SINGULARITIES OF 2-SPHERES IN 4-SPACE AND COBORDISM OF KNOTS ${ }^{1)}$

Ralph H. FOX and John W. MILNOR

(Received May 9, 1966)

Consider an oriented 2-dimensional manifold m imbedded as a subcomplex in a triangulated oriented 4-dimensional manifold M in such a way that the boundary of m is contained in the boundary of M and the interior of m is contained in the interior of M. We will assume that M is a "piecewise linear manifold": that is, the star neighborhood of any point should be piecewise linearly homeomorphic to a 4 -simplex. One can measure the local singularity of the imbedding at an interior point x of m as follows. Let N denote the star neighborhood of x in M. The boundary $S=\partial N$ of N is a 3-sphere with an orientation inherited from that of M, and $k=m \cap \partial N$ is a 1 -sphere with an orientation inherited from that of m. The oriented knot type κ of the imbedding of k in S is called ${ }^{2)}$ the singularity of the imbedding at x. When k is of trivial type in ∂N we may say that the singularity is 0 or that x is a non-singular point or that m is locally flat at x. A surface m is called locally flat if it is locally flat at each of its points.

Remark. The singularity of m at x is clearly a combinatorial invariant of M, m, x; that is it is not altered if we subdivide M rectilinearly. We do not know whether or not this singularity is a topological invariant, except in the special case of a locally flat point. The topological invariance of the concept of local flatness is easily proved, making use of Dehn's lemma, [12, §28(i)].

Of course the local singularity can also be measured at a boundary point x. In this case ∂N is a 3 -cell, $m \cap \partial N$ is a 1 -cell spanning it, and the singularity is a type of spanning 1-cell. In this paper we shall consider only imbeddings whose boundary points are all non-singular.

Since a singular point must be a vertex in any triangulation of the pair $m \subset M$ the singular points are always isolated. If m is compact (as it will be from now on) there can therefore be only a finite number of singular points. For the rest of this paper m will be a 2 -sphere and M will be the 4 -dimensional euclidean space R^{4}; that is, the 4 -sphere punctured at ∞. The basic problem

[^0]that motivated this paper is the following: Under what conditions can a given collection of knot types $\kappa_{1}, \cdots, \kappa_{n}$ be the set of singularities of some imbedding of a 2 -sphere m in the 4 -space R^{4} ?

Recall that the various types of knots are the elements of a commutative semigroup ${ }^{3)} \mathcal{A}$; the operation of this semigroup, which has been variously designated "product", "sum", "composition", etc., will be denoted here simply by the symbol + . In section one we show that a collection $\left(\kappa_{1}, \cdots, \kappa_{n}\right)$ can occur as the set of singularities of some imbedding if and only if the collection consisting of the single element κ, where $\kappa=\kappa_{1}+\kappa_{2}+\cdots+\kappa_{n}$, occurs as the set of singularities of some imbedding. This reduces the basic problem to the following special case: Which knot types к can occur as the only singularity of a 2-sphere m in R^{4} ? It is shown that a given κ can occur if and only if there is a locally flat 2-sphere m and a hyperplane J of R^{4}, which cuts m in two, such that $k=m \cap J$ is a knot of type κ in J. Such a knot $k \subset J$ has been called a slice knot and its type κ may be called a slice type (Compare [4, p. 135].) Clearly k is a slice knot if and only if it spans a non-singular 2-disk which lies completely within one of the two half-spaces bounded by J.

An example of a slice knot is illustrated in Figure 1. Depending on the number of twists, this figure can represent the knot type 6_{1} or 8_{20} or 9_{46}, etc.. (The notation for knot types follows [13, p. 70]. For a proof that such a diagram represents a slice knot see [4, p. 172].)

Figure 1.

Our basic question can now be reformulated as follows: Which knot types are slice types?

Although it is unreasonable to expect a complete and meaningful answer to this question, partial answers of significance can be looked for. In section two

[^1]it is shown that not every knot is a slice knot, inasmuch as ${ }^{49}$ the Alexander polynomial $A(t)$ of a slice knot must be of the form $p(t) \cdot p(1 / t)$ for some integral polynomial $p(t)$.

