ON ESTIMATES FOR DERIVATIVES OF SOLUTIONS OF WEIGHTED ELLIPTIC BOUNDARY VALUE PROBLEMS

HIROKI TANABE

(Received March 2, 1966)

It is well known that any solution u of the parabolic differential equation

$$\partial u/\partial t - \partial^2 u/\partial x^2 = 0$$

belongs to a Gevrey's class, namely for any compact set K there exist constants $M_{\scriptscriptstyle 0}$ and M such that

$$\sup_{(x,t)\in K} |(\partial/\partial t)^m(\partial/\partial x)^n u(x,t)| \leq M_0 M^{m+n} \Gamma(n+1) \Gamma(2m+1)$$

for any non-negative integers m and n. In this paper this result is generalized to more general weighted elliptic boundary value problems of first order in t (cf. [2] for the definition of weighted ellipticity):

$$D_{x}u(x, t) + A(x, t, D_{x})u(x, t) = f(x, t), x \in \Omega,$$
 (0.1)

$$B_i(x, t, D_x)u(x, t) = g_i(x, t), x \in \partial\Omega, j = 1, \dots, m,$$

$$(0.2)$$

where $A(x, t, D_x)$ is a linear differential operator of order 2m and Ω is a bounded domain in the n-dimensional Euclidean space. The boundary system $\{B_j(x, t, D_x)\}$ is assumed to consist of differential operators of order $\langle 2m \rangle$; however, it need not be normal. Throughout this paper a function h (resp. ϕ) of (x, t) (resp. x) is said to belong to Gevrey's class $G(\sigma, \tau)$ (resp. $G(\tau)$), $\sigma, \tau \geq 1$, if with some constants M_0 and M

$$\sup_{x\in\Omega,t}|D_t^{\iota}D_x^{\kappa}h(x,\,t)|\!\leq\! M_{\scriptscriptstyle 0}M^{{\scriptscriptstyle I}+{\scriptscriptstyle |\kappa|}}\Gamma(\,|\,\kappa\,|\,\sigma+1)\Gamma({\scriptscriptstyle I}\tau+1)$$

$$(\text{resp. }\sup_{x\in\Omega}|D_x^{\kappa}\phi(x)|\!\geq\! M_{\scriptscriptstyle 0}M^{{\scriptscriptstyle |\kappa|}}\Gamma(\,|\,\kappa\,|\,\sigma+1))$$

for any l and κ , and the boundary $\partial\Omega$ is said to be of Gevrey's class $G(\sigma)$ if some open part of $\partial\Omega$ containing each point of $\partial\Omega$ is mapped onto a part of a hyperplane by means of a one-to-one mapping of the class $G(\sigma)$. It will always be assumed that the elliptic boundary systems $(\pm D_y^{2m} + A(x, t, D_x), \{B_i(x, t, D_x)\}, \Omega \times \{y: -\infty < y < \infty\})$ satisfy the

Complementing Condition ([3]) for each fixed t. Under this assumption it will be shown that any solution of (0.1)-(0.2) belongs to Gevery's class $G(\sigma, 2m\sigma)$ provided that all the coefficients of A, $\{B_j\}$ and f, $\{g_j\}$ belong to the class $G(\sigma, 2m\sigma)$ and $\partial\Omega$ is of the class $G(\sigma)$. This result gives an affirmative answer to the conjecture of J.L. Lions and E. Magenes [4].

In section 3 the property of the solution considered as a function of t with values in $H_{2m}(\Omega)$ will be investigated. The main result in that section is that if all the coefficients of A, $\{B_j\}$, and f, $\{g_j\}$ belong to Gevrey's class $G(\tau)$, $\tau \ge 1$, as functions of t, then so does the solution u of (0.1)-(0.2) as a function of t with values in $H_{2m}(\Omega)$, namely with some constants L_0 , L

$$||D_t^k u(t)||_{2m} \leq L_0 L^k \Gamma(k\tau+1)$$

for all integers $k \ge 0$, where $|| ||_{2m}$ is the norm of $H_{2m}(\Omega)$. In this result the known functions need not belong to Gevrey's class in x.

In the last section it will be shown that u belongs to the class $G(\sigma, 2m\sigma)$ with the aid of the result in section 3. As in [7] it will first be proved that the Cauchy data of u on the boundary belong to $G(\sigma, 2m\sigma)$. Unlike the case of analyticity Cauchy-Kowalevskii theorem and Holmgren's theorem cannot be used, therefore we estimate all derivatives of the solution following the technique of C.B. Morrey and L. Nirenberg [5].

It is quite probable that the same result remains valid for problems of arbitrary order in t:

$$A(x, t, D_x, D_t)u(x, t) = f(x, t), x \in \Omega, \tag{0.3}$$

$$B_{j}(x, t, D_{x}, D_{t})u(x, t) = g_{j}(x, t), x \in \partial\Omega, j = 1, \dots, m;$$
 (0.4)

however, the computation in that case would be extremely lengthy, so we shall investigate only the simpler situation.

1. Notations and assumptions. We denote by Ω a domain in the n-dimensional Eucidean space E_n and by $\partial\Omega$ its boundary. Let $(x,t)=(x_1,\cdots,x_n,t)$ be the generic point in E_{n+1} . We write $D_x=(D_1,\cdots,D_n)=(-1)^{-1/2}(\partial/\partial x_1,\cdots,\partial/\partial x_n), D_t=(-1)^{-1/2}\partial/\partial t$ and denote by D_x^{α} , $\alpha=(\alpha_1,\cdots,\alpha_n)$, the x-derivative $D_1^{\alpha_1}\cdots D_n^{\alpha_n}$. $|\alpha|$ stands for the length of the multi-index of $\alpha:|\alpha|=\alpha_1+\cdots+\alpha_n$. For any non-negative integer k we denote by $H_k(\Omega)$ the class of all complex valued functions whose distribution derivatives of order up to k are square integrable in Ω , the norm of $H_k(\Omega)$ being denoted by

$$||u||_{k,\Omega}^2 = \sum_{|\alpha| \leq k} \int_{\Omega} |D_x^{\alpha} u(x)|^2 dx.$$

 $H_{k-1/2}(\partial\Omega)$ is to be the class of functions ϕ which are the boundary values of functions belonging to $H_k(\Omega)$. In this class of functions we introduce the norm

$$\langle \phi \rangle_{k \partial \Omega} = \inf ||v||_{k \Omega},$$

where the infimum is taken over all functions v in $H_k(\Omega)$ which equal ϕ on $\partial\Omega$.

 $A(x, t, D_x)$ is a linear differential operator in x of order 2m with coefficients defined in $\overline{\Omega} \times \{t : -\infty < t < \infty\}$:

$$A(x, t, D_x) = \sum_{|\alpha| \leq 2m} a_{\alpha}(x, t) D_x^{\alpha}.$$

For each $j=1, \dots, m$, $B_j(x, t, D_x)$ is a linear differential operator in x of order m_j with coefficients defined on $\partial \Omega \times \{t: -\infty < t < \infty\}$:

$$B_i(x, t, D_x) = \sum_{|\beta| \leq m} b_{i,\beta}(x, t) D_x^{\beta}$$
.

 $\{B_j(x,\,t,\,D_x)\}$ is a system of operators which defines boundary conditions, and in what follows we shall assume that all the coefficients of $\{B_j\}$ are defined in the whole of $\overline{\Omega}\times\{t:-\infty< t<\infty\}$. Let y be an auxiliary real variable and we denote by Q the infinite cylinder: $Q=\{(x,\,y):x\in\Omega,\,-\infty< y<\infty\}$. For each fixed $t,\,\pm D_y^{2m}+A(x,\,t,\,D_x)$ are differential operators in $(x,\,y)$ of order 2m with coefficients defined in Q.

Assumptions (I). For each fixed t, $\pm D_y^{2m} + A(x, t, D_x)$ is an elliptic operator of order 2m in Q.

- (II) The order m_j of B_j is smaller than 2m for each j.
- (III) The Complementing Condition ([2]) is satisfied by the system $(\pm D_y^{2m} + A(x, t, D_x), \{B_j(x, t, D_x)\}_{j=1}^m, Q)$ for each fixed t.

The assumption concerning the smoothness of the coefficients will be stated in each of the following sections and in the last section $\partial\Omega$ will be required to satisfy a more restrictive assumption. By a solution of (0.1)-(0.2) we always mean a function u with the properties that (i) $u(t)=u(x,\cdot)\in H_{2m}(\Omega)$ for each t, (ii) u(t) is continuous in t in the strong topology of $H_{2m}(\Omega)$ and (iii) u satisfies (0.1)-(0.2).

Let τ and σ be real numbers such that $\tau \geq 1$, $\sigma \geq 1$.

DEFINITION 1. A function u(t), $-\infty < t < \infty$, with values in a Hilbert space X (in many cases in what follows X will be the set of all complex numbers) is said to belong to *Gevrey's class* $G(\tau)$ if for any positive constant R there exist constants H_0 and H such that

$$\sup_{-R < t \le R} ||D_t^q u(t)|| \leq H_0 H^q \Gamma(\tau q + 1)$$

for all integers $q \ge 0$, where || || is the norm of X.

