ON THE REGULARITY OF THE WEAK SOLUTIONS OF ABSTRACT DIFFERENTIAL EQUATIONS

Viorel BARBU

(Received November 13, 1968)
(Revised February 17, 1969)

1. Preliminaries

Let H be a Hilbert space; (), \|\| and are the notations for the scalar product and for the norm. Denote by R the real axis, $-\infty<t<\infty$, and $\mathscr{D}(R), \mathscr{D}(R, H)$, $\mathscr{D}^{\prime}(R, H)$ the spaces of infinitely differentiable scalar functions with compact support, infinitely differentiable H-valued functions with compact support and H-valued distribution, respectively, on R with their usual topologies (see L. Schwartz [7]). The space of H-valued distributions with compact support will be denoted by $\mathcal{E}^{\prime}(R, H)$. If $u \in \mathscr{D}^{\prime}(R, H)$ we may define $D^{k} u \in \mathscr{D}^{\prime}(R, H)$ by the formula: $D^{k} u(\varphi)=(-1)^{k} u\left(D^{k} \varphi\right), \forall \varphi \in \mathscr{D}(R, H)$. If $\varphi \in \mathscr{D}(R, H)$ then for each complex $\lambda, \hat{\rho}(\lambda)$ denotes its Fourier-I aplace transform. (Here $D^{1} \varphi=$ $\left.=1 / i \frac{d \varphi}{d t}\right)$.

Let $A: D_{A} \subset H \rightarrow H$ be a closed linear operator with the domain D_{A} dense in H and let A^{*} be its adjoint. The domain $D_{A} *$ of the operator A^{*} is Banach space in the norm $|x|=\|x\|+\left\|A^{*} x\right\|$. We denote by $\mathscr{D}\left(R, D_{A^{*}}\right)$ the space of infinitely differentiable D_{A}-valued functions with compact support on R and by $\mathscr{D}^{\prime}\left(R, D_{A} *\right)$ its dual. Since $\mathscr{D}\left(R, D_{A} *\right)=\mathscr{D}(R) \widehat{\otimes} D_{A^{*}}$ it is easy to see that the space $\mathscr{D}\left(R, D_{A}{ }^{*}\right)$ is dense in $\mathscr{D}(R, H)$. In an analogous manner, we may define the spaces $\mathscr{D}(a, b ; H), \mathscr{D}^{\prime}(a, b ; H)$ and $\mathscr{D}\left(a, b ; D_{A^{*}}\right)$. Let $L^{*}: \mathscr{D}\left(R, D_{A^{*}}\right) \rightarrow$ $\mathscr{D}(R, H)$ be the linear operator

$$
\begin{equation*}
L^{*} \varphi=-\left(\frac{1}{i} \frac{d \varphi}{d t}+A^{*} \varphi\right) \tag{1.1}
\end{equation*}
$$

and let $L: \mathscr{D}^{\prime}(R, H) \rightarrow \mathscr{D}^{\prime}\left(R, D_{A} *\right)$ be its adjoint defined by

$$
\begin{equation*}
L u(\varphi)=u\left(L^{*} \varphi\right), \quad \varphi \in \mathscr{D}\left(R, D_{A}{ }^{*}\right) . \tag{1.2}
\end{equation*}
$$

Let $\mathcal{L}(\mathscr{D}, H)$ be the space of all vector H-valued distributions $\mathcal{L}(\mathscr{D}(R, H), H)$. For $E \in \mathcal{L}(\mathscr{D}, H)$ we define $L E$ by the formula

$$
\begin{equation*}
L E(\varphi)=E\left(L^{*} \varphi\right), \quad \varphi \in \mathscr{D}\left(R, D_{A^{*}}\right) \tag{1.3}
\end{equation*}
$$

and denote, for ev ϵ ry $\varphi \in \mathscr{D}(R, H)$

$$
(E * \varphi)(t)=E_{s}(\varphi(t-s)) .
$$

It is easy to see that $E * \varphi \in C^{\infty}(R, H)$. If $u \in \mathcal{E}^{\prime}(R, H)$ and $E \in \mathcal{L}(\mathscr{D}, H), E * u$ denotes the distribution defined by

$$
(E * u)(\varphi)=u_{t}\left(E_{s}(\varphi(t+s)), \quad \varphi \in \mathscr{D}(R, H) .\right.
$$

