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K,-GROUPS OF PROJECTIVE SPACES
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(Received April 21, 1967)

Introduction. The purpose of this note is to calculate K¢-groups of the
real projective m-space RP(m) and the complex projective n-space CP(n).
Consider the operations: complexification &: Ko(X)—>K (X), real restriction
p: Ky(X)— K o(X), and conjugation *: K ;;(X)—K y(X). The following formulas

pE=2 : KoX)— KyX),
&p = 14x: Ky(X) — Ky(X),
are well known (c.f. [4]). Let & be the canonical real line bundle over PR(m),

and let 7 be the canonical complex line bundle over CP(n). Then generators
for our groups are defined as follows:

A = E—1€Ko(RP(m)),
v =& €Ky(PR(m)),
b = 1—1€Ry(CP())
so=pu ERY(CP(n) ,
w— pg e R (CP(m)  (i=1,2,3),
where g is the generator of KJ(S®) given by the reduced Hopf bundle.
Our theorems are as follows.

Theorem 1. 1) The groups K5'(RP(m)) are isomorphic to the following
groups:

\.\m 8r 8r+1 8r+2 8r+3 8r-+4 8r+5 8r+6 8r+7

1

0) 0 (24r) (24r+ l) (24r+2) (24r+2) (24r+3) (24r+3) (24r+3) (24r+3)
+0

| 1 " (2) ) 2 (=)+(2) (2 2 2 (2)+(2)
+0

| 2 r(2) +2 ©@ ©)) (2) @) 2 @+ O+@+@®)
+0

i) |3 i @) (=) 0 0 0 (e0) 2 2)+@2)

iV) 4 (247) (24r) (24r) (241) (24r+ l) (24r+2) (24r+3) (24r+3)

v)| 5 0 0 0 (o0) 0 0 0 ()

viy| 6 0 0 2 @+ @ 0 0 0

viiy | 7 0 () @ @+ O () 0 0
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where (t) means the cyclic group of order t.

2) KO(RP(m)) is generated by N\ with two relations N'=—2x, A"'=0,
where f=@(m) is the number of integers s such that 0<s<m and s=0, 1, 2, 4
mod 8, and K 5*(RP(m)) is additively generated by g\ (g,=pg).

Theorem 2. 0) K3(CP(n)) is the trancated polynomial ring (over the
integers) with one generator u, and the following 1elations:
(a) if n=2t, then ui**=0,
(b) if n=4t+1, then 2u3"**=0 and p3'**=0,
(c) of n=4t+3, then ui*+*=0.
i) RH(CP()=0.
i) KG*(CP(n)) is the free module with basis p., pipo, ** pupd™", and also,
in case n is odd, p,ué (if n=1mod4) or o (if n=3 mod 4), where 26 =,y and

t:[%] ([ ] is the Gauss notation).
iii) K’a“’(CP(n))={gZ Yu—ttis,

otherwise.

iv) Ko*(CP(n)) is the free module with basis ju,, piope, **, ot ™, and also, in
case n=3 mod 4, p,ub with relation 2u,1i=0, where t= [121—]

V) RoY(CP(n)=0.

vi) Ko%CP(n)) is the free module with basis ju, papre, **5 papet ™, and also,
in case nis odd, p.ub (if n=3 mod4) or v (if n=1 mod 4), where 27=p,u; and

]

otherwise.

Theorem 3. The ring structures of K&*"(CP(n))==>K5**(CP(n)) are given
by the followings:

i) 1"4:“'2"'" HMoatho » i1) .U'%:l»"o ’ iii) IL§:4.U'2‘{_ Moaflo »

1V) Mozfby== M3lbo ’ V) Ho3fo= H1fbo » Vl) Bots=4 15+ lbg .

ReEMARK. Theorem 2 is an unpublished result of S. Araki, who computed
the result directly from the spectral sequence.

1. Preliminaries

First we recall from [1] that

q =0 12 34 56 7 modS$§
F7x)=Ku(SY)=2Z 0 Z 0 Z 0 Z 0
Ko (x)=Ko(SY=Z Z,7Z,0 Z 0 0 0

and if ¢ is even
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(L.1) & Z=RKo(S*) > Ru(S¥)=Z

is monomorphic, in fact, Im é=Z if ¢=0 mod 4, while Im £€&=27 if ¢=2 mod 4.
Then we can easily obtain the next lemma.