Definition 2. A numerical valued function u(x,t) defined in $\overline{\Omega} \times \{t: -\infty < t < \infty\}$ is said to belong to *Gevrey's class* $G(\sigma,\tau)$ if for any positive constant R there exist constants H_0 and H such that

$$\sup_{x \in \Omega_{t}-R < t < R} |D_{t}^{q}D_{x}^{\kappa}u(x,t)| \leq H_{0}H^{q+|\kappa|}\Gamma(\sigma|\kappa|+1)\Gamma(\tau q+1).$$

for any κ and $q \ge 0$.

From now on we shall write $|| \ ||_k$, $\langle \ \rangle_k$ omitting Ω and $\partial \Omega$ if there is no fear of confusion.

2. **Preliminary lemmas.** In this section we assume that all the coefficients of A, $\{B_j\}$ have derivatives in t of all orders which are continuous in $\overline{\Omega} \times \{t: -\infty < t < \infty\}$ and that $f, g_j, j = 1, \cdots, m$, are infinitely differentiable functions of t with values in $L^2(\Omega)$ and $H_{2m-m_j}(\Omega)$ respectively. Let ρ be a positive number satisfying $\rho \leq 1$, and r, δ be positive numbers such that $r+\delta < \rho$. φ is to be a smooth function such that $\varphi(t)=1$ for -r < t < r, $\varphi(t)=0$ for $|t|>r+\delta$, and $|\varphi'(t)|\leq K/\delta$ where K is a positive number independent of r and δ . In what follows in this section we denote by C_1, C_2, \cdots constants depending only on the assumptions stated in the preceding and the present sections. If h is a function of (x, t), we denote by \hat{h} its Fourier transform with respect to t:

$$\hat{h}(x, \lambda) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{-(-1)^{1/2} \lambda t} h(x, t) dt$$

and by $h^{(q)}$ its derivative in t of order q:

$$h^{(q)}(x, t) = D_t^q h(x, t).$$

We shall use the following notations

$$e_{q}(f, r) = \left(\int_{-r}^{r} ||f^{(q)}(t)||_{0}^{2} dt\right)^{1/2},$$

$$e_{j,q}(g_{j}, r+\delta) = \left(\int_{-r-\delta}^{r+\delta} ||g_{j}^{(q)}(t)||_{2m-m_{j}}^{2} dt\right)^{1/2}$$
(2.1)

$$+ \left(\int_{-\infty}^{\infty} (|\lambda|^{(2m-m_j)/2m} ||(\varphi g_j^{(q)})^{\wedge}(\lambda)||_0)^2 d\lambda \right)^{1/2}, \tag{2.2}$$

$$d_q(u, r) = \left(\int_{-r}^{r} ||u^{(q+1)}(t)||_0^2 dt\right)^{1/2} + \left(\int_{-r}^{r} ||u^{(q)}(t)||_{2m}^2 dt\right)^{1/2}$$
 (2.3)

for $q = 0, 1, 2, \dots$

Let η be a smooth function of t such that $\eta(t)=1$ for -1 < t < 1, $\eta(t)=0$ for |t|>2. Let M_q , $q=0,1,\cdots$, be positive numbers such that for all α , β , κ , j with $|\alpha| \le 2m$, $|\beta| \le m_i$, $|\kappa| \le 2m - m_i$, $j=1,\cdots,m$,

$$|D_t^q a_{\alpha}(x,t)| \leq M_q, \qquad (2.4)$$

$$|D_t^q D_x^{\kappa} b_{i,\beta}(x,t)| \leq M_q, \qquad (2.5)$$

$$\int_{-\infty}^{\infty} |(\eta D_t^q b_{j,\beta})^{\wedge}(x,\lambda)| d\lambda \leq M_q, \qquad (2.6)$$

$$\int_{-\infty}^{\infty} |\lambda|^{(2m-m_j)/2m} |(\eta D_i^q b_{j,\beta})^{\wedge}(x,\lambda)| d\lambda \leq M_q$$
 (2.7)

in $\Omega \times \{t: -1 < t < 1\}$ or Ω .

Lemma 2.1. If ρ is sufficiently small, then for any positive numbers r, δ such that $r+\delta < \rho$ and for any non-negative integer q the following inequality holds for any solution u of (0.1)–(0.2):

$$d_{q}(u, r) \leq C_{1} \left\{ e_{q}(f, r+\delta) + \sum_{j=1}^{m} e_{j,q}(g_{j}, r+\delta) + \frac{1}{\delta} \left(\int_{-r-\delta}^{r+\delta} ||D_{t}^{n}u(t)||_{0}^{2} dt \right)^{1/2} + \sum_{\nu=0}^{q-1} {q \choose p} M_{q-p} d_{p}(u, r+\delta) + \frac{1}{\delta} \sum_{\nu=0}^{q-1} {q \choose p} M_{q-p} \left(\int_{-r-\delta}^{r-\delta} ||D_{t}^{n}u(t)||_{0}^{2} dt \right)^{1/2} \right\}.$$

$$(2.8)$$

This lemma is essentially proved in [6] and [7]. However, for the sake of convenience we give below an outline of the proof.

Lemma 2.2. If v is a solution of

$$D_t v(x, t) + A(x, 0, D_x) v(x, t) = f(x, t), x \in \Omega, -\infty < t < \infty,$$
 (2.9)

$$B_i(x, 0, D_x)v(x, t) = g_i(x, t), x \in \partial\Omega, -\infty < t < \infty, j = 1, \dots, m,$$
 (2.10)

and if the support of v considered as a function of t with values in $H_{2m}(\Omega)$ is compact, then

$$\int_{-\infty}^{\infty} ||D_{t}v(t)||_{0}^{2} dt + \int_{-\infty}^{\infty} ||v(t)||_{2m}^{2} dt
\leq C_{2} \left\{ \int_{-\infty}^{\infty} ||f(t)||_{0}^{2} dt + \sum_{j=1}^{m} \int_{-\infty}^{\infty} (|\lambda|^{(2m-m_{j})/2m} ||\hat{g}_{j}(\lambda)||_{0})^{2} d\lambda
+ \sum_{j=1}^{m} \int_{-\infty}^{\infty} ||g_{j}(t)||_{2m-m_{j}}^{2} dt + \int_{-\infty}^{\infty} ||u(t)||_{0}^{2} dt \right\}.$$
(2. 11)

Proof. The Fourier transform \hat{v} of v with respect to t satisfies

$$\lambda \hat{v}(x,\lambda) + A(x,0,D_x)\hat{v}(x,\lambda) = \hat{f}(x,\lambda), x \in \Omega, \qquad (2.12)$$

$$B_{j}(x, 0, D_{x})\hat{v}(x, \lambda) = \hat{g}_{j}(x, \lambda), x \in \partial\Omega, j = 1, \dots, m.$$
 (2.13)

Following S. Agmon [1] let us consider the functions

$$w_{\pm}(x, y, \mu) = \zeta(y) \exp((-1)^{1/2} \mu y) \hat{v}(x, \pm \mu^{2m}),$$

where ζ is a smooth function such that $\zeta(y)=1$ for $|y| \le 1/2$ and $\zeta(y)=0$ for $|y| \ge 1$, and μ is an arbitrary real number. Due to (2.12) and (2.13) w_{\pm} satisfies

$$(\pm D_{y}^{2m} + A(x, 0, D_{x}))w_{\pm}(x, y, \mu) = \zeta(y) \exp((-1)^{1/2}\mu y)\hat{f}(x, \pm \mu^{2m})$$

$$\pm \sum_{k=0}^{2m-1} {2m \choose k} D_{y}^{2m-k} \zeta(y) \mu^{k} \exp((-1)^{1/2}\mu y) \hat{v}(\pm \mu^{2m}, x), \quad x \in \Omega, \qquad (2.14)$$

$$B_{j}(x, 0, D_{x})w_{\pm}(x, y, \mu) = \zeta(y) \exp((-1)^{1/2}\mu y)\hat{g}_{j}(x, \pm \mu^{2m}),$$

$$x \in \partial \Omega, \quad j = 1, \dots, m. \qquad (2.15)$$

It is easy to show that

$$||(\pm D_{y}^{2m} + A(x, 0, D_{x}))w_{\pm}||_{0,Q}$$

$$\leq C_{3}\{||\hat{f}(\pm \mu^{2m})||_{0} + (1 + |\mu|^{2m-1})||\hat{u}(\pm \mu^{2m})||_{0}\}, \qquad (2.16)$$

$$\langle B_{j}(x, 0, D_{x})w_{\pm}\rangle_{2m-m_{j},\partial Q}^{2} = \langle \zeta \exp((-1)^{1/2}\mu y)\hat{g}_{j}(\pm \mu^{2m})\rangle_{2m-m_{j},\partial Q}^{2}$$

$$\leq ||\zeta \exp((-1)^{1/2}\mu y)\hat{g}_{j}(\pm \mu^{2m})||_{2m-m_{j},Q}^{2}$$

$$\leq C_{4}\sum_{k=0}^{2m-m_{j}}(1 + |\mu|)^{2k}||\hat{g}_{j}(\pm \mu^{2m})||_{2m-m_{j}-k}^{2}.$$

