SOME NOTES ON THE GENERAL GALOIS THEORY OF RINGS

F. R. DeMEYER

(Received January 25, 1965)

Introduction

In [2] M. Auslander and O. Goldman introduced the notion of a Galois extension of commutative rings. Further work by D. K. Harrison [9] indicates that the notion of a Galois extension will have significant applications in the general theory of rings. T. Kanzaki, in this journal, proved a “Fundamental Theorem of Galois Theory” for an outer Galois extension of a central separable algebra over a commutative ring. We generalize, complete, and give a new shorter proof of this result. The inspiration for the improvements in Kanzaki’s result came from a paper by S. U. Chase, D. K. Harrison and A. Rosenberg [4].

This author in [6] began the study of ‘Galois algebras’. These are not necessarily commutative Galois (in the sense of [2]) extensions of a commutative ring. Here we continue that study by extending some of the results in [4] and by proving a generalized normal basis type theorem in this setting. This paper forms a portion of the author’s Doctoral Dissertation at the University of Oregon. The author is indebted to D. K. Harrison for his advice and encouragement.

Section 0

Throughout Λ will denote a K algebra, C will denote the center of Λ (\(C=\mathfrak{Z}(\Lambda)\)). G will denote a finite group represented as ring automorphisms of Λ and Γ the subring of all elements of Λ left invariant by all the automorphisms in G (Γ=\(\Lambda^G\)).

Let Δ(Λ : G) be the crossed product of Λ and G with trivial factor set. That is

\[
\Delta(\Lambda : G) = \Sigma_{\sigma \in G}\Lambda U_{\sigma} \quad \text{such that}
\]

\[
x_1 U_{\sigma} x_2 U_{\tau} = x_1 \sigma(x_2) U_{\sigma \tau} \quad x_1, x_2 \Lambda ; \sigma, \tau \in G.
\]

This work was done while the author held a National Science Foundation Cooperative Fellowship.
View Λ as a right Γ module and define

$$j: \Delta(\Lambda : G) \to \text{Hom}_r(\Lambda, \Lambda)$$

by

$$j(aU_\sigma)x = a\sigma(x) \quad a, x \in \Lambda; \sigma \in G.$$

Theorem 1. The following are equivalent:

- A. Λ is finitely generated projective as a right Γ module and $j: \Delta(\Lambda : G) \to \text{Hom}_r(\Lambda, \Lambda)$ is an isomorphism.
- B. There exists $x_1, \ldots, x_n; y_1, \ldots, y_n \in \Lambda$ such that

$$\Sigma_i x_i \sigma(y_i) = \begin{cases} 1 & \sigma = e \\ 0 & \sigma \neq e \end{cases} \quad \text{for every } \sigma \in G.$$

Following Auslander and Goldman, Kanzaki called Λ a Galois extension of Γ in case A held. Condition B was discovered for commutative rings by S. U. Chase, D. K. Harrison and A. Rosenberg in [4]. We call Λ a Galois extension of Γ with group G if either A or B holds.

Our proof of theorem 1 parallels the proof given for theorem (1.3) of [4]. First we prove that B implies A.

Define $f_i \in \text{Hom}_r(\Lambda, \Gamma)$ by $f_i(x) = \Sigma_{\sigma \in G} \sigma(y_i x)$ $x \in \Lambda, \sigma \in G$. For any $x \in \Lambda$

$$\Sigma_i x_i f_i(x) = \Sigma_i x_i \sigma(y_i) \sigma(x) = x.$$

Thus by the Dual Basis lemma, Λ is finitely generated and projective as a right Γ module.

Now we show $j: \Delta(\Lambda : G) \to \text{Hom}_r(\Lambda, \Lambda)$ is an isomorphism. Let U_σ be a Basis element in $\Delta(\Lambda : G)$. Then

$$\Sigma_i x_i f_i(U_\sigma) = \Sigma_i x_i \sigma(y_i) U_\sigma = \Sigma_i x_i \sigma(y_i) U_\sigma = U_\tau.$$

Hence by linearity, for all $U \in \Delta(\Lambda : G)$

$$U = \Sigma_i x_i f_i(U_\sigma) = \Sigma_i x_i \sigma(y_i) U_\sigma = U_\tau.$$

Thus if $j(U)[x] = 0$ for all $x \in \Lambda$, then $U = 0$ so j is a monomorphism.

