ON THE REGULARITY OF THE WEAK SOLUTIONS OF ABSTRACT DIFFERENTIAL EQUATIONS

VIOREL BARBU

(Received November 13, 1968) (Revised February 17, 1969)

1. Preliminaries

Let *H* be a Hilbert space; (), || || and are the notations for the scalar product and for the norm. Denote by *R* the real axis, $-\infty < t < \infty$, and $\mathcal{D}(R)$, $\mathcal{D}(R, H)$, $\mathcal{D}'(R, H)$ the spaces of infinitely differentiable scalar functions with compact support, infinitely differentiable *H*-valued functions with compact support and *H*-valued distribution, respectively, on *R* with their usual topologies (see L. Schwartz [7]). The space of *H*-valued distributions with compact support will be denoted by $\mathcal{E}'(R, H)$. If $u \in \mathcal{D}'(R, H)$ we may define $D^k u \in \mathcal{D}'(R, H)$ by the formula: $D^k u(\varphi) = (-1)^k u(D^k \varphi)$, $\forall \varphi \in \mathcal{D}(R, H)$. If $\varphi \in \mathcal{D}(R, H)$ then for each complex λ , $\dot{\phi}(\lambda)$ denotes its Fourier-Laplace transform. (Here $D^i \varphi =$ $= 1/i \frac{d\varphi}{dt}$).

Let $A: D_A \subset H \to H$ be a closed linear operator with the domain D_A dense in H and let A^* be its adjoint. The domain D_A^* of the operator A^* is Banach space in the norm $|x| = ||x|| + ||A^*x||$. We denote by $\mathcal{D}(R, D_A^*)$ the space of infinitely differentiable D_A^* -valued functions with compact support on R and by $\mathcal{D}'(R, D_A^*)$ its dual. Since $\mathcal{D}(R, D_A^*) = \mathcal{D}(R) \otimes D_A^*$ it is easy to see that the space $\mathcal{D}(R, D_A^*)$ is dense in $\mathcal{D}(R, H)$. In an analogous manner, we may define the spaces $\mathcal{D}(a, b; H), \mathcal{D}'(a, b; H)$ and $\mathcal{D}(a, b; D_A^*)$. Let $L^*: \mathcal{D}(R, D_A^*) \to \mathcal{D}(R, H)$ be the linear operator

(1.1)
$$L^*\varphi = -\left(\frac{1}{i}\frac{d\varphi}{dt} + A^*\varphi\right)$$

and let $L: \mathcal{D}'(R, H) \rightarrow \mathcal{D}'(R, D_A^*)$ be its adjoint defined by

(1.2)
$$Lu(\varphi) = u(L^*\varphi), \qquad \varphi \in \mathcal{D}(R, D_A^*).$$

Let $\mathcal{L}(\mathcal{D}, H)$ be the space of all vector *H*-valued distributions $\mathcal{L}(\mathcal{D}(R, H), H)$. For $E \in \mathcal{L}(\mathcal{D}, H)$ we define *LE* by the formula

(1.3)
$$LE(\varphi) = E(L^*\varphi), \qquad \varphi \in \mathcal{D}(R, D_A^*),$$

V. BARBU

and denote, for every $\varphi \in \mathcal{D}(R, H)$

$$(E*\varphi)(t) = E_s(\varphi(t-s)).$$

It is easy to see that $E * \varphi \in C^{\infty}(R, H)$. If $u \in \mathcal{E}'(R, H)$ and $E \in \mathcal{L}(\mathcal{D}, H)$, E * u denotes the distribution defined by

$$(E*u)(\varphi) = u_t(E_s(\varphi(t+s))), \qquad \varphi \in \mathcal{D}(R, H).$$

If $\varphi(t) \in \mathcal{D}(R)$, then as in the scalar case it follows immediately

$$\sup (\rho E * u) \subset \sup \rho + \sup u$$

DEFINITION. We say that the distribution $u \in \mathcal{D}'(a, b; H)$ is a weak solution on (a, b) of the equation

(E)
$$\frac{1}{i}\frac{du}{dt}-Au=f,$$

where $f \in \mathcal{D}'(a, b; D_A*)$, if the following relation

$$(1.4) u(L^*\varphi) = f(\varphi)$$

holds for any $\varphi \in \mathcal{D}(a, b; D_A*)$.

