Q;, and hence we have
M rt; QrEA. Let us now suppose that A is a primary subgroup of G.
Then it follows from these relations that @;<#(A), and hence 7(Q;)<
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r(r(A)=r(A)=;7(Q;). Thus 7(Q,)=nQ;) for all i and j, which is
impossible because of our assumption.

Proposition 2.5. Suppose that a normal subgroup A is a decomposable
subgroup, A=Q,(\Q,() -\ Q, is its primary decomposition, and the radical
r(Q;) of each primary component Q; is expressed in the form

Qi) = Py () Pi() - (1 Pins »

where P;; are prime subgroups containing Q; for 1=j<mn;, 1=i=n.
Then,

(1) any prime subgroup which contains A must contain at least one
of the P;;,

(2) the minimal prime subgroups belonging to A are just those prime
subgroups P;; which do not strictly contain any other P,.

Proof. (1) Let P be a prime subgroup of G containing A, then, by
Corollary 1.4, we can choose i so that @, P, and hence #(@;) S 7(P)=P.
Again by Corollary 1.4 we can choose some j so that P;;C&P. This
proves the first assertion.

(2) 1If, in particular, P is a minimal prime subgroup belonging to
A, then by (1) just proved we can choose some i and j so that P;;=P.
Conversely, suppose that P;; does not strictly contain any other P,,.
Since P;; contains A, it must contain a minimal prime subgroup P belong-
ing to A, as we have remarked in §1. P contains, by (1) above, at
least one of the P,,. Hence P;;2P_2>P,, and consequently, from the
choice of P;;, P;;=P=P,,, which completes the proof.

Now we make the following definition.

DerINITION 2.6. Let A and B be any two normal subgroups in G.
The residual quotient of A by B, denoted by A:B, will be defined to be
the set of all elements x in G such that [(x), B] is contained in A.

Lemma 2.7. The residual quotient of A by B is a normal subgroup
in G containing A.

Proof. Suppose that x and y are in A: B, then [(xy), B [(xXy), B]
=[(x), B][(»), BI= A. This proves that xy is in A:B. Since (x)=(x)
and (cxc™)=(x) for all ¢ in G, we see that A:B is a normal subgroup
in G. Moreover, if a is in A, then certainly [(a), B]< A, which gives
us the relation A A: B.

As is easily seen from Definition 2.6, we have
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(1) [A:B,B]=[B, A:B]CA,
@) (N:A):B=[):(A;:B).

Now we shall give a characterization of prime subgroups and that
of primary subgroups by means of residual quotients.

Proposition 2.8. (1) A normal subgroup P in G is a prime subgroup
of G if and only if P: A=P for all normal subgroups A in G such that
ALP.

(2) A normal subgroup Q in G is a primary subgroup of G if and
only if Q:A=Q for all normal subgroups A in G such that AL Q).

Proof. As we have remarked above, (1) is a special case of (2), and
so we shall prove only (2). Now, let us suppose that @ is a primary
subgroup of G and that A is a normal subgroup in G such that AL #(Q).
Then from the fact that [Q: A, A]SQ, we have Q: ACQ, whence it
follows that Q: A=0Q.

Conversely, suppose that [(a), (b)]<Q and that b¢ #»(Q). Then (b)
is not contained in #(Q), and hence by our assumption we have Q:(b)=0,
which shows that ¢ is in @, This proves that @ is a primary subgroup
of G.

Let A and B be any two normal subgroups in G. If A2 B, then
from the definition of residual quotients we see that A:B=G. From
this and Proposition 2.8 (1), if P is a prime subgroup of G, then P: A
is G or P according as A is or is not contained in P.

Lemma 2.9. Let A (==G) be a normal subgroup in G such that
A=P,(\P,(| .-\ P,, where each P; is a minimal prime subgroup belonging
to A and the decomposition is irredundant. Then A:B=A if and only if
B is contained in no P;.

Proof. The sufficiency follows from Proposition 2.8 (1). To prove
the necessity, suppose that A: B=A. Then P,(\P,(] -\ P,=(P,(VP.[}+--()
P,):B=(P,:B)((P,:B)()--(1(P,:B), and by Corollary 1.4 for each
i, 1<<i<mn, there exists some j, 1<j<#, such that P;: BCP;. Since P;
is contained in P;: B and since P; is a minimal prime subgroup belonging
to A, P; is equal to P; and hence P;: B=P; for all i. Hence B is con-
tained in no P;.

More generally from this lemma, we have

Proposition 2.10. Suppose that A is as in Lemma 2.9 and suppose
that -B=B{(\B5()--- (| Bt,, where each B’ is a normal subgroup in G. Then
A:B=A if and only if no B} is contained in any P;.
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3. Tertiary radicals and tertiary subgroups
We now make the following definition.

DErINITION 3.1. The tertiary radical of a normal subgroup A in G,
denoted by #(A), will be defined to be the set of all elements ¢ in G
satisfying the condition

b¢ A= 3ce(b) such that c¢ A and [(a), (c)]EA.

Lemma 3.2. The tertiary radical {(A) of A is a normal subgroup
in G which contains A.