To prove j is onto let $h \in \text{Hom}_r(\Lambda, \Lambda)$ and let

$$U = \Sigma_i x_i h(x_i) U_\sigma y_i, \quad U \in \Delta(\Lambda : G)$$

for any $x \in \Lambda$, $j(U)[x] = \Sigma_i x_i h(x_i) \sigma(y_i x_i)$

$$= h(\Sigma_i x_i \sigma(y_i x_i)) = h(\Sigma_i x_i f_i(x)) = h(x).$$

Thus j is an isomorphism.

To prove the converse, we first show that
\[(*) \quad \text{Hom}_\Gamma(A, \Gamma) = j(t \cdot \Lambda) \quad \text{where} \quad t = \sum_{\sigma \in G} U_\sigma.\]

Pick \(a \in \Lambda\), \(j(ta)[x] = \sum_{\sigma \in G} \sigma(ax) \in \Gamma\). So \(j(ta) \in \text{Hom}_\Gamma(A, \Gamma)\). Suppose \(f = j(y) \in \text{Hom}_\Gamma(A, \Gamma)\), \(y \in \Delta(\Lambda : G)\). If \(y = \sum a_\sigma U_\sigma\), then for all \(x \in \Lambda\), \(\sum a_\sigma \sigma(x) \in \Gamma\) so \(\rho(\sum a_\sigma \sigma(x)) = \sum a_\sigma \sigma(x) \) for all \(\rho \in G\). Thus \(\sum_{\rho \in G} \rho(a_\rho^{-1}) \tau(x) = \sum_{\rho \in G} a_\rho \tau(x)\), \((\tau = \rho \circ \sigma)\) but \(j\) is an isomorphism so \(\rho(a_\rho^{-1}) = a_\sigma\), so \(a_\sigma = \sigma(a)\), thus \(y = \sum \sigma(a) U_\sigma = \tau \cdot a\). This proves \((*)\).

Now we want to find \(x_1 \cdots x_n; y_1 \cdots y_n \in \Lambda\) satisfying \(B\). Let \(x_1 \cdots x_n, f_1 \cdots f_n\) be given by the Dual Basis Lemma. By \((*)\) there exists \(y_1 \cdots y_n \in \Lambda\) so that

\[f_i(x) = j(ty_i)x.\]

Let \(U = \sum_{i \leq n} x_i y_i \in \Delta(\Lambda : G)\). Then \(j(U)[x] = \sum_{\sigma \in G} x_i y_i = x\). \(j\) is an isomorphism so \(U = \sum_{i \leq n} x_i y_i = 1\). Thus \(\sum_{i \leq n} x_i y_i = \left\{ \begin{array}{ll} 1 & \sigma = 1 \\ 0 & \sigma = 1 \end{array} \right\}\) so since \(j\) is an isomorphism, \(\sum_{i \leq n} \sigma(y_i) = \left\{ \begin{array}{ll} 1 & \sigma = 1 \\ 0 & \sigma = 1 \end{array} \right\}\) and this completes the proof.

Section I

In this section we prove a sharper version of Kanzaki's result. All notation is as it was in section 0.

Lemma 2. Let \(\Lambda\) be separable over \(C\), and assume \(G\) induces a group of automorphisms of \(C\) isomorphic to \(G\) and that \(C\) is a Galois extension of \(C^G = K\). Then \(\Lambda\) is a Galois extension of \(\Lambda^G = \Gamma\) and there exists a 1–1 correspondence between the \(K\)-separable subalgebras \(\Omega\) of \(\Lambda\) containing \(\Gamma\) and the \(K\)-separable subalgebras \(A\) of \(C\) given by

\[A \rightarrow A \cdot \Gamma\]

\[\mathfrak{B}(\Omega) \leftarrow \Omega\]

Proof. \(\Lambda\) is a Galois extension of \(\Gamma\) by \(B\) of theorem 1 and by the hypothesis that \(C\) is Galois over \(K\).

By theorem \((A.3)\) of [2], \(K = \{\sigma \in G|x \in C\}\) so

\[\Gamma = K \cdot \Gamma\]

\[= \{\sigma \sigma(x)|x \in C\} \cdot \Gamma\]

\[= \{\sigma \sigma(x)|x \in C, t \in \Gamma\} \subseteq \Gamma, \quad (\Lambda^G = \Gamma).\]

Thus \(\Gamma = \{\sigma \sigma(x)|x \in \Lambda\}\) and there exists \(f \in \text{Hom}_\Gamma(A, \Gamma)\) \((f = \sum_{\sigma \in G} \sigma)\) and there exists an \(a \in \Lambda\) so that \(f(a) = 1\). Thus \(\Gamma\) is a direct summand of \(\Lambda\) as a \(\Lambda \cdot \Gamma\) module.