The existence theorems for the weak solutions of the equation (E) have been obtained by T. Kato and H. Tanabe [3], S. Zaidman [8] and M. A. Malik [6]. We give in this paper some results concerning the regularity of the weak solutions of (E). For the strict solutions of (E) a similar result has been proved by S. Agmon and L. Nirenberg [1].

2. Differentiability of solutions

In the following we denote by $R(\lambda, A^*)$ the resolvent $(\lambda I - A^*)^{-1}$ of the operator A^* .

Theorem 1. Suppose that for every m>0 there exists a number $C_m>0$ such that the resolvent $R(\lambda, A^*)$ exists in the domain

(2.1)
$$\Lambda_m = \{\lambda; |Im \lambda| \leq m \log |Re \lambda|; |Re \lambda| \geq C_m\}$$

and

(2.2)
$$||R(\lambda, A^*)|| \leq C_m^1 |\lambda|^M \exp(N |Im \lambda|), \quad in \Lambda m,$$

where M>0, N>0 are constants independent of m and $C_m^1>0$. Then every weak solution $u \in \mathcal{D}'(-a, a; H)$ of (E) with $f \in C^{\infty}(-a, a; H)$ is infinitely differentiable on the interval |t| < a-N.

Proof. Let $E \in \mathcal{L}(\mathcal{D}, D_A^*)$ be defined by the equality

(2.3)
$$E(\varphi) = -(2\pi)^{-1} \int_{|\sigma| \ge C_m} R(-\sigma, A^*) \hat{\varphi}(\sigma) d\sigma; \qquad \varphi \in \mathcal{D}(R, H)$$

Obviously

(2.4)
$$E(L^*\varphi) = \varphi(0) - \int_{|\sigma| \leq C_m} \hat{\varphi}(\sigma) d\sigma; \qquad \varphi \in \mathcal{D}(R, D_A^*).$$

We denote by Δ the interval (-a', a') where $a' < a - N_1$, $N < N_1 < a$, and consider $\varphi(t) \in \mathcal{D}(R)$ such that $\varphi(t) = 1$ for $|t| \leq a' + \delta$ and $\varphi(t) = 0$ in $|t| \geq a' + \delta'$. Assume that $N < \delta < \delta' < N_1$. If $u \in \mathcal{D}'(-a, a; H)$ is a weak solution of (E) then we have

(2.5)
$$L(u\varphi)(\psi) = (f\varphi)(\psi) + (D^{1}\varphi u)(\psi)$$

for every $\psi \in \mathcal{D}(-a, a; H)$. On the other hand since A^* is closed, from (2.2) it follows

(2.6)
$$(L(u\varphi)*E)(\psi) = (LE*u\varphi)(\psi).$$

Let us denote by g the distribution $D^{1}\varphi \cdot u$. Then from (2.4) and (2.5) we get

(2.7)
$$u\varphi(\psi) = (E*f\varphi)(\psi) + (E*g)(\psi) + u\varphi(h_{\psi})$$

for every $\psi \in \mathcal{D}(-a, a; H)$, where $h_{\psi}(t) = \int_{|\sigma| \leq C_m} e^{it\sigma} \hat{\psi}(\sigma) d\sigma$.

(2.8)
$$||D^{k}h_{\psi}(t)|| \leq M_{k}||\psi||_{L^{2}}, \quad t \in \mathbb{R}$$

for any $\psi \in \mathcal{D}(-a, a; H)$, where $\| \|_{L^2}$ denotes the norm in the space $L^2(R, H)$. Since $f\varphi \in C^{\infty}(R, H)$ it follows that $E * f\varphi \in C^{\infty}(R, H)$ which implies that

(2.9)
$$|D^{k}(E*f\varphi)(\psi)| \leq M^{1}_{k} ||\psi||_{L^{2}}; \qquad \psi \in \mathcal{D}(-a, a; H).$$

Let $\rho(t)$ be a scalar C^{∞} function on the real line such that $\rho(t) = 1$ for $|t| \leq \varepsilon$ and $\rho(t) = 0$ for $|t| \ge \varepsilon'$; $0 < \varepsilon < \varepsilon'$.

