ON SEPARABLE ALGEBRAS OVER A COMMUTATIVE RING*

SHIZUO ENDO AND YUTAKA WATANABE

(Received August 19, 1967)

Introduction. The notion of a separable algebra over a commutative ring was introduced in Auslander-Goldman [2], which coincides with that of a maximally central algebra in Azumaya [3] for a central algebra over a local ring. The basic properties of separable algebras were shown in [2] and [3].

The purpose of this paper is to define the reduced trace and norm of a central separable algebra over a commutative ring and to prove that a separable algebra over a commutative ring is a symmetric algebra.

Let \(\Lambda \) be a central separable algebra over a commutative ring \(R \) and let \(S \) be a commutative \(R \)-algebra such that \(S \otimes_R \Lambda \cong \text{Hom}_S(P, P) \) for some finitely generated, faithful, projective \(S \)-module \(P \). Then \(S \) is called, according to [2], a splitting ring of \(\Lambda \), and especially, if \(R \subseteq S \), it is called a proper splitting ring of \(\Lambda \). It was proved in [2] that a central separable algebra over a Noetherian local ring \(R \) has a proper splitting ring which is a Galois extension of \(R \). However, for a general commutative ring \(R \), it is an open problem whether any central separable \(R \)-algebra has a proper (Galois) splitting ring. Therefore, our method, which will be used to defining the reduced trace and norm of a central separable \(R \)-algebra, is different from the usual one in the classical case (cf. [4]).

In § 1 we shall show that a separable algebra over a general commutative ring is extended from a separable algebra over a Noetherian commutative ring, and, in § 2, we shall prove that, in case \(R \) is a commutative ring included in a semi-local ring, a central separable \(R \)-algebra has a proper splitting ring.

§ 3 is devoted to defining the reduced trace of a central separable \(R \)-algebra \(\Lambda \). If \(\Lambda \) has a proper splitting ring, we can define the reduced characteristic polynomial, trace and norm of \(\Lambda \) by using the characteristic polynomial, trace and norm of a projective module in [7], and we shall also show that there exist the analogous relations to the classical case between these and the characteristic polynomial, trace and norm of an \(R \)-algebra \(\Lambda \). In the general case, we define the reduced trace of \(\Lambda \), by using the above-mentioned result in § 1.

* This work was supported by the Matsunaga Science Foundation.
An algebra Λ over a commutative ring R, which is a finitely generated, faithful, projective R-module, is called, according to [6], a symmetric R-algebra, if $\text{Hom}_R(\Lambda, R)$ is Λ^e-isomorphic to Λ. In the classical theory, it is well known that any semi-simple algebra over a field is symmetric. However, for a general commutative ring R, it is an open problem whether a semi-simple R-algebra is symmetric or not.

In § 4 we shall prove, as a partial answer to this, that a separable algebra over a commutative ring is symmetric. This includes the results in Müller [10] and DeMeyer [5]. Throughout this paper a ring means a ring with a unit element, and a (semi-)local ring means a commutative (semi-)local ring which is not always Noetherian.

1. Basic results

First we shall prove, as a generalization of (4.5) and (4.7) in [2],

Proposition 1.1. Let Λ be an algebra over a (not always Noetherian) commutative ring R, which is a finitely generated R-module. Then the following conditions are equivalent:

1. Λ is a separable R-algebra.
2. For any maximal ideal m of R, Λ_m is a separable R_m-algebra.
3. For any maximal ideal m of R, $\Lambda/m\Lambda$ is a separable $R/m\Lambda$-algebra.

Proof. The implications (1)\Rightarrow(2)\Rightarrow(3) are obvious.

(2)\Rightarrow(1): We have $\text{w.dim}_{\Lambda^e}\Lambda = \sup_m \text{w.dim}_{\Lambda^e_m}\Lambda_m$ where m runs over all maximal ideals of R. If each Λ_m is R_m-separable, then we have $\text{w.dim}_{\Lambda^e_m}\Lambda_m = 0$ and so $\text{w.dim}_{\Lambda^e}\Lambda = 0$. As Λ is Λ^e-finitely presented, this shows that Λ is Λ^e-projective.