Lemma (1.2). The Conjugation
x 1 Ky(S*) — Ku(S%)
is given by
*=1 ifgiseven and x = —1 if qisodd.
Next we recall from [3] and [6] that the E, and E., terms of the spectral
sequence of Ko-theory are given by
Ep = HY(X, K&(*)),
Ez® = G,K5"(X) = K2*(X)/K314X) ,
where K X)=Ker [K5(X)—>K5X?™")]. The Q-spectrum Y= {Y,, h,} in Ko~
theory is given by Y,,_;=Q/B, (i=7, -+, 1, 0), where By, is a classifying space
for the orthogonal group O, QB is the space of loops on Byand Q?B,, is the space
Q(Q?7'By). As for differentials d2'?: E2%—E?*"?"*1 we have d2''=Qd?*"? and
dr'=d? 8. On the other hand, Theorem 3.4 of [6] asserts that d§°, d5% !
and d§" "% are induced by the cohomology operations defined by the k-invariants
e H N Z, 8t, Z,), ke H"*(Z,, 8t, Z,) and k***"'e H**¥(Z,, 8t, Z), re-
spectively. Therefore we have (c.f. §2 and Theorem 4.2 of [8])
dy =% = S¢*: H¥(X,Z) - H**(X, Z,) ,
(1.3) dy~%'= S¢*: H¥(X, Z,) - H***(X, Z,) ,
day—%—*=34,S¢: H¥ X, Z,) - H*"(X, Z),

where 9§, is the Bockstein operator associated with the exact coefficient sequence

0-Z—-2—-27Z,—-0.

2. Proof of Theorem 1
0) was proved by J.F. Adams [1].

Proof of iv). We begin by applying for PR(m) the spectral sequence of
Ko-theory. Let +(m) be the number of integers s such that 0<<s<m and s=
0, 4, 5, 6 mod 8. Since we find (apart from zero terms) just (m) copies of
Z, in E,-terms which have total degree —4, there are at most 2¥ elements
in Ko (RP(m)).

On the other hand we show that Kg*(RP(m)) contains at least 2/7* elements,

where f=[%] Consider
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I7%¢: K5*(RP(m)) — K{(RP(m)) = Zyr,
where I is the Bott isomorphism. By (1.1) we have I7%¢ (kg,x)=2kv, where
& is the generator of K3(S*). Therefore in Kg*(RP(m)) we find 27" elements
kg (k=1,2,.-,277"). If m=2, 3 or 4 mod 8, then +(m)=f—1, so that
K5*(RP(m))=Z,¥wm, and g,\ generates the group.
The proof for the cases m=0, 1, 5, 6, 7 mod 8 is similar to that in the
case 0) (c.f. [1]).

Proof of i). Consider the spectral sequence, if m==4r+4-3 the term E3*"~?
is Z, for p=1 or 2 mod 8 such that —7<<p<m—7, otherwise zero. However,
if m=4r-+3 we find an extra term E¥+*-%"-D—=7 in addition to the above.

By (1.3) the differentials

(2.1) dz: E285+6,—-8z N E§235+8,_85_1
(22) dz: Egc+7.—8c—1__)E52n+9,_35_2
are isomorphisms except d;'7=0, therefore E3*"?=0 except E}°=Z, and
Egr+3.—4<r—l)=Z for m:4r+3. Since dk :.Ef-l»’lu-p_)Ez-} E+7,—p—k+1 (total degree 8)
is a zero map for k>2 (c.f. 0)), E}°=Z, survives to E... Also E{*>~*"P=2Z
survives to E.,. Hence, we have

[ Z, if m+4r+3,

> —1
Ko REM) = 74 7 oc Z  if metri3.

Lemma (2.3). In¢&: K5'(RP(4r+3))—K o' (RP(4r+3))=Z, we have

Z if risodd,

Imeé= { X .
2Z if ris even.

Proof. By Theorem (3.3) of [5] we have K'(RP(4r+3))=Z. Considering
the commutative diagram

K5'(RP(4r+-3)) - K5(S" ) — KS(RP(4r+4)) it KS(RP(4r+3))
&l €l el a €l
K7 (RP(4r+3)) = Ki(S"**) = KJ(RP(4r+4)) — Ko(RP(4r+3)),

we can easily obtain the result by (1.1) and Ker i'=Z7,.

Now, considering the commutative diagram

Z=K5'(S"") —> K5'(RP(4r+3)) - Ko'(RP(4r+-2)) = 0
&l &l
Z = K" (S**) 5 Ko'(RP(4r+3)) ,

we obtain K5'(RP(4r+3))=Z+Z,. Finishing the proof of i).
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Proof of v). We can easily obtain the results in the same way as the proof
of ).