Since supp $g \subset \{t; a' + \delta < |t| \leq a' + \delta'\}$, taking ε so small such that $\varepsilon' < \delta$, from an above remark we deduce that $(\rho E * g)(\psi) = 0$ for any $\psi \in \mathcal{D}(-a', a'; H)$.

Hence

(2.10)
$$(E*g)(\psi) = ((1-\rho)E*g)(\psi), \quad \psi \in \mathcal{D}(-a', a'; H).$$

Now we introduce the function $\psi_t^{(k)}(s) = (1 - \rho(s))D^k \psi(t+s)$ and denote by $\hat{\psi}_t^{(k)}(\lambda)$ its Laplace transform. Let m be an arbitrary non-negative integer. We may write $\hat{\psi}_t^{(k)}(\lambda)$ in the form

V. BARBU

$$\hat{\psi}_t^{(k)}(\lambda) = \hat{\psi}_{t+1}^{(k)}(\lambda) + \hat{\psi}_{t+2}^{(k)}(\lambda)$$

where

$$\hat{\psi}_{t,1}^{(k)}(\lambda) = \int_{s>\epsilon} e^{-i\lambda s} (1-\rho(s)) D^k \psi(t+s) ds$$

and

$$\hat{\psi}_{t,2}^{(k)}(\lambda) = \int_{s < -\varepsilon} e^{-i\lambda s} (1-\rho(s)) D^k \psi(t+s) \, ds \, .$$

A simple computation shows that with another constant M_k , one must have the estimates,

(2.11)
$$||\hat{\psi}_{t,1}^{(k)}(\sigma-i\,m\,\log|\sigma|)|| \leq M_k |\sigma|^{k-m\varepsilon} ||\psi||_{L^2}, \quad \sigma \in \mathbb{R}$$

and

(2.12)
$$||\hat{\psi}_{\iota,2}^{(k)}(\sigma+i \ m \log \ |\sigma||| \leq M_k |\sigma|^{k-m\varepsilon} ||\psi||_{L^2}, \quad \sigma \in \mathbb{R}$$

Let $f_i^{(k)}(t)$ be the functions

(2.13)
$$f_{i}^{(k)}(t) = (2\pi)^{-1} \int_{|\sigma| \ge C_{m}} R(-\sigma, A^{*}) \hat{\psi}_{i,i}^{(k)}(\sigma) d\sigma; \quad i=1, 2; t \in \mathbb{R}.$$

After a suitable deformation of contours in the complex plane, the functions $f_{i}^{(k)}(t)$ can be expressed in the following form

(2.14)
$$f_{i}^{(k)}(t) = (2\pi)^{-1} \int_{\Gamma_{m}^{t}} R(-\lambda, A^{*}) \hat{\psi}_{t,i}^{(k)}(\lambda) d\lambda; \quad i=1,2;$$

where Γ_m^1 is the frontier of the domain $\{\lambda; Im \lambda \ge -m \log |Re \lambda|; |Re \lambda| \ge C_m\}$ and Γ_m^2 the frontier of $\{\lambda; Im \lambda \le m \log |Re \lambda|; |Re \lambda| \ge C_m\}$. It is easy to see that the shift of the integration contour is legitimate. Now we have on Γ_m^i ,

$$||R(-\lambda, A^*)\hat{\psi}_{t,t}^{(k)}(\lambda)|| \leq M_k |\sigma|^{M+k-m(\varepsilon-N)} ||\psi||_{L^2}; \qquad \sigma = Re \lambda.$$

Choosing \mathcal{E} so that $\mathcal{E}>N$ and m so large such that $M+k-m(\mathcal{E}-N)<-1$, one obtains

(2.15) $||f_{\iota}^{(k)}(t)|| \leq M_{\iota}^{1} ||\psi||_{L^{2}}; \quad t \in \mathbb{R}; \ \psi \in \mathcal{D}(-a', a'; H).$