As examples, consider the knots with seven or fewer crossings in the Alex-ander-Briggs table. The Alexander polynomials of these knots (see [1, p. 305]) are all distinct and, with one exception, are all irreducible. Hence these knots cannot be slice knots. The one exception is the stevedore's knot 6_{1}, with polynomial

$$
2-5 t+2 t^{2}=(2-t)(1-2 t)
$$

We have already remarked that 6_{1} is actually a slice knot.
In the third section it is shown that the sum $\kappa+(-\kappa)$ of a knot type κ and the type $-\kappa$ obtained from κ by reversing the orientation of both the knot k and the containing 3 -sphere S is always a slice knot. This result makes possible the introduction of an abelian group \mathcal{G} whose elements are equivalence classes $\langle\kappa\rangle$ of knot types κ and whose operation + is inherited from the operation + of the abelian semigroup \mathcal{A}. When the equivalence relation \sim that repartitions the elements of \mathcal{A} into elements of \mathcal{G} is expressed in a more symmetrical form which we call cobordism it becomes evident that \mathcal{G} is in fact a (relative) cobordism group. In terms of this group the principal results of this paper as well as various outstanding problems may be clearly expressed.

1. Confluence of singularities

Consider a polyhedral 2 -sphere m in the 4 -space R^{4}, with singular points x_{1}, \cdots, x_{x}. Let $\kappa\left(x_{1}\right), \cdots, \kappa\left(x_{n}\right)$ be the corresponding singularity types.

Theorem 1. The sum $\kappa\left(x_{1}\right)+\cdots+\kappa\left(x_{n}\right)$ of the singularities is the knot type of a slice knot.

Proof. Choose a polygonal arc $p \subset m$ which traverses all of the singular points x_{i}. Choose some fixed rectilinear triangulation of R^{4} so that m and p are subcomplexes. Using this triangulation, let y_{1}, \cdots, y_{r} be the vertices of the subcomplex p, listed in their natural order along p. Clearly each singular point x_{i} occurs as one of these vertices y_{j}.

Let N denote the star neighborhood of p in the first derived complex of R^{4}, and let N_{j} denote the star neighborhood of the vertex y_{j}; so that

$$
N=N_{1} \cup N_{2} \cup \cdots \cup N_{r} .
$$

[^2]Each N_{j} is a 4-cell and can be identified with the cone over the 3 -sphere ∂N_{j}. Similarly the intersection $m \cap N_{j}$ is a 2-cell, and can be identified with the cone over $m \cap \partial N_{j}$. The knotted circle

$$
m \cap \partial N_{j} \subset \partial N_{j}
$$

represents the knot type of the singularity $\kappa\left(y_{j}\right)$.
Note that each intersection $N_{j} \cap N_{j+1}=\partial N_{j} \cap \partial N_{j+1}$ is a 3-cell spanned by the unknotted arc $m \cap N_{j} \cap N_{j+1}$. The cells N_{j} are mutually disjoint otherwise. From this it follows that their union N is a 4-cell. Furthermore, the circle

$$
m \cap \partial N \subset \partial N
$$

represents the knot type of the sum $\kappa\left(y_{1}\right)+\cdots+\kappa\left(y_{r}\right)$. This is of course equal to $\kappa\left(x_{1}\right)+\cdots+\kappa\left(x_{n}\right)$.

Choose a base point x_{0} on ∂N which does not belong to m. Choose a piecewise linear homeomorphism h from the sphere $S^{4}=R^{4} \cup \infty$ to itself which carries x_{0} to the point at infinity, and carries $\partial N-x_{0}$ onto the hyperplane J. Then the image $h(m \cap \partial N)$ will be a knot $k \subset J$ representing the required knot type $\kappa\left(x_{1}\right)+\cdots+\kappa\left(x_{n}\right)$. Furthermore $h(m$-Interior $N)$ will be a non-singular 2-disk which spans k, and otherwise lies completely on one side of J. Taking the union of this disk with its mirror image in J we obtain a non-singular 2-sphere m^{\prime} which intersects J in the required knot k. This shows that k is a slice knot, and completes the proof.

