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AFFINE STRUCTURES ON COMPLEX MANIFOLDS

Yozό MATSUSHIMA

(Received May 9, 1968)

Let M be a complex manifold of complex dimension n and let C={Uiy φt}i^ι

be the maximal atlas defining the complex structure on M. A subset ^4 —

{t/y, φj}j<Ξjj J^Iy of C is called an affine atlas of M, if <pjir=φj°φ? is a

complex affine transformation of Cn whenever t/yfl Uk^φ. We can define the
notion of a maximal affine atlas of M and we say that each maximal affine atlas
of M defines a complex affine structure of the complex manifold M. We shall

denote by A(M) the totality of complex affine structures on M.
The aim of this note is to study the structure of A(M) in the case where M

is compact and the complex structure of M is homogeneous and we shall prove

the following theorems.

Theorem 1. Let M be a complex torus of complex dimension n. Then there

exists a natural one-to-one correspondence between the set A(M) and the set of all

commutative associative algebra structure over C in the complex vector space Cn.

In particular A(M) is a complex affine variety.

More generally:

Theorem 2. Let M be a connected compact complex manifold and let Aut(M)

be the group of all holomorphίc transformations of M. Assume Aut(M) is transitive
on M. Then A(M) is a complex affine algebraic variety.

1. A) Let M be complex manifold and let / be the tensor of the almost
complex structure associated with M. For each point p^M, the value Ip of /

at p is an endomorphism of the tangent space Tp(M) such that Ip

2= — l. Let

T%(M) (resp. T~(M)) be the subspace of the complexified tangent space
Tp

c(M) consisting of all u such that/^ u = iu (resp. Ipu = —ίu) with i=^/ — l.
Then we have

If {s1, #2, ••• , zn] is a system of complex local coordinates on an open set U,

then {(8/9*%}, = l f... f l l and {(9/9*0*}.-=i....f«
 are bases of Te(M) and T~(M]

respectively at each point p^U. The totality of complex tangent vectors

belonging to T*(M) (p^M) form a holomorphic vector bundle T+(M) over Λf.
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Let X be a smooth vector field on M. Then we can write X uniquely in the
form

where X+(p)<=T£(M) and χ-(p)^T~(M) at each point p£ΞM and X~(p)=

X+(p), where — denotes the conjugation of Tp

c(M).

A complex vector field W on M is, by definition, a smooth section of the

vector bundle Γ+(M)®Γ~(M). Then we can write W uniquely in the form

W=X+iY, where X and Y are smooth real vector fields on M. A complex

vector field W is called holomorphic if W is a holomoprhic section of T+(M).
A smooth real vector field X is called holomorphic if X+ is holomorphic.

Let Q=Q(M) be the vector space of all holomorphic real vector fields on M.

Then g is a complex Lie algebra and if M is compact, g is identified with the

Lie algebra of the group Aut (M) of holomorphic transformations of M.

In the following we denote by 36(M) the real vector space of all smooth vector

fields on M. Then a complex vector field on M is identified with an element of

B) A linear connection V on M is defined by a bilinear mapping (X,

VXY of ϊ(M)χϊ(M) into X(M) satisfying the following conditions:

2) VγfX=f(VyX)+Yf X.
A linear connection V on M is called a holomorphic linear connection if

the following two conditions are satisfied:

a) VyIX=I(VyX) for all X, FeX(M);

b) if X and Y are holomorphic vector fields defined on an open set O of

My then VYX is also holomorphic on O.
If V is a linear connection, we can extend V to a complex bilinear mapping

of X(M)CX X(M)C into X(M)C. Then the conditions a) and b) are equivalent to

the following two conditions a') and b').

a') (VYX)+=VYX
+;

b ') if U and W are complex holomorphic vector fields defined on an open

set O, then VWU is also holomorphic.

C) Let us consider a complex affine structure on M defined by a maximal

affine atlas {(O, φ)}. Let {V, ••• , zn} be the local coordinates on O defined
by the chart (O, φ). On each of these open sets O we can define uniquely an

linear connection V° on O by the conditions: VziZJ'=V^ZJ'=0 (i,j=l, 2, ,n),

where Z'=9/9#* and Zi==^Q/d^i. Then there exists a unique linear connection
V on M such that the restriction of V on each O coincides with V°. This affine

connection V is holomorphic and locally flat, i.e, the torsion and the curvature
of V are 0. This means that
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for any X, F, Ze3pf).

Thus to each affine structure on M there corresponds a locally flat, holomor-

phic linear connection on M and to the distinct affine structures there correspond

distinct linear connections.

D) Let, conversely, V be any locally flat, holomorphic linear connection

on M and let M be the universal covering manifold of M. Then there is defined

uniquely a connection V on M such that, for smooth vector fields X and Y on M,

we have Vr*-SΓ*=(Vy^T)*, where, for each vector field X on M, X* denotes the

lift of X. V is also locally flat and holomorphic. Let φ={P} be the complex

vector space of all parallel complex holomorphic vector fields on M. Then

the map P-*P(ά)(ά<^M) is a bijection of ^ onto Γ~(M). In particular

dimc φ — n = dimc M. φ form an abelian Lie algebra, because [P, P'] =

Let T be the fundamental group of M . Then T acts from the right on M

and the action of each element of T is holomorphic and affine.

