Nakaoka, M. Osaka J. Math. 7 (1970), 443-449

NOTE ON A THEOREM DUE TO MILNOR

MINORU NAKAOKA

(Received April 17, 1970)

1. Introduction

J. Milnor [1] has proved the following theorem: Let N be a closed topological manifold which is a mod 2 homology *n*-sphere, and T be a fixed point free involution on N. Then, for every continuous map $f:N \to N$ such that $f_*:$ $H_n(N; \mathbb{Z}_2) \to H_n(N; \mathbb{Z}_2)$ is not trivial, there exists a point $y \in N$ such that fT(y)= Tf(y).

In the present paper, we shall show that this result can be generalized as follows:

Theorem 1. Let N and M be topological n-manifolds on each of which there is given a fixed point free involution $T(n \ge 1)$. Assume that N has the mod 2 homology of the n-sphere. Then, for every continuous map $f:N \rightarrow M$ such that $f_*: H_n(N; \mathbb{Z}_2) \rightarrow H_n(M; \mathbb{Z}_2)$ is not trivial, there exists a point $y \in N$ such that fT(y) = Tf(y).

Our method is different from Milnor [1], and we shall apply the method we used in [2] to prove a generalization of Borsuk-Ulam theorem.

REMARK. The theorem is regarded in some sense as a converse of Corollary 1 of the main theorem in [2].

Throughout this paper, all chain complexes and hence all homology and cohomology groups will be considered on \mathbb{Z}_2 .

2. The chain map

Let Y be a Hausdorff space on which there is given a fixed point free involution T. Denote by π the cyclic group of order 2 generated by T. We shall denote by Y_{π} the orbit space of Y, and by $p: Y \to Y_{\pi}$ the projection. Consider the induced homomorphisms $T_{\sharp}:S(Y) \to S(Y)$ and $p_{\sharp}:S(Y) \to S(Y_{\pi})$ of singular complexes. Then a chain map

$$\phi: S(Y_{\pi}) \to S(Y)$$

can be defined by

$$\phi(c) = \tilde{c} + T_{\sharp}(\tilde{c}), \quad p_{\sharp}(\tilde{c}) = c,$$

Μ. ΝΑΚΑΟΚΑ

where $c \in S(Y_{\pi