Proof. Let @, and @, be any two elements in #(A). Suppose that
b¢ A. Then there exists ¢, in (b) such that ¢, ¢ A and [(a,), (c,)]& A and,
since c, ¢ A, there exists ¢, in (¢;) such that ¢,¢ A and [(a,), (c.)]& A.
Then [(a,a,), (¢,)]<[(a,), (c¢)][(a,), (c.)]=A. Hence a,a, is in #A). Since
(@ )=(a) and (cac™")=(a) for all ¢ in G, we see that #A) is a normal
subgroup in G. Moreover, if b¢ A, then b is in () but not in A and
certainly [(a), (b)]< A for all a in A, which gives us the relation A4 A).

DEFINITION 3.3. A normal subgroup T in G is called a tertiary sub-
group of G if the conditions [(@), (0)]= T and a ¢ T always imply that
b is in T).

From this definition, we have

Proposition 3.4. A normal subgroup T in G is a tertiary subgroup
of G if and only if [A Bl T and AL T, then B is contained in t(T).

Now we prove

Proposition 3.5. FEvery meet-irveducible normal subgroup in G is a
tertiary subgroup.

Proof. Suppose that a normal subgroup A is meet-irreducible but
not a tertiary subgroup. Then there exist @ and b such that [(a), (b)]<
A, a¢ A and b ¢ #(A), and hence there exists ¢ ¢ A such that

[(B)(cYIEA and ce(c)=>c€A.

Let us now consider the normal subgroup A’= A(a)[)] A(c) and let x € A'.
Then x=a,a’=a,’ with a,, a,€ A, a’€(a) and ¢’ €(c). It follows from
this that ¢’=a.,a’ for some a,€ A. Since [(b), ()] [(d), (a,)][(0), (@) ] = A4,
we have ¢’€ A, and hence x € A. Whence it follows that A= A’, which
contradicts the fact that A is meet-irreducible.
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By means of usual methods, we can show that every normal sub-
group in a group with the maximal condition for normal subgroups can
be expressed as an intersection of a finite number of meet-irreducible
normal subgroups. Hence, by Proposition 3.5, we have

Proposition 3.6. If G satisfies the maximal condition for normal
subgroups, then every mnormal subgroup in G can be represented as an
intersection of a finite number of tertiary subgroups of G.

Proposition 3.7. Let A=T,\T,():--(\T, be an irredundant decom-
position of a normal subgroup A, where each T; is a tertiary subgroup of
G. Then the tertiary radical t(A) of A is equal to

KTHNHT)() - [1KT,).

Proof. Let ac#(T)(\¢(T.)()---(1¢(T,) and let b¢ A. Then we may
assume that b ¢ T, and, since a € {(T,), there exists b, € (b) such that b, ¢ T,
and [(a), 0)]&T,. If b, is contained in T,, we have b, ¢ T,() T, and
[(a), (b,)]=T,\ T,. On the other hand, since a is in #T,), if b, is not
contained in 7,, then there exists an element b; € (b,) such that b ¢ T,
and [(a), (b)) ]&T,. We have therefore that [(a), (6{)]= T,(] T,. Thus we
can choose, in either case, an element b,€ () such that 4,¢ T,() 7, and
[(a), (b,)]JET,() T,. Using an exactly similar argument repeatedly, we
obtain an element b, € (b) such that b,¢ T,(| T,()-() T, and [(a), (b,)]<
T.N\T.()-*(1T,. Thus ac#A) and hence #T,)\{T)() -« T,)Zt(A).

Conversely, suppose that ¢ is in # A). Let & be an element in
T,(\ T,():+() T, but not in 7,. Then b is not contained in A and hence
there exists c€(b) such that ¢c¢ A and [(a), (c()]]<A. On one hand, we
have c¢ T,, for otherwise we should have c€ T, [|(0))& A. Since T, is
a tertiary subgroup, @ is in #(7,). Similarly, @ is in #7T;) for 2<<i<n.
Thus HA)ZHT,)«T,)()---(14«T,), which completes the proof.

By a similar method as in Proposition 2.3, we have

Proposition 3.8. If T, and T, are tertiary subgroups of G such that
KT)=KT,), then T=T,\T, is also a tertiary subgroup of G such that
KT)=KT,)=KT,).

If a normal subgroup A in G can be expressed in the form
A=T T[T,

where each T; is a tertiary subgroup of G, we shall say that we have
a tertiary decomposition of A, and the individual T; will be called the
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tertiary components of the decomposition. An irredundant tertiary decom-
position, in which the tertiary radicals of the various tertiary components
are all different, is called a normal decomposition. Each tertiary decom-
position, as is easily seen from Proposition 3.8, can be refined into one
which is normal.

Finally, we apply Proposition 3.6 to obtain the following

Theorem 3.9. If G satisfies the maximal condition for normal sub-
groups, then every normal subgroup in G has a normal tertiary decom-
position,

4. The maximal condition for normal subgroups

We shall collect in this section certain results of normal subgroups
under the assumption that G satisfies the maximal condition for normal
subgroups.

Proposition 4.1. Suppose that G satisfies the maximal condition for
normal subgroups. Then for any normal subgroup A in G there exist at
most a finite number of minimal prime subgroups belonging to A. Thus
the radical v(A) of A is an intersection of a finite number of minimal
prime subgroups belonging to A.