Hence with the aid of the well known inequality

$$||w||_{2m-m,-k} \le c_0 ||w||_{2m-m,-k}^{(2m-m_j-k)/(2m-m_j)} ||w||_0^{k/(2m-m_j)},$$

we get

$$\langle B_{j}(x, 0, D_{x})w_{\pm}\rangle_{2m-m_{j},\partial Q}$$

$$\leq C_{5}\{||\hat{g}_{j}(\pm \mu^{2m})||_{2m-m_{j}} + (1+|\mu|)^{2m-m_{j}}||\hat{g}_{j}(\pm \mu^{2m})||_{0}\}.$$
(2. 17)

As is easily seen

$$||w_{\pm}||_{2m,Q}^{2} \ge \sum_{k=0}^{2m} |\mu|^{2k} ||\hat{v}(\pm \mu^{2m})||_{2m-k}^{2}.$$
 (2. 18)

Using (2.16), (2.17) and (2.18) in the Agmon-Douglis-Nirenberg inequality

$$||w_{\pm}||_{2m,Q} \leq C_{6} \{||(\pm D_{y}^{2m} + A(x, 0, D_{x}))w_{\pm}||_{0,Q} + \sum_{j=1}^{m} \langle B_{j}(x, 0, D_{x})w_{\pm}\rangle_{2m-m_{j},0Q} + ||w_{\pm}||_{0,Q} \}$$

which can be applied to w_{\pm} in Q by assumption and then putting $\lambda = \pm \mu^{2m}$, we get

$$|\lambda|||\hat{v}(\lambda)||_{0} + ||\hat{v}(\lambda)||_{2m}$$

$$\leq C_{7}\{||\hat{f}(\lambda)||_{0} + \sum_{j=1}^{m} |\lambda|^{(2m-m_{j})/2m}||\hat{g}_{j}(\lambda)||_{0}$$

$$+ \sum_{j=1}^{m} ||\hat{g}_{j}(\lambda)||_{2m-m_{j}} + ||\hat{u}(\lambda)||_{0}\}$$
(2. 19)

for any real number λ . Integrating the squares of both sides of (2.19) over $-\infty < \lambda < \infty$ and then applying Plancherel's theorem, we get (2.11).

Lemma 2.3. Let v be a solution of (0.1)–(0.2). If the support of v considered as a function of t is contained in a sufficiently small neighbourhood of the origin, then the same estimate as (2.11) holds replacing C_2 by another constant if necessary.

Proof. The lemma is easily proved considering $\psi(t)v(x,t)$ where ψ is a smooth function which has a small compact support and identically equals 1 on the support of v.

Lemma 2.4. If ρ is sufficiently small, then for the solution u of (0.1)–(0.2)

$$egin{aligned} d_{\scriptscriptstyle 0}(u,\,r) &\leq C_{\scriptscriptstyle 8} \Big\{ e_{\scriptscriptstyle 0}(f,\,r+\delta) \ &+ \sum_{j=1}^m e_{j,\scriptscriptstyle 0}(g_j,\,r+\delta) + rac{1}{\delta} \int_{-r-\delta}^{r+\delta} ||u(t)||_0^2 \, dt \Big\} \end{aligned}$$

whenever $r + \delta < \rho$.

Proof. The lemma is easily proved if we apply Lemma 2.3 to $\varphi(t)u(x, t)$.

Lemma 2.1 can be obtained if we differentiate both sides of (0.1)-(0.2) q times in t and applying Lemma 2.4 to $D_t^a u$.

Lemma 2.5. If $\alpha \ge 1$ and $\beta > 0$, then

$$\Gamma(\alpha+\beta) \ge \Gamma(\alpha)\Gamma(\beta+1)$$
. (2.20)

If $\alpha \geq 1$ and $\beta \geq 1$, then

$$2^{\alpha+\beta-1}\Gamma(\alpha+1)\Gamma(\beta+1) \ge \Gamma(\alpha+\beta+1). \tag{2.21}$$

If $0 \le \alpha' \le \alpha$ and $0 \le \beta' \le \beta$, then

$$\frac{\Gamma(\alpha'+\beta'+1)}{\Gamma(\alpha'+1)\Gamma(\beta'+1)} \le \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)\Gamma(\beta+1)} \frac{1+\alpha+\beta}{1+\alpha'+\beta'}.$$
 (2.22)

If $\tau \ge 1$, then for any pair of non-negative integers p and q satisfying $p \le q$

$$\begin{pmatrix} q \\ p \end{pmatrix} \leq \frac{\tau \Gamma(\tau q + 1)}{\Gamma(\tau p + 1)\Gamma(\tau(q - p) + 1)}.$$
 (2.23)

Proof. (2.20), (2.21) and (2.22) are all simple consequences of

$$rac{\Gamma(lpha)\Gamma(eta)}{\Gamma(lpha+eta)}=\int_0^1\!\!t^{lpha-1}\!(1-t)^{eta-1}\!dt\;.$$

(2.22) implies

$$\begin{pmatrix} q \\ p \end{pmatrix} = \frac{\Gamma(q+1)}{\Gamma(p+1)\Gamma(q-p+1)} \leq \frac{\Gamma(\tau q+1)}{\Gamma(\tau p+1)\Gamma(\tau(q-p)+1)} \frac{\tau q+1}{q+1} . \quad (2.24)$$

(2.23) is a direct consequence of (2.24).

3. Estimates for derivatives in t. In this section we assume that (V) the coefficients of A and the derivatives in x of the coefficients of B_j of order up to $2m-m_j$, $j=1,\cdots,m$, all belong to Gevery's class $G(\tau)$ as functions of t uniformly. Hence there exist positive constants M_0 and M such that

$$M_q \leq M_0 M^q \Gamma(\tau q + 1) \tag{3.1}$$

for all integers $q \ge 0$ (cf. (2.4)~(2.7) for the meaning of M_q);

(VI) f and g_j , $j=1,\dots,m$, belong to Gevrey's class $G(\tau)$ when they are considered as functions of t with values in $L^2(\Omega)$ and $H_{2m-m_j}(\Omega)$ respectively. Hence there exist positive constants N_0 and N such that

$$||f^{(q)}(t)||_0 \le N_0 N^q \Gamma(\tau q + 1), -1 \le t \le 1,$$
 (3.2)

$$||g_{j}^{(q)}(t)||_{2m-m_{j}} \le N_{0}N^{q}\Gamma(\tau q+1), -1 \le t \le 1, j=1, \dots, m.$$
 (3.3)

We introduce the notation

$$N_{\rho,q}(u) = \Gamma(\tau q + 1)^{-1} \sup_{\rho/2 \le r < \rho} d_q(u, r) (\rho - r)^{q+1}$$
(3.4)

for $q = 0, 1, 2, \dots$.

Theorem 3.1. Under the assumptions (I) \sim (VI) any solution of (0.1)–(0.2) considered as a function of t with values in $H_{2m}(\Omega)$ belongs to Gevrey's class $G(\tau)$.

Proof. Let us multiply both sides of (2.8) with $\delta = (\rho - r)(q+1)^{-1}$ by $\Gamma(\tau q+1)^{-1}(\rho-r)^{q+1}$. If we notice $\delta = (\rho-r-\delta)/q$ we get

$$\begin{split} &\Gamma(\tau q+1)^{-1}d_{q}(u,r)(\rho-r)^{q+1} \\ &\leq C_{9}e(1+q^{-1})\bigg\{\Gamma(\tau q+1)^{-1}e_{q}(f,r+\delta)(\rho-r-\delta)^{q+1} \\ &+\Gamma(\tau q+1)^{-1}\sum_{j=1}^{m}e_{j,q}(g_{j},r+\delta)(\rho-r-\delta)^{q+1} \\ &+q\Gamma(\tau q+1)^{-1}d_{q-1}(u,r+\delta)(\rho-r-\delta)^{q} \\ &+\tau M_{0}\sum_{p=0}^{q-1}\Gamma(\tau p+1)^{-1}M^{p-q}d_{p}(u,r+\delta)(\rho-r-\delta)^{q+1} \\ &+\tau M_{0}q\sum_{p=0}^{q-1}\Gamma(\tau p+1)^{-1}M^{p-q}d_{p}(u,r+\delta)(\rho-r-\delta)^{q+1} \\ &+\tau M_{0}q\sum_{p=0}^{q-1}\Gamma(\tau p+1)^{-1}M^{p-q}d_{p-1}(u,r+\delta)(\rho-r-\delta)^{q} \\ &+M_{0}qM^{q}\bigg(\int_{-r-\delta}^{r+\delta}||u(t)||_{0}^{2}dt\bigg)^{1/2}(\rho-r-\delta)^{q}\bigg\}. \end{split} \tag{3.5}$$