We now show \(\Gamma\) is separable over \(K\) by showing \(\Gamma\) is a projective
\(\Gamma \otimes_K \Gamma^0 \) module. \(\Lambda \oplus \Lambda' \cong \Lambda \otimes_K \Lambda^0 \) as \(\Lambda \otimes_K \Lambda^0 \) modules since \(\Lambda \) is separable over \(K \). Since \(\Gamma \) is a direct summand of \(\Lambda \) and the hypothesis insure that \(\Lambda \) is projective over \(K \) (\(\Lambda \) is finitely generated projective over \(C \) and \(C \) is finitely generated projective over \(K \)) the sequence \(0 \to \Gamma \otimes_K \Gamma^0 \to \Lambda \otimes_K \Lambda^0 \) is exact. Thus \(\Lambda \oplus \Lambda' \cong \Lambda \otimes_K \Lambda^0 \) as \(\Gamma \otimes_K \Gamma^0 \) modules. By the symmetry of condition \(B \) of theorem 1, \(\Lambda \) is projective as both a left and right \(\Gamma \) module. (\(\Lambda \) is \(\Gamma - \Gamma \) projective.) So \(\Lambda \otimes_K \Lambda^0 \) is projective as a \(\Gamma \otimes_K \Gamma^0 \) module. Hence \(\Lambda \) and thus \(\Gamma \) is projective over \(\Gamma \otimes_K \Gamma^0 \).

Now define a homomorphism \(h: \Gamma \otimes_K C \to \Lambda \) by \(h(t \otimes c) = t \cdot c ; t \in \Gamma, c \in C \). Since \(C \) is Galois over \(K \), by theorem (1.7) of [4] or a glance at \(B \) of theorem 1, one sees that \(\Gamma \otimes_K C \) is Galois of \(\Gamma \) with the same group \(G \). (\(\sigma(t \otimes c) = t \otimes \sigma c \)). By lemma (1) of [6] or by a computation using \(B \) of theorem 1, \(h \) is an isomorphism.

Thus the center of \(\Gamma \) (denoted \(\mathcal{Z}(\Gamma) \)) is \(K \), for if \(x \in \mathcal{Z}(\Gamma) \) then \(x \in \mathcal{Z}(\Lambda) \), \((\Lambda = h(\Gamma \otimes_K C)) \) so \(x \in C \). But \(x \in \Gamma \) implies \(x \in C^G \) so \(x \in K \).

Now we prove the 1-1 correspondence of the lemma. Let \(\Omega \) be a \(K \)-separable subalgebra of \(\Delta \) containing \(\Gamma \). Let \(A \) be a \(K \)-separable subalgebra of \(C \). Define

\[
\psi: \Omega \to \mathcal{Z}(\Omega) \\
(\gamma : A \to h(\Gamma \otimes_K)) \\
(\text{notice } \Gamma \otimes_K A \subseteq \Gamma \otimes_K C)
\]

If \(x \in \mathcal{Z}(\Omega) \) then \(x \) belongs to centralizer in \(\Lambda \) of \(\Gamma \) so \(x \in \mathcal{Z}(\Lambda) \) and \(\mathcal{Z}(\Omega) \subseteq C \). \(\mathcal{Z}(\Omega) \) is separable over \(K \) by theorem (3.3) of [2] thus \(\psi \) is well defined.

Since \(\Gamma \) is a central separable \(K \)-algebra, \(A \otimes_K \Gamma \) is a central separable \(A \) algebra (theorem (1.6) of [2]) thus \(h(\Gamma \otimes_K \Gamma) \) is a separable \(K \)-algebra, central over \(A \) and containing \(\Gamma \). Thus \(\gamma \) is well defined and \(\psi \gamma(A) = A \) for all \(K \)-separable subalgebras \(A \) of \(C \).

Now \(\gamma \psi(\Omega) = h(\mathcal{Z}(\Omega) \otimes_K \Gamma) \subseteq \mathcal{Z}(\Omega) \) and \(\gamma \psi(\Omega) \) is a central separable over \(\mathcal{Z}(\Omega) \). If \(\Omega \neq \gamma \psi(\Omega) \) then by theorems 3.3 and 3.5 of [2] there exist a central separable \(\mathcal{Z}(\Omega) \) algebra \(\Omega' \) such that

\[
\Omega = \gamma \psi(\Omega) \otimes \mathcal{Z}(\Omega) \Omega' \quad \text{and}
\]

thus \(\Omega' \) is contained in the centralizer in \(\Lambda \) of \(\Gamma \). But then \(\Omega' \subseteq C \). Thus \(\Omega = \mathcal{Z}(\Omega) \) and \(\gamma \psi(\Omega) = \Omega \). This proves the lemma.