Fix a point a^M and let a be a point of M such that π(ά)=ay π denoting

the projection of M onto. M. For each vector y^Ta(M), there exists one and

only one Peφ such that dπ P(ά)=y. We denote this vector field P by Py.

Let yEEΓ. Then γ is a holomorphic affine transformation and hence

dγ φcφ. Put

(1) d<γ Py = Pfwy.

Then y->/(y) is a representation of the group Γ in the vector space Ta(M).

Now let {Pj, ••• , Pn} (τx=dimcM) be a basis of the complex vector space

^β. Then we can define n holomorphic 1-forms {ω1, •• ,ωw} on M by the

condition

These 1-forms are closed. There exists a basis {yly ••• , 3;̂ } of Γί(

such that Pi=Pyi (/=!, 2, •••,). We can define a TV (M)- valued holomorphic

1-form ^ on M by

θ = Σ ω'y, .
ι = l

Then we have :

(2) θ(P) = dπ P(a),

and

( 3 ) 4$ = 0 ,



218 Y. MATSUSHIMA

Moreover,

(4) (dΎ)*θ=f(Ύ)-θ,

In fact, let Pe«β. Then there exists y<= T% (M) such that P=Py. Then

((dΎ)*θ)(P) = θ(dΊ P,) = θ(PfWy) = f(Ύ)-y by (2).

On the other hand, by (2) y=θ(P) and hence ((^7)* #)(P)=/( y) 0(P) and this
proves the equality (4). For any X^M, let

( 5 ) φ(X) = ("θ .
Ja

Then φ is a holomorphic map of M into T^ (M). Put

for all γeΓ. We have then

( 7 )

In particular for %=σά (σeΓ), we have

This shows that g is a 1-cocycle of the group Γ and that, if we denote α(γ)

the complex affine transformation #-*/(7)#+<?(γ) of T£ (M), then γ— *β(γ) is a
homomorphism of Γ into the group of complex affine transformations of Tί (M).
Moreover (7) shows that

(7')

By the definition of φy we have

(dφ)(X) = Θ(X)

and θ(%): T^(M)-^Ta(M) is bijective. Therefore φ is a holomorphic im-

mersion of M into the n dimensional complex vector space T£ (M) which

satisfies (7')*. Let U be an open subset of M evenly covered by π such that

each connected component of π~l(U] is mapped bijectively by φ onto an open

set in Cn—Ta(M}. Let {7 be any one of the connected components of π~\U)

and let α/r be the holomorphic bijective map of U onto φ(U) defined by

Λ/Γ— φo(π\ U)'1. Then it is easy to check that {([/, -ψ )} defines a complex

affine structure on M and that the locally flat holomorphic linear connection

associated with this complex affine structure coincides with V.

* The mapping φ is the "development" of M in Cn, The present way of defining the
development <p is due to J.L. Koszul,
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Thus there is a one-to-one correspondence between the set A(M) of all

complex affine structures on a complex manifold M and the set of all locally flat,

holomorphic linear connections on M.

2. In the following we shall denote by A(M) the set of all locally flat,

holomorphic linear connections on M. We denote by g the complex Lie
algebra of all holomorphic vector fields on M. From now on we assume that M

is compact. Then g is identified with the Lie algebra of the group Aut (M).
Now let V^A(M). Then the map (X, Y)->—VYX is a bilinear map of

g X g into g. Let

(8) X Y= -VYX.

Then this multiplication in g defines an algebra structure on the complex vector

space g and we denote this algebra by g(V).

DEFINITION. Let A be an algebra over a field k and set [x, y, z] =

x(yz)—(xy)z and call it the associator of x, y and z. We call A a pre-Lie

algebra, if the relation

[>, y, z] = [x, *, y]

holds for any x, y and z in A.

For example, an associative algebra A is a pre-Lie algebra. Let A be a

pre-Lie algebra and set

0, y] = xy—yx

for xΛy^A. Then we can show and that the bracket product [x, y] defines a

Lie algebra. We call this Lie algebra the Lie algebra associated with A.

REMARK. The notion of pre-Lie algebras has been introduced by M.

Gerstenhaber in connection with the deformation of algebras. See [1] and [3].

DEFINITION. Let g be a Lie algebra over a field k and A a pre-Lie algebra

over k. We call A pre-Lie algebra over g if the associated Lie algebra of A is g.

Lemma 1. Let g be the algebra of all holomorphic vector fields on a compact

complex manifold M and let V be a locally flat holomorphic linear connection on M.

Then the algebra g(V) is a pre-Lie algebra over g.