Remark. It is of course essential that m should be a 2 -sphere. Any knot of genus one can appear as the unique singularity type of a knotted torus in 4 space. Similarly it is essential that the containing 4-manifold should be a sphere or cell. In the (4-dimensional) complex projective plane, any torus knot of type $p, p+1$ can appear as the unique singularity type of an imbedded 2sphere. (Compare [7]: or consider the algebraic variety which is defined by the homogeneous equation $z_{0} z_{1}^{n}=z_{2}^{p+1}$.)

Now consider the converse situation:
Theorem 1'. Let $\kappa_{1}, \cdots, \kappa_{r}$ be knot types such that $\kappa_{1}+\cdots+\kappa_{n}$ is a slice type. Then there exists a 2 -sphere $m \subset R^{4}$ with singularities of type $\kappa_{1}, \cdots, \kappa_{n}$, and with no other singularities.

Proof. Represent the knot types $\kappa_{1}, \cdots, \kappa_{n}$ by knots k_{1}, \cdots, k_{n} which lie within disjoint cubes in the hyperplane $J \subset R^{4}$, and which can be joined by rectangular bands $B_{1}, \cdots, B_{n-1} \subset J$ as illustrated in Figure 2. Choose vertices v_{1}, \cdots, v_{n} below the hyperplane J, so that the cones

$$
v_{1} k_{1}, \cdots, v_{n} k_{n}
$$

Figure 2.
will be pairwise disjoint. Then the union

$$
D=v_{1} k_{1} \cup B_{1} \cup v_{2} k_{2} \cup B_{2} \cup \cdots \cup B_{n-1} \cup v_{n} k_{n}
$$

is a 2 -cell which lies in the lower half-space bounded by J, and which has just n singular points v_{1}, \cdots, v_{n}, with singularity types $\kappa_{1}, \cdots, \kappa_{n}$ respectively. The boundary of D is a knot $k \subset J$ representing the knot type $\kappa_{1}+\cdots+\kappa_{n}$.

By hypothesis, k is a slice knot. Hence there exists a non-singular 2-cell $D^{\prime} \subset R^{4}$ which lies above the hyperplane J, and which spans k. That is:

$$
\partial D^{\prime}=D^{\prime} \cap J=k
$$

The union

$$
m=D \cup D^{\prime}
$$

is now the required 2 -sphere.
To summarize, we have proved that a collection $\left\{\kappa_{1}, \cdots, \kappa_{n}\right\}$ of knot types can occur as the collection of singularities of a 2-sphere in 4-space if and only if κ_{1} $+\cdots+\kappa_{n}$ is the type of a slice knot.

Here is another chracterization of slice knots. Let us call the singularity of m at x removable if there exists a modified 2 -sphere m^{\prime} which coincides with m except within an arbitrary small neighborhood U of x, and such that m^{\prime} has no singularities within U.

Lemma 1. The singularity at x is removable if and only if it is a slice type.
Proof. Let N be the star neighborhood of x. If the singularity is removable, then the knot $m \cap \partial N \subset \partial N$ spans a non-singular 2-disk $m^{\prime} \cap N$ within the 4-cell N. Hence it is a slice knot. Conversely if $m \cap \partial N$ spans a non-singular 2-disk $D \subset N$ then the 2-sphere

$$
m^{\prime}=(m-N) \cup D
$$

will have no singularities within N (even on the boundary!). In order to replace
N by a smaller neighborhood, it is only necessary to subdivide before performing this construction. This completes the proof.

2. The polynomial condition

Theorem 2. If κ is a slice type, its Alexander polynomial is of the form ${ }^{5)}$ $A(t) \doteq p(t) p(1 / t)$, where $p(t)$ is a polynomial with integral coefficients.

Proof. Let m be a locally flat 2 -sphere in the 4 -space $R^{4} \subset S^{4}$ and let J be a hyperplane of R^{4} such that the knot $k=m \cap J$ is of type κ in J. Let H be one of the (closed) half-spaces into which R^{4} is separated by J. A tubular neighborhood V of the 2-cell $D=m \cap H$ in H is ${ }^{6)}$ of the form $D \times C$, where C denotes a 2-cell, and $V \cap J$ is just $k \times C$. Consider the closure Q of $H-V$ in the sphere S^{4}, and note that the boundary ∂Q of Q is the union of $D \times \partial C$ and the closure W of $J-V=J-(k \times C)$ matched along the torus $k \times \partial C$. It is easy to check that the 1-dimensional homology groups of ∂Q and Q are both infinite cyclic and that an isomorphism between them is induced by the inclusion $\partial Q \subset Q$. Let \widetilde{Q} denote the infinite cyclic covering of Q. According to Milnor [9, Lemma 4] there is a "torsion invariant" $\Delta(\widetilde{Q})$ associated with this covering. This invariant is a rational function $\Delta(\widetilde{Q})=a(t) / b(t)$ where $a(t)$ and $b(t)$ are non-zero polynomials with integral coefficients; it is well-defined up to sign and multiplication by powers of t.