(3)\Rightarrow(2): Without loss of generality we may assume that R is a local ring with a maximal ideal m. Now suppose that $\Lambda/m\Lambda = R/m\Lambda$ and so Λ is Λ^e-projective if and only if Λ is Λ^e-projective. Hence we may further assume that R is Henselian. Then, for the projective $\Lambda^e/m\Lambda^e$-module $\Lambda/m\Lambda$, there is a finitely generated projective Λ^e-module P such that $f: P/mP \cong \Lambda/m\Lambda$ as Λ^e-modules. Since R is local and P, Λ^e are Λ^e-projective, there exist Λ^e-epimorphisms $f: P \rightarrow \Lambda$, which induces f on P/mP, and $g: \Lambda^e \rightarrow P$ such that $f \circ g$ is the natural epimorphism of Λ^e onto Λ. The homomorphism $f \circ g$ is R-split and so f is also R-split. From this it follows directly that f is an isomorphism. Thus Λ is Λ^e-projective, which completes our proof.

It is remarked that, by (1.1), we can omit the assumption that R is Noetherian from almost all of results in [2].
The following proposition will play an important part in § 3.

Proposition 1.2. Let Λ be a separable R-algebra, which is a finitely generated, faithful, projective R-module. Then there exist a Noetherian subring R' of R and a separable R'-subalgebra Λ' of Λ, which is a finitely generated, faithful, projective R'-module, such that $\Lambda = R \otimes_R \Lambda'$.

Proof. Let $\{\lambda_0 = 1, \lambda_1, \ldots, \lambda_t\}$ be a set of generators of Λ over R. Let F be a free R-module with a basis $\{u_0, u_1, \ldots, u_t\}$, and define the R-epimorphism $f: F \to \Lambda$ by putting $f(u_i) = \lambda_i$ for each i. Since Λ is R-projective, we have an R-homomorphism $g: \Lambda \to F$ such that $f \circ g = 1_\Lambda$. Now we put $g(\lambda_i) = \sum r_i u_j$, $r_{ij} \in R$. Let R_0 be the prime ring of R and x the polynomial ring over R_0 generated by $\{r, \lambda\}$. Then the module generated by $\lambda_0, \lambda_1, \ldots, \lambda_t$ over R_0 is finitely generated and Λ is R_0-projective. As Λ is R-separable, defining the Λ^e-epimorphism $\phi: \Lambda^e \to \Lambda$ by putting $\phi(\lambda_i \otimes R \lambda_0) = \lambda_i \lambda_j$ and $\phi_j(\lambda_i \otimes R \lambda_0) = \lambda_i \lambda_j$, there is a Λ^e-homomorphism $\psi: \Lambda \to \Lambda^e$ such that $\phi \psi = 1$. Put $\psi(\lambda_i) = \sum s_{ijk}(\lambda_j \otimes R \lambda_k)$, $s_{ijk} \in R$ and $\lambda_i \lambda_j = \sum t_{ijk} \lambda_k$, $t_{ijk} \in R$. Furthermore let R' be the polynomial ring over R_0 generated by $\{r_{ij}\}$, $\{s_{ijk}\}$ and $\{t_{ijk}\}$, and denote by Λ' the module generated by $\lambda_0, \lambda_1, \ldots, \lambda_t$ over R'. Then R' is Noetherian, and Λ' is an R'-algebra which is a finitely generated, faithful, projective R'-module, as R' includes all of $\{r, \lambda\}$ and $\{t_{ijk}\}$. If we define a Λ^e-epimorphism $\phi': \Lambda^e \to \Lambda'$ by putting $\phi'(\lambda_i \otimes R \lambda_0) = \lambda_i \lambda_j$ and we put $\psi'(\lambda_i) = \sum s_{ijk}(\lambda_j \otimes R \lambda_k)$ for any i, then, from the fact that Λ is R-finitely generated projective, we see easily that ϕ' is the well-defined Λ^e-homomorphism of Λ' into Λ^e such that $\phi' \circ \phi = 1_{\Lambda'}$. Therefore Λ' is a separable R'-algebra. Let α be the R-algebra epimorphism of $R \otimes R \Lambda'$ onto Λ which is defined by $\alpha(r \otimes R \lambda_i) = r \lambda_i$, for any $r \in R$. Let m be a maximal ideal of R and put $\nu = m \cap R'$. Then we have $(R \otimes R \Lambda')_m = R_m \otimes R' \Lambda'_\nu$ and so α induces naturally an R_m-algebra epimorphism $\alpha_m: R_m \otimes R' \Lambda'_\nu \to \Lambda_m$. Since Λ'_ν is R'_ν-free, α_m must be an isomorphism. From this it follows immediately that α is an isomorphism. Thus our proof is completed.