Here is the generalization of Kanzaki's result:

Theorem 3. With the notation and hypotheses of lemma 2, assume \(C \) has no idempotents except 0 and 1. Then there is a one-one correspondence between the \(K \)-separable subalgebras of \(\Lambda \) containing \(\Gamma \) and the subgroups \(H \) of \(G \).
If \(\Omega \) is a \(K \)-separable subalgebra of \(\Lambda \) containing \(\Gamma \) then there exists a subgroup \(H \) of \(G \) so that \(\Omega = \Lambda^H \).

Moreover for all subgroups \(H \) of \(G \), \(\Lambda \) is Galois over \(\Lambda^H \) and if \(H \) is a normal subgroup of \(G \) then \(\Lambda^H \) in Galois over \(\Gamma \) with group \(G/H \).

Proof. By theorem (2.3) of [4] there is a one-one correspondence between the \(K \)-separable subalgebras of \(C \) and the subgroups of \(G \) given by \(H \mapsto C^H \). By lemma 2 there is a one-one correspondence between the \(K \)-separable subalgebras of \(C \) and the \(K \)-separable subalgebras of \(\Lambda \) containing \(\Gamma \) by

\[
\Lambda \rightarrow h(\Gamma \otimes_K A),
\]

Combining these two facts, we have the one-one correspondence, thus every \(K \)-separable subalgebra \(\Omega \) of \(\Lambda \) containing \(\Gamma \) is of the form \(\Lambda^H \) for some subgroup \(H \) of \(G \).

If \(H \) is a subgroup of \(G \) then by theorem (2.2) of [4] \(C \) is a Galois extension of \(C^H \) with group \(H \). The same elements which satisfy \(B \) of theorem 1 for \(C \) over \(C^H \) satisfy \(B \) of theorem 1 for \(\Lambda \) over \(\Lambda^H \). The same theorem in [4] and the same reasoning apply when \(H \) is a normal subgroup of \(G \). This completes the proof.

Section II

Now we expand our point of view. Let \(\Lambda \) be a faithful \(K \)-algebra and \(G \) a finite group represented as ring automorphisms of \(\Lambda \) so that \(\Lambda^G = K \). Then all the elements in \(G \) are \(K \)-algebra automorphisms of \(\Lambda \). As before, \(\Lambda \) is Galois over \(K \) or a Galois \(K \)-algebra in case either \(A \) or \(B \) of theorem 1 hold. In [6] the author showed:

Lemma 4. Assume \(\Lambda \) is a Galois \(K \)-algebra with group \(G \). If \(C = \text{Center of } \Lambda \) contains no idempotents except 0 and 1 then \(C = \Lambda^H \) where \(H = \{ \sigma \in G | \sigma(x) = x \text{ for all } x \in C \} \) and \(H \) is a normal subgroup of \(G \) so that \(C \) is a Galois extension of \(K \) with group \(G/H \).

Proof. See theorem (1) of [6].

We now prove a lemma which allows us to extend the range of application of Lemma 4.

Lemma 5. If \(K \) contains no idempotents except 0 and 1 and \(\Lambda \) is a Galois \(K \)-algebra then

\[
\Lambda = \Lambda e_1 \oplus \cdots \oplus \Lambda e_n \quad (e_i \text{ minimal central idempotents})
\]

and \(\Lambda e_i \) is a Galois extension of \(K \) with group \(J_i = \{ \sigma \in G | \sigma(e_i) = e_i \} \). Moreover \(\mathcal{O}(\Lambda e_i) = C e_i = \Lambda e_i^{H_i} \) where \(H_i \) is a normal subgroup of \(J_i \).
Proof. \(C \) is finitely generated projective and separable over \(K \) since \(\Lambda \) is finitely generated projective and separable over \(K \). By theorem (7) of [8] since \(K \) has no idempotents but 0 and 1

\[
C = \bigoplus \Sigma C e_i \quad e_i \text{ minimal idempotents in } C.
\]

thus

\[
\Lambda = \bigoplus \Sigma \Lambda e_i \quad e_i \text{ minimal central idempotents in } \Lambda.
\]

