CLASSIFYING BOUNDED 2-MANIFOLDS IN S⁴

RALPH TINDELL*

(Received February 24, 1969) (Revised November 4, 1969)

Noguchi has shown that if M_1 and M_2 are closed orientable 2-manifolds in S^4 having the same local oriented knot types, then they are *isoneighboring*, that is, for regular neighborhoods N_1 and N_2 in S^4 of M_1 and M_2 , respectively, there is a homeomorphism of N_1 onto N_2 carrying M_1 onto M_2 [5]. In a later paper, Noguchi showed that one may replace S^4 by an orientable 4-manifold, if one adds the restriction that M_1 and M_2 have the same Stiefel-Whitney numbers [6]. In this paper we show that if M_1 definitely has nonempty boundary (in each of its components), one may drop the orientability requirement (the Stiefel-Whitney numbers are, of course, zero), and obtain the much stronger conclusion that one may ambient isotope M_2 onto M_1 . The starting point for our proof is the case $N=S^4$ and M a 2-cell, proved by Gugenheim in 1953 [2]. We work throughout in the piecewise linear (*PL*) category, and assume the reader familiar with the elements of *PL* topology. We will also use results of Hudson and Zeeman: the isotopy extension theorem [3], and the theory of relative regular neighborhoods [4], [1].

A *PL* imbedding *f* of a *PL* manifold *M* into the interior of another *PL* manifold *N* is *locally knotted* at $x \in M$ if there is a triangulation *J*, *L* of *N*, *f*(*M*) having f(x) as a vertex and such that the ball or sphere f(lk(x), L) is knotted in the sphere lk(f(x), J). The pair (lk(f(x), J), f(lk(x), L)) is called the *local knot type* of *f* at *x*, and denoted by $\sum_{f}(x)$. If *M* and *N* are both orientable, we fix orientations for both, and in this case local knot type is to be understood to mean *oriented* local knot type. It is apparent that an imbedding of a compact 2-manifold into the interior of a 4-manifold can be locally knotted at only finitely many points, all of which are interior points. We say that imbeddings $f_1, f_2: M^2 \to N^4$ are *locally equivalent* if we may list the local knot type of f_1 at x_i is the same as that of f_2 at $y_i, i=1, 2, \dots, n$. Concealed in Gugenheim's second 1953 paper is the following:

^{*} The work in this paper was carried out in 1966 at Florida State University, where the author was supported by National Science Foundation Grant GP 5458.

Theorem 1. If D_1 and D_2 are locally equivalently imbedded 2-cells in S^4 , there is a homeomorphism $h: S^4 \to S^4$ such that $h(D_2)=D_1$.

Corollary. If f_1 , $f_2: D^2 \rightarrow int N^4$ are locally equivalent imbeddings of a 2-cell into a 4-manifold, there is a homeomorphism $h: N^4 \rightarrow N^4$ such that $h(f_2(D)) = f_1(D)$. Moreover h is isotopic to the identity rel ∂N (that is, the isotopy restricts to 1 on ∂N).

Proof. Let Q_i be a regular neighborhood of $f_i(D)$ in int N(i=1, 2). Then Q_1 and Q_2 are 4-balls in the interior of N, so by Newman's Theorem, we may ambient isotop (rel ∂N) Q_2 onto Q_1 ; thus we may (and do) assume $Q_1=Q_2=Q$. Now we have $f_1(D)$ and $f_2(D)$ both lying inside a 4-ball Q, and by Theorem 1, there will be a homeomorphism $h': Q \to Q$ such that $h' |\partial Q=1$ and $h'f_2(D)=f_1(D)$. Extend h' to $\bar{h}: N \to N$ by $\bar{h}|N-Q=1$. Now h' is isotopic to the identity rel ∂Q and we extend this isotopy to all of N by the identity outside of Q, showing that \bar{h} is isotopic (rel ∂N) to the identity.

Our main result is the following:

Theorem 2. If M_1 and M_2 are homeomorphic 2-manifolds with nonempty boundary, locally equivalently imbedded in the interior of a simply connected 4manifold N, then there is an ambient isotopy of N rel ∂N carrying M_2 onto M_1 .