2. Central separable algebras with proper splitting rings

Let Λ be a central separable R-algebra and S a commutative R-algebra. If there exists a finitely generated faithful projective S-module P such that $S \otimes R \Lambda \cong \text{Hom}_R(P, P)$ as S-algebras, then S is called, according to [2], the splitting ring of Λ. Especially, when $S \supseteq R$, S is called the proper splitting ring of Λ.

First we give, as a slight generalization of [2], (6.3),

Proposition 2.1. Let R be a local ring with a maximal ideal m and Λ a central separable R-algebra. Then Λ has a proper splitting ring S which is a
separable R-algebra and a finitely generated free R-module. Especially, if R is Henselian, then we can choose as S a local ring with a maximal ideal mS.

Proof. By using (1.1) and the Henselization instead of the completion, this can be proved along the same line as in [2], (6.3).

For a central separable algebra over a general commutative ring R, we can not assure the existence of the proper splitting ring which is R-separable and R-finitely generated, projective. In this section, we shall consider only the existence of proper splitting rings. However, we could not prove the existence of a proper splitting ring for a central separable algebra over a general coefficient ring.

Proposition 2.2. Let R be a commutative ring which is contained in a semi-local ring. Then any central separable R-algebra has a proper splitting ring. Especially, this assumption for R is satisfied by a Noetherian ring or an integral domain.

Proof. It suffices to prove this proposition in case R is itself a semi-local ring. Let R be a semi-local ring with maximal ideals m_1, m_2, \ldots, m_t and put $R' = R_{m_1} \oplus R_{m_2} \oplus \cdots \oplus R_{m_t}$. Then $R \subseteq R'$ and $R' \otimes R = \mathfrak{m}_{m_1} \oplus \mathfrak{m}_{m_2} \oplus \cdots \oplus \mathfrak{m}_{m_t}$. Accordingly to (2.1), there exists a proper splitting ring S_i of R_{m_i} for any i. If we put $S = S_1 \oplus S_2 \oplus \cdots \oplus S_t$, then we have $R \subseteq R' \subseteq S$ and S is a proper splitting ring of R, as is required.

As another case, which is not included in (2.2), we have

Proposition 2.3. Let R be a commutative ring with the total quotient ring K such that any prime ideal of K is maximal. Then any central separable R-algebra has a proper splitting ring.

Proof. We may assume $R = K$. If we denote by \mathfrak{n} the nil radical of R, then R/\mathfrak{n} is, by our assumption, a regular ring (in the Neumann's sense). Therefore we may further assume that Λ is a finitely generated free R-module. Let $\{u_1, u_2, \ldots, u_t\}$ be an R-basis of Λ with $u_1 = 1$, and put $u_i u_j = \sum_{i=1}^{t} r_{ijk} u_k$, $r_{ijk} \in R$. Let R_0 be the prime ring of R, and put $R' = R_0[[t_{ijk}]]$ and $\Omega' = \{r'_{u_1} + \cdots + r'_{u_t} r_i \in R'\}$. Then Ω' is a central R'-algebra with an R'-basis $\{u_1, \ldots, u_t\}$, and we have $R \otimes R' = \Lambda$. Furthermore let \hat{R} be the integral closure of R' in R. Since R/\mathfrak{n} is regular, any non-zero divisor of \hat{R} is a unit in R, and therefore the total quotient ring \hat{K} of \hat{R} can be regarded as a subring of R. From the fact that \hat{R} is integral over R', we see that the total quotient ring K' of R' is included in R. Since R' is Noetherian and $\hat{K}/\mathfrak{n} \cap \hat{K}$ is regular, $K'/\mathfrak{n} K'$ is Artinian, and so K' is itself Artinian. If we put $\Lambda' = K' \otimes R'$, then $R' \otimes \Lambda' = \Lambda$ and, as K' is Artinian, we can easily see that Λ is a central separable K'-algebra. According to (2.1), there
exists a proper splitting ring F of Λ' which is a finitely generated projective K'-module. Now put $S=F\otimes R$. Then $S\cong F$, R and $S\otimes\Lambda=S\otimes R\otimes\Lambda'=F\otimes R\otimes\Lambda'=(F\otimes R)\otimes F\otimes\Lambda'$. Consequently, S is a proper splitting ring of Λ, which completes our proof.