Let \(J_i = \{ \sigma \in G | \sigma(e_i) = e_i \} \). By the minimality of \(e_i \), \(\sigma(e_i) \cdot e_i = \begin{cases} 0 & \sigma \notin J_i \\ e_i & \sigma \in J_i \end{cases} \) so by theorem (7) of [8] \(\Lambda e_i \) is a Galois extension of \(K \) with group \(J_i \). \(C e_i = \mathbb{Z}(\Lambda e_i) \). Let \(H_i = \{ \sigma \in J_i | \sigma(x) = x \text{ for all } x \in C e_i \} \). Then by Lemma 3 \(H_i \) is a normal subgroup of \(J_i \) and \(\Lambda e_i^{H_i} = C e_i \). This completes the proof.

We note that if \(K \) has no idempotents except 0 and 1 this lemma reduces the study of Galois \(K \)-algebras to those already considered in Section 1 and to the study of central Galois algebras, i.e., Galois algebras \(\Lambda \) over \(K \) with group \(G \) so that \(\mathbb{Z}(\Lambda) = K \). We now give the structure of a broad class of central Galois algebras.

The class group “\(P(K) \)” of a commutative ring \(K \) was defined by A. Rosenberg and D. Zelinsky in [11] and they showed

1. If \(\Lambda \) is a central separable \(K \)-algebra and \(\sigma \) is an algebra automorphism of \(\Lambda \) of finite order \(n \) such that no element in \(P(K) \) has order dividing \(n \) then \(\sigma \) is an inner automorphism of \(\Lambda \), i.e., there exists a \(U_\sigma \in \Lambda \) such that \(\sigma(x) = U_\sigma x U_\sigma^{-1} \) for all \(x \in \Lambda \).

2. If \(K \) is a field, Principal Ideal Domain or local ring, then \(P(K) = 0 \).

If \(\Lambda \) is a central Galois \(K \)-algebra, then \(\Lambda \) is separable over \(K \), theorem (1) of [6]. Assume the elements of the Galois group \(G \) are inner on \(\Lambda \). Then for each \(\sigma \in G \) there is a \(U_\sigma \in \Lambda \) so that \(\sigma(x) = U_\sigma x U_\sigma^{-1} \) for all \(x \in \Lambda \). Pick a \(U_\sigma \) for each \(\sigma \in G \) and define \(a(\cdot, \cdot) \) mapping \(G \times G \) to \(U(K) = \text{Units of } K \) by

\[
a(\sigma, \tau) = U_\sigma U_\tau U_{\sigma \tau}^{-1}
\]

From the associative law in \(\Lambda \),

\[
a(\sigma \tau, \rho) a(\sigma, \tau) = a(\sigma, \tau \rho) a(\tau, \rho)
\]

for all \(\sigma, \tau, \rho \in G \). Thus \(a(\cdot, \cdot) \) is a 2-cocycle of \(G \) \(a(\cdot, \cdot) \in Z^2(G, U(K)) \).

A twisted group algebra \(KG_\sigma \) is a free \(K \) module with basis \(\{ U_\sigma \} \) \(\sigma \in G \) and multiplication given by \(U_\sigma U_\tau = U_{\sigma \tau} a(\sigma, \tau), a(\cdot, \cdot) \in Z^2(G, U(K)) \).

Theorem 6. If \(\Lambda \) is a central Galois extension of \(K \) with group \(G \), and if \(G \) is represented by inner automorphisms on \(\Lambda \) then

\[
\Lambda = KG_\sigma, \quad a(\cdot, \cdot) \in Z^2(G, U(K)).
\]
Proof. This is theorem 2 of [6].

This result gives a very clear picture of the central Galois algebras over \(K \) with Abelian group \(G \) if no element in \(P(K) \) has order dividing that of an element in \(G \).

Let \(\Lambda \) be a central Galois extension of \(K \) with Abelian group \(G \), and assume all the automorphisms in \(G \) are inner on \(\Lambda \). Then \(\Lambda = KG_a = \bigoplus \Sigma KU_a \) with \(U_aU_a^{-1} = U_a \sigma(\sigma, \tau), a \in \mathbb{Z}^2(G, U(K)) \). If \(\tau \in G \) then \(\tau(U_a) = U_aU_a^{-1} = U_a \sigma(\tau, \sigma)/a(\sigma, \tau) \). Let \(\eta : G \times G \to U(K) \) be defined by \(\eta(\sigma, \tau) = a(\sigma, \tau)/a(\tau, \sigma) \). One checks easily that

\[
\eta \in \text{skew}(G \otimes G, U(K)) = \{ \gamma \in \text{Hom}(G \otimes G, U(K)) \mid \gamma(\sigma, \sigma) = 1 \text{ for all } \sigma \in G \}.
\]

Moreover since \(\Lambda^G = K \), \(\eta(\sigma, G) = 1 \) implies \(\sigma = e \). That is \(\eta \) is a non-singular skew inner product on \(G \).

