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1. Introduction

A quasiconformal mapping @(z) of the unit disc A={z| |z| <1} onto itself
is known to have continuous boundary values, hence we may consider the class
O(w; A, A) of all quasiconformal mappings of A onto itself that coincide with
w(2) on the boundary dA={z||z|=1}. In OQ(w; A, A) there is at least one
quasiconformal mapping whose maximal dilatation is a minimum. Such a
quasiconformal mapping is called extremal in the class Q(w; A, A). If there
exists a regular single-valued analytic function ¢ defined on A and if the complex
dilatation g of a quasiconformal mapping is written in the form

p=k2 (0<k<l), (1)
| ol

except at zeros of ¢, then it is called a Teichmiiller mapping corresponding to
@. It was studied by K. Strebel [4] whether a quasiconformal mapping f(z)
with the complex dilatation of the form (1) is extremal in the class Q(f; A, A)
or not.

In section 2 and section 3 we prove two distortion theorems which serve to
show some extremality. In section 4 some extremal quasiconformal mappings
which are not Teichmiller mappings in general are considered.

2. Distortion of argument (1)

Let w(z) be a K-quasiconformal mapping which maps |2| <1 onto |w|<1
with w(0)=0 and w(1)=1 and let arg w(z)=arg w(re’®) a continuous branch
with arg @(1)=0. Then we have

Theorem 1. For all K-quasiconformal mappings which map |z|<<1 onto
|lw| <1 with w(0)=0 and w(1)=1, we have

< 3-)

lim
r>0

arg w(r)
logr
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This bound is best possible.

We begin with some preliminary considerations. For |w(r)| it is well

known that -41?1'" < |w(r)| <4rE¥~". Therefore for each r we have
|w(r)| = c(r)r/® with 41—K<c(r)<4, _Ilzg AN=K. (3)

Also the next inequality is known to hold (see for example [1])

max |w(re'?)|

0g9<en 1 1 -

= @< —_ K __ -~ K
min |w(re®®)| = ME) 16° 2 0™,

0=6<2m

so that we see at once
max |w(re’®)| < MK)c(r)r ™,
0=g<2r (4)

min |w(re®) | =NK) e(r)r/ .
0=g<2m

In order to estimate max |arg w(re*®)—arg w(r)|, we need
0<g<2r
Lemma. For K-quasiconformal mapping w(z) which maps |2|<<1 onto
|w| <1 with w(0)=0 we have
max |arg w(re®)—arg w(r) | <N, < oo, (5)

0<e<2m
where N, is a constant depending only on K.
Proof. The lemma is a consequence of the following

Theorem ([2], theorem 2). Suppose that w is a K-quasiconformal mapping
of the extended plane and that w(oo)=oco. Then for each triple of distinct finite
points z,, 2, 2,

.1 .1
sin —Z—ﬂgg,((sm > a) )
where @ (r)=pu (K u(r)) and

_arcsin |2,—2,| arcsi |#(z)—f(z)| »
amares (lz,—zomzz—zol)’ﬁ are m<If(zl)—f(zo)l+l’(zz)—f(zo)l)()

Here p(r) is the modulus of the unit disc slit along the real axis from 0 to r, and
w* is the inverse of p.

Proof of lemma. The mapping w(z) in our lemma is extended by reflexion
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to a K-quasiconformal mapping of the extended plane with w(co)=co, and we
apply the above theorem to the inverse w™'.
Suppose that w satisfies the inequalities;
nr < max |arg w(re)’®—arg w(r)| <(n+1)7,
0<e<en
where 7 is a positive integer. Then there exists at least 2z—1 points such
that 0=6,<0,<---<0,,_,=27 and that |arg w(re’®)—arg w(re'%)| = |arg w(re'®)
—arg w(re®s)| =...= |arg w(er’®»-z)—arg w(re®=-1)|=rx. If we put w(re'®),
w(0), w(re’®v+1) in place of z,, 2, 2, in (*) respectively and z,=re*%, 2,=0, 2,
=re*®+1 in place of f(2,), f(2,), f(2,) in (%) respectively, (v=1, 2, -+, 2n—2), then

|w(re*®v) —w(refov+1) |

lo(re®) —w(0) | + |w(re®+1)—w(0)|

a=arcsin( )=arcsinl=

r
2 ’

B = arcsin (lreiovl:eéor-_}Ti::OZ:ix—O l> = arc sin %— | 1—ei®v170y|
—_ 0v+1_"0v
2 ’

and
H 61: 17 Yy H 1
sm—%rggmﬁm%>=¢47§,@:Llnyh—@.
Therefore we have

0,,,—6,=4 arcsin ¢>K(\/L2), r»=12,.,2n-2).