The corresponding infinite cyclic covering of ∂Q is $\partial \widetilde{Q}$. According to Milnor [9, Theorem 2] the torsion invariant $\Delta(\partial \widetilde{Q})$ is also defined, and given by the formula

$$
\Delta(\partial \widetilde{Q}) \doteq \Delta(\widetilde{Q}) \bar{\Delta}(\widetilde{Q})
$$

where the bar indicates the operation $t \rightarrow 1 / t$ of conjugation.
We can also compute $\Delta(\partial \widetilde{Q})$ directly by referring to the subcomplex W and its infinite cyclic covering \tilde{W}. According to Milnor [9, Theorem 4] the invariant $\Delta(\tilde{W})$ is defined, and

$$
\Delta(\widetilde{W}) \doteq A(t) /(t-1)
$$

where $A(t)$ denotes the Alexander polynomial of the knot $k \subset J$. Similarly, there is defined a relative torsion invariant $\Delta(\partial \widetilde{Q}, \tilde{W})$, and

$$
\Delta(\partial \widetilde{Q}) \doteq \Delta(\tilde{W}) \Delta(\partial \widetilde{Q}, \tilde{W})
$$

Note that the pair $(\partial Q, W)$ can be reduced by excision to the pair $(D \times \partial C$, $k \times \partial C$). Straightforward computation shows that

[^3]$$
\Delta(\partial \widetilde{Q}, \tilde{W}) \doteq \Delta(D \times \partial \widetilde{C}, k \times \partial \widetilde{C})=1 /(t-1)
$$

Hence

$$
\Delta(\widetilde{Q}) \bar{\Delta}(\widetilde{Q}) \doteq A(t) /(t-1)^{2}
$$

so that

$$
A(t) \doteq c(t) c(1 / t)
$$

where $c(t)$ denotes the rational function $(t-1) \Delta(\widetilde{Q})$. Since the ring of integral L-polynomials is a unique factorization domain, $c(t)$ can be expressed as the quotient $a(t) / b(t)$ of two relatively prime polynomials. Let $d(t)$ denote the greatest common divisor of $a(1 / t)$ and $b(t)$. Then $a(1 / t)=p(1 / t) d(t)$ and $b(t)=$ $q(t) d(t)$, and we have

$$
c(t) c(1 / t)=p(t) p(1 / t) / q(t) q(1 / t),
$$

where the numerator and denominator are relatively prime. But we know that this quotient is, in fact, a polynomial. Consequently we must have $q(t) \doteq 1$, and so $A(t) \doteq p(t) p(1 / t)$ as claimed.

Remark. Our original proof of Theorem 2 was substantially the same as the proof sketched by H. Terasaka [15]. The proof presented here avoids the rather horrendous calculations of the original.

3. The knot cobordism group

Lemma 3. If κ is any knot type, then $\kappa+(-\kappa)$ is a slice type.
Proof. This follows immediately by applying Theorem 1 to the 2-sphere in R^{4} which is obtained by "suspending" a representative knot in R^{3}. Alternatively, here is a direct proof. We will use coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ in R^{4}. Let k be an oriented knot representative of κ that lies above the horizontal plane $x_{3}=$ $x_{4}=0$ in the 3 -space $x_{4}=0$. A representative k^{\prime} of $-\kappa$ may be obtained by reversing the orientation of k and reflecting it in 3 -space about this plane. Thus we see that in the 3 -space $x_{4}=0$ there is a representative $k^{\prime \prime}$ of $\kappa+(-\kappa)$ that is symmetric about the horizontal plane $x_{3}=x_{4}=0$ and intersects it in just two points. Then the set of points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of 4 -space such that ($x_{1}, x_{2},\left|x_{3}\right|+$ $\left.\left|x_{4}\right|\right) \in k^{\prime \prime}$ forms a locally flat 2 -sphere whose intersection with the hyperplane $x_{4}=0$ is just $k^{\prime \prime}$. (In Figure 3 some cross-sections of this 2 -sphere by hyperplanes parallel to $x_{4}=0$ are shown for the case of the trefoil knot $\kappa=3_{1}$.)