We remark that

$$D^{k}((1-\rho)E*g)(\psi) = (-1)^{k}(g(f_{1}^{(k)})+g(f_{2}^{(k)})).$$

From (2.15) this implies that

$$(2.16) ||D^{k}((1-\rho)E*g)(\psi)|| \leq M_{k} ||\psi||_{L^{2}}; \psi \in \mathcal{D}(-a', a'; D_{A}*).$$

Using (2.7), (2.8), (2.9) and (2.16) we obtain

(2.17)
$$|D^{k}(u\varphi)(\psi)| \leq M_{k} ||\psi||_{L^{2}}; \quad \psi \in \mathcal{D}(-a', a'; D_{A}^{*}).$$

Since the space $\mathcal{D}(-a', a'; D_A*)$ is dense in $\mathcal{D}(-a', a'; H)$ from the Hahn-Banach theorem it follows that $D^k(u\varphi) \in L^2(-a', a'; H)$ for any $k=0,1\cdots$. Hence $u\varphi \in C^{\infty}(-a', a'; H)$. Because the number $N_1 > N$ is arbitrary, the proof is complete.

Corollary 1. Suppose that there exist some non-negative numbers N, C, N_0 such that $R(\lambda, A^*)$ exists in the domain

(2.18)
$$\Lambda = \{\lambda; |Im \lambda| \leq C \log |Re \lambda|; |Re \lambda| \geq N_0\}$$

and

$$(2.19) ||R(\lambda, A^*)|| \leq \text{pol}(|\lambda|) \exp(N |Im\lambda|).$$

Then every solution $u \in \mathcal{D}(R, H)$ of (E), with $f \in C^{\infty}(R, H)$, is infinitely differentiable on R.

Corollary 2. Suppose that $f \in \mathcal{D}'(-a, a; D_A*)$ such that

$$(2.20) |D^{k}f(\psi)| \leq M_{k} ||\psi + A^{*}\psi||_{L^{2}}; \quad \forall \psi \in \mathcal{D}(-a, a; D_{A^{*}}).$$

If the hypotheses of theorem 1 are satisfied, then every solution $u \in \mathcal{D}'(-a, a; H)$ of (E) is infinitely differentiable on the subinterval |t| < a - N.

Proof. The proof in this case is very much the same, except the inequality (2.9). To estimate $|D^{k}(E*f\varphi)(\psi)|$ we remark that

$$||A^*(E^*\psi)(t)|| \leq M ||D^t\psi||_{L^2}; \qquad \psi \in \mathcal{D}(-a, a; H)$$

where l is a non-negative integer. From (2.6), (2.7) and (2.16) this implies that

(2.21)
$$|D^{\mathbf{k}}(u\varphi)(\psi)| \leq M_{\mathbf{k}} ||D^{l}\psi||_{L^{2}}; \qquad \psi \in \mathcal{D}(-a', a'; D_{A}^{*}).$$

As in the proof of theorem 1 this implies that $u \in C^{\infty}(-a', a'; H)$.

REMARK. If $u \in C^{\infty}(\Delta, H)$ is a weak solution of (E) with $f \in C^{\infty}(\Delta, H)$, then u(t) is a strict solution of (E). To prove this it is enough to choose in the equality (1.2), $\varphi = \varphi_0 \otimes x$ where $\varphi_0 \in \mathcal{D}(\Delta)$ and $x \in H$. Hence the necessity results for differentiability, proved by Agmon-Nirenberg [1], are true in our case.

3. Hypoanaliticity of solutions

DEFINITIONS. A C^{∞} H-valued function u(t) is said to be d-hypoanalytic on $\Delta \subset R$ if for any compact subset $K \subset \Delta$ there exists a non-negative constant M_K such that for any k the following inequality be true

$$(3.1) ||D^k u; K||_{\infty} \leq M_K^{k+1}(k!)^d$$

where $||u, K||_{\infty} = \sup_{t \in K} ||u(t)||$.

V. BARBU

In the following we denote by $G^{d}(\Delta, H)$ the space of all *d*-*H*-valued hypoanalytic functions on Δ . If H=R we omit R and write $G^{d}(\Delta)$.