On adding these 2n—2 inequalities we obtain

2n =4(2n—2) arc sin @ K(:/l—i)
or
n+1< il i +2.
4 arcsin @ K<W)
Putting N 1=( i +2)7r we have
4 arc sin "DK(ﬁ)
max |arg w(re’®)—arg w(r)| <N, ,
0=se<em

thus the lemma is proved.

Proof of theorem 1. By Z=log z and W=log w we map | 2| <1and|w| <1
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conformally onto half strips of height 2z such that Z(1)=log 1=0 and W(1)
=log 1=0, in the Z and W planes. Then a quadrilateral g={z|r<<|2| <1, 0
<arg x<<27} in the z plane will be mapped onto a quadrilateral Q={Z|logr
<X<0,0<Y<2z}in the Z=X-+{Y plane. Let Q’ be the quadrilateral in the
W plane to which Q corresponds, and let M(Q) and M(Q’) denote the moduli
of O and Q’. Then

—M(Q)<M(Q)<KM(Q), Q)= ——10gl (6)

On the other hand, applying Rengel’s inequality ([3], p. 24) to Q’, we have
(SUQV <y = MQ) ()
m(Q’) — (Su9))
where S,(Q’) and S,(Q’) denote the distances between a-sides and b-sides in Q’
respectively and m(Q’) the area of Q’.

The lemma and (4) imply that left one of b-sides in Q" must lie in {W=U+iV
|U=log MK)c(r)r”™, |V |>|argw(r)| —N,} when |argw(r)|>N,. Put
N,=(N,+2r) sgn arg w(r), when |argw(r)| >N,+2z. Then it follows by use
of the Pythagorus equality that

(SH(Q))* 2 larg w(r)—N,|*+ | log MK)e(r)r|*.
For m(Q’) we have by (4)
m(Q') =2z |log MK) c(r)r7 | .

On using these inequalities, (7) becomes

|arg w(")—Nz[ 2+log X(K)C(r)rﬂ’) | 2
27 |log MK) e(r)r |

=M(Q).

If we combine above inequality with (6), it holds that
|arg w(r)—N.|*= f(r)(K—f(r)) |log 7 |*+(2|log MK)<(r) | f(r)
+K|log M(K)¢(r)]) [log 7|+ |log M(K)c(7) | %
Dividing both sides by [logr|* and letting r tend to 0, we have

arg w(r)

im log

>0

<iim v/ fr)(K—(")) <hm§ Jg. (8)

Next, we suppose that

arg w(r)

lim
log r

750

1( 1 )
= _—(K——-+8), §=0.
2 gte) 9=
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We introduce an auxiliary K,-quasiconformal mapping w,(re’®)=r"e'©@ floe™,

where Bz=—a’—l—(K1—|—kl—)a—l, I—é—gaéKl and sgn B=+41 according as
1

1

—argw(r) 1 im?'8 w(r) _ _l
1}-13;71 |10gr| 2( —|—8)or '—lrronllogfl 2( K+8)

The composed KK,-quasiconformal mapping wow, maps |z|<1 onto |w|<1
so that wow,(0)=0 and wow,(1)=1. On account of (8) it satisfies

lim

750

arg wow,(r) _<_KK1
logr |7 2 °

By (5) its argument is written in the form argwow,(r)=arg w(r®){-arg w,(r)
~+A(r), where A(r) satisfies |A(r)|<N,. There is a sequence {r;} such that

KK‘ = lim

>

arg w(ry)+arg w,(r;)+ A(r; )|
log7;

— &(K—2+5)+16]

+18I

fm arg w(r)
log 7

750

or

s<KK, 218
T o

1
K+
a +K

If we put a=I?IZ<_:_—1K1, (a gKLl) then

KK, _ . 1 2|8] _2(K*+1) K V (Kz N1
a _K+K’ a K? (K2+1)+K2+1 I)K“{

Letting K,— oo we have

K1) K 1

8K K+-—=0
+ K* K?*4+1 +K
Hence
arg w(r)| ( K— _1_)
1'13.1 logr =2 K/

The bound %(K—I%) is attained by w(re®)=r"e'® Ple™ where a=_-

(k) nd b= (K ).
q.e.d.
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3. Distortion of argument (2)
Theorem 2. Suppose that w(z) is a K-quasiconformal mapping of |z|<<1
onto |w| <1 with w(0)=0 and w(1)=1 and that

[w(r)| = ¢(r)r*, log c(r) = o(log7) . (9)
Then

lim
750

arg w(r)

log 7 éx/“(Kﬂl?)—(a%Ll)- (10)

For each a this bound is best possible.