3. The trace and norm of a central separable algebra

1. Let R be a commutative ring and P a finitely generated projective R-module. Suppose that P has (constant) rank n. Then there exists a commutative ring $S\supseteq R$ such that $S\otimes P$ is a free S-module of rank n. Let $\{u_1, \ldots, u_n\}$ be a S-basis of $S\otimes P$. If $f\in\text{Hom}_R(P, P)$, then f can be regarded as an element of $\text{Hom}_S(S\otimes P, S\otimes P)$, and we can put $f(u_i)=\sum_j u_is_{ij}$ for some $s_{ij}\in S$. Now put $Pc_p(f): X=|s_{ij}|-X\delta_{ij}|$, $T_p(f)=\text{traces (}s_{ij}\text{)}$ and $N_p(f)=|s_{ij}|$ where X denotes an indeterminate. It can easily be shown by using the localization at any maximal ideal of R that $Pc_p(f, X)\in R[X]$ and $T_p(f)$, $N_p(f)\in R$ and that these are determined without depending on S and $\{u_1, \ldots, u_n\}$. If P has not constant rank, there is, by [7], § 2, a unique decomposition $R=R_0\oplus\cdots\oplus R_\ell$ such that any $R_i\otimes P$ has rank n_i over R_i where $n_1<\cdots<n_\ell$, and we have $\text{Hom}_R(P, P)=\sum_{i=1}^\ell \oplus \text{Hom}_{R_i}(R_i\otimes P, R_i\otimes P)$. Let f be an element of $\text{Hom}_R(P, P)$ and f_i the i-th component of f. Then we put $Pc_p(f, X)=\sum_{i=1}^\ell \oplus Pc_p(f_i, X)$, $T_p(f)=\sum_{i=1}^\ell \oplus T_{R_i}(f_i)$ and $N_p(f)=\sum_{i=1}^\ell \oplus N_{R_i}(f_i)$ and we call them the characteristic polynomial, trace and norm of f. It can be easily shown that our definitions coincide with those in [7].

If Λ is an R-algebra which is a finitely generated projective R-module, then we use $Pc_{\Lambda/R}(f, X)$, $T_{\Lambda/R}(f)$ and $N_{\Lambda/R}(f)$ instead of $Pc_p(f, X)$, $T_p(f)$ and $N_p(f)$.

2. Now we shall define the reduced characteristic polynomial, trace and norm for a central separable algebra with a proper splitting ring.

Let Λ be a central separable R-algebra with a proper splitting ring S. Then there exists a S-algebra isomorphism $h_S: S\otimes\Lambda\cong \text{Hom}_S(P^{(S)}, P^{(S)})$ for some finitely generated projective S-module $P^{(S)}$.

Proposition 3.1 For any element λ of Λ, $Pc_{\Lambda,R}(h_S(\lambda): X)$ is a polynomial of $R[X]$ which does not depend on S, $P^{(S)}$ and h_S.

Proof. First suppose that R is a local ring. Then Λ is a projective R-module of constant rank, and so $P^{(S)}$ is also a projective S-module of constant rank. By replacing S by any extension ring S' of it and by replacing h_S by $1\otimes h'_S$, $Pc_{\Lambda,R}(h_S(\lambda): X)$ is invariant, and therefore we may further assume that
$P^{(S)}$ is S-free. Then h_S induces a S-algebra isomorphism $k_S: S \otimes \Lambda \cong M_n(S)$ such that $P_{c_{P^{(S)}}(h_S(\lambda))}(X) = |XE_n - k_S(\lambda)|$. On the other hand, according to (2.1), there exists a proper splitting semi-local ring T of Λ which is R-free. For T we can define, similarly, $h_T, P^{(T)}$ and k_T. Since T is R-free, we have $R \otimes R = S \otimes R \cap R \otimes T$ in $S \otimes T$, and so we may suppose that there is a commutative ring U containing both S and T and $S \cap T = R$ in U. Now the algebra isomorphisms $k_S: S \otimes \Lambda \cong M_n(S)$ and $k_T: T \otimes \Lambda \cong M_n(T)$ can, naturally, be extended to the U-algebra isomorphisms $k_S^U, k_T^U: U \otimes \Lambda \cong M_n(U)$. Then $k_S^U \circ k_T^U$ is an U-algebra automorphism of $M_n(U)$ and it induces an U_m-algebra automorphism of $M_n(U_m)$ for any maximal ideal of U. As U_m is a local ring, it is inner, and so we have $|XE_n - k_S^U(\lambda^*)| = |XE_n - k_T^U(\lambda^*)| = 0$ in $U_m[X]$ for any $\lambda^* \in U \otimes \Lambda$. Hence we have $P_{c_{P^{(S)}}}(h_S(\lambda)): X) = |XE_n - k_S(\lambda)| = |XE_n - k_T(\lambda)| = P_{c_{P^{(S)}}}(h_T(\lambda)): X$ in $U[X]$. However, as $P_{c_{P^{(S)}}}(h_S(\lambda)): X) \in S_m[X]$ and $P_{c_{P^{(S)}}}(h_T(\lambda)): X) \in T_m[X]$, we obtain $P_{c_{P^{(S)}}}(h_S(\lambda)): X) = P_{c_{P^{(S)}}}(h_T(\lambda)): X) \in U[X] = S[X] \cap T[X]$. Thus $P_{c_{P^{(S)}}}(h_S(\lambda)): X)$ is a polynomial of $R[X]$. It is obvious from the above proof that this does not depend on $S, P^{(S)}$ and h_S, which completes our proof for a local ring R.