If $\varphi(t) \in \mathscr{D}(R)$, then as in the scalar case it follows immediately

$$
\operatorname{supp}(\rho E * u) \subset \operatorname{supp} \rho+\operatorname{supp} u
$$

Definition. We say that the distribution $u \in \mathscr{D}^{\prime}(a, b ; H)$ is a weak solution on (a, b) of the equation

$$
\begin{equation*}
\frac{1}{i} \frac{d u}{d t}-A u=f \tag{E}
\end{equation*}
$$

where $f \in \mathscr{D}^{\prime}\left(a, b ; D_{A^{*}}\right)$, if the following relation

$$
\begin{equation*}
u\left(L^{*} \varphi\right)=f(\varphi) \tag{1.4}
\end{equation*}
$$

holds for any $\varphi \in \mathscr{D}\left(a, b ; D_{A^{*}}\right)$.
The existence theorems for the weak solutions of the equation (E) have been obtained by T. Kato and H. Tanabe [3], S. Zaidman [8] and M. A. Malik [6]. We give in this paper some results concerning the regularity of the weak solutions of (E). For the strict solutions of (E) a similar result has been proved by S. Agmon and L. Nirenberg [1].

2. Differentiability of solutions

In the following we denote by $R\left(\lambda, A^{*}\right)$ the resolvent $\left(\lambda I-A^{*}\right)^{-1}$ of the operator A^{*}.

Theorem 1. Suppose that for every $m>0$ there exists a number $C_{m}>0$ such that the resolvent $R\left(\lambda, A^{*}\right)$ exists in the domain

$$
\begin{equation*}
\Lambda_{m}=\left\{\lambda ;|\operatorname{Im} \lambda| \leqslant m \log |\operatorname{Re} \lambda| ;|\operatorname{Re} \lambda| \geqslant C_{m}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|R\left(\lambda, A^{*}\right)\right\| \leqslant C_{m}^{1}|\lambda|^{M} \exp (N|\operatorname{Im} \lambda|), \quad \text { in } \Lambda m, \tag{2.2}
\end{equation*}
$$

where $M>0, N>0$ are constants independent of m and $C_{m}^{1}>0$. Then every weak solution $u \in \mathscr{D}^{\prime}(-a, a ; H)$ of (E) with $f \in C^{\infty}(-a, a ; H)$ is infinitely differentiable on the interval $|t|<a-N$.

Proof. Let $E \in \mathcal{L}\left(\mathscr{D}, D_{A^{*}}\right)$ be defined by the equality

$$
\begin{equation*}
E(\varphi)=-(2 \pi)^{-1} \int_{|\sigma| \geqslant C_{m}} R\left(-\sigma, A^{*}\right) \hat{\mathcal{P}}(\sigma) d \sigma ; \quad \varphi \in \mathscr{D}(R, H) \tag{2.3}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
E\left(L^{*} \varphi\right)=\varphi(0)-\int_{|\sigma| \leqslant C_{m}} \hat{\mathcal{P}}(\sigma) d \sigma ; \quad \varphi \in \mathscr{D}\left(R, D_{A} *\right) . \tag{2.4}
\end{equation*}
$$

We denote by Δ the interval ($-a^{\prime}, a^{\prime}$) where $a^{\prime}<a-N_{1}, N<N_{1}<a$, and consider $\varphi(t) \in \mathscr{D}(R)$ such that $\varphi(t)=1$ for $|t| \leqslant a^{\prime}+\delta$ and $\varphi(t)=0$ in $|t| \geqslant a^{\prime}+\delta^{\prime}$. Assume that $N<\delta<\delta^{\prime}<N_{1}$. If $u \in \mathscr{D}^{\prime}(-a, a ; H)$ is a weak solution of (E) then we have

$$
\begin{equation*}
L(u \varphi)(\psi)=(f \varphi)(\psi)+\left(D^{1} \varphi u\right)(\psi) \tag{2.5}
\end{equation*}
$$

for every $\psi \in \mathscr{D}(-a, a ; H)$. On the other hand since A^{*} is closed, from (2.2) it follows

$$
\begin{equation*}
(L(u \varphi) * E)(\psi)=(L E * u \varphi)(\psi) \tag{2.6}
\end{equation*}
$$