Proof. If A is a prime subgroup of G, then the assertion is trivial.
We may suppose therefore that A is not a prime subgroup of G. Then
we can choose a¢ A and b¢ A such that [(a), (b)]E A. Let us suppose
that A has an infinite number of minimal prime subgroups P; belonging
to A. Then since [A(a), Ab)]=[A4, A1[A, (b)] [(a), A] [(a), (b)]Z A4, at
least one of A(a) and A(b) must be contained in an infinite number of P;.
Without loss of generality we may suppose that the one which is con-
tained in an infinite number of P; is A(a). It is easily seen that those
P; which contain A(e) are minimal prime subgroups belonging to A(a) and
moreover A(a)=2A. Continuing an exactly similar argument, we obtain
a strictly increasing infinite sequence A& A(a)&= -+ of normal subgroups
in G, which is impossible from our assumption.

Proposition 4.2. Suppose that G satisfies the maximal condition for
normal subgroups. Let A be a normal subgroup in G and let P,, P,,---,P,
be the set of all minimal prime subgroups belonging to A. Then there
exist some P;, P, ,P,,, 1=i,=n, and some complex commutator
CLP;, P;,,---,P;,] in the components P; , P; ,--+,P;,, such that C[ P;, P;
P, 1S A.

Proof. We shall prove by “Teilerinduktion” (Cf. B. L. van der

2’...,
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Waerden [6], §84). If A is a prime subgroup of G, then the assertion
is trivial. We may suppose therefore that A is not a prime subgroup
of G. Then we can choose a¢ A and b¢ A such that [(a), (b)]< A.
From Proposition 4.1, there exist a finite number of minimal prime sub-
groups Pj, P4%,---,P] belonging to A(e) and likewise a finite number of
minimal prime subgroups P{, Pj,--,P; belonging to A(b). From the
induction hypothesis there exist some Pj, P} ,---,P},, 1<7,<r, and
some complex commutator C'[ P}, P, ,---,Pj ] which is contained in A(a)
and likewise there exist some P;, P ,--, P} , 1=<h,<s, and some com-
plex commutator C’[P7, P} ,--,P% ] which is contained in A(b). Then
we have

[CLP;,, PS5, P35, C'[P4,, Phyyee, Pr 1S [ Aa), ABY]ISA.

%% and P%. are prime subgroups of G containing A(e) and A(b) respec-
tively, and hence are those prime subgroups of G which contain A. As
we have remarked in §1, P/, and P73, contain some minimal prime sub-
groups P, and P,, belonging to A respectively, and hence we have

[C,[.ley sz"“’PJu]’ C”[Ph17 th’...,Ph”]]
;[C/[Pgl’ 52""’P§u]’ C”[Pl;ol» P/llzzf"’Plllnv]];A-

This completes the proof of the proposition.
From this proposition, we see at once

Corollary 4.3. Suppose that G satisfies the maximal condition for
normal subgroups. Then there exists a complex commutator C[r(A)] of
some weight in the single component v(A) which is contained in A.

Now we prove

Lemma 4.4. Every complex commutator C[ A of weight n, n=1, in
the component A contains the (n—1)-th derived group A™-".

Proof. We use induction on the weight # of the complex commutator.
If n=1, the assertion is trivial. Let us now assume that the lemma has
already been established when the weight of complex commutators is
less than #. Then those of weight # has the expression of the form
C[A]=[CTA], C"[A]], where C[A] and C"[A] are complex commu-
tators of weight »#, and #, in the single component A respectively such
that »n,+#n,=n. Let us now suppose, for example, that »,<<#,. Then
from this assumption and the induction hypothesis that
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[CTAL C'TATIRLA™™, A% ] 2[A%, A% ]
— A(”Q;A(”—l) .

This completes the proof.
Combining Lemma 4.4 with Corollary 4.3, we obtain

Proposition 4.5. Suppose that G satisfies the maximal condition for
normal subgroups. Then there exists some integer n such that r(A)™ < A.

As we have remarked in §1, the Schenkman’s radical Rad A of a
normal subgroup A in G is contained in 7(A). On the other hand, it
follows from Proposition 4.5 that Rad A contains #(A). Thus the
Schenkman’s radical Rad A coincides with 7(A) under the maximal con-
dition for normal subgroups.

Moreover, Schenkman defined a primary subgroup @ of G to be such
that if [A, B]S @ then for some # either A™ or B is contained in Q.
Suppose that G satisfies the maximal condition for normal subgroups.
Then it is easily seen from Proposition 4.5 that if @ is a primary sub-
group in our sense then € is also a primary subgroup in Schenkman’s
sense. However, the converse is not true, even if G satisfies the maximal
condition for normal subgroups, as the example mentioned in the intro-
duction illustrates. In this group, A, x1 is a primary subgroup in
Schenkman’s sense, while, on the contrary, that is not a primary sub-
group in our sense.

Now we shall consider a characterization of tertiary subgroups in a
group with the maximal condition for normal subgroups by means of
residual quotients. To do this, we shall apply the notion of essential
residuals of L. Lesieur [2] to our case. We make the following definition.

DEFINITION 4.6. Let A be a normal subgroup in G. A normal sub-
group R in G is called an essential residual of A, if there exists a normal
subgroup B=2A in G with R=A:B, and

A=CEB=>A:C=A:B.

Proposition 4.7. Let A be a normal subgroup in G. Then the
following conditions are equivalent

(1) R is an essential residual of A,

(2) there exists a normal subgroup BAL A with R=A:B, and

CCB CLEA=>A:C=A:B,
(3) there exists an element b¢ A with R=A:(b), and



DECOMPOSITION OF NORMAL SUBGROUPS 217
ctA ce(d)=>A:(b)=A:(c).