Proof. We give the proof in the case where M is connected $(M_1 \text{ and } M_2 \text{ homeomorphic to } M)$; in the other cases of course, one must assume that each component of M has nonempty boundary, but the proof is essentially the same. We also note that if one assumes M_1 and M_2 to be homotopic in N, one need make no connectivity assumptions on N (N may, in fact, be non-orientable); however, the extra technical detail involved does not seem worth the gain.

By the classification of two manifolds, a bounded 2-manifold can be written as a 2-cell D with (possibly twisted) handles H_1, H_2, \dots, H_m attached; let α_i be the indexing arc of H_i , let $\partial \alpha_i = \alpha_i \cap D = \alpha_i \cap \partial D = \{a_{i1}, a_{i2}\}$, and let $H_i \cap D =$ $H_i \cap \partial D = \beta_{i1} \cup \beta_{i2}$, where β_{ij} are disjoint arcs with $a_{ij} \in int \beta_{ij}$ (see fig. 1). Now we may choose homeomorphisms $f_i: M \to M_i$ such that all the local knotting occurs at points of the interior of D. The proof of the theorem is by induction on the number n of handles; for n=0, we appeal to the corollary to Theorem 1; at this stage, by redefining the imbeddings (but not altering the images), we may assume $f_1 | D = f_2 | D$. Thus let us assume that all but a single handle H with indexing arc α have been "unknotted" (i.e., $f_1 | M - H = f_2 | M - H$). Now let \overline{N} be a regular neighborhood of $f_1(Cl(M-H))$ mod its boundary, and let $N' = Cl(N - \overline{N})$. Thus we have the two different imbeddings of H dangling inside N', attached to its boundary in the same two arcs $f_1(\beta_1)$ and $f_1(\beta_2)$ and $f_1 | \beta_i = f_2 | \beta_i$. If we can ambient isotop $f_1 | H$ to $f_2 | H$ in N' rel $\partial N'$, we could extend this isotopy to all of N by setting it equal to the identity on \overline{N} (hence

174

leaving fixed what we had already unknotted), and the proof would be complete. First unknot the indexing arcs; one can do this since $f_1 | \alpha$ and $f_2 | \alpha$ are homotopic rel the end points (since N is simply connected) and α lies in the trivial range (i.e., $2(1)+2 \le 4$).

Fig. 1 A twisted handle

We denote by γ_1 , γ_2 the complementary arcs to β_1 , β_2 in ∂H ; i.e., $Cl(\partial H - \beta_1 - \beta_2) = \gamma_1 \cup \gamma_2$ (see fig. 1). Let us triangulate N' by a complex J having subcomplexes covering $f_1(H)$ and $f_2(H)$, and take the following relative second derived neighborhoods: $Q_i = N(f_i(H) - f_i(\gamma_1 \cup \gamma_2), J'')$ (i=1, 2). Now Q_1 and Q_2 are also regular neighborhoods of $f_1(\alpha)$ which intersect $\partial N'$ in the same set (namely a regular neighborhood of $f_1(\beta_1 \cup \beta_2) \mod f_1(\partial \beta_1 \cup \partial \beta_2)$ in $\partial N'$) and hence we may carry Q_2 onto Q_1 by an ambient isotopy rel $\partial N'$; so we may as well assume that $Q_2 = Q_1 = Q$. Also $(Q, f_1(H))$ and $(Q, f_2(H))$ are locally unknotted proper ball pairs with the big ball collapsing to the smaller one, and hence are unknotted pairs (see [4]). We need to define a homeomorphism of Q onto itself carrying f_2 onto f_1 , which is the identity on $Q \cap \partial N$ and which extends into the rest of N' so as to be isotopic rel $\partial N'$ to the identity. This could all be done if we had an isotopy h_t of $P = Cl(\partial Q - \partial N')$ onto itself which started at a homeomorphism h_0 carrying $f_2|(\gamma_1 \cup \gamma_2)$ to $f_1|(\gamma_1 \cup \gamma_2)$, ended at the identity $(h_1=1)$, and stayed the identity on $\partial P = P \cap \partial N'$ at all times. To see why this would do the trick consider the following: extend h_0 to all of ∂Q by setting it the identity on $Q \cap \partial N'$; then extend this to a homeomorphism of Q onto itself carrying f_2 to f_1 by using lemma 18 of [8]. Now P is collared in Cl(N'-Q), and we use the isotopy h_t to extend the homeomorphism of Q to a homeomorphism of the ball $Q'=Q \cup$ collar on P (see fig. 2) which is the identity on $\partial Q'$ and extend outside Q' by the identity. The homeomorphism of Q' is isotopic rel $\partial Q'$ to the identity and the isotopy may be extended to an isotopy of N' rel $\partial N'$ by setting it equal to the identity on N'-Q'. Thus the only thing missing is the construction of the isotopy h_t of P rel ∂P .