This lemma follows easily from the definition of the multiplication in g(V)

and from the fact that the torsion and the curvature of V are 0.

Let us denote by A(Q) the set of all pre-Lie algebra structures over g.

Then the map V-^g(V) defines a map of A(M) into A(Q).

Assume now that M is homogeneous. Then for any p^M, the tangent

vectors X(p) (X GΞQ) span the tangent space Tp(M). Then we see easily that
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the map of A(M) into A($) is injective.
Now let

If Y<^QP, then (V YX)(p)=V Y^X=Q and hence g^ is a left ideal of g(V).
Conversely we have the following lemma.

Lemma 2. Let M be a compact homogeneous complex manifold and let § be
the Lie algebra of all holomorphic vector fields on M. Let A be a pre-Lie algebra over
Q such that Qp is a left ideal of A for every p^M. Then there exists a locally
flat holomorphic linear connection V on M such that A=

Proof. Let/>eM and u<=Tp(M). Then there exists a y<Ξg such that
Y(p)=u. For any X^Q define VuX^Tp(M) by putting

VUX=-(X.Y)(P).

This definition does not depend on the choice of Y e g such that Y(p)=u,
because Qp is a left ideal of A. For any vector field Y and any X^Q, VYX will
denote the vector field on M such that

Then the following equalities hold:
1) VfyX=fVγX, where /is a smooth function on M;
2) Vγ+y'X=VγX+Vγ'X; VY(X+X')=VYX+VYX',

where Y and Y' are smooth vector fields on M and X, X'^Q]
3) VyX is a smooth vector field; in fact, let p^M. Then in a neighbor-

hood U of p, Y is written uniquely in the form y=/1yι-| ----- \-fnYn, where
Y19 ••• , Yn are in g and/1, ••• ,/nare smooth functions on U. At each point

?e=E7, we have (V^(?) = Σ/'(?)(Vy^(?)= -Σ/M-^ ^)(?) and hence

VYX is smooth on U.
Next let y be a smooth vector field and u<= Tp(M). Define Vwy<Ξ Tp(M)

by

where ^Γ is a vector field in g such that u=X(p). We have to show that this
definition is consistent. It suffices to show that

whenever X(p)=Q and XfΞQ. To see this let Y^fY^ ----- \-f*Y« in a
neighborhood U of p, where Ylt ••• ,YMeg. Then

A and [X, Y] =
^
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on U. Since X(p) = Q, we have ( X f i ) ( ρ ) = 0 and, since X and Yt are in

g, [X, yj = * y,- y, - X. Therefore [*, yj(/>) = (X Yέ)(p) -(Yr X)(ρ) =

Vy^X and hence Vyc>>*+ [X, Y](ρ) = ίlf'(p)
i=1

=0. Thus we have denned the tangent vector VUY for

any z/e Tp(M) and any smooth vector field Y. The following conditions hold:

ii) VU+0Y=

iii) VM(/y) =/(/>) VMy+w/ y, where /is a smooth function.
Thus we have defined a linear connection V on M and it is easily seen that the

torsion of V is 0 and that VYX=-X Y for X, YϊΞQ. Then VX(VYZ)-
Vy(VxZ)-V[X>Y}Z=[Z, X, y]-[Z, y, jη=0 for jr, y, Z<=Q. It follows then

that the curvature of V is 0. Moreover it is easily seen that V is holomorphic

and g(V)=^4 and the lemma is proved.
Assume now that g^= {0} for all p £Ξ M. This is the case if and only if M

is of the form M= G/D, where G is a complex Lie group and D is a discrete

subgroup of G. In this case, the map V^g(V) establishes a one-to-one
correspondence between the set of all complex affine structures on M and the
set A(Q) of all pre-Lie algebra structures over g. In particular, this holds for a
complex torus M. In this case the Lie algebra g is abelian and Theorem 1
follows from the following lemma and from what we have proved so far.

Lemma 3. Let A be a pre-Lie algebra over a Lie algebra g. Assume g is
abelian. Then A is a commutative associative algebra.

In fact, xy—yx=\x,y\ = Q and hence xy=yχ for xyy^A. Moreover,

x(yz) — (xy)z=x(zy) — (xz)y and yz=zy and hence (xy)z=(xz)y. But (xy)z =
z(xy) and (xz)y=(zx)y and hence z(xy) = (zx)y and this proves that A is
associative.

Now each pre-Lie algebra structure over g is identified with an element of

the vector space g*®g*®g and A(Q) is identified with an algebraic subset of

g*®g*®g. For each p^M, Let Ap be the subset of ^l(g) consisting of all
pre-Lie algebra over g such that g^, is a left ideal. Then Ap is an algebraic subset

of ^l(β) and by Lemma 2, A(M) is identified with Π Ap: A(M)= Π Ap. Then
/>GΞJ£ pζΞM.

there exists a finite number of points ply ••• ,pr in M such that A(M)= Π APi
i = l

and hence A(M) is a complex affine variety. This proves Theorem 2.
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