Let us denote by g the distribution $D^{1} \varphi \cdot u$. Then from (2.4) and (2.5) we get

$$
\begin{equation*}
u \varphi(\psi)=(E * f \varphi)(\psi)+(E * g)(\psi)+u \varphi\left(h_{\psi}\right) \tag{2.7}
\end{equation*}
$$

for every $\psi \in \mathscr{D}(-a, a ; H)$, where $h_{\psi}(t)=\int_{|\sigma| \leqslant C_{m}} e^{i t \sigma} \hat{\psi}(\sigma) d \sigma$.
Obviously

$$
\begin{equation*}
\left\|D^{k} h_{\psi}(t)\right\| \leqslant M_{k}\|\psi\|_{L^{2}}, \quad t \in R \tag{2.8}
\end{equation*}
$$

for any $\psi \in \mathscr{D}(-a, a ; H)$, where $\left\|\|_{L^{2}}\right.$ denotes the norm in the space $L^{2}(R, H)$.
Since $f \varphi \in C^{\infty}(R, H)$ it follows that $E * f \varphi \in C^{\infty}(R, H)$ which implies that

$$
\begin{equation*}
\left|D^{k}(E * f \varphi)(\psi)\right| \leqslant M_{k}^{1}\|\psi\|_{L^{2}} ; \quad \psi \in \mathscr{D}(-a, a ; H) . \tag{2.9}
\end{equation*}
$$

Let $\rho(t)$ be a scalar C^{∞} function on the real line such that $\rho(t)=1$ for $|t| \leqslant \varepsilon$ and $\rho(t)=0$ for $|t| \geqslant \varepsilon^{\prime} ; 0<\varepsilon<\varepsilon^{\prime}$.

Since supp $g \subset\left\{t ; a^{\prime}+\delta<|t| \leqslant a^{\prime}+\delta^{\prime}\right\}$, taking ε so small such that $\varepsilon^{\prime}<\delta$, from an above remark we deduce that $(\rho E * g)(\psi)=0$ for any $\psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; H\right)$.

Hence

$$
\begin{equation*}
(E * g)(\psi)=((1-\rho) E * g)(\psi), \quad \psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; H\right) . \tag{2.10}
\end{equation*}
$$

Now we introduce the function $\psi_{t}^{(k)}(s)=(1-\rho(s)) D^{k} \psi(t+s)$ and denote by $\hat{\psi}_{t}^{(k)}(\lambda)$ its Laplace transform. Let m be an arbitrary non-negative integer. We may write $\hat{\psi}_{t}^{(k)}(\lambda)$ in the form

$$
\hat{\psi}_{t}^{(k)}(\lambda)=\hat{\psi}_{t, 1}^{(k)}(\lambda)+\hat{\psi}_{t, 2}^{(k)}(\lambda)
$$

where

$$
\hat{\psi}_{t, 1}^{(k)}(\lambda)=\int_{s>\varepsilon} e^{-i \lambda s}(1-\rho(s)) D^{k} \psi(t+s) d s
$$

and

$$
\hat{\psi}_{t, 2}^{(k)}(\lambda)=\int_{s<-\varepsilon} e^{-i \lambda s}(1-\rho(s)) D^{k} \psi(t+s) d s
$$

A simple computation shows that with another constant M_{k}, one must have the estimates,

$$
\begin{equation*}
\left\|\hat{\psi}_{t, 1}^{(k)}(\sigma-i m \log |\sigma|)\right\| \leqslant M_{k}|\sigma|^{k-m \varepsilon}\|\psi\|_{L^{2}}, \quad \sigma \in R \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\| \hat{\psi}_{t, 2}^{(k)}\left(\sigma+i m \log |\sigma|\left\|\leqslant M_{k}|\sigma|^{k-m \varepsilon}\right\| \psi \|_{L^{2}}, \quad \sigma \in R\right. \tag{2.12}
\end{equation*}
$$