A moments reflection will show that we have the following situation: two different unknotted 1-spheres $(f_i(\partial H))$ in the three sphere (∂Q) which agree on a pair of subarcs β_1 and β_2 ; two 3-balls B_1 , $B_2(Q \cap \partial N = B_1 \cup B_2)$ containing

R. TINDELL

 β_1, β_2 (respectively) such that B_i intersects both 1-spheres in β_i only (see fig. 3). P thus is an annulus, $P = Cl(S^3 - B_1 - B_2)$. The classical method of showing that any arc is unknotted keeping its end points fixed shows that we may isotop $f_2|\gamma_1$ to $f_1|\gamma_1$ by an isotopy of $S^3 (=\partial Q)$ which is the identity at all tines on $B_1 \cup B_2 (=Q \cap \partial N')$, so this isotopy restricts to an isotopy of P rel ∂P . Thus we may assume that $f_2|\gamma_1=f_1|\gamma_1$. To unknot $f_2|\gamma_2$, proceed as follows: let R be a regular neighborhood of $f_1(\gamma_1)$ missing both $f_1(\gamma_2)$ and $f_2(\gamma_2)$. Then if we let W=Cl(P-R), we see that $(W, f_1(\gamma_2))$ and $(W, f_2(\gamma_2))$ are both 3, 1 ball pair subsets of an unknotted 3, 1 sphere pair, and hence are unknotted. Moreover, they have the same boundary pairs, so we can isotop $f_2|\gamma_2$ to $f_1|\gamma_1$ in W by an ambient isotopy of W rel ∂W , and if we extend this isotopy to all of P by setting it equal to the identity on R=Cl(P-W), we will have ambient isotoped $f_2|\gamma_2$ to $f_1|\gamma_1$ in P rel ∂P without moving $f_1(\gamma_1)$. Hence we have ambient isotoped $f_2|\gamma_1 \cup \gamma_2$ to $f_2|\gamma_1 \cup \gamma_2$ rel ∂P , completing the proof of Theorem 2.

REMARK. The techniques used in this paper have been used by the author to prove the following: homotopic imbeddings of a manifold M^m in the interior of another manifold N^n are ambient isotopic (rel ∂N) if M has a spine of dimension p < n-m and $n-m \ge 3$ [7]. Also, there is no new difficulty to extending the results of the present paper to 1-flat imbeddings of balls with (index 1) handles in codimension 2.

UNIVERSITY OF GEORGIA

References

- [1] M.M. Cohen: A general theory of relative regular neighborhoods, Trans. Amer. Math. Soc. 136 (1969), 189–229.
- [2] V.K.A.M. Gugenheim: Piecewise linear isotopy and embedding of elements and spheres, (II), Proc. London Math. Soc. (3) 3 (1953), 29-53.
- [3] J.F.P. Hudson and E.C. Zeeman: On combinatorial isotopy, Inst. Hautes Etudes Sci. Paris 19 (1964), 69-94.
- [4] ______ and _____: On regular neighborhoods, Proc. London Math. Soc. (3) 14 (1964), 719-745.
- [5] H. Noguchi: On regular neighborhoods of 2-manifolds in 4-Euclidean space, Osaka Math. J. 8 (1956), 225-242.
- [7] R. Tindell: Unknotting manifolds with low dimensional spines, preprint, Institute for Advanced Study, 1966 (submitted).
- [8] E.C. Zeeman: Seminar on combinatorial topology (mimeo), Inst. Hautes Etudes Sci. Paris, 1963.