Lemma 3'. If κ_{1} and κ_{2} are both slice types then so is $\kappa_{1}+\kappa_{2}$.
Proof. Given spheres m_{1} and m_{2} with κ_{1} and κ_{2} as their respective only singularities, it is easy to construct a sphere m with κ_{1} and κ_{2} as its only singularities. The lemma therefore follows from Theorem 1.

$$
t= \pm 2
$$

$$
t= \pm 3
$$

0
Figure 3.

Lemma 3". If λ and $\kappa+\lambda$ are both slice types then so is κ.
Proof. By Theorem 1^{\prime} there is a 2 -sphere m in 4 -space R^{4} that has only two singularities: κ at a point x and λ at a point y. But by Lemma 1 the singularity at y is removable. Hence there exists a 2 -sphere m^{\prime} whose only singularity is κ at x. This proves $3^{\prime \prime}$.

Now let us write $\kappa \sim \lambda$ to mean that $\kappa+(-\lambda)$ is a slice type, and let us check that \sim is an equivalence relation. By Lemma 3 we have $\kappa \sim \kappa$. If $\kappa+(-\lambda)$ is a slice type then so is $-(\kappa+(-\lambda))=\lambda+(-\kappa)$; hence $\kappa \sim \lambda$ implies $\lambda \sim \kappa$. If $\kappa+(-\lambda)$ and $\lambda+(-\mu)$ are slice types then $(\kappa+(-\lambda))+(\lambda+(-\mu)=$
$(\kappa+(-\mu))+(\lambda+(-\lambda))$ is a slice type by Lemma 3^{\prime}. Since $\lambda+(-\lambda)$ is a slice type according to Lemma 3, it follows from Lemma $3^{\prime \prime}$ that $\kappa+(-\mu)$ must be a slice type. Thus $\kappa \sim \lambda$ and $\lambda \sim \mu$ implies $\kappa \sim \mu$.

Let us write $\langle\kappa\rangle$ for the equivalence class determined by the type $\boldsymbol{\kappa}$. It follows easily from Lemma 3^{\prime} that the sum operation

$$
\langle\kappa\rangle+\langle\lambda\rangle=\langle\kappa+\lambda\rangle
$$

is well defined. Thus the set \mathcal{G} of equivalence classes inherits the operation+ from the semigroup \mathcal{A}, and with respect to this operation forms an abelian group. The identity element of this group is the class $\langle 0\rangle$ of slice knots, and the inverse of a class $\langle\boldsymbol{\kappa}\rangle$ is the class $-\langle\boldsymbol{\mu}\rangle=\langle-\kappa\rangle$.

Theorem 3. In order that $\kappa_{0} \sim \kappa_{1}$ it is necessary and sufficient that there exist in the 4 -dimensional slab $0 \leq x_{4} \leq 1$ of R^{4} a locally flat annulus A whose boundaries are knots k_{0} in the hyperplane $x_{4}=0$ and k_{1} in the hyperplane $x_{4}=1$ representing the types κ_{0}, κ_{1} respectively, the orientations being such that k_{0} is homologous to k_{1} within A.

Proof. If such an annulus A exists, then choosing a vertex v below the hyperplane $x_{4}=0$ and choosing a vertex w above the hyperplane $x_{4}=1$, the cones $v k_{0}$ and $w k_{1}$ will be disjoint from each other and from the interior of A. The union

$$
m=v k_{0} \cup A \cup w k_{1}
$$

is then a 2 -sphere with just two singularities: κ_{0} at v and $-\kappa_{1}$ at w.
Conversely, given a 2 -sphere with just two singularities, it is not difficult to move it until it intersects the slab $0 \leq x_{4} \leq 1$ in a non-singular annulus whose boundary curves represent the appropriate knot types.