Proof. (1)=(2). Let R=A:B, A= B, be an essential residual of A.
Then certainly B A and if CCB and CL A, we have ASSACE B.
Hence, by our assumption, we have A:C=A: AC=A:B.

(2)=(3). Suppose that R=A: B, where B A is a normal subgroup
in G such that

CCB, CEA=>A:C=A:B.

Let us consider an element & in B but not in A. Then it follows from
our assumption that A:(b)=A:B, and likewise, if ¢¢ A and c€(d), we
have A:(c)=A:B.

(3)=(1). Suppose that R=A:(b), where b¢ A is an element such
that

ct A ced)y=A:(b)=A:(c).

Then ASA(b) and A: A(b)=A:(b)=R. We now show that A:A(b)=R
is an essential residual of A. Let us consider a normal subgroup C
such that AS=CC A(b). Then C=A{b)(1C} and A:C=A:A{(d)()C}
=A:{(b)()C}. Moreover, we have (b)[)CZ A, for otherwise we should
have C=A{b)[|C} & A-A=A. Thus we can obtain an element ¢ in
()1 C but not in A and, by our assumption above, we have A: A(b)
=A:(b)=A:(c). It follows from this that A:C=A:{)(|C}2A4:(d)
=A:Ab)=A:(c)2A:C, which show that A:C=A:A(b)=R. This com-
pletes the proof of the proposition.

In the rest of this section, an essential residual A :(b), which satisfies
the condition (3) of the proposition just proved, will be called for con-
venience of reference an essential residual of A with respect to (D).

Lemma 4.8. Let A be a normal subgroup in G. Then every essential
residual of A contains the tertiary radical t(A) of A.

Proof. Suppose that R=A:(b) is an essential residual of A with
respect to (b) and that a€#A). Then, since b¢ A, we can choose an
element ¢ € (b) such that ¢ ¢ A and [(a), (c)]< A. It follows therefore that
ac€A:(c)=A:(b)=R. This completes the proof.

A residual quotient A:B of A by B, in which AZRB holds, is called
proper. As is easily seen from Proposition 4.7 (2), a residual quotient
of A, which is maximal in the class of proper residual quotients of A4, is
an essential residual of A.
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We now prove

Proposition 4.9. Suppose that G satisfies the maximal condition for
normal subgroups. Then a normal subgroup A in G is a tertiary subgroup
of G if and only if A has the only its essential residual.

Proof. Suppose that A is a tertiary subgroup of G and that R=A4:(d)
is an essential residual of A with respect to (6). We now show that
R=1#(A) holds. Let us suppose that a€ R. Then we have [(a), ()] A
and, since b¢ A, we have a € #(A). It follows from this and Lemma 4.8
that R=1#(A) holds.

Conversely, suppose that a normal subgroup A has the only its
essential residual and that [(@), (b)]=A and 6¢ A. We now show that
a€t(A). If a¢t(A), then from the definition of tertiary radicals we can
choose an element ¢ ¢ A such that

(™) [(@), (YIS A and c’€(c)=c'€A.

Let us consider the class of residual quotients of A, each of which has
the form A:(x) where x is in (¢) but not in A. A maximal element
A:(b,) of this class is, as is easily seen, an essential residual of A. Since
[(a), (B)]E A and b¢ A, A:(b) contains ¢ and is proper residual quotient
of A. Hence there exists a maximal one in the class of residual quotients
of A, each of which is proper and contains A :(b) and, by our assumption,
it coincides with A:(b,). Thus we have a€ A: (b)) A:(b,) and, by the
relation (*), we have b,€ A. This is a contradiction.

Let A=T,() T.():--() T, be a normal decomposition of A as an inter-
section of tertiary subgroups T;, 1<i<#n. We shall show that the
essential residuals of A are precisely the tertiary radicals #(7;). This is a
generalization of the proposition just proved. To show this, we now
prove the following lemma.

Lemma 4.10. Let R=A:(b) be an essential rvesidual of A with respect
to (b) and let A=T,(T.()--(VT, be a normal decomposition of A as an
intersection of tertiary subgroups T;, 1<i<n. Then there exists the only
T;, say T, such that A[)(b)=T,()(d). Moreover, we have R=HT,) and
T.N T, - N T (B)2A (D).

Proof. Let {7T,, T,,:*,T,,} be a minimal subset of {7, T,,,T,}
such that

Then m=1, since b¢ A, and we have b¢ T,, for otherwise we should
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have A((0)=T,(\T,() -+ () T()(d). Suppose that a€ R=A:(b). Then
[(@), B)]&ALE T, and, since T, is a tertiary subgroup of G, we have
a € {(T,), which shows that RC#T,). We now show that RO #T,). Since
ANDE T,(\ T.() () T.s(1(b), we can choose an element ¢ in T,[) T5() -+ ()
T..()() but not in A()(d). If x is an arbitrary element in #(T,), then, since
¢ ¢ T,, there exists an element ¢’ €(c) such that ¢’¢ T, and [(x), (¢')]=T,.
It follows from this that [(x), (¢)IE& T, 1. T.)(0)=A(D)ZA.
Thus we have x€ A:(¢’), and hence, by virtue of Proposition 4.7 (3),
we have x € A:(b)=R, which shows that #7,)CR. Whence it follows
that R=#T,). At the same time, this shows that m=1, since if m_>1
then by a similar method we have R=#(7,), which contradicts the fact
that the tertiary radicals of the various tertiary components of A are
all different. Moreover, we have T,(](0)=A()(b) and T,(| T.()--- () Tx[)
(0)=2A[)(b). This completes the proof of this lemma.