In [6] a classification of central Galois extensions with Abelian groups was obtained employing this information. Here we extend one of the basic results in [6] and obtain some additional information about Galois extensions with Abelian groups. We notice at once

Corollary 7. If \(\Lambda \) is a central Galois extension of \(K \) with Abelian group \(G \), and if all the automorphisms of \(G \) are inner on \(\Lambda \), then there exists a primitive \(n^{th} \) root of 1 in \(K \) where \(n \) is the exponent of \(G \).

Proof. \(\text{Hom}_{\text{skew}}(G \otimes G, U(K)) \neq 0 \).

If \(G \) is an Abelian group and \(G = H_1 \oplus \cdots H_n \) is its decomposition into sylow \(p \)-subgroups, let

\[
H_i^+ = H_1 \oplus \cdots \oplus H_{i-1} \oplus H_{i+1} \cdots \oplus H_n.
\]

In [6] we showed

Theorem 8. If \(\Lambda \) is a central Galois extension of \(K \) with Abelian group \(G \) and all the automorphisms of \(G \) are inner on \(\Lambda \) then \(\Lambda = \Lambda_1 \otimes K \Lambda_2 \otimes K \cdots \otimes K \Lambda_n \) where \(\Lambda_i \) is a central Galois extension of \(K \) with group \(H_i \) and \(\Lambda_i = \Lambda_{i,1}^{H_i} \).

By means of the next lemma we will remove the restriction in theorem 8 that all the automorphisms in \(G \) be inner on \(\Lambda \).

Lemma 9. Let \(S \) be a central separable algebra over a commutative ring \(K \). Let \(S_i(i=1,2) \) be separable subalgebras, finitely generated and projective over \(K \). Assume that for every prime ideal \(\phi \) of \(K \)
(K_8 \otimes K S_i) \otimes_{K_8} (K_8 \otimes K S_j) = K_8 \otimes K S_i \otimes_{K_8} (K_8 \otimes K S_j) \simeq K_8 \otimes K S_i
\psi_\phi(s_{1\phi} \otimes s_{2\phi}) = s_{1\phi} s_{2\phi}

then
S = S_i \otimes_{K_8} S_j
by \phi(s_i \otimes s_j) = s_i s_j.

Proof. By theorem 3.5 of (2) and the fact that the S_i are finitely generated and projective, the K_8 \otimes K S_i are central separable subalgebras of K_8 \otimes K S, and the centralizer of K_8 \otimes S_i in K_8 \otimes S is K_8 \otimes S_j (i \neq j). The exact sequence

0 \to K \to \mathfrak{I}(S_i) \to \mathfrak{I}(S_i)/K \to 0
0 \to K_8 \to K_8 \otimes K \mathfrak{I}(S_i) \to K_8 \otimes K \mathfrak{I}(S_i)/K \to 0

\mathfrak{I}(S_i) is finitely generated over K since S_i is finitely generated projective and separable over K so since K_8 \otimes \mathfrak{I}(S_i)/K = 0 for all prime ideals \phi of K, \mathfrak{I}(S_i) = K.

By theorem 3.3 of (2), S = S \otimes_K S^s_i, (S^s_i = \{x \in S | ax = xa \ for \ all \ a \in S\}),

via the map \psi(s \otimes t) = st.

Let x \in S^s_i, then as above for every prime ideal \phi of K we obtain the exact sequence

0 \to K_8 \otimes_K K x \to K_8 \otimes_K (K x + S_2) \to K_8 \otimes_K (K x + S_2)/S_2 \to 0

and by theorem 3.5 of (2) together with the hypotheses, K_8 \otimes (x + S_2)/S_2 = 0; thus x \in S_2.

Dually S_2 \subseteq S^s_i. Again by theorems 3.5 and 3.3 of (2) S = S \otimes_K S_2
by \psi(s_1 \otimes s_2) = s_1 s_2.

Theorem 10. If \Lambda is a central Galois extension of K with Abelian group G then \Lambda = \Lambda_1 \otimes_K \cdots \otimes_K \Lambda_n where \Lambda_i is a central Galois extension of K with group H_i and \Lambda_i \simeq \Lambda_i^{H_i} (the H_i as before are the sylow p-components of G).