Let $f_{i}^{(k)}(t)$ be the functions

After a suitable deformation of contours in the complex plane, the functions $f_{i}^{(k)}(t)$ can be expressed in the following form

$$
\begin{equation*}
f_{i}^{(k)}(t)=(2 \pi)^{-1} \int_{\Gamma_{m}^{i}} R\left(-\lambda, A^{*}\right) \hat{\psi}_{t, i}^{(k)}(\lambda) d \lambda ; \quad i=1,2 ; \tag{2.14}
\end{equation*}
$$

where Γ_{m}^{1} is the frontier of the domain $\left\{\lambda ; \operatorname{Im} \lambda \geqslant-m \log |\operatorname{Re} \lambda| ;|\operatorname{Re} \lambda| \geqslant C_{m}\right\}$ and Γ_{m}^{2} the frontier of $\left\{\lambda ; \operatorname{Im} \lambda \leqslant m \log |\operatorname{Re} \lambda| ;|\operatorname{Re} \lambda| \geqslant C_{m}\right\}$. It is easy to see that the shift of the integration contour is legitimate. Now we have on Γ_{m}^{\prime},

$$
\left\|R\left(-\lambda, A^{*}\right) \hat{\psi}_{t, i}^{(k)}(\lambda)\right\| \leqslant M_{k}|\sigma|^{M+k-m(\varepsilon-N)}\|\psi\|_{L^{2}} ; \quad \sigma=R e \lambda
$$

Choosing ε so that $\varepsilon>N$ and m so large such that $M+k-m(\varepsilon-N)<-1$, one obtains

$$
\begin{equation*}
\left\|f_{t}^{(k)}(t)\right\| \leqslant M_{k}^{1}\|\psi\|_{L^{2}} ; \quad t \in R ; \psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; H\right) . \tag{2.15}
\end{equation*}
$$

We remark that

$$
D^{k}((1-\rho) E * g)(\psi)=(-1)^{k}\left(g\left(f_{1}^{(k)}\right)+g\left(f_{2}^{(k)}\right)\right) .
$$

From (2.15) this implies that

$$
\begin{equation*}
\left\|D^{k}((1-\rho) E * g)(\psi)\right\| \leqslant M_{k}\|\psi\|_{L^{2}} ; \quad \psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; D_{A^{*}}\right) . \tag{2.16}
\end{equation*}
$$

Using (2.7), (2.8), (2.9) and (2.16) we obtain

$$
\begin{equation*}
\left|D^{k}(u \varphi)(\psi)\right| \leqslant M_{k}\|\psi\|_{L^{2}} ; \quad \psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; D_{A^{*}}\right) \tag{2.17}
\end{equation*}
$$

Since the space $\mathscr{D}\left(-a^{\prime}, a^{\prime} ; D_{A^{*}}\right)$ is dense in $\mathscr{D}\left(-a^{\prime}, a^{\prime} ; H\right)$ from the HahnBanach theorem it follows that $D^{k}(u \varphi) \in L^{2}\left(-a^{\prime}, a^{\prime} ; H\right)$ for any $k=0,1 \cdots$. Hence $u \varphi \in C^{\infty}\left(-a^{\prime}, a^{\prime} ; H\right)$. Because the number $N_{1}>N$ is arbitrary, the proof is complete.

Corollary 1. Suppose that there exist some non-negative numbers N, C, N_{0} such that $R\left(\lambda, A^{*}\right)$ exists in the domain

$$
\begin{equation*}
\Lambda=\left\{\lambda ;|\operatorname{Im} \lambda| \leqslant C \log |\operatorname{Re} \lambda| ; \quad|\operatorname{Re} \lambda| \geqslant N_{0}\right\} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|R\left(\lambda, A^{*}\right)\right\| \leqslant \operatorname{pol}(|\lambda|) \exp (N|\operatorname{Im} \lambda|) \tag{2.19}
\end{equation*}
$$

Then every solution $u \in \mathscr{D}(R, H)$ of (E), with $f \in C^{\infty}(R, H)$, is infinitely differentiable on R.

Corollary 2. Suppose that $f \in \mathscr{D}^{\prime}\left(-a, a ; D_{A}{ }^{*}\right)$ such that

$$
\begin{equation*}
\left|D^{k} f(\psi)\right| \leqslant M_{k}\left\|\psi+A^{*} \psi\right\|_{L^{2}} ; \quad \forall \psi \in \mathscr{D}\left(-a, a ; D_{A^{*}}\right) \tag{2.20}
\end{equation*}
$$

If the hypotheses of theorem 1 are satisfied, then every solution $u \in \mathscr{D}^{\prime}(-a, a ; H)$ of (E) is infinitely differentiable on the subinterval $|t|<a-N$.