Proof of iii). If m=4r+1 the term E3*>~?is Z, for p=1 or 2 mod 8 such
that —5<<p<m—35, otherwise zero. However, if m=4r-1 we find an extra term
E3+1—=%-b—Z in addition to the above.

By (1.3) the differential

(24) (12: Eg"+6’—8‘_1—>Eg”+8'_8t—2

is an isomorphism except d§"*®~*-1=0 for m=8r+6 or 8r+7, therefore
E§7+6:=8¢-1—() except EY+6 % -1=Z, for m=8r-6 or 8r+7.

By dp**-*=0 (k>2) (cf. iv)) and d3~**=0, we have E3**" % 2=
E3+"-%-2 By (1.3) the differential
(25) d3: E§t+7.—85—2_)Egt+10.—8c—4

is an isomorphism except d§"*"~*~?=0 for m=28r+7, 878 or 8r+9, therefore
E3+7-8"2=() except Ey*"~*2=Z, for m=8r+7, 8r+8 or 87+9.
By =0 (k>2)
Eir+t—ao-b _ 7 for m=4r+1,
E§r+e-8r-1 — 7 for m=8r+6 or 847,
Efr+t-tr-2 — 7 for m=8r+7,8r+8 or 8+9,

all survive to E... Hence, we have the following posibilities
_ Z or Z+Z, if m=8r+1,

5 (RP(m)) =
Ko'(RP(m)) {ZZ—I—Z2 or Z, if m=8+47,

and K5*(RP(m)) is as stated in Theorem 1 for otherwise.
Now, considering the exact sequence

0 = K5 (RP(8r+2)) — K3*(RP(8r+1)) = Ko*(S¥" ) = Z,
we obtain K53(RP(8r+1))=Z.
Next, by RP(8r+7)/RP(8r+5)~ S¥**V S**" we have K5*(RP(8r+7]
RP(8r+5))=Z,+Z, Thus, considering the exact sequence
R34 (RP(8r-+7)[RP(8r+5)) - Ro"(RP(8r+7)) — K5 (RP(8r+5)) = Z,
we obtain Kg*(RP(8r+7))=Z,+Z, Finishing the proof of iii).
Proof of vii). Similar to the proof of iii).

Proof of ii). The term E3*®~* is Z, for p=0, 1, 2 or 4 mod 8 such that
—6<p<m—6, otherwise zero. By (2.1), (2.2) and (2.4) we have E§"*% %=
E§+7—8c-1_F8t+8.-8:=2—() except E§*®~%=Z, for m=8r46 or 8+7 and
Ey+t-9-1—7 for m=8r-+7 or 8r+8. Also, by (2.5) we have E§**1*~%~*=(
except E3*=Z,.
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Obviously E§r+6-8r—=FE%+6-8r and E§+7—%-1=F{*"~%-1 and since we
have d2*%*=0 for k>4 (c.f. iii)), E{*%~*=Z, (for m=8r+6 or 8+7) and
E§+"-81—7 (for m=8r-+7 or 87+ 8) survive to E.. Also, since d,: E}**~*
— Eg*k+6-p=k+1 (tota] degree 7) is a zero mape for k>3 (c.f. 1)), E{*=Z, survives
to E... Hence, we have the following posibilities

Z, if m=8r+1, 87+2, 8-+3, 8+4 or 8+5,
RG¥RP(m)) = {Z,+Z, or Z, if m=8¢(r+0) or 8r+6,
Z,+2Z,+2, Z,+Z, or Z, if m=8r+7.

Now, in order to complete the proof we show the next lemma.

Lemma (2.6). 2Kz*RP(m))=0.

Proof. It is sufficient to ensure that it is true for m=8r-+6, 8r+7 or
8r+8 (r=0, 1, --+). First we show 4K5*(RP(m))=0. Considering the exact
sequence

5"(RP(8rT)) > R (RP(87+5)) ~ R (RP(31-+7)|RP(8r+5))
— R5*(RP(8r-7)) — R3(RP(8r+5)) — K35 (RP(Sr+7)/RP(87+5)) ,
we have Ko*(RP(8r+7))*Z,. That is 4K5*(RP(m))=0.

We have the following exact sequence (2.7) for the fibering U—U/O, B,
X Z=Q(U[O) (c.f. p. 314 of [10]).