From (3.2) it follows that

$$\Gamma(\tau q + 1)^{-1}e_{q}(f, r + \delta)(\rho - r - \delta)^{q+1} \leq \sqrt{2\rho} \rho N_{0}(\rho N)^{q}$$
. (3.6)

Noting $|\lambda|^{(2m-m)j/2m} \leq |\lambda| + 1$ and

$$\Gamma(\tau q + \tau + 1) \leq 2^{\tau q + \tau - 1} \Gamma(\tau q + 1) \Gamma(\tau + 1) \tag{3.7}$$

which follows from (2.21), we can easily show

$$\Gamma(\tau q + 1)^{-1} e_{j,q}(g_j, r + \delta)(\rho - r - \delta)^{q+1} \le \sqrt{2\rho} \left\{ 2^{\tau - 1} \Gamma(\tau + 1) N_0 \rho N (2^{\tau} \rho N)^q + (2\rho + Kq) N_0 (\rho N)^q \right\}.$$
 (3.8)

Using (3.4) and

$$\Gamma(\tau q+1) = \tau q \Gamma(\tau q) = \tau q \Gamma(\tau(q-1)+1+\tau-1)$$

 $\geq \tau q \Gamma(\tau(q-1)+1)\Gamma(\tau) = \Gamma(\tau+1)q\Gamma(\tau(q-1)+1)$

which follows from (2.20), we get

$$q\Gamma(\tau q+1)^{-1}d_{q-1}(u, r+\delta)(\rho-r-\delta)^{q} \leq \Gamma(\tau+1)^{-1}N_{\rho, q-1}(u). \tag{3.9}$$

Similarly

$$\Gamma(\tau p + 1)^{-1} M^{q-p} d_{p}(u, r + \delta) (\rho - r - \delta)^{q+1} \leq (\rho M)^{q-p} M_{\rho, p}(u), \qquad (3. 10)$$

$$\tau q \Gamma(\tau p + 1)^{-1} M^{q-p} d_{p-1}(u, r + \delta) (\rho - r - \delta)^{q}$$

$$\leq \Gamma(\tau)^{-1} q p^{-1} (\rho M)^{q-p} N_{\rho, p-1}(u). \qquad (3. 11)$$

From $(3.5)\sim(3.11)$ and $qp^{-1} \leq e^{q-p}$ it follows that

$$\begin{split} N_{\rho,q}(u) &\leq C_{10} e(1+q^{-1}) \bigg[\sqrt{2\rho} \left\{ 2\, m + 1 + 2^{\tau-1} m \Gamma(\tau+1) N \right\} \rho N_0 (2^{\tau} \rho N)^q \\ &+ \sqrt{2\rho} \, m K N_0 q(\rho N)^q + \Gamma(\tau+1)^{-1} N_{\rho,q-1}(u) \\ &+ \tau M_0 \sum_{p=0}^{q-1} (\rho M)^{q-p} N_{\rho,p}(u) + \Gamma(\tau)^{-1} M_0 \sum_{p=0}^{q-1} (e\rho M)^{q-p} N_{\rho,p-1}(u) \\ &+ M_0 q(\rho M)^q \bigg(\int_{-\rho}^{\rho} ||u(t)||_0^2 \, dt \bigg)^{1/2} \bigg] \,. \end{split} \tag{3.12}$$

172 H. TANABE

We want to show that there exist constants H_0 , $H \ge 0$ such that for any non-negative integer q

$$N_{\varrho,q}(u) \leq H_{\varrho}H^{q} . \tag{3.13}$$

With the aid of (3.12) we can proceed by induction without difficulty to verify (3.13) provided that H_0 and H are so large that

$$\begin{split} &12\,C_{10}e\sqrt{2\rho}\,\{2\,m+1+2^{\tau-1}m\Gamma(\tau+1)N\}\,\rho N_0\!\leqq\! H_0\,,\\ &12\,C_{10}e\sqrt{2\,\rho}\,mKN_0\!\leqq\! H_0\,,\;\; 12\,C_{10}eM_0\!\!\left(\int_{-\rho}^{\rho}\!||u(t)||_0^2\,dt\right)^{1/2}\!\leqq\! H_0\,,\\ &\max(2^{\tau}\!\rho N,\,e\rho N,\,2\,e\rho M)\;\leqq\! H,\;\; 12\,C_{10}e\Gamma(\tau+1)^{-1}\!\!\leqq\! H,\\ &24\,C_{10}e\tau M_0\rho M\!\!\leqq\! H,\;\; 24\,\Gamma(\tau)^{-1}\!C_{10}e^2M_0\rho M\!\!\leqq\! H^2\,. \end{split}$$

The proof of the theorem has been completed.

Next we show that u belongs to the same class in the space $H_{4m}(\Omega)$ under the following more restrictive assumptions:

- (V') the derivatives in x of the coefficients of A of order up to 2m and those in x of the coefficients of B_j of order up to $4m-m_j$, $j=1,\cdots,m$, all belong to Gevrey's class $G(\tau)$ as functions of t uniformly;
- (VI') f and g_j , $j=1,\cdots,m$, belong to Gevrey's class $G(\tau)$ when considered as functions of t with values in $H_{2m}(\Omega)$ and $H_{4m-m_j}(\Omega)$ respectively.

Theorem 3.2. Under the assumptions (I) \sim (IV), (V'), (VI') any solution of (0.1)–(0.2) belongs to Gevrey's class $G(\tau)$ when considered as a function of t with values in $H_{*m}(\Omega)$.

Proof. By assumption and Theorem 3.1 there exist constants \bar{M}_0 , \bar{M} , \bar{N}_0 , \bar{N} and L_0 , L such that for all $q=1, 2, \cdots$

$$\sup |D_t^q D_x^{\kappa} a_{\alpha}(x, t)| \leq \overline{M}_0 \overline{M}^q \Gamma(\tau q + 1), \quad |\kappa| \leq 2m, \qquad (3.14)$$

$$\sup |D_t^q D_x^{\kappa} b_{j,\beta}(x,t)| \leq \overline{M}_0 \overline{M}^q \Gamma(\tau q+1), \ |\kappa| \leq 4m-m_j, \ j=1, \cdots, m, \quad (3.15)$$

$$||f^{(q)}(t)||_{2m} \leq \bar{N}_0 \bar{N}^q \Gamma(\tau q + 1),$$
 (3.16)

$$||g^{(q)}(t)||_{4m-m_j} \le \bar{N}_0 \bar{N}^q \Gamma(\tau q + 1), \ j = 1, \dots, m,$$
 (3.17)

$$||D_t^q u(t)||_{2m} \le L_0 L^q \Gamma(\tau q + 1)$$
. (3.18)

We want to show that there exist constants \bar{L}_0 and \bar{L} such that

$$||D_t^q u(t)||_{4m} \leq \bar{L}_0 \bar{L}^q \Gamma(\tau q + 1) \tag{3.19}$$

for all integers $q \ge 0$. Supposing that (3.19) is true for $q = 0, 1, \dots, l-1$, let us prove that the same is true for q = l. In view of the Agmon-

Douglis-Nirenberg inequality concerning the system $(A(x, t, D_x), \{B_j(x, t, D_x)\}, \Omega)$

$$||D_t^l u(t)||_{4m} \leq C_{11} \{ ||A(x, t, D_x) D_t^l u(t)||_{2m} + \sum_{j=1}^m \langle B_j(x, t, D_x) D_t^l u(t) \rangle_{4m-m_j} + ||D_t^l u(t)||_0 \}.$$
(3. 20)

Differentiating both sides of (0.1)-(0.2) we get

$$A(x, t, D_{x})D_{t}^{l}u(x, t) = -D_{t}^{l+1}u(x, t) + D_{t}^{l}f(x, t) - \sum_{k=0}^{l-1} {l \choose k} A^{(l-k)}(x, t, D_{x})D_{t}^{k}u(x, t), x \in \Omega,$$
(3.21)

$$B_{i}(x, t, D_{x})D_{t}^{i}u(x, t) = D_{t}^{i}g_{i}(x, t)$$

$$-\sum_{k=0}^{l-1} \binom{l}{k} B^{(l-k)}(x, t, D_x) D_t^k u(x, t), \ x \in \partial \Omega, \ j=1, \cdots, m,$$
 (3.22)

where $A^{(l-k)}$ and $B_j^{(l-k)}$ are differential operators obtained by differentiating the corresponding coefficients of A and B_j l-k times with respect to t respectively. In view of (3.14) and an elementary calculation we get

$$||A^{(l-k)}(x,\,t,\,D_x)D_t^{\,k}u(t)||_{2m} \leq C_{12}\bar{M}_0\bar{M}^{l-k}\Gamma(\tau(l-k)+1)||D_t^{\,k}u(t)||_{4m}\,,$$

and hence with the aid of (3.16), (3.18), (3.21) and the induction hypothesis we obtain

$$||A(x, t, D_{x})D_{t}^{l}u(t)||_{2m} \leq L_{0}L^{l+1}\Gamma(\tau(l+1)+1) + \bar{N}_{0}\bar{N}^{l}\Gamma(\tau(l+1)+C_{12}\bar{M}_{0}\bar{L}\sum_{k=0}^{l-1}\bar{M}^{l-k}\bar{L}^{k}.$$
(3.23)

Estimating $\langle B_j(x, t, D_x)D_t^i u(t)\rangle_{4m-m_j}$ in a similar manner and using (2.23) we can show without difficulty that (3.19) holds provided that \bar{L}_0 and \bar{L} are sufficiently large.