Let R be a general commutative ring and m a maximal ideal of R. Denote by λ_m the residue of λ in Λ_m and by h_S^m the S_m-algebra isomorphism: $S_m \otimes \Lambda_m \cong \text{Hom}_{S_m}(P_m, P_m)$ induced by h_S. Further let $[P_{c_{P^{(S)}}}(h_S(\lambda)): X]_m$ be the residue of $P_{c_{P^{(S)}}}(h_S(\lambda)): X)$ in $S_m[X]$. Then we see $[P_{c_{P^{(S)}}}(h_S(\lambda)): X]_m = P_{c_{P^{(S)}}}(h_S^m(\lambda_m))$ in $S_m[X]$. Since, by the preceding argument for a local ring, $P_{c_{P^{(S)}}}(h_S^m(\lambda_m)): X) \in R_m[X]$, we have also $[P_{c_{P^{(S)}}}(h_S(\lambda)): X]_m \in R_m[X]$. Consequently we obtain $P_{c_{P^{(S)}}}(h_S(\lambda)): X) \in R[X]$. It is also evident in this case that $P_{c_{P^{(S)}}}(h_S(\lambda)): X)$ does not depend on $S, P^{(S)}$ and h_S.

Now we denote $P_{c_{P^{(S)}}}(h_S(\lambda)): X)$ by $P_{crd_{\Lambda/R}}(\lambda): X)$ and we call it the reduced characteristic polynomial of λ. Furthermore, if we put $\text{Trd}_{\Lambda/R}(\lambda) = T_{P^{(S)}}(h_S(\lambda))$ and $\text{Nrd}_{\Lambda/R}(\lambda) = N_{P^{(S)}}(h_S(\lambda))$, then they are elements of R which do not depend on $S, P^{(S)}$ and h_S and we call them the reduced trace and norm of λ, respectively.

From our definitions it follows immediately

Proposition 3.2. For any $\lambda, \lambda_1, \lambda_2 \in \Lambda$ and any $r \in R$, we have

$$\text{Trd}_{\Lambda/R}(\lambda_1 + \lambda_2) = \text{Trd}_{\Lambda/R}(\lambda_1) + \text{Trd}_{\Lambda/R}(\lambda_2),$$
$$\text{Trd}_{\Lambda/R}(r\lambda) = r \text{Trd}_{\Lambda/R}(\lambda),$$
$$\text{Trd}_{\Lambda/R}(\lambda_1 \lambda_2) = \text{Trd}_{\Lambda/R}(\lambda_1 \lambda_2),$$
$$\text{Nrd}_{\Lambda/R}(\lambda_1 \lambda_2) = \text{Nrd}_{\Lambda/R}(\lambda_1) \text{Nrd}_{\Lambda/R}(\lambda_2).$$

Especially, if Λ has rank n^2 over R, then we have
Nrd_{\Lambda/R}(r\lambda) = r^n Nrd_{\Lambda/R}(\lambda)

From this proposition, it follows that Trd_{\Lambda/R} is an R-homorphism of \Lambda into R and Nrd_{\Lambda/R} is a semi-group homomorphism of \Lambda into R as the multiplicative semi-groups.