Theorem 2. Suppose that $R(\lambda, A^*)$ exists in a region

$$\sum$$
: { λ ; | Im λ | \leq C | Re λ |^{1/d}; | Re λ | \geq N₀}

 $C, N_0 \ge 0, d \ge 1$ and that

$$(3.2) ||R(\lambda, A^*)|| \leq \text{pol}(|\lambda|) \exp(N|Im \lambda|);$$

for some $N \ge 0$. Let $u \in \mathcal{D}'(-a, a; H)$ be a solution of (E) with $f \in G^d(-a, a; H)$. Then u is d-hypoanalytic in the interval |t| < a - N.

Proof. We use the notations of the proof of theorem 1. First we assume that d>1. Then we may choose $\varphi \in \mathcal{D}(R) \cap G^d(R)$ so that $\varphi(t)=1$ for $|t| \leq a' + \delta$ and $\varphi(t)=0$ for $|t| \geq a' + \delta'$; $N < \delta < \delta' < N_1$. Hence $E * f \varphi \in G^d(R, H)$ and

(3.4)
$$|D^{k}(E*f\varphi)(\psi)| \leq M^{k+1}(k!)^{d} ||\psi||_{L^{2}}$$

for every $\psi \in \mathcal{D}(-a, a; H)$.

Let $\rho(t)$ be a scalar $G^{d}(R)$ -function such that $\rho(t)=1$ for $|t| \leq \varepsilon$ and $\rho(t)=0$ for $|t| > \varepsilon'$, where $0 < \varepsilon < \varepsilon'$. To estimate $|D^{k}((1-\rho)E*g)(\psi)|$ we write it in the form

(3.5)
$$D^{k}((1-\rho)E*g)(\psi) = (-1)^{k}(g(f_{1}^{(k)})+g(f_{2}^{(k)}))$$

where

$$f_{\iota}^{(k)}(t) = (2\pi)^{-1} \int_{|\sigma| \ge N_0} R(-\sigma, A^*) \hat{\psi}_{\iota,1}^{(k)}(\sigma) d\sigma , \quad i=1,2.$$

Using the fact that $\rho \in G^d(R)$ we obtain the estimates

(3.6)
$$||\psi_{t,1}^{(k)}(\sigma - iC |\sigma|^{1/d})|| \leq M \exp\left(-C\varepsilon |\sigma|^{1/d}\right)$$
$$||\psi||_{L^2} \sum_{j=0}^k M^j (j!)^d |\sigma|^{k-j}$$

and similarly

(3.7)
$$||\psi_{\iota,\iota}^{(k)}(\sigma+iC|\sigma|^{1/d})|| \leq \leq M \exp\left(-C\varepsilon|\sigma|^{1/d}\right) ||\psi||_{L^2} \sum_{j=0}^k M^j(j!)^d |\sigma|^{k-j}.$$

By a contour deformation we may write

(3.8)
$$f_{i}^{(k)}(t) = (2\pi)^{-1} \int_{\Gamma^{i}} R(-\lambda, A^{*}) \hat{\psi}_{i,i}^{(k)}(\lambda) d\lambda$$

where $\Gamma^1 = \{\lambda; \lambda = \sigma + iC |\sigma|^{1/d}\} \cup \{|Re \lambda| = N_0; 0 \leq \operatorname{Im} \lambda \leq CN_0^{1/d}\}$ and $\Gamma^2 = \{\lambda; \lambda = \sigma - iC |\sigma|^{1/d}, |\sigma| \geq N_0\} \cup \{|Re \lambda| = N_0; -CN_0^{1/d} \leq \operatorname{Im} \lambda \leq 0\}.$

Using the estimates (3.6) and (3.7) we get

(3.9)
$$||f_{\iota}^{(k)}(t)|| \leq M ||\psi||_{L^2} \sum_{j=0}^k M^j (j!)^d \int |\sigma|^{p+k-j} \exp(N-\varepsilon) C |\sigma|^{1/d} d\sigma$$

for every $\psi \in \mathcal{D}(-a', a'; D_A*)$. Choosing $\varepsilon > N$, from Stirling's formula it follows

(3.10)
$$||f_{\iota}^{(k)}(t)|| \leq M_{1}^{k+1}(k!)^{d} ||\psi||_{L^{2}}; \ \psi \in \mathcal{D}(-a', a'; H), \quad i=1,2.$$