As an application of this lemma, we now prove

Proposition 4.11. Suppose that G satisfies the maximal condition for
normal subgroups and let

A=TNTN T,

be a normal decomposition of A as an intersection of tertiary subgroups
T:;, 1<i<mn. Then the ntertiary radicals {T,), {T,), -, T,) exhaust all
essential residuals of A.

Proof. By virtue of the lemma just proved, an essential residual of
A coincides necessarily with some of the #7;), 1<:<un.

Conversely, we show that #(7,), for instance, is an essential residual
of A. Let B=T,(\T,()--+(1 T, and let R=A:(b) be a maximal element
in the class of residual quotients of A, each of which has the form
A:(x) where x is in B but not in A. As is easily seen, A:(d) is an
essential residual of A. Furthermore, we have A()(b)=T,()B()(b)
=T,()(b), and hence we have, again by Lemma 4.10, R=#T,). This
completes the proof of the proposition.

5. The Artin-Rees property

We now make the following definition.

DErFINITION 5.1. G is said to have the Artin-Rees property for normal
subgroups if for any two normal subgroups A and B in G and any non-
negative integer », there is a non-negative integer A(») such that
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A(h(n))ﬂ B;[A("), B] .

Especially, we shall call that G has the property (P) for normal sub-
groups, if for any two normal subgroups A and B in G, there is a non-
negative integer % such that A»(|BC[ A, B].

Proposition 5.2. If G has the property (P) for normal subgroups,
then every tertiary subgroup of G is always a primary subgroup.

Proof. Let T be a tertiary subgroup of G and let [(a), (b)]& T and
a¢ T. Then we have b€ #T). We shall now show that, with a suitable
non-negative integer 4, (b)» 7. Let us consider the residual quotient
T:(b). By the assumption that G has the property (P) for normal sub-
groups, there exists a non-negative integer % such that (b)®(|(T: (b))
[(b), T:(b)]. If ()T, we can choose an element b, in (b)* but not
in T. Since b is in #T), there exists b, in (b,) such that b,¢ T and
L), (,)]J<T. Thus b, is in T:(b) and hence b,€(b)”(T: ()<
[(b), T:(b)]=T, which is a contradiction. The proposition then follows
from Proposition 1. 3.

Proposition 5.3. Suppose that G satisfies the maximal condition for
normal subgroups and that every normal subgroup in G can be represented
as an intersection of a finite number of primary subgroups of G. Then
G has the Artin-Rees property for normal subgroups.

Proof. Let A and B be any two normal subgroups in G and let »
be any non-negative integer. Suppose that

LA™, B] = @,(1Q:(] - [19m

is a primary decomposition of [A™, B]. If BCQ; for 1<i<m, the
assertion is trivial, since A (| B=B=[A", B]. On the other hand, if,
for at least one i, we have B Q,;, then we may assume without loss
of generality that there exists some m’ (<m) such that BLQ; for
1<i:<w' and

LA™, B] = Q,(1Q.(] - [1Qm(]B.

Since [A™, B]1CQ; for 1<<i<m’ and since each @; is a primary sub-
group, there exists, for each 7, a non-negative integer s; such that
(A2 Q;. If we put s=max {s,, $,,**,S»/}, we have A** =A™
Q: for 1<i<m’. Thus we have A"*BEQ,(|Q.() (@B
=[A™, B, which completes the proof of the proposition.

From Propositions 3.5, 5.2, and 5.3, we have the following main
theorem.
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Theorem 5.4. Suppose that G satisfies the maximal condition for
normal subgroups. Then the following conditions are equivalent :

(1) every normal subgroup in G can be represented as an intersection
of a finite number of primary subgroups of G,

(2) G has the Artin-Rees property for normal subgroups,

(3) G has the property (P) for normal subgroups,

(4) every tertiary subgroup of G is a primary subgroup,

(5) every meet-irreducible normal subgroup in G is a primary subgroup.

As is easily seen, the group &,x&; in the example mentioned in the
introduction has the Artin-Rees property for normal subgroups.

Finally, we shall close this section with the following proposition
which corresponds to Krull’s ‘“intersection theorem”.

Proposition 5.5. Suppose that G satisfies both the maximal condition
for ncrmal subgroups and one of the conditions stated in Theorem 5. 4.
Let A be a normal subgroup in G and let B=(),=, A. Then [A, B]
=B. If, in particular, A is contained in the radical of G, then ()=, A™
=E, the unit subgroup in G.

Proof. By the property (P) for normal subgroups, there exists an
integer % such that A®(1BC[A, B]. Then B=A"(\BZ[A, B]<B,
and hence [ A, B]=B. If A is contained in the radical of G, then there
exists a suitable integer m such that A“?C_E. Thus we have B=E.

6. Uniqueness theorem for primary decompositions

Let A be a decomposable subgroup in G, and let A=Q,(1Q.() () Qx
be its primary decomposition. If @; contains the intersection of the
remaining @; it may be left out altogether, and hence we obtain an
irredundant primary decomposition of A. An irredundant primary de-
composition, in which the radicals of the various primary components
are all different, is called a normal decomposition. Each primary decom-
position, as is easily seen from Proposition 2.3, can be refined into one
which is normal. Furthermore, we can prove that the number of primary
components and the radicals of primary components of a normal decom-
position of A depend only on A and not on the particular normal decom-
position considered. This is one of our main theorems and is also a
generalization of a theorem due to Schenkman [5].