For any maximal ideal \(m \) of \(R \), let \([\text{Prd}_{\Lambda/R}(\lambda; X)]_m\) be the residue of \(\text{Prd}_{\Lambda/R}(\lambda; X) \) in \((R/m)[X]\) and denote by \(\bar{\lambda}_m \) the residue of \(\lambda \) in \(\Lambda/m\Lambda \). Now we can show \([\text{Prd}_{\Lambda/R}(\lambda; X)]_m = \text{Prd}_{\Lambda/m\Lambda/R/m}(\bar{\lambda}_m; X)\). In fact, it suffices to prove this in case \(R \) is a Henselian local ring with a maximal ideal \(m \). However, in this case, there is, by (2.1), a proper splitting local ring \(S \) of \(\Lambda \) such that \(mS \) is a maximal ideal of \(S \) and \(S \) is a finitely generated free \(R \)-module. Then \(S/mS \) becomes the splitting field of the classical central separable \(R/m \)-algebra \(\Lambda/m\Lambda \), from which our result follows immediately. Accordingly, \(\text{Trd}_{\Lambda/R} \) and \(\text{Nrd}_{\Lambda/R} \) induce, naturally, \(\text{Trd}_{\Lambda/m\Lambda/R/m} \) and \(\text{Nrd}_{\Lambda/m\Lambda/R/m} \), respectively, which coincide with those in the classical sense. By summarizing these, we obtain

Proposition 3.3. For any maximal ideal \(m \) of \(R \), the residue of \(\text{Prd}_{\Lambda/R} \) in \((R/m)[X]\) coincides with \(\text{Prd}_{\Lambda/m\Lambda/R/m} \). Especially, the residues of \(\text{Trd}_{\Lambda/R} \) and \(\text{Nrd}_{\Lambda/R} \) in \(R/m \) coincide with \(\text{Trd}_{\Lambda/m\Lambda/R/m} \) and \(\text{Nrd}_{\Lambda/m\Lambda/R/m} \), respectively.

3. Here we shall determine the relations between the trace (norm) and reduced trace (reduced norm) of a central separable algebra, which are given in the same form as in the classical one (cf. [4]).

Assume that \(\Lambda \) is a projective \(R \)-module of the constant rank \(m \). Then we may suppose \(S \otimes \Lambda \simeq M_n(S) \), where \(m = n^2 \). From our definitions, it follows directly that \(\text{Trd}_{\Lambda/R}(1) = n, \text{Trd}_{\Lambda/R}(\lambda) = n \text{Trd}_{\Lambda/R}(\lambda) \) and \(\text{Nrd}_{\Lambda/R}(\lambda) = [\text{Nrd}_{\Lambda/R}(\lambda)]^n \).

In the general case, let \(R = R_1 \oplus \cdots \oplus R_t \) be the unique decomposition of \(R \) such that \(R_i \otimes \Lambda \) has rank \(m_i \) over \(R_i \) where \(m_1 < m_2 < \cdots < m_t \). Then we can put \(m_i = n_i^2 \) for any \(i \). Let \(e_i \) be a unit element of \(R_i \) and \(\lambda_i \) the \(i \)-th component of \(\lambda \). Then we obtain

Proposition 3.4. \(\text{Trd}_{R_i \otimes \Lambda/R_i}(e_i) = n_i e_i \) for each \(i \),

\[
\text{T}_{\Lambda/R}(\lambda) = \text{Trd}_{\Lambda/R}(1) \text{Trd}_{\Lambda/R}(\lambda) = \sum_{i=1}^t n_i \text{Trd}_{R_i \otimes \Lambda/R_i}(\lambda_i)
\]

\[
\text{N}_{\Lambda/R}(\lambda) = \sum_{i=1}^t [\text{Nrd}_{R_i \otimes \Lambda/R_i}(\lambda_i)]^n
\]

The following result will be used in § 4.

Proposition 3.5. \(\text{Trd}_{\Lambda/R} \) is an \(R \)-epimorphism of \(\Lambda \) onto \(R \).

Proof. By the remark after (3.2), it suffices to prove that \(\text{Trd}_{\Lambda/R} \) is an epimorphism. By virtue of the classical result, for any maximal ideal \(m \) of \(R \), \(\text{Trd}_{\Lambda/m\Lambda/R/m} \) is an epimorphism of \(\Lambda/m\Lambda \) onto \(R/m \). According to (2.3), then, \(\text{Trd}_{\Lambda/R} \) must be an epimorphism of \(\Lambda \) onto \(R \),
Corollary 3.6. The complete image $T_{A/R}(\Lambda)$ of $T_{A/R}$ is a principal ideal of R generated by $\text{Trd}_{A/R}(1)$. Especially, Λ is strongly separable if and only if $\text{Trd}_{A/R}(1)$ is a unit of R.

Proof. This is an immediate consequence of (3.4) and (3.5).