This implies that

(3.11)
$$|D^{k}((1-\rho)E*g)(\psi)| \leq M_{1}^{k+1}(k!)^{d} ||\psi||_{L^{2}}.$$

Hence

$$(3.12) \qquad |D^{k}(u\varphi)(\psi)| \leq M_{1}^{k+1}(k!)^{d} ||\psi||_{L^{2}}, \qquad \text{for} \quad \psi \in \mathcal{D}(-a', a'; H)$$

where M_1 is a non-negative constant independent of k. Hence $u \in G^d(-a', a'; H)$.

To prove theorem 2 in the analytic case d=1, we consider instead of $\varphi(t)$ and $\rho(t)$ two sequences of C^{∞} scalar functions $\{\varphi_j(t)\}_{j=0}^{\infty}$ and $\{\rho_j(t)\}_{j=0}^{\infty}$ such that (see Friberg [2])

$$(3.13) |D^k \varphi_j(t)| \leq M^{k+1} j^k; for k \leq j,$$

where supp $\varphi_j \subset \{t; |t| \leq a' + \delta'\}$, $\varphi_j(t) = 1$ for $|t| \leq a' + \delta$ and similarly

$$(3.14) |D^{k}\rho_{j}(t)| \leq M^{k+1}j^{k} for k \leq j$$

supp $\rho_j \subset \{t; |t| \leq \varepsilon'\}$ and $\rho_j(t) = 1$ for $|t| \leq \varepsilon$.

Then denoting $g_j = D^1 \varphi_j u$, as above we obtain

$$(3.15) | D^{k}(1-\rho_{k})E*g_{k})(\psi)| \leq M_{1}^{k+1}k^{k}||\psi||_{L^{2}}$$

for every $\psi \in \mathcal{D}(-a', a'; H)$ and $k=0,1,\cdots$

Hence

$$||D^{k}(u\varphi_{k})||_{\infty} \leq M_{1}^{k+1}k!, \qquad k=0,1,\cdots$$

That is $u \in G^1(-a', a'; H)$.

As consequence of theorem 2 we get the following result (see Agmon-Nirenberg [1])

Corollary 1. Suppose that $R(\lambda, A^*)$ exists in the sector $\sum \{|\arg(\pm \lambda)| \leq \alpha; |\lambda| \geq N_0\}, 0 < \alpha < \pi/2, and$

 $||R(\lambda, A^*)|| \leq \operatorname{pol}(|\lambda|) \exp(N |\operatorname{Im} \lambda|), \quad for \quad \lambda \in \Sigma$

where N is a non-negative constant. Suppose that f is analytic in |t| < a. Then every solution $u \in \mathcal{D}'(-a, a; H)$ of (E) is analytic in the subinterval |t| < a - N.

By a slight modification of the preceding proof one easily verifies the following

REMARK. The conclusions of theorem 2 hold if we merely assume that $f \in \mathcal{D}'(-a, a; D_A*)$ and

 $(3.16) \qquad |D^{k}f(\psi)| \leq M^{k+1}(k!)^{d} ||\psi + A^{*}\psi||_{L^{2}}, \qquad \psi \in \mathcal{D}(-a, a; D_{A^{*}}).$

JASSY UNIVERSITY

Bibliography

- [1] S. Agmon and L. Nirenberg: Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121-239.
- [2] J. Friberg: Estimates for partially hypoelliptic differential operators, Thesis, Lund, 1963.
- [3] T. Kato and H. Tanabe: On the abstract evolution equations, Osaka Math. J. 13 (1962), 107–133.
- [4] L. Hörmander: Linear Partial Differential Operators, Springer, Berlin, 1963.
- [5] J.L. Lions: Equations Différentielles Opérationnelles, Springer, Berlin, 1961.
- [6] M.A. Malik: Weak solutions of abstract differential equations, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 883-884.
- [7] L. Schwartz: Théorie des Distributions, Hermann, Paris, 1967.
- [8] S. Zaidman: A global existence theorem for some differential equations in Hilbert spaces, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1019–1022.