Theorem 6.1. Suppose that a normal subgroup A in G has a primary
decomposition and let

A=QQ.)1Qm=Qi[1Qz(] - 1€Qn
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be two normal decompositions of A. Then m=mn, and it is possible to
number the components in such a way that r(Q;)=r(Q;) for 1<i<m=n.

Proof. We use induction on the number m of primary components.
If m=1, then Q,=Q1() Q5[+ () Q4, and moreover if »_>1, then it follows
from Proposition 2.4 that the right side of the equality above is not a
primary subgroup, which is impossible since @, is a primary subgroup.
Similarly, n=1 implies m=1, and if this is the case, the assertion is
trivial. We may suppose therefore that m >1, in which case all the
primary subgroups @,, @,,**,@,,, @1, @%,--,Q, are proper subgroups.
Among the radicals 7(Q,), 7(Q,), -, 7(Q,,), 7(Q7), 7(Q3%),---,7(Q}) choose one
which is not strictly contained in any of the others. Without loss of
generality we may assume that it is 7(Q,). We will now show that 7(Q,)
must occur among 7(Q}), 7(Q3),-+,7(Q;). Otherwise we could form the
residual quotients by @,:

(Q1 . Q1)ﬂ(Q2 . Ql)ﬂ e ﬂ(Qm : Qx) = (Q{ : Ql)ﬂ(Qé . Q1)ﬂ ot ﬂ(er.'Ql) .

Now, for 1<i<<m, Q,Lr(Q;), since otherwise 7(Q,)&=7(Q;) contrary to
the choice of #(Q,). Similarly, for 1<j<n, it follows that Q,Z(Q)).
By Proposition 2.8 (2), we have

Q::Q,=Q; for 1<i<m, Q;:Q,=Q}) for 1<j<m.
Furthermore, since @,: Q,=G, it follows that
Q:NQ1 (10w =QINQ:1-NQn = A.

This contradicts the assumption that the given decomposition is normal.

Let us now assume that m<n. We shall show that m=# and by
a suitable ordering 7(Q,)=7(Q%) for 1<i<m=mn. Let us assume that
these results are valid for normal subgroups which may be represented
by fewer than m primary subgroups. We arrange the @; and @) so that
r(Q,)=r(Q})). Put Q@=@Q,()Q{ then, by Proposition 2.3, @ is a primary
subgroup of G such that #(@)=7r(Q,)=7(®Q1). Also,

Q,‘:Q = Q,' for 1<ng,

Ql : Q = G .
For the first relation follows from the fact that, since 7(Q,)E#(Q;), @ is not
contained in 7(Q;), while the second follows from @ = Q,. Consequently

A:Q=Q,NQ,()**(1Qn. An exactly similar argument shows that A:Q
=@Q3(1Qs() -+ (1@, and hence

anQaﬂ '"ﬂQm = QémQéﬂ "'ﬂQ:n
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and moreover both decompositions are normal. Hence by the induction
hypothesis we have m—1=#n—1, that is, m=n. Furthermore, by a suit-
able ordering we have 7(Q;)=r(Q}) for 1<i<m=mn. Since 7(Q,)=7(Q1),
the proof is completed.

7. Uniqueness theorem for tertiary decompositions

Lemma 7.1. Let A=T(\B=T'(\B’, where T and T’ are tertiary
subgroups of G with t(T)=tT'). Then A=B(|B’.

Proof. It is sufficient to prove that B[)B’CA. Suppose that
a€ B()B’, and that, for instance, # T)ZC#(7’). Then there exists an
element b in T) but not in #7T’). If a¢ A, then a¢ T and therefore
we can choose an element @’ € (@) such that @’ ¢ T and [(0), (@)]E&T. It
follows that [(b), (&)]<T(1B=T’()B’. But, on one hand, we have a’ ¢ T’,
for otherwise we should have a’€ T'(\B’=T(\|B<T. Since T’ is a
tertiary subgroup, b is in #(7T’), which is a contradiction.

Theorem 7.2. Let A be a normal subgroup in G and let
A=TNT.NNT,=TiNT:NNTn

be two normal tertiary decompositions of A. Then n=m, and it is possible
to number the components in such a way that {T;)=t(T}) for 1<i<n=m.

Proof. It is sufficient to show that # 7)), for example, is equal to
some #T%). If it is not, we have the following relations:

(1) KT)==KT1),
(2) KT)=4=4Tz),
(m) HT)==HTn).

Using the relation (1), we obtain from Lemma 7.1 that
A=TiNTiN N TuO TN TN (1 Ta-
From the relation (2) and the equality
A= T4 N TaN o0+ Tu = TN TN N T,
we have by the same method

A= Ty NTal TN T
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Continuing an exactly similar argument, we obtain after a finite number
of steps that

A= Tzﬂﬂ T"’

which contradicts the fact that 7, is not superfluous.

8. The isolated components of a normal subgroup

We now make the following definition.

DeriNITION 8.1. Let A be a normal subgroup in G and let M be an
m-system. The isolated component of A determined by M, or more
simply, the M-component of A, denoted by A,,, will be defined, if M is
not empty, to be the set of all elements x in G such that [(x), (¢)]&A

for at least one c€ M. On the other hand, if M is empty, we shall
define that A,,=A.