4. Estimates for derivatives in all variables. In addition to the assumptions in section 1 we assume in this section that

(VII) all the functions a_{α} , $|\alpha| \leq 2m$, $b_{j,\beta}$, $|\beta| \leq m_j$, f and g_j , j=1, ..., m, belong to Gevrey's class $G(\sigma, \tau)$;

(VIII) $\tau = 2m\sigma$;

(IV') Ω is a bounded domain of the class $G(\sigma)$ in the sense that each point of $\partial\Omega$ is contained in some open subset of $\partial\Omega$ which can be mapped onto a subset of a hyperplane by means of a one-to-one mapping of Gevrey's class $G(\sigma)$.

Under the assumptions above we show that any solution of (0.1)–(0.2) belongs to the class $G(\sigma, \tau) = G(\sigma, 2m\sigma)$. In this section we denote by C_{13} , C_{14} , \cdots constants depending only on the assumptions stated so

far. By (IV') we may suppose that the origin is located on a part of $\partial\Omega$ which is contained in the hyperplane $x_n=0$. First we prove that the Cauchy data of u are in Gevrey's class $G(\sigma,\tau)$ near the origin.

We shall employ the following semi-norms and norms:

$$|v|_{i}^{2} = |v|_{i,\Omega}^{2} = \sum_{|\kappa|=i} \int_{\Omega} |D_{x}^{\kappa} v(x)|^{2} dx,$$
 (4.1)

$$|v|_{i,r}^2 = \sum_{|\kappa|=i} \int_{|x| < r, x_n > 0} |D_x^{\kappa} v(x)|^2 dx$$
, (4.2)

$$||v||_{k,r}^2 = \sum_{i=0}^k |v|_{i,r}^2. \tag{4.3}$$

We may choose constants c_0 and c_1 in such a manner that

$$|v|_{i} \leq c_{0} |v|_{j}^{i/j} |v|_{0}^{(j-i)/j} + c_{1} |v|_{0}, \qquad (4.4)$$

$$|v|_{i,r} \leq c_0 |v|_{0,r}^{i/j} |v|_{0,r}^{(j-i)/j} + c_1 r^{-i} |v|_{0,r}.$$

$$(4.5)$$

for 0 < i < j < 2m and 0 < r. From now on we shall distinguish the normal variable x_n from tangential space variables $x' = (x_1, \dots, x_{n-1})$ and by ∇^p we denote any derivative of order p in x'. We denote by A^{\sharp} and B^{\sharp} the principal parts of A and B_j respectively:

$$A^{\sharp}(x, t, D_x) = \sum_{|\alpha|=2m} a_{\alpha}(x, t) D_x^{\alpha},$$
 (4.6)

$$B_{j}^{\sharp}(x, t, D_{x}) = \sum_{|\beta|=m, b, \beta} b_{j,\beta}(x, t) D_{x}^{\beta}, j=1, \dots, m.$$
 (4.7)

Let $\rho_0(<1)$ be a positive number such that

$$\{(x', x_n): |x| < \rho_0, x_n > 0\} \subset \Omega.$$
 (4.8)

Let η_1 be a smooth function such that $\eta_1(t) \equiv 1$ for $|t| \leq 1$, $\eta_1(t) = 0$ for $|t| \geq 2$. For $p, q = 0, 1, 2, \cdots$ we denote by $M_{p,q}$ constants such that for all α, β, κ, j with $|\alpha| \leq 2m$, $|\beta| \leq m_j$, $|\kappa| \leq 2m - m_j$, $j = 1, \cdots, m$,

$$|D_t^q \nabla^p a_a(x,t)| \leq M_{p,q}, \qquad (4.9)$$

$$|D_x^r D_t^q \nabla^p b_{j,\beta}(x,t)| \le M_{p,q},$$
 (4. 10)

$$\int_{-\infty}^{\infty} |(\eta_1 D_i^q \nabla^p b_{j,\beta})^{\wedge}(x,\lambda)| d\lambda \leq M_{p,q}, \qquad (4.11)$$

$$\int_{-\infty}^{\infty} |\lambda|^{(2m-m_j)/2m} |(\eta_1 D_t^q \nabla^p b_{j,\beta})^{\wedge}(x,\lambda)| d\lambda \leq M_{p,q}$$

$$(4.12)$$

in $\Omega \times (-\infty, \infty)$ or Ω . We shall use the following notations:

$$d_{p,q}(u,r) = \max \left\{ \left(\int_{-r}^{r} |D_{t}^{q+1} \nabla^{p} u(t)|_{0,r}^{2} dt \right)^{1/2} + \left(\int_{-r}^{r} |D_{t}^{q} \nabla^{p} u(t)|_{2m,r}^{2} dt \right)^{1/2} \right\},$$

$$e_{p,q}(f,r) = \max \left(\int_{-r}^{r} |D_{t}^{q} \nabla^{p} f(t)|_{0,r}^{2} dt \right)^{1/2},$$

for $p, q=0, 1, 2, \dots, 0 < r < \rho_0$, with the maximum taken over all derivatives ∇^p of order p. Let φ be a function stated in the preceding section. Then as in $\lceil 7$, pp. 181-187 we get

Lemma 4.1. If ρ_1 is sufficiently small, then for any $\delta > 0$, r > 0 such that $r + \delta < \rho_1$

$$\begin{split} d_{p,q}(u,r) &\leq C_{13} \bigg[e_{p,q}(f,r+\delta) \\ &+ \sum_{j=1}^{m} \bigg(\int_{-\infty}^{\infty} (|\lambda|^{(2m-m_{j})/2m} |(\varphi D_{t}^{q} \nabla^{p} g_{j})^{\wedge}(\lambda)|_{0,r+\delta})^{2} d\lambda \bigg)^{1/2} \\ &+ \sum_{j=1}^{m} \bigg(\int_{-r-\delta}^{r-\delta} |D_{t}^{q} \nabla^{p} g_{j}(t)|_{2m-m_{j},r+\delta}^{2} dt \bigg)^{1/2} \\ &+ \sum_{j=1}^{m} \delta^{m_{j}-2m} \bigg(\int_{-r-\delta}^{r-\delta} |D_{t}^{q} \nabla^{p} g_{j}(t)|_{0,r+\delta}^{2} dt \bigg)^{1/2} \\ &+ (r+\delta+\varepsilon) d_{p,q}(u,r+\delta) + \varepsilon^{1-2m} \delta^{-2m} \bigg(\int_{-r-\delta}^{r+\delta} |D_{t}^{q} \nabla^{p} u(t)|_{0,r+\delta}^{2} dt \bigg)^{1/2} \\ &+ \sum_{j=1}^{r} \bigg(\frac{q}{q'} \bigg) \bigg(\frac{p}{p'} \bigg) M_{p-p',q-q'} d_{p',q'}(u,r+\delta) \\ &+ \delta^{-2m} \sum_{j=1}^{r} \bigg(\frac{q}{q'} \bigg) \bigg(\frac{p}{p'} \bigg) M_{p-p',q-q'} \bigg(\int_{-r-\delta}^{r+\delta} |D_{t}^{q'} \nabla^{p'} u(t)|_{0,r+\delta}^{2} dt \bigg)^{1/2} \bigg], \quad (4.13) \end{split}$$

where \sum' means that the summation extends over all (p', q') satisfying $0 \le p' \le p$, $0 \le q' \le q$ except (p, q) = (p', q'), and ε is an arbitrary positive number.