Proof. Let \phi be any prime ideal of K, then K_8 \otimes_K \Lambda is a central Galois extension of K_8 with group G. Since K_8 is local, all automorphisms of G are inner on K_8 \otimes_K S, thus K_8 \otimes_K S = (K_8 \otimes_K S)^H \otimes_K \phi(K_8 \otimes_K S)^H, via \psi_\phi(s_1 \otimes s_2) = s_1 \phi s_2 \phi. Thus the hypothesis of lemma 9 are satisfied and S \simeq S^{H_1} \otimes_K S^{H_1}. By induction on the number of sylow p-components of G, the theorem follows.

We now obtain the following amusing result first observed in the situation where K is a field by D. K. Harrison.

Theorem 11. Let \Lambda be a (non necessarily central) Galois extension
of the commutative ring \(K \) with cyclic group \(G \). Then \(\Lambda \) is commutative.

Proof. First observe that if for every prime ideal \(\phi \) of \(K, K_\phi \otimes_K \Lambda \) is commutative, then \(\Lambda \) is commutative. A quick way of seeing this is observing that the \(K \) submodule \(E = \{ xy - yx \mid x, y \in \Lambda \} \) of \(\Lambda \) is finitely generated over \(K \). Since \(K_\phi \otimes_K E = 0 \) for each prime ideal \(\phi \), \(E = 0 \) and \(\Lambda \) is commutative.

We may thus assume \(K \) is local. By lemma 5, \(\Lambda = \Lambda e_1 \oplus \cdots \oplus \Lambda e_n, e_i \) minimal central idempotents in \(\Lambda \) and each \(\Lambda e_i \) is a Galois extension of \(K \) with group \(J_i, J_i \) a subgroup of \(G \) and thus also cyclic.

Continuing to apply the results of lemma 5, there exists a normal subgroup \(H_i \) of \(J_i \) so that

\[
\mathfrak{N}(\Lambda)e_i = \mathfrak{N}(\Lambda e_i) = \Lambda e_i^{H_i} \quad (H_i \text{ cyclic.})
\]

Now \(\Lambda e_i \) is a central Galois extension of \(\mathfrak{N}(\Lambda e_i) \) with group \(H_i \). Let \(\mu \) be a maximal ideal in \(\mathfrak{N}(\Lambda e_i) \), then \(\mathfrak{N}(\Lambda e_i) / \mu \) is a field and by theorem (2) of [6], \(\mathfrak{N}(\Lambda e_i) / \mu \otimes \mathfrak{N}(\Lambda e_i) \Lambda e_i \) is a Galois extension of \(\mathfrak{N}(\Lambda e_i) / \mu \) with cyclic group \(H_i \). By Harrison's result for fields, or by theorem 2 plus the fact that if \(H_i \) is cyclic, then \(\text{Hom}_{skew}(H_i, U(K)) = 0 \) we must have \(H_i = \{ e \} \) so \(\Lambda e_i = \mathfrak{N}(\Lambda e_i) \) and \(\Lambda \) is commutative.

Section III

In this section we deal exclusively with central Galois extensions \(\Lambda \) of a commutative ring \(K \) whose group \(G \) is Abelian, and such that all the automorphisms in \(G \) are inner on \(\Lambda \). The principal purpose of the section is to prove the Normal Basis Theom in this setting.

Proposition 12. Let \(\Lambda, K, G \) be as above. Then \(\Lambda = KG, a(, \in Z^*(G, U(K)) \) and \(KG_a = \{ \Sigma_\sigma a_\sigma U_\sigma \mid a_\sigma \in K \} \). Then set \(\{ U_\sigma^{-1}/[G:1], U_\sigma \} \) satisfy "B" of theorem 1.

Proof. By lemma (1) of [6] together with theorem 6, \(\varepsilon = \Sigma_\sigma U_\sigma^{-1}/[G:1] \otimes U_\sigma^0 \) is an idempotent in \(\Lambda \otimes_K \Lambda^0 \) such that \((1 \otimes x - x \otimes 1)\varepsilon = 0 \) for all \(x \in \Lambda \).