Lemma 8.2. Let A be a normal subgroup in G and let M be an m-

system. Then the M-component of A is a normal subgroup in G which
contains A.

Proof. If M is empty, then the assertion is trivial. We may now
assume that M is not empty. Let x and y be any two elements in A,.
Then from the definition of the M-component of A there exist some ¢ and
d in M such that [(x), (¢)]< A and [(»), (d)]< A respectively. Since M
is an m-system, there exist ¢’ in (¢) and d’ in (d) such as [¢/, d] is in
M. Then

L(x), ([e's @ DIS[(xX ), ([¢'s @' D]
= [(®), (L', a)DIL), (Le's D]
S[(), (1) (@) ]I&A.

Hence zy is in A,. Since (x7')=(x) and (cxc™")=(x) for all ¢ in G, we
see that A, is a normal subgroup in G. Moreover, if @ is in A, then
certainly [(a), (¢)]& A for any ¢ in M, which gives us the relation AZA,,.

Now we shall give a characterization of primary subgroups by means
of isolated components.

Proposition 8.3. Let Q be a normal subgroup in G. Then Q is a
primary subgroup of G if and only if for any m-system M either Qu=Q
or Q=G holds.

Proof. Let us suppose that for any m-system M we have either
=€ or Qu=G, and that @ is not a primary subgroup of G. Then
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we can choose b¢Q and c¢¢7(Q) such that [(b), (¢)]=Q. Since c¢7(Q),
there exists a prime subgroup P which contains @ and does not contain
c. If we denote the complement C(P) of P in G by M, then M is an
m-system and b is contained in @,,, and hence Q<Q,, because b is not
contained in @. From our assumption, it follows that @,, is equal to G,
and hence ¢ is contained in @,,. Thus there exists at least one de M
such that [(¢), (d)]<Q. Since P is a prime subgroup containing @,
[(c), (d)]=P, and hence we have either c€ P or d€ P, which is im-
possible in any case.

Conversely, let us suppose that @ is a primary subgroup of G. If
M is empty, then the assertion is trivial. Now we may suppose that
there exists a non-empty m-system M such that Q&Q,,5=G. Let b be
an element which is contained in @, but not in €. Then there exists
at least one c€ M such that [(d), (c)]&®Q. Since @ is a primary sub-
group, we have c € 7(Q), and it follows from Proposition 1.15 that M[|@
is not empty. This shows that GCQ,,, which is a contradiction.

Let A be a normal subgroup in G. If A has a primary decomposition,
then the isolated component of A can be expressed in terms of the
decomposition as follows :

Proposition 8.4. Let A be a normal subgroup in G and let M be an
m-system. Suppose that A=Q,(\Q,() (| Q,, where Q; is a primary sub-
group of G. If, for m+1<i<mn, v(Q;) meet M but not for 1<i<m,
then Ay=0Q, Q) ) Q.

Proof. If M is empty, then the assertion is trivial. We may there-
fore assume that M is not empty. Let x be in A,. Then [(x), (c)]<
A=Q,NQ,() -+ [)Q,, where c is a suitable element of M. Consequently,
if 1<i<m we have [(x), (¢)]ZQ; and ¢ ¢ »(Q;), which shows that x is
in Q;, and hence A, Q,1Q.[] [ Qm-

Now let y€Q,N®Q.N--[)Qn. For each j>m, we can choose
c; € Q;(| M, since, from Proposition 1.15, M()7(Q;)==¢ implies M(]Q;==¢.
Since M is an m-system, there exist c¢,., in (Cpny1) and ¢),.2 in (Cpy2) such
that cZ,o=[Chi1r Chizl iS In Qui1() @ms2(| M. Similarly, there exist c,,
in (ch.s) and ch.s in (cny3) such that chis=[cki2, cris] is in Qui1 (] Qmaz()
Q...3[)M. Continuing an exactly similar argument, we obtain after a
finite number of steps an element ¢, which is in Q.1 () Qms2(] (1 Q.1 M.
Then

[, (e1=@,N Q) - N Qm) 1 (Qms1 () Q]+ [1Q0) = A.
Since ¢’ is in M,y is in A, and hence Q,(1Q.() - [1Q@m&Am. This



226 Y. KURATA

completes the proof of the proposition.

Let M be an m-system. Combining this proposition with Proposi-
tion 8.3, we obtain that if @ is a primary subgroup of G, then @, is
G or @ according as 7(Q) meets or does not meet M.

From Proposition 8.4, we see at once

Corollary 8.5. A decomposable subgroup has at most a finite number
of isolated components.

Suppose that a normal subgroup A in G has a primary decomposi-
tion, and let A=Q,()1Q,() ()@, be a normal decomposition of A. Then
as we have proved in Theorem 6,1, the number of primary components
and the radicals of primary components depend only on A and not on
the particular normal decomposition considered. A subset {r(Q,), 7(@.), ",
7(Q,,)} of the radicals is called an isolated set of A, if for m+1<=j=n,
each 7(@;) is not contained in any of #(Q;) for 1==i<m.

For examples, each minimal element of the set {r(Q,), 7(Q,), ", 7(Q.)}
forms on its own an isolated set of A, and the »(®;) which do not meet
a given set of elements will also form an isolated set of A.