Proof. The proof in this case is very much the same, except the inequality (2.9). To estimate $\left|D^{k}(E * f \varphi)(\psi)\right|$ we remark that

$$
\left\|A^{*}(E * \psi)(t)\right\| \leqslant M\left\|D^{l} \psi\right\|_{L^{2}} ; \quad \psi \in \mathscr{Q}(-a, a ; H)
$$

where l is a non-negative integer. From (2.6), (2.7) and (2.16) this implies that

$$
\begin{equation*}
\left|D^{k}(u \varphi)(\psi)\right| \leqslant M_{k}\left\|D^{\imath} \psi\right\|_{L^{2}} ; \quad \psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; D_{A^{*}}\right) \tag{2.21}
\end{equation*}
$$

As in the proof of theorem 1 this implies that $u \in C^{\infty}\left(-a^{\prime}, a^{\prime} ; H\right)$.
Remark. If $u \in C^{\infty}(\Delta, H)$ is a weak solution of (E) with $f \in C^{\infty}(\Delta, H)$, then $u(t)$ is a strict solution of (E). To prove this it is enough to choose in the equality (1.2), $\varphi=\varphi_{0} \otimes x$ where $\varphi_{0} \in \mathscr{D}(\Delta)$ and $x \in H$. Hence the necessity results for differentiability, proved by Agmon-Nirenberg [1], are true in our case.

3. Hypoanaliticity of solutions

Definitions. A $C^{\infty} H$-valued function $u(t)$ is said to be d-hypoanalytic on $\Delta \subset R$ if for any compact subset $K \subset \Delta$ there exists a non-negative constant M_{K} such that for any k the following inequality be true

$$
\begin{equation*}
\left\|D^{k} u ; K\right\|_{\infty} \leqslant M_{K}^{k+1}(k!)^{d} \tag{3.1}
\end{equation*}
$$

where $\|u, K\|_{\infty}=\sup _{t \in K}\|u(t)\|$.

In the following we denote by $G^{d}(\Delta, H)$ the space of all d - H-valued hypoanalytic functions on Δ. If $H=R$ we omit R and write $G^{d}(\Delta)$.

Theorem 2. Suppose that $R\left(\lambda, A^{*}\right)$ exists in a region

$$
\Sigma:\left\{\lambda ;|\operatorname{Im} \lambda| \leqslant C|\operatorname{Re} \lambda|^{1 / d} ; \quad|\operatorname{Re} \lambda| \geqslant N_{0}\right\}
$$

$C, N_{0} \geqslant 0, d \geqslant 1$ and that

$$
\begin{equation*}
\left\|R\left(\lambda, A^{*}\right)\right\| \leqslant \operatorname{pol}(|\lambda|) \exp (N|\operatorname{Im} \lambda|) ; \tag{3.2}
\end{equation*}
$$

for some $N \geqslant 0$. Let $u \in \mathcal{D}^{\prime}(-a, a ; H)$ be a solution of (E) with $f \in G^{d}(-a, a ; H)$. Then u is d-hypoanalytic in the interval $|t|<a-N$.

Proof. We use the notations of the proof of theorem 1. First we assume that $d>1$. Then we may choose $\varphi \in \mathscr{D}(R) \cap G^{d}(R)$ so that $\varphi(t)=1$ for $|t| \leqslant a^{\prime}$ $+\delta$ and $\varphi(t)=0$ for $|t| \geqslant a^{\prime}+\delta^{\prime} ; N<\delta<\delta^{\prime}<N_{1}$. Hence $E * f \varphi \in G^{d}(R, H)$ and

$$
\begin{equation*}
\left|D^{k}(E * f \varphi)(\psi)\right| \leqslant M^{k+1}(k!)^{d}\|\psi\|_{L^{2}} \tag{3.4}
\end{equation*}
$$