4. As is remarked in § 2, we could not succeed in proving the existence of a proper splitting ring for a central separable algebra in the general case. Hence we cannot define the reduced characteristic polynomial for a central separable algebra in the case where we cannot show the existence of a proper splitting ring. However we can define, by using (1.2), the reduced trace for any central separable R-algebra Λ. In fact, by virtue of (1.2), there exist a Noetherian subring R' of R and a central separable R'-algebra Λ' such that $\Lambda=R\otimes_{R'}\Lambda'$. Since Λ' has a proper splitting ring by (2.2), there exists, according to 2, the reduced trace $\text{Trd}_{\Lambda'/R'}: \Lambda'\to R'$. Now we define the reduced trace $\text{Trd}_{\Lambda/R}: \Lambda\to R$, by putting $\text{Trd}_{\Lambda/R}(r\otimes\lambda')=r\text{Trd}_{\Lambda'/R'}(\lambda')$ for any $r\in R$ and for any $\lambda'\in\Lambda'$. It can be easily shown that, for any maximal ideal m of R, the R_m-homomorphism $(\text{Trd}_{\Lambda/R})_m: \Lambda_m\to R_m$, which is induced on Λ_m by $\text{Trd}_{\Lambda/R}$, coincides with the reduced trace $\text{Trd}_{\Lambda_m/R_m}$ of Λ_m defined by using the proper splitting ring of Λ_m. Especially, if Λ has a proper splitting ring, $\text{Trd}_{\Lambda/R}$ coincides with that defined in 2. Furthermore we can also prove (3.2)-(3.6) in this case.

4. The symmetricity of a separable algebra

Let Λ be an R-algebra, which is a finitely generated, faithful, projective R-module. We shall consider $\Lambda^*=\text{Hom}_R(\Lambda, R)$ as a left Λ^*-module through the operations $(\lambda \cdot f)(\mu)=f(\mu\lambda), (f \cdot \lambda)(\mu)=f(\lambda\mu)$ where $f\in\Lambda^*, \lambda, \mu\in\Lambda$. Following [6], we call Λ a Frobenius R-algebra if Λ^* is isomorphic to Λ as left (or equivalently right) Λ-modules, and, furthermore, is called a symmetric R-algebra if Λ^* is Λ^*-isomorphic to Λ. From our definitions it follows that any symmetric R-algebra is Frobenius.

We begin with

Lemma 4.1. Let S be a symmetric, commutative R-algebra and Λ a symmetric S-algebra. Then Λ is a symmetric R-algebra.

Proof. By our assumptions we have $\Lambda\simeq\text{Hom}_S(\Lambda, S)$ as two-sided Λ-modules and $S\simeq\text{Hom}_R(S, R)$ as S-modules. So we obtain $\text{Hom}_S(\Lambda, S)\simeq\text{Hom}_S(\Lambda, \text{Hom}_R(S, R))\simeq\text{Hom}_R(\Lambda\otimes_S R, R)\simeq\text{Hom}_R(\Lambda, R)$ as two-sided Λ-modules. This shows that Λ is a symmetric R-algebra.

It is well known, in the classical theory, that a semi-simple algebra over a field is symmetric. However, for any commutative ring R, it is an open question whether a semi-simple R-algebra is symmetric or not,
Now we give, as a partial answer to this question,

Theorem 4.2. A separable R-algebra Λ, which is a finitely generated, faithful, projective R-module, is a symmetric R-algebra.

Proof. Let C be the center of Λ. According to [2] (2.1), Λ is a finitely generated projective C-module. By our assumption, Λ is R-finitely generated projective, and so C is also a finitely generated projective R-module, as C is a C-direct summand of Λ. Since, by [2], A.4, a commutative separable R-algebra, which is a finitely generated, faithful, projective R-module, is symmetric, C must be a symmetric R-algebra. Therefore, by (4.1), it suffices to prove our theorem in case \(R=C \).