Proof. We remark first that a lies between % and K. We use the same

reasoning as in section 2 to obtain

|w(r)| = c(r)r*, log c(r) = o(log 7) (3)
max | w(re®) | <N(K)c(r)r?, log ¢(r) = o(log 7)
min |w(re’®)| =N(K) 'e(r)r?, log ¢(r) = o(log 7). (+)

0=6<2m
Putting f(r)=a in (8) we have

arg w(r)

lim ] =<Va(K—a). (8"
ogr

750

We suppose that

im |18 w(r)
log »

>0

= Va<K+72_)—(a2+1)+8, 520.

Using an auxiliary K,-quasiconformal mapping w(re?®)—r"’© #l¢" we have in
the same manner as in section 2

a(«/ a<K+Il<) (@ 1)+8> + V a<K1+

because the composed KK,-quasiconformal mapping satisfies (9) with aa in
place of a. Therefore we have

2B e i Al ) o
aK—1
a(K—K™)

sy T AR Aok ) =0

Ié )_(az_}_l)g\/m’

For a#l% we put a= K, and let K,—0, so that we have
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Hence we have the desired inequality (10). For az% (11) becomes
agVK-_1~V£ 1 _<1 1y, 1’
a K2 a +aK . + o’ > (19

On putting a=+/'K, and letting K,—>c0, we have also §=0. For each a the
bound is attained by w(re'®)=r"e‘©® b8, bZ=a<K+ Il<>—(a2—|—1). g-e.d.

4. Some extremal mappings

Let w(2) be an extremal quasiconformal mapping in Q(w; A, A). If we
map A conformally onto a Jordan region D by @ and map A onto an another
Jordan region D’ by v, then we obtain a boundary correspondence given by
Yrowop ' between D and D’. In Q(yrowoep™'; D, D), yrowop™ is again
extremal and if W is extremal in Q(Jrowop™; D, D) then @™ 'oWoqr is extremal
in Q(w; A, A). By this reason extremal quasiconformal mappings which we
are going to deal with are those which have the boundary correspondence between
D and D’.

Theorem 3. Let W(Z)=f(X)+i(Y+g(X)) be a K-quasiconformal map-
ping of D={Z=X-+iY|X<0, 0<Y<2x} such that f(0)=g(0)=0 and that f(X)

——o0 as X——o0, If
0l s 3).

then W(Z) is extremal in Q(W,; D, D’), where D’=W (D).

Proof. Let W(Z) be a K’-quasiconformal mapping in Q(W,; D, D’). We
map D into A by z=e# and D’ into another A. Then e" 22 with log 1=0 is
a K’-quasiconformal mapping of A onto A with e" °® =( and % d°eb=],
because it is topological on A and K'-quasiconformal in A—{z=x+iy|0<x
<1, y=0}, ([3], I. Satz 8, 3). Theorem 1 asserts that

lim
X>-o

1 ( 1 ——|arg eWe™| | arge™oEn| | g(X)
— K’— > —_— | = -2 = or /
2 K’ __1'151 logr '1_1’1011 logr xllr—nw X |
- l(K_l ,
2 K

Therefore we have K’>=K and it is shown that W(Z) is extremal in
o(w,; D, D"). q.e. d.

The complex dilatation of W(Z) is of the form as follows;
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pwlZ) = [(X)+g'(X)—1 .
T X))+

—r 24 p K-1 ic @ in D, then arg @=constant on
If pw(Z2)=Fk EG k fant with analytic @ in D, g @
each X=¢, —oco<¢<<0, and p=¢4**, But it is not difficult to see that a=0.
We conclude that W(Z) is not Teichmuller mapping except the case when
Wy(Z) is an affine mapping.
By the same resoning as before and by theorem 2 we obtain the following

Theorem 4. Let W (Z2)=f(X)+i(Y+g(X)) be K-quasiconformal mapping
of D={Z=X+1Y|X<0,0<Y<2z} such that f(0)=g(0)=0, f(X)—>co as

X—>—oo and that lim | X) |—o L <<k, 1f
X'f“” X K

i €8] — W/ 1) (g
0 - e
then W ,(Z) is extremal in Q(W ,; D, D"), where D'=W (D).
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