for every $\psi \in \mathscr{D}(-a, a ; H)$.
Let $\rho(t)$ be a scalar $G^{d}(R)$-function such that $\rho(t)=1$ for $|t| \leqslant \varepsilon$ and $\rho(t)=0$ for $|t|>\varepsilon^{\prime}$, where $0<\varepsilon<\varepsilon^{\prime}$. To estimate $\left|D^{k}((1-\rho) E * g)(\psi)\right|$ we write it in the form

$$
\begin{equation*}
D^{k}((1-\rho) E * g)(\psi)=(-1)^{k}\left(g\left(f_{1}^{(k)}\right)+g\left(f_{2}^{(k)}\right)\right) \tag{3.5}
\end{equation*}
$$

where

$$
f_{i}^{(k)}(t)=(2 \pi)^{-1} \int_{|\sigma| \geqslant N_{0}} R\left(-\sigma, A^{*}\right) \hat{\psi}_{l, 1}^{(k)}(\sigma) d \sigma, \quad i=1,2
$$

Using the fact that $\rho \in G^{d}(R)$ we obtain the estimates

$$
\begin{array}{r}
\left\|\psi_{c, 1}^{(k)}\left(\sigma-i C|\sigma|^{1 / d}\right)\right\| \leqslant M \exp \left(-C \varepsilon|\sigma|^{1 / d}\right) \tag{3.6}\\
\|\psi\|_{L^{2}} \sum_{j=0}^{k} M^{j}(j!)^{d}|\sigma|^{k-j}
\end{array}
$$

and similarly

$$
\begin{align*}
& \left\|\psi_{t, i}^{(k)}\left(\sigma+i C|\sigma|^{1 / d}\right)\right\| \leqslant \tag{3.7}\\
& \quad \leqslant M \exp \left(-C \varepsilon|\sigma|^{1 / d}\right)\|\psi\|_{L^{2}} \sum_{j=0}^{k} M^{j}(j!)^{d}|\sigma|^{k-j}
\end{align*}
$$

By a contour deformation we may write

$$
\begin{equation*}
f_{i}^{(k)}(t)=(2 \pi)^{-1} \int_{\Gamma^{i}} R\left(-\lambda, A^{*}\right) \hat{\psi}_{t, i}^{(k)}(\lambda) d \lambda \tag{3.8}
\end{equation*}
$$

where $\Gamma^{1}=\left\{\lambda ; \lambda=\sigma+i C|\sigma|^{1 / d}\right\} \cup\left\{|\operatorname{Re} \lambda|=N_{0} ; 0 \leqslant \operatorname{Im} \lambda \leqslant C N_{0}^{1 / d}\right\}$ and $\Gamma^{2}=$ $\left\{\lambda ; \lambda=\sigma-i C|\sigma|^{1 / d},|\sigma| \geqslant N_{0}\right\} \cup\left\{|R e \lambda|=N_{0} ;-C N_{0}^{1 / d} \leqslant \operatorname{Im} \lambda \leqslant 0\right\}$.

Using the estimates (3.6) and (3.7) we get

$$
\begin{equation*}
\left\|f_{i}^{(k)}(t)\right\| \leqslant M\|\psi\|_{L^{2}} \sum_{j=0}^{k} M^{j}(j!)^{d} \int|\sigma|^{p+k-j} \exp (N-\varepsilon) C|\sigma|^{1 / d} d \sigma \tag{3.9}
\end{equation*}
$$

for every $\psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; D_{A^{*}}\right)$. Choosing $\varepsilon>N$, from Stirling's formula it follows

$$
\begin{equation*}
\left\|f_{i}^{(k)}(t)\right\| \leqslant M_{1}^{k+1}(k!)^{d}\|\psi\|_{L^{2}} ; \psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; H\right), \quad i=1,2 \tag{3.10}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left|D^{k}((1-\rho) E * g)(\psi)\right| \leqslant M_{1}^{k+1}(k!)^{d}\|\psi\|_{L^{2}} \tag{3.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|D^{k}(u \varphi)(\psi)\right| \leqslant M_{1}^{k+1}(k!)^{d}\|\psi\|_{L^{2}}, \quad \text { for } \quad \psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; H\right) \tag{3.12}
\end{equation*}
$$

where M_{1} is a non-negative constant independent of k. Hence $u \in G^{d}\left(-a^{\prime}, a^{\prime}\right.$; H).