Since \(\Lambda \) is a Galois extension of \(K, \Lambda \otimes_K \Lambda^0 \cong \oplus \Sigma_\sigma \Lambda V_\sigma \) as \(K \) modules under \(l(s \otimes t) = \Sigma_\sigma s_\sigma(t)V_\sigma \) (theorem (1.3) of [4])

\[
l(\varepsilon) = \Sigma_\sigma \Sigma_\sigma \gamma(\tau, \sigma)V_\tau \quad \text{where} \quad \tau(V_\sigma) = U_\sigma a(\sigma, \tau),
\]

\(\gamma \in \text{Hom}_{skew}(G \otimes G, U(K)) \) since \((1 \otimes x - x \otimes 1)\varepsilon = 0 \). We have for all \(x \in \Lambda \) and \(\tau \in G \).

(*) \[x \Sigma_\sigma \gamma(\sigma, \tau) = \Sigma_\sigma \gamma(\sigma, \tau) \tau(x) \]
thus \((x-\pi(x))\sum_\sigma \eta(\sigma, \tau) = 0\), for all \(x \in \Lambda\). Since \(\Delta(\Lambda : G) = \text{Hom}_K(\Lambda, \Lambda)\) by theorem 1, \(A\):

\[
[\sum_\sigma \eta(\sigma, \tau) \cdot 1 - \sum_\sigma \eta(\sigma, \tau) \cdot \tau] x = 0 \quad \text{for all } x,
\]

so \(\sum_\sigma \eta(\sigma, \tau) = \begin{cases} [G : 1] & \tau = 1 \\ 0 & \tau \neq 1 \end{cases}\) which proves the proposition.

Using the same argument as above, one can show in the case where \(G\) is an arbitrary finite group that \(\{U^{-1}_\pi/[G : 1], U_\pi\}\) forms a set satisfying \(B\) of theorem 1 if and only if

\[
\sum_{\sigma \in G} \sigma(U_\pi) = \begin{cases} [G : 1] & \tau = \pi \\ 0 & \tau \neq \pi \end{cases} \quad \text{for all } \pi \in G.
\]

Finally we have the normal basis theorem in this setting.

Theorem 13. With the same hypothesis as in Proposition 12, there exists an \(x \in \Lambda\) such that \(\{\sigma(x) | \sigma \in G\}\) are a set of free generators of \(\Lambda\) as a \(K\) module.

Proof. \(\Lambda = KG = \bigoplus \Sigma KU_\sigma\) with the \(U_\sigma U_\pi = U_\pi a(\sigma, \tau)\) and \(a(,) \in Z^2 (G, U(K))\), and \(\eta(\sigma, \tau) = a(\sigma, \tau)/a(\tau, \sigma)\). Let \(x = \sum_{\sigma \in G} U_\sigma\).

1. \(\{\sigma(x)\} \sigma \in G\) generates \(\Lambda\). Since for each \(\tau \in G\), \(\tau(x) = \sum_{\sigma \in G} \eta(\sigma, \tau) U_\sigma\) it will suffice to show that for all \(\tau \in G\) there is \(\alpha(\in K\) and \(\tau \in G\) so that

\[
\sum_{\sigma \in G} \alpha(\eta(\gamma, \tau) = \begin{cases} 1 & \gamma = \sigma \\ 0 & \gamma \neq \sigma \end{cases}.
\]

By Proposition 12, \(\sum_\gamma \eta(\gamma, \tau) = \begin{cases} 1 & \gamma \neq \pm 1 \\ 0 & \gamma \neq \pm 1 \end{cases}\) for all \(\gamma \in G\). Thus

\[
\sum_{\gamma \in G} \eta(\sigma^{-1}, \tau) \eta(\gamma, \tau) = \sum_{\gamma \in G} \eta(\sigma^{-1} \gamma, \tau) = \begin{cases} [G : 1] & \gamma = \sigma \\ 0 & \gamma \neq \sigma \end{cases}
\]

so we just let \(\alpha(\tau) = \eta(\sigma^{-1}, \tau)/[G : 1]\).

2. \(\{\sigma(x)\} \sigma \in G\) are linearly independent. Assume \(\sum_{\sigma \in G} \alpha(\tau) = 0\). Then \(\sum_{\sigma \in G} \sum_{\tau \in G} \alpha(\tau) U_\sigma = 0\) so \(\sum_{\sigma} \alpha(\sigma, \tau) = 0\) for all \(\sigma\). By the nonsingularity of \(\eta\), the characters \(\eta(\sigma, \tau)\) are linearly independent over \(K\). Thus \(\alpha(\tau) = 0\) for all \(\tau\). This proves the theorem.

Employing theorem (4.2) of [4] together with this result, one may obtain several generalized normal basis type theorems.

University of Oregon
Bibliography