. & _ 0
2.7) s BAX) S Ro0 B R x) S Rp(X) > e

Applying the exact sequence (2.7) for RP(m) and n=—2, we obtain the exact
sequence

— K5*(RP(m)) Sk 7'(RP (m))P—>i< K5(RP(m)) A KG'(RP(m)) - K7'(RP(m)) .
If m—8r=6, 7 or 8, then f= [%]=<p(m), so that we have K*(RP(m))=Z.s and

KS(RP(m))=Z,s. Since K5'(RP(m))=Z, or Z+Z, and Kg'(RP(m))=0 or Z

(c.f. Theorem (3.3) of [5]), we have Im8=Z,. Therefore Im py=Ker 0=~2r-1.

Hence Im é=Ker py=27,, that is 2 Im =0 and Im EC 2/ X K *(RP(m)).
Now, considering

Ko'(RP(m)) 5 Re#RP(m) £ R5*(RP(),

we have 2 K5*(RP(m))=1Im peC 2/ x K5*(RP(m))=2'"° x4 K5*(RP(m))=0.
This shows the lemma. Finishing the proof of ii).

Proof of vi). We can easily obtain the results in the same way as the proof
of ii).
This completes the proof of Theorem 1.
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3. Proof of Theorem 2

0) was proved by B.J. Sanderson [7].

Proof of vii). The term E3*"~?is Z, for p=1 mod 8 such that —1<p<
2n—1, otherwise zero. By (1.3) the differential

d2: Egt+2.—at—l_)E§t+4.—Bt—2

is an isomorphism except d§**~%-1=0 for n=4r+1. Therefore E}*''~?=0
except EY*%~%-1=7 for n=4r+1. Hence, we have the following posibilities

R ~{o, 5 e
Now, considering the exact sequence
KS(CP(4r+4-1)) - K§(CP(4r)) — K5(S¥+*) — K5(CP(4r+1)) — 0,
we obtain K5"(CP(4r+1))=2Z,. Finishing the proof of vii).
Proof of v) and i). We can easily obtain the results in the same way as the
proof of vii).

Proof of vi). The proof is given by induction on n. For n=0 our asser-
tion is trivial. Suppose that K5%(CP(n)) is as stated for n<<4t+1. Consider-
ing the exact sequence

0 — K55(S®**?) I, o%(CP(4t+1)) - K5%(CP(4t)) - 0,
we have

R3%(CP(4t+1)) = R55(CP(4t)+Z .

Let o is a generator of Kg°(S*™*)=K3(S*"*), then we have jiéa=g*u**'. On

the other hand we have &u,ud’=g(u—p)(u+m)*=2g'u"*"", because B=—pu-+

wi—-—pu*** from Theorem (7.2) of [1]. Therefore, putting r=j'a, we have

2r=p,ud’. Thus, ws, wpte, ***s peps’ ', T additively generate K5%(CP(4t+1)).
Next, considering the exact sequence

0 — K5"(CP(4t+41)) = K5%(S***) — K5°(CP(4t+2))
— R5%(CP(4t+1)) = K5%(S**) — 0,

we have
2t4+1

Ro“(CP@t+2) = Z+-+2

and pg, patte, + ioiea’ additively generate the group.
Next, considering the exact sequence

1
0 — B35S L R5(CP(4t+3)) > R5(CP(4t+2)) = 0,
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we have
Ko%(CP(4t+3)) = K5(CP(4t+2))+Z
and pg, oty 5 pops’ ! additively generate the group, because j'a=pu,ud’*! for
a generator o of K5%S**°).
Moreover, considering the exact sequence
0 - K5%(CP(4t+4)) — K5*(CP(4t+3)) — 0,
we have
Ko%CP(4t+4)) =~ K5%(CP(4t+-3)) .
This completes the induction.

Proof of iv) can be treated in the same way as that of vi).

Proof of iii) and ii) can be treated in the same way as that of vii) and vi)
respectively.

4. Proof of Theorem 3
We apply the Chern characters for K5*'(CP(n)). By Lemma (1.2) we have

e’+e?—2 if 71is even,
4.1) chéu; = {

e’—e™” if 7is odd,
where y is a generator of the cohomology group H(CP(n); Z). Therefore we
have

4.2) chépip; = (€ —e Y

= 4(e”+e?—2)+(e’+e?—2) if 4,5 odd,
(4.3) ché&p;p; = (€7 +e”—2) if 1,7 even,
4.4 chép;p; = (¥ —e )& +e7—2) if 7odd, jeven.

If n is even ch & is a monomorphism (c.f. Theorem 2). Hence, (4.1) and
(4.2) imply 1), iii) and vi); (4.1) and (4.3) imply ii); and (4.1) and (4.4) imply
iv) and v).

In case of n=2¢—1, the results of Theorem 3 are induced from that in case
of n=2¢ by the inclusion map CP(2t—1)cC CP(2t). 'This completes the proof.
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