By assumption there exist constants N_0 , N, M_0 and M such that for any pair of integers p, $q \ge 0$

$$\sup |D_t^q \nabla^p f(x,t)| \leq N_0 N^{p+q} \Gamma(\sigma p + \tau q + 1), \qquad (4.14)$$

$$\sup |D_x^{\kappa} D_t^{q} \nabla^p g_j(x,t)| \leq N_0 N^{p+q} \Gamma(\sigma p + \tau q + 1), \qquad (4.15)$$

$$|\kappa| \leq 2m - m_j, j = 1, \dots, m,$$

$$M_{p,q} \leq M_0 M^{p+q} \Gamma(\sigma p + 1) \Gamma(\tau q + 1) . \tag{4.16}$$

Then as in section 3 we get

$$e_{p,q}(f, r+\delta) \leq C_{14} N_0 N^{p+q} \Gamma(\sigma p + \tau q + 1), \qquad (4.17)$$

$$\left(\int_{-\infty}^{\infty} (|\lambda|^{(2m-m_j)/2m} |(\varphi D_t^q \nabla^p g_j)^{\wedge}(\lambda)|_{0,r+\delta})^2 d\lambda \right)^{1/2}$$

$$\leq C_{15} \left\{ N_0 N^{p+q+1} \Gamma(\sigma p + \tau q + \tau + 1) + (1 + K\delta^{-1}) N_0 N^{p+q} \Gamma(\sigma p + \tau q + 1) \right\}, \qquad (4.18)$$

$$\left(\int_{-r-\delta}^{r+\delta} |D_t^q \nabla^p g_j(t)|_{2m-m_j,r+\delta}^2 dt\right)^{1/2} \leq C_{16} N_0 N^{p+q} \Gamma(\sigma p + \tau q + 1), \quad (4.19)$$

$$\left(\int_{-r-\delta}^{r+\delta} |D_i^q \nabla^p g_j(t)|_{0,r+\delta}^2 dt\right)^{1/2} \leq C_{17} N_0 N^{p+q} \Gamma(\sigma p + \tau q + 1). \tag{4.20}$$

With the aid of (4.13), $(4.16)\sim(4.20)$ and (2.23) we get

Lemma 4.2. Under the assumptions of the preceding lemma the following inequality holds for any pair of integers $p \ge 2m$ and $q \ge 0$:

$$\begin{split} d_{p,q}(u,\,r) &\leq C_{18} \bigg[N_0 N^{p+q+1} \Gamma(\sigma p + \tau q + \tau + 1) \\ &+ \delta^{-2m} N_0 N^{p+q} \Gamma(\sigma p + \tau q + 1) + (r + \delta + \varepsilon) d_{p,q}(u,\,r + \delta) \\ &+ \delta^{-2m} \varepsilon^{1-2m} d_{p-2m,q}(u,\,r + \delta) \\ &+ \tau \sigma M_0 \sum_{}' \frac{\Gamma(\tau q + 1)}{\Gamma(\tau q' + 1)} \frac{\Gamma(\sigma p + 1)}{\Gamma(\sigma p' + 1)} M^{p-p' + q - q'} d_{p',q'}(u,\,r + \delta) \\ &+ \frac{\tau \sigma M_0}{\delta^{2m}} \sum_{p' \geq 2m} \frac{\Gamma(\tau q + 1)}{\Gamma(\tau q' + 1)} \frac{\Gamma(\sigma p + 1)}{\Gamma(\sigma p' + 1)} M^{p-p' + q - q'} d_{p' - 2m,q'}(u,\,r + \delta) \\ &+ \frac{\tau \sigma M_0}{\delta^{2m}} \sum_{p' < 2m} \frac{\Gamma(\tau q + 1)}{\Gamma(\tau q' + 1)} \frac{\Gamma(\sigma p + 1)}{\Gamma(\sigma p' + 1)} M^{p-p' + q - q'} \\ &\times \left(\int_{-r - \delta}^{r + \delta} |D_t^{q'} \nabla^{p'} u(t)|_{0,r + \delta}^{2} dt \right)^{1/2} \bigg] \,. \end{split} \tag{4.21}$$

We introduce the notation

$$N_{\rho,p,q}(u) = \Gamma(\sigma p + \tau q + 1)^{-1} \sup_{\rho/2 \le r < \rho} d_{p,q}(u,r)(\rho - r)^{p+q+2m}$$
(4. 22)

for $p, q = 0, 1, 2, \dots$.

Lemma 4.3. If $\rho(<\rho_1)$ is sufficiently small, there exist constants H_0 and H such that

$$N_{\rho, p, q}(u) \leq H_0 H^{p+q} \tag{4.23}$$

for any pair of integers $p, q \ge 0$.

Proof. Suppose p>2m and $\delta=(\rho-r)/(1+\sigma p+\tau q)$. Let us multiply both sides of (4.21) by $\Gamma(\sigma p+\tau q+1)^{-1}(\rho-r)^{p+q+2m}$. Noting $\delta=(\rho-r-\delta)/(\sigma p+\tau q)$, $\rho-r=\{1+(\sigma p+\tau q)^{-1}\}(\rho-r-\delta)$ and $\{1+(\sigma p+\tau q)^{-1}\}^{p+q+2m}\leq e^2$ we get

$$\Gamma(\sigma p + \tau q + 1)^{-1} d_{p,q}(u, r) (\rho - r)^{p+q+2m} \le C_{19}(I + II + III + IV + V + VI + VII),$$
(4. 24)

where

$$egin{aligned} I &= \, \Gamma(\sigma p + au q + 1)^{-1} N_o N^{p+q+1} \Gamma(\sigma p + au q + au + 1) (
ho - r)^{p+q+2m} \,, \ II &\leq e^2 (\sigma p + au q)^{2m} N_o N^{p+q} (
ho - r - \delta)^{p+q} \,, \ III &= e^2 (
ho + arepsilon) \Gamma(\sigma p + au q + 1)^{-1} d_{p,q}(u,\, r + \delta) (
ho - r - \delta)^{p+q+2m} \,, \end{aligned}$$

$$\begin{split} IV &= e^2 \mathcal{E}^{1-2m} (\sigma p + \tau q)^{2m} \Gamma(\sigma p + \tau q + 1)^{-1} d_{p-2m,q}(u, \, r + \delta) (\rho - r - \delta)^{p+q} \,, \\ V &= e^2 \tau \sigma M_0 \sum_{\Gamma} \frac{\Gamma(\tau q + 1)}{\Gamma(\tau q' + 1)} \frac{\Gamma(\sigma p + 1)}{\Gamma(\sigma p' + 1)} \frac{M^{p-p' + q - q'}}{\Gamma(\sigma p + \tau q + 1)} \\ &\quad \times d_{p',q'}(u, \, r + \delta) (\rho - r - \delta)^{p+q+2m} \,, \\ VI &= e^2 \tau \sigma M_0 (\sigma p + \tau q)^{2m} \sum_{p' \geq 2m} \frac{\Gamma(\tau q + 1)}{\Gamma(\tau q' + 1)} \frac{\Gamma(\sigma p + 1)}{\Gamma(\sigma p' + 1)} \\ &\quad \times \frac{M^{p-p' + q - q'}}{\Gamma(\sigma p + \tau q + 1)} \, d_{p' - 2m,q'}(u, \, r + \delta) (\rho - r - \delta)^{p+q} \,, \\ VII &= e^2 \tau \sigma M_0 (\sigma p + \tau q)^{2m} \sum_{p' < 2m} \frac{\Gamma(\tau q + 1)}{\Gamma(\tau q' + 1)} \frac{\Gamma(\sigma p + 1)}{\Gamma(\sigma p' + 1)} \\ &\quad \times \frac{M^{p-p' + q - q'}}{\Gamma(\sigma p + \tau q + 1)} \left(\int_{-\rho}^{\rho} |D_t^{q'} \nabla^{p'} u(t)|^2_{0, r + \delta} \, dt \right)^{1/2} (\rho - r - \delta)^{p+q} \,. \end{split}$$

Since by Lemma 2.5

$$\Gamma(\sigma p + \tau q + \tau + 1) \leq 2^{\sigma p + \tau q + \tau - 1} \Gamma(\tau + 1) \Gamma(\sigma + 1) \Gamma(\sigma p + \tau q + 1), \quad (4.25)$$

we get

$$I \leq 2^{\tau-1} \Gamma(\tau+1) \rho^{2m} N_0 N (2^{\sigma} \rho N)^p (2^{\tau} \rho N)^q . \tag{4.26}$$

It is easy to show

$$II \le e^2 N_0 (\sigma p + \tau q)^{2m} (\rho N)^{p+q}$$
, (4.27)

$$III \leq (\rho + \varepsilon)e^2 N_{\rho, p, q}(u) . \tag{4.28}$$

It follows from Lemma 2:5 that

$$\Gamma(\sigma(p-2m)+\tau q+1) \leq \Gamma(2m\sigma-2m+1)^{-1}\Gamma(\sigma p+\tau q+1-2m) \quad (4.29)$$

for $b \ge 2m$, and hence

$$(\sigma p + \tau q)^{2m} \Gamma(\sigma(p - 2m) + \tau q + 1) \Gamma(\sigma p + \tau q + 1)^{-1}$$

$$\leq (\sigma p + \tau q)^{2m} \Gamma(2m\sigma - 2m + 1)^{-1} \Gamma(\sigma p + \tau q + 1 - 2m) \Gamma(\sigma p + \tau q + 1)^{-1}$$

$$= (\sigma p + \tau q)^{2m} \Gamma(2m\sigma - 2m + 1)^{-1} \{ (\sigma p + \tau q)(\sigma p + \tau q - 1) \cdots$$

$$\cdots (\sigma p + \tau q + 1 - 2m) \}^{-1} \leq (2m)^{2m} \Gamma(2m\sigma - 2m + 1)^{-1}. \tag{4.30}$$

From (4.22) and (4.30) it follows that

$$IV \leq e^{2}(2m)^{2m} \mathcal{E}^{1-2m} \Gamma(2m\sigma - 2m + 1)^{-1} N_{\rho, p-2m, q}(u). \tag{4.31}$$