In view of this theorem we may call the equivalence relation \sim cobordism, and the group \mathcal{G} the knot cobordism group. (Similar cobordism groups for higher dimensional differentiable knots have been studied by A. Haefliger, M. Kervaire and J. Levine. See for example [6].)

Since there are knot types (many of them) that do not satisfy the polynomial condition of $\S 2$, the group \mathcal{G} is non-trivial. Actually \mathcal{G} is not even finitely generated; this can be seen, for example, by observing that there are an infinite number of knots of genus 1 , whose polynomials are quadratic, irreducible and distinct from one another.

Murasugi [10] has shown that the signature of the quadratic form associated with a knot is a cobordism invariant ${ }^{73}$. This implies in particular that the clover leaf knot 3_{1} determines an element of infinite order in \mathcal{G}. It is not known

[^4]whether or not the quotient group
$$
\mathcal{G} /(\text { elements of finite order })
$$
is finitely generated.
Any invertible, amphicheiral ${ }^{88}$ knot that is not a slice knot determines in \mathcal{G} an element of order 2. An example is provided by the figure eight knot 4_{1}. However it is not known whether or not \mathcal{G} has any elements of order >2. Neither is it known whether an element of order 2 is necessarily determined by an amphicheiral knot.

An analogous concept of cobordism between links can also be studied [4, 10]. Among the cobordism invariants of a link are the higher order linking numbers $\mu\left(i_{1}, \cdots, i_{r}\right)$ of reference [8]. (Unpublished.)

Princeton University and Kobe University

The Institute for Advanced Study

Bibliography

[1] J.W. Alexander: Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306.
[2] R.H. Crowell and R.H. Fox: Introduction to knot theory, Ginn, 1963.
[3] R.H. Fox and J.W. Milnor: Singularities of 2-sphere in 4-space and equivalence of knots. (Abstract) Bull. Amer. Math. Soc. 63 (1957), 406.
[4] R.H. Fox: A quick trip through knot theory; Some problems in knot theory, Topology of 3-manifolds, M.K. Fort, ed., Prentice-Hall, 1962, 120-176.
[5] V.K.A. Guggenheim: Piecewise linear isotopy and embedding of elements and spheres. Proc. Lond. Math. Soc. 3 (1953), 29-53, 129-152.
[6] A. Haefliger: Knotted (4k-1)-spheres in 6k-space, Ann. of Math. 75 (1962), 452-466.
[7] M. Kervaire and J.W. Milnor: On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci., U.S.A. 47 (1961), 1651-1657.
[8] J.W. Milnor: Isotopy of links, Algebraic geometry and topology (Lefschetz symposium), Princeton Math. Series. 12, 1957, 280-306.
[9] J.W. Milnor: A duality theorem for Reidemeister torsion. Ann. of Math. 76 (1962), 137-147.
[10] K. Murasugi: On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422.
[11] H. Noguchi: A classification of orientable surfaces in 4-space, Proc. Japan Acad. 39 (1963), 422-423.
[12] C.D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.

[^5][13] K. Reidemeister: Knotentheorie, Ergebnisse der Math. Vol. 1, No. 1 (reprint Chelsea, 1948, New York).
[14] H. Schubert: Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. Sitzungsber. Heidelberger Akad. Wiss. Math. Nat. Kl. 1949, no. 3 (1949), 57-104.
[15] H. Terasaka: On null-equivalent knots. Osaka Math. J. 11 (1959), 95-113.
[16] H.F. Trotter: Non invertible knots exist, Topology 2 (1963), 275-280.

[^0]: 1) This paper follows our announcement [3]. We wish to express our thanks to C.H. Giffen for help in the revision.
 2) These concepts are due to V.K.A. Guggenheim [5, §7. 32].
[^1]: 3) H. Schubert [14]. The semigroup \mathcal{A} is free commutative with the "prime" knot types as free generators.
[^2]: 4) Since this polynomial condition was announced by us in 1957 several other necessary conditions have been established: [10].
[^3]: 5) The notation $A_{1}(t) \doteq A_{2}(t)$ means $A_{1}(t)= \pm t^{n} A_{2}(t)$ for some integer n.
 6) cf. [11].
[^4]: 7) This is strikingly reminiscent of the situation in the classical Thom cobordism theory.
[^5]: 8) Compare [2, pp. 8-11] or [16].