To prove theorem 2 in the analytic case $d=1$, we consider instead of $\varphi(t)$ and $\rho(t)$ two sequences of C^{∞} scalar functions $\left\{\varphi_{j}(t)\right\}_{j=0}^{\infty}$ and $\left\{\rho_{j}(t)\right\}_{j=0}^{\infty}$ such that (see Friberg [2])

$$
\begin{equation*}
\left|D^{k} \varphi_{j}(t)\right| \leqslant M^{k+1} j^{k} ; \quad \text { for } \quad k \leqslant j, \tag{3.13}
\end{equation*}
$$

where supp $\varphi_{j} \subset\left\{t ;|t| \leqslant a^{\prime}+\delta^{\prime}\right\}, \varphi_{j}(t)=1$ for $|t| \leqslant a^{\prime}+\delta$ and similarly

$$
\begin{equation*}
\left|D^{k} \rho_{j}(t)\right| \leqslant M^{k+1} j^{k} \quad \text { for } \quad k \leqslant j \tag{3.14}
\end{equation*}
$$

supp $\rho_{j} \subset\left\{t ;|t| \leqslant \varepsilon^{\prime}\right\}$ and $\rho_{j}(t)=1$ for $|t| \leqslant \varepsilon$.
Then denoting $g_{j}=D^{1} \varphi_{j} u$, as above we obtain

$$
\begin{equation*}
\left.\mid D^{k}\left(1-\rho_{k}\right) E * g_{k}\right)(\psi) \mid \leqslant M_{1}^{k+1} k^{k}\|\psi\|_{L^{2}} \tag{3.15}
\end{equation*}
$$

for every $\psi \in \mathscr{D}\left(-a^{\prime}, a^{\prime} ; H\right)$ and $k=0,1, \cdots$
Hence

$$
\left\|D^{k}\left(u \varphi_{k}\right)\right\|_{\infty} \leqslant M_{1}^{k+1} k!, \quad k=0,1, \cdots
$$

That is $u \in G^{1}\left(-a^{\prime}, a^{\prime} ; H\right)$.
As consequence of theorem 2 we get the following result (see AgmonNirenberg [1])

Corollary 1. Suppose that $R\left(\lambda, A^{*}\right)$ exists in the sector $\sum:\{|\arg (\pm \lambda)| \leqslant \alpha$; $\left.|\lambda| \geqslant N_{0}\right\}, 0<\alpha<\pi / 2$, and

$$
\left\|R\left(\lambda, A^{*}\right)\right\| \leqslant \operatorname{pol}(|\lambda|) \exp (N|\operatorname{Im} \lambda|), \quad \text { for } \quad \lambda \in \sum
$$

where N is a non-negative constant. Suppose that f is analytic in $|t|<a$. Then every solution $u \in \mathscr{D}^{\prime}(-a, a ; H)$ of (E) is analytic in the subinterval $|t|<a-N$.

By a slight modification of the preceding proof one easily verifies the following

Remark. The conclusions of theorem 2 hold if we merely assume that $f \in \mathscr{D}^{\prime}\left(-a, a ; D_{A} *\right)$ and

$$
\begin{equation*}
\left|D^{k} f(\psi)\right| \leqslant M^{k+1}(k!)^{d}\left\|\psi+A^{*} \psi\right\|_{L^{2}}, \quad \psi \in \mathscr{D}\left(-a, a ; D_{A^{*}}\right) \tag{3.16}
\end{equation*}
$$

Jassy University

Bibliography

[1] S. Agmon and L. Nirenberg: Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121-239.
[2] J. Friberg: Estimates for partially hypoelliptic differential operators, Thesis, Lund, 1963.
[3] T. Kato and H. Tanabe: On the abstract evolution equations, Osaka Math. J. 13 (1962), 107-133.
[4] L. Hörmander: Linear Partial Differential Operators, Springer, Berlin, 1963.
[5] J.L. Lions: Equations Différentielles Opérationnelles, Springer, Berlin, 1961.
[6] M.A. Malik: Weak solutions of abstract differential equations, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 883-884.
[7] L. Schwartz: Théorie des Distributions, Hermann, Paris, 1967.
[8] S. Zaidman: A global existence theorem for some differential equations in Hilbert spaces, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1019-1022.