With the aid of

$$\frac{\Gamma(\tau q+1)}{\Gamma(\tau q'+1)} \frac{\Gamma(\sigma p'+1)}{\Gamma(\sigma p'+1)} \frac{\Gamma(\sigma p'+\tau q'+1)}{\Gamma(\sigma p+\tau q+1)} \leq e^{\sigma(p-p')+\tau(q-q')}$$
(4.32)

which follows from Lemma 2.5, we get

$$V \leq e^{2} \tau \sigma M_{0} \sum_{n}' (e^{\sigma} \rho M)^{p-p'} (e^{\tau} \rho M)^{q-q'} N_{\rho, p', q'}(u). \tag{4.33}$$

(4.29) with p, q replaced by p', q' implies

$$\Gamma(\sigma p' + \tau q' + 1) = (\sigma p' + \tau q')(\sigma p' + \tau q' - 1)\cdots$$

$$\cdots(\sigma p' + \tau q' + 1 - 2m)\Gamma(\sigma p' + \tau q' + 1 - 2m)$$

$$\geq (\sigma p' + \tau q' + 1 - 2m)^{2m}\Gamma(2m\sigma - 2m + 1)\Gamma(\sigma(p' - 2m) + \tau q' + 1) \quad (4.34)$$

for $p' \ge 2m$. If $p \ge p' \ge 2m$ and $q \ge q'$

$$\frac{\sigma p + \tau q}{\sigma p' + \tau q' + 1 - 2m} = 1 + \frac{\sigma(p - p') + \tau(q - q') + 2m - 1}{\sigma p' + \tau q' + 1 - 2m}
\leq 1 + \sigma(p - p') + \tau(q - q') + 2m - 1
\leq \exp(\sigma(p - p') + \tau(q - q') + 2m - 1).$$
(4. 35)

With the aid of (4.34) and (4.35)

$$VI \leq \sigma \tau M_0 e^{2m(2m-1)+2} \Gamma(2m\sigma - 2m+1)^{-1} \times \sum_{p' \geq 2m}' (e^{(2m+1)\sigma} \rho M)^{p-p'} (e^{(2m+1)\tau} \rho M)^{q-q'} N_{\rho,p'-2m,q'}(u).$$
(4.36)

By Theorem 3.2 there exist constants R_0 and R such that

$$||D_t^q u(t)||_{4m,\Omega} \leq R_0 R^q \Gamma(\tau q + 1) \tag{4.37}$$

for any integer $q \ge 0$. We may assume $R \ge 2M$. Hence

$$\left(\int_{-\rho}^{\rho} |D_{t}^{q'} \nabla^{p'} u(t)|_{0,r+\delta}^{2} dt\right)^{1/2} \leq \sqrt{2\rho} R_{0} R^{q'} \Gamma(\tau q'+1). \tag{4.38}$$

Noting

$$(\sigma p + \tau q)^{2m} \frac{\Gamma(\sigma p + 1)}{\Gamma(\sigma p' + 1)} \frac{\Gamma(\tau q + 1)}{\Gamma(\sigma p + \tau q + 1)} \leq \frac{(\sigma p + \tau q + 1)^{2m}}{\Gamma(\sigma p' + 1)}$$

which is also a simple consequence of Lemma 2.5, we easily obtain

$$VII \leq 2\sqrt{2\rho} e^{2}\tau \sigma M_{0}R_{0} \sum_{p'=0}^{2m-1} \Gamma(\sigma p'+1)^{-1}M^{-p'} \times (\sigma p + \tau q + 1)^{2m} \rho^{p+q}M^{p}R^{q}.$$
(4. 39)

Using (4.26), (4.27), (4.28), (4.31), (4.33), (4.36), (4.39) and then choosing ρ and ε sufficiently small, we obtain

$$\begin{split} N_{\rho,p,q}(u) &\leq C_{20} [N_0 N (2^{\sigma} \rho N)^p (2^{\tau} \rho N)^q + N_0 (\sigma p + \tau q)^{2m} (\rho N)^{p+q} \\ &+ N_{\rho,p-2m,q}(u) + M_0 \sum' (e^{\sigma} \rho M)^{p-p'} (e^{\tau} \rho M)^{q-q'} N_{\rho,p',q'}(u) \\ &+ M_0 \sum_{p' \geq 2m} (e^{(2m+1)\sigma} \rho M)^{p-p'} (e^{(2m+1)\tau} \rho M)^{q-q'} N_{\rho,p'-2m,q'}(u) \\ &+ M_0 R_0 (\sigma p + \tau q + 1)^{2m} \rho^{p+q} M^p R^q]. \end{split}$$

$$(4.40)$$

(4.37) implies that (4.23) is true for $0 \le p \le 2m$, $q = 0, 1, 2, \cdots$ with some constants H_0 and H. If H_0 and H are so large that

$$egin{aligned} 6 \ C_{20} N_0 & \leq H_0, \quad 6 \ C_{20} N_0 N \leq H_0, \quad 6 \ C_{20} M_0 R_0 \leq H_0 \ , \\ e^{ au}
ho N & \leq H, \quad 6 \ C_{20} \leq H^{2m}, \quad 2 \ e^{(2m+1)^{ au}}
ho M \leq H \ , \\ 12 \ C_{20} M_0
ho M (2 \ e^{ au} + e^{\sigma}) & \leq H \ , \\ 12 \ C_{20} M_0
ho M (2 \ e^{(2m+1)^{ au}} + e^{(2m+1)^{\sigma}}) & \leq H^{2m+1} \ , \\ (\sigma p + \tau q)^{2m} & \leq (\rho^{-1} N^{-1} H)^{p+q} \ , \\ (\sigma p + \tau q)^{2m} & \leq (\rho^{-1} R^{-1} H)^{p+q} \end{aligned}$$

for all p and q, then with the aid of (4.40) we can first verify that (4.23) is true for $q=0, p=0, 1, 2, \cdots$ and then that the same is valid for all p and q by means of the induction argument concerning p+q. Thus the proof of Lemma 4.3 is completed.

So far we have not used $\tau = 2m\sigma$. Especially if $\tau = \sigma = 1$, (4.23) implies the analyticity of the Cauchy data of u, and hence with the aid of Holmgren's theorem and Cauch-Kowalevskii theorem it follows that u is analytic near the origin ([7]).

In what follows we denote the normal variable by y (i.e $y=x_n$), and introduce the notation

$$\bar{N}_{p,k,q}(u) = \max \left(\int_{-\rho/2}^{\rho/2} |D_t^q \nabla^p D_y^h u(t)|_{0,\rho/2}^2 dt \right)^{1/2}$$
(4.41)

for p, k, $q = 0, 1, 2, \cdots$ with the maximum taken over all derivatives ∇_p of order p.

Lemma 4.4. There exist constants \bar{L}_0 , \bar{L} and $\theta \leq 1/2$ such that

$$\bar{N}_{p,q,k}(u) \leq \bar{L}_0 \bar{L}^{\sigma p + \sigma k + \tau q} \theta^{\sigma p + \tau q} \Gamma(\sigma p + \tau k + \tau q + 1)$$
(4.42)

for all p, q, $k \ge 0$. \overline{L}_0 , \overline{L} and θ may depend on ρ , but are independent of p, q, k.

Proof. From (4.23) it follows that there exist constants L_0 and L such that for $p \ge 0$, $q \ge 0$, $0 \le k \le 2m$

$$\left(\int_{-\rho/2}^{\rho/2} |D_i^q \nabla^p u(t)|^2_{k,\rho/2} dt\right)^{1/2} \leq L_0 L^{\sigma p + \sigma k + \tau q} \Gamma(\sigma p + \sigma k + \tau q + 1),$$

 L_0 and L being allowed to depend on ρ . Hence

$$\bar{N}_{p,k,q}(u) \leq L_0 L^{\sigma p + \sigma k + \tau q} \Gamma(\sigma p + \sigma k + \tau q + 1)$$
(4.43)

for $p \ge 0$, $q \ge 0$ and $0 \le k \le 2m$. Due to the ellipticity of A we can solve

180 H. Tanabë

(0.1) with respect to $D_y^{2m}u$ near the origin to obtain

$$D_{y}^{2m}u = \sum_{k=0}^{2m-1} \sum_{|\beta|=2m-k} c_{\beta,k} D_{x'}^{\beta} D_{y}^{k} u + \sum_{k=0}^{2m-1} \sum_{|\beta|\leq 2m-k-1} c_{\beta,k} D_{x'}^{\beta} D_{y}^{k} u + c D_{t} u + a f.$$

$$(4.44)$$

By assumption there exist constants \overline{M}_0 and \overline{M} such that if h stands for any of the functions $c_{\beta,k}$, c, a, f, then

$$\sup |D_t^q D_x^{\gamma} h| \leq \overline{M}_0 \overline{M}^{\sigma |\kappa| + \tau q} \Gamma(\sigma |\gamma| + 1) \Gamma(\tau q + 1) \tag{4.45}$$

for any q and γ . Hence with some constants $ar{R}_{\scriptscriptstyle 0}$ and $ar{R}$

$$\left(\int_{-\rho/2}^{\rho/2} |D_t^q \nabla^p D_y^l(af)(t)|_{0,\rho/2}^2 dt\right)^{1/2} \\
\leq \bar{R}_0 \bar{R}^{\sigma p + \tau q + \sigma l} \Gamma(\sigma p + \tau q + \sigma l + \tau + 1) \tag{4.46}$$

for any $q, p, l=0, 1, 2, \cdots$. (4.42) is valid for $0 \le k \le 2m$ if

$$L_0 \leq \bar{L}_0, \quad L \leq \bar{L}\theta$$
 (4.47)