We now prove

Proposition 8.6. Suppose that a normal subgroup A in G has a
primary decomposition. Let A=Q,(\Q,(] - (|Q. be a normal decomposi-
tion of A, and let ¥(Q;)= ()| P be the expression of r(Q;) as the intersection
of all minimal prime subgroups belonging to Q;. Then the following
conditions are equivalent :

Q) Sfor m+1=<j<mn, each r(Q;) is not contained in any of r(Q;) for
1<i<m, ,

2) for each Q;, 1<i<m, there exists at least one minimal prime
subgroup Pip;=P¥ such that P¥ does not contain Pj, for all j, m+1<=j<n,
and for all k,

(3) each r(Q;), 1<i<m, does not comtain the intersection @, ()
Qmizf] (1 Qn-

Proof. (1)=(2). Assume that there exists some i, 1<{i<m, such
that for some j,m+1=<j<# and some k;, P;; is contained in P;, for
all k. Then P;,2P;,;27(Q;) for all k. Hence #(Q;) is contained in 7(Q;),
which is a contradiction.

(2)=(3). Assume that there exists some 7, 1<"i<m, such that »(Q,)
contains the intersection @,,.,()@m(]-[)Q,. Then by Corollary 1.4
we can choose some j, m+1<j<wn, such that P¥2Q;. As we have
remarked in §1, P¥ contains at least one of minimal prime subgroups
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P;, belonging to @;, which is a contradiction.

(3)=>(1). Assume that for some i, 1<i<<m, and some j, m+1<j<n,
7(Q:) contains 7(Q;). Then 7(Q,)2r(Q,)2Q;2Qm+:() Qms2(] -1 Q,. This
is a contradiction.

We come now to the second uniqueness theorem for normal decom-
positions.

Theorem 8.7. Suppose that a normal subgroup A in G has a primary
decomposition, and let A=Q,()Q.[)--[)Q. be a normal decomposition of
A. If {rQ,), r(Q,), -, 7(Q,)} is an isolated set of A, then Q,)Q.() () Qm
depends only on r(Q,), 7(Q,),*,#(Q,,) and not on the particular normal decom-
position of A.

Proof. Let
A= anan "'ﬂQn = Q{ﬂQéﬂ HQ;

be two normal decompositions of A such that »(Q;)=7(Q;) for all
i, 1<i<n. If we denote @, ,(|@mi(] (19 and Q.,(|Qn:.(]--[1Qn
by @ and @’ respectively, then, by Proposition 8.6 (3), @ is not contained
in any of #(Q;) for 1<<i<m, and hence, it follows from Proposition 2.8
(2) that Q;:Q=Q; and Q;:Q=@7 for all 4, 1<<i<m. But on one hand,
since @;2Q for m+1<j<mn, Q;:Q=G. These relations show that
A:Q=@Q,NQ.NNQN:Q=Q,[1Q.[1-[1€» and A:Q=(Q1[1Qz(] ()
QN:Q=QiNQ:N - NQn(Q :Q). Thus we have Q,(|Q,(] (1R EQ1()
Qi -1 Q%, and similarly Q,N Q. -+ Q,2Q4 (1 Q4 -+ %, which com-
pletes the proof.

Corollary 8.8. Let 7(Q) be a minimal element in the set {r(Q,),
r(Q,), -, 7(Q,)} of the radicals of the primary components of A. Then the
primary component corrvesponding to r(Q) is the same for all normal de-
compositions of A.

We shall show by means of an example that the corresponding
assertion for a non-minimal element #»(Q) is false. Let us consider the
group &, x &; mentioned in the introduction. Then %;x1 has two normal
decompositions :

Asx1 = (S;x 1A xS,)
= (G, x1)1A;xA),
and both A, xS, and A, xA; have the same radical G which is not a

minimal element in the set of the radicals of the primary components
of A, x1.
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Finally, from Theorem 8.7, we prove

Proposition 8.9. Let A be a decomposable subgroup with uniquely
determined radicals R,, R,,---,R, of the primary components of its normal
decomposition. Suppose that for each i, 1<i<mn, there exists a normal
decomposition of A,

A Q(i)ﬂQ(i)ﬂ nQ(i)

such that the radical of QY is R; for 1<j<mn. Then A has a normal
decomposition :

A=QPNePN-New.

Proof. Let R; be a minimal element of the set {R,, R, ,R,}.
Then R;, forms on its own an isolated set of A, and hence by Theorem 8.7
(1) D= QP == Q.

Next, from the set {R,, R,,,R; ,, R;.,,-,R,}, we select E;, which is
minimal in this set. Then the set {R;, R;} forms also an isolated set
of A, and hence again by Theorem 8.7, we have

(2) Q(l) ﬂ Q(l) — Q;i) n ng) —ee — Q(n) ﬂ Q(n) .

Using an exactly similar argument repeatedly, we obtain that for each
k, 1<k<mn,

Q(l) ﬂ Q(l) ﬂ ﬂ Q(l) —_ Q(Z) m Q(2) ﬂ ﬂ Q(Z)

Q('n) ﬂ Q(n) n n Q(n) .

Then Q'(1Q¥ - NQX=Q¢NQ\»[)---(1Qi.» is, by the relation (1)
above, equal to Q“z)ﬂQ”Z’ﬂQ”S’ﬂ -(1Q¢i», and by the relation (2) above
this is equal to @' (1 Q{2 (1 Q\> Q') --- [ Q:,». Continuing an exactly
similar argument, we obtain Q{"[|Q%()--[1Q>=Q{ Q7] ---[1Q»
=A. It is easily seen from Theorem 6.1 that this decomposition is
normal.
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