Let Λ be a central separable R-algebra and denote by \(\text{Trd}_{\Lambda/R} \) the reduced trace of Λ, defined in § 3. Then \(\text{Trd}_{\Lambda/R} \) is a symmetric R-homomorphism of Λ into \(R \): i.e., we have \(\text{Trd}_{\Lambda/R}(\lambda \mu) = \text{Trd}_{\Lambda/R}(\mu \lambda) \) for any \(\lambda, \mu \in \Lambda \). Hence, putting \(\Phi(\lambda)(\mu) = \text{Trd}_{\Lambda/R}(\lambda \mu) \) for any \(\lambda, \mu \in \Lambda \), \(\Phi \) is a \(\Lambda^* \)-homomorphism of Λ into \(\Lambda^* \). By (3.3), for any maximal ideal \(m \) of \(R \), \(\text{Trd}_{\Lambda/R} \) induces naturally the reduced trace \(\text{Trd}_{\Lambda/m\Lambda/R/m} \) in the classical sense on \(\Lambda/m\Lambda \), and therefore \(\Phi \) induces, naturally, the \(\Lambda^*/m\Lambda^* \)-homomorphism \(\Phi_m : \Lambda/m\Lambda \rightarrow \Lambda^*/m\Lambda^* \cong (\Lambda/m\Lambda)^* \) such that \(\Phi_m(\lambda)(\mu) = \text{Trd}_{\Lambda/m\Lambda/R/m}(\lambda \mu) \) for any \(\lambda, \mu \in \Lambda/m\Lambda \). From the classical result it follows that \(\Phi_m \) is a \(\Lambda^*/m\Lambda^* \)-isomorphism. As both Λ and \(\Lambda^* \) are finitely generated projective R-modules, we can easily see from this that \(\Phi \) itself is an isomorphism of Λ onto \(\Lambda^* \). This completes our proof.

We remark that (4.2) was known in some special cases (cf. [2], [5] and [10]). Finally we give, as an additional remark,

Proposition 4.3. Let \(\Lambda \) be a central R-algebra which is a finitely generated projective R-module. Then the following statements are equivalent:

1. \(\Lambda \) is a separable R-algebra.
2. The R-module \(\Lambda/[\Lambda, \Lambda] \) is isomorphic to \(R \), and, for any maximal ideal \(m \) of \(R \), \(\Lambda/m\Lambda \) is a semi-simple \(R/m \)-algebra.

Here we denote by \([\Lambda, \Lambda]\) the R-module generated by all elements of \(\Lambda \) in the form \(\lambda \mu - \mu \lambda \), \(\lambda, \mu \in \Lambda \).

Proof. (1)⇒(2): Suppose that \(\Lambda \) is a separable R-algebra. Then the second assertion of (2) follows from [2], (1.6) and so it suffices to prove \(\Lambda/[\Lambda, \Lambda] \cong R \). Let \(\text{Trd}_{\Lambda/R} \) be the reduced trace of Λ. Then \(\text{Trd}_{\Lambda/R} \) is a symmetric R-epimorphism of Λ onto \(R \), and therefore, putting Ker \(\text{Trd}_{\Lambda/R} = K \), we have an \(R \)-exact sequence:

\[
0 \rightarrow K \rightarrow \Lambda \xrightarrow{\text{Trd}_{\Lambda/R}} R \rightarrow 0
\]

and \(K \supseteq [\Lambda, \Lambda] \). Hence we have only to show \(K = [\Lambda, \Lambda] \). As is shown in § 3,
Trd\textsubscript{Λ/R} induces naturally the reduced trace Trd\textsubscript{Λ/mΛ/R/m} of Λ/mΛ for any maximal ideal m of R, and we have Ker Trd\textsubscript{Λ/mΛ/R/m} = K/mK. However, it is well known, in the classical theory, that the kernel of the reduced trace of a central separable R/m-algebra Λ/mΛ coincides with [Λ/mΛ, Λ/mΛ]. Consequently we must have K/mK = [Λ/mΛ, Λ/mΛ] for any maximal ideal m of R. From this we easily see K = [Λ, Λ], as K is R-finitely generated. Thus the implication (1)⇒(2) is proved. (2)⇒(1). Conversely suppose (2). By (1.1) it suffices to prove that Λ/mΛ has R/m as its center. By our assumption we have an R-exact sequence:

\[0 \to [Λ, Λ] \to Λ \overset{α}{\longrightarrow} R \to 0. \]

This induces an R/m-exact sequence:

\[0 \to [Λ, Λ]/m[Λ, Λ] \to Λ/mΛ \overset{α}{\longrightarrow} R/mR \to 0. \]

and so we have [Λ, Λ]/m[Λ, Λ] ≅ [Λ/mΛ, Λ/mΛ]. Therefore we have Λ/mΛ ≅ [Λ/mΛ, Λ/mΛ]⊕R/m. On the other hand, since Λ/mΛ is R/m-semisimple, Λ/mΛ is separable over its center C, and then we have Λ/mΛ ≅ [Λ/mΛ, Λ/mΛ]⊕C. As C ⊆ R/m, we see from these that C coincides with R/m. This completes our proof.

Tokyo University of Education

References