We show by induction that (4.41) is valid for all p, q, k if \bar{L}_0 and \bar{L} are so large and θ is so small that (4.47) as well as the following inequalities are all true:

$$\bar{L}\theta \geq 2\bar{M}e^2$$
, (4.48)

$$64\,\sigma\tau(\tau+1)C_{\scriptscriptstyle 0}\bar{M}_{\scriptscriptstyle 0}\theta^{\sigma} \leq 1\,\,\,(4.49)$$

$$32\,\sigma\tau(\tau+1)\bar{M}_0\theta^{\tau} \leq 1\,\,\,(4.50)$$

$$32 \sigma \tau (\tau + 1) \bar{M}_0 \sum_{k=0}^{2^{m-1}} \sum_{|\beta| \leq 2m-k-1} \Gamma(\sigma(2m-k-|\beta|)+1)^{-1} \leq \bar{L}^{\sigma}, \qquad (4.51)$$

$$4\bar{R}_0 \leq \bar{L}_0, \quad \bar{R} \leq \bar{L}\theta$$
, (4.52)

where C_0 is the number of β with $|\beta| \le 2m$. To see this we first differentiate both sides of (4.44) to obtain

$$D_{t}^{q} \nabla^{p} D_{y}^{2m+l} u = \sum_{k=0}^{2m-1} \sum_{|\beta|=2m-k} {q \choose q'} {p \choose p'} {l \choose l'} \times D_{t}^{q-q'} \nabla^{p-p'} D_{y}^{l-l'} c_{\beta,k} \cdot D_{t}^{q'} D_{x'}^{\beta} \nabla^{p'} D_{y}^{k+l'} u + \cdots$$

$$(4.53)$$

Suppose (4.42) is true for $0 \le k \le 2m+l-1$. When we estimate the right side of (4.53), we use (2.23) for $\begin{pmatrix} q \\ q' \end{pmatrix}$ and $\begin{pmatrix} p \\ p' \end{pmatrix}$, and for $\begin{pmatrix} l \\ l' \end{pmatrix}$ use

$$\binom{l}{l'} \leq \frac{(\tau+1)\Gamma(\sigma l + \tau + 1)}{\Gamma(\sigma l' + \tau + 1)\Gamma(\sigma(l - l') + 1)}$$

$$(4.54)$$

which also follows from Lemma 2.5. Hence with the aid of (4.45),

the induction hypothesis and the inequalities

$$\begin{split} &\frac{\Gamma(\tau q+1)}{\Gamma(\tau q'+1)}\frac{\Gamma(\sigma p+1)}{\Gamma(\sigma p'+1)}\frac{\Gamma(\sigma l+\tau+1)}{\Gamma(\sigma l'+\tau+1)} \\ &\leq \exp(2\sigma(p-p')+2\tau(q-q')+\sigma(l-l'))\,, \\ &\Gamma(\sigma(p'+|\beta|)+\sigma(l'+k)+\tau q'+1) \\ &\leq \Gamma(\sigma p'+\sigma l'+\tau q'+\tau+1)\Gamma(\sigma(2m-k-|\beta|)+1)^{-1} \end{split}$$

which are consequences of Lemma 2.5, we get

$$\begin{split} & \bar{N}_{p,q,l+2m}(u) \leq \Gamma(\sigma p + \tau q + \sigma l + \tau + 1) \\ & \times \left\{ \sigma \tau(\tau+1) \bar{M}_0 \bar{L}_0 e^{2\sigma p + 2\tau q + \sigma l} \bar{M}^{\sigma p + \sigma l + \tau q} \bar{L}^{\tau} \right. \\ & \times \sum_{k=0}^{2m-1} \sum_{|\beta| = 2m-k} \sum_{p'=0}^{p} \sum_{q'=0}^{q} \sum_{l'=0}^{l} \left(\frac{\bar{L}\theta}{e^2 \bar{M}} \right)^{\sigma p' + \tau q'} \left(\frac{\bar{L}}{e \bar{M}} \right)^{\sigma l'} \theta^{\sigma(2m-k)} \\ & + \sigma \tau(\tau+1) \bar{M}_0 \bar{L}_0 e^{2\sigma p + 2\tau q + \sigma l} \bar{M}^{\sigma p + \sigma l + \tau q} \\ & \times \sum_{k=0}^{2m-1} \sum_{|\beta| \leq 2m-k-1} \sum_{p'=0}^{p} \sum_{q'=0}^{q} \sum_{j'=0}^{l} \left(\frac{\bar{L}\theta}{e^2 \bar{M}} \right)^{\sigma p' + \tau q'} \left(\frac{\bar{L}}{e \bar{M}} \right)^{\sigma l'} \\ & \times \frac{\bar{L}^{\sigma(|\beta| + k)}}{\Gamma(\sigma(2m-k-|\beta|) + 1)} + \sigma \tau(\tau+1) \bar{M}_0 \bar{L}_0 e^{2\sigma p + 2\tau q + \sigma l} \bar{M}^{\sigma p + \sigma l + \tau q} \bar{L}^{\tau} \theta^{\tau} \\ & \times \sum_{l=0}^{p} \sum_{j'=0}^{q} \sum_{l'=0}^{l} \left(\frac{\bar{L}\theta}{e^2 \bar{M}} \right)^{\sigma p' + \tau q'} \left(\frac{\bar{L}}{e \bar{M}} \right)^{\sigma l'} + \bar{R}_0 \bar{R}^{\sigma p + \tau q + \sigma l} \right\} \, . \end{split}$$

If (4.48) is true, we easily get

$$\begin{split} & \bar{N}_{p,q,l+2m}(u) \leq \Gamma(\sigma p + \tau q + \sigma l + \tau + 1) \\ & \times \left\{ 16 C_0 \sigma \tau(\tau + 1) \bar{M}_0 \bar{L}_0 \bar{L}^{\sigma p + \sigma l + \tau q + \tau} \theta^{\sigma p + \tau q + \sigma} \right. \\ & + 8 \sigma \tau(\tau + 1) \bar{M}_0 \bar{L}_0 \sum_{k=0}^{2m-1} \sum_{|\beta| \leq 2m-k-1} \Gamma(\sigma(2m-k-|\beta|+1)^{-1} \\ & \times \bar{L}^{\sigma p + \sigma l + \tau q + \tau - \sigma} \theta^{\sigma p + \tau q} \\ & + 8 \sigma \tau(\tau + 1) \bar{M}_0 \bar{L}_0 \bar{L}^{\sigma p + \tau q + \sigma l + \tau} \theta^{\sigma p + \tau q + \tau} + \bar{R}_0 \bar{R}^{\sigma p + \tau q + \sigma l} \right\} . \end{split}$$

$$(4.55)$$

Thus if $(4.48)\sim(4.52)$ are all true, it is immediately seen that the right side of (4.55) is dominated by

$$ar{L}_0ar{L}^{\sigma p+\sigma(l+2m)+q} heta^{\sigma p+ au q}\Gamma(\sigma p+\sigma(l+2m)+ au q+1)$$
 .

Thus the proof of Lemma 4.4 is completed.

The interior estimates of the derivatives of the solution is easier to be obtained, and hence we conclude

Theorem 4.1. Under the assumptions (I), (II), (III), (VII), (VIII) and (IV') any solution of (0.1)-(0.2) belongs to Gevrey's class $G(\sigma, \tau)$.

OSAKA UNIVERSITY

Bibliography

- [1] S. Agmon: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119-147.
- [2] S. Agmon and L. Nirenberg: Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121-240.
- [3] S. Agmon, A. Douglis and L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-627.
- [4] J. L. Lions and E. Magenes: Sur certains aspects des problèmes aux limites non homogènes pour des opérateurs paraboliques, Ann. Scuola Norm. Sup. Pisa, Ser. 3, 18 (1964), 303-344.
- [5] C. B. Morrey, Jr. and L. Nirenberg: On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. Pure Appl. Math. 10 (1957), 271-290.
- [6] H. Tanabe: On differentiability in time of solutions of some type of boundary value problems, Proc. Japan Acad. 40 (1964), 649-653.
- [7] H. Tanabe: On differentiability and analyticity of solutions of weighted elliptic boundary value problems, Osaka J. Math. 2 (1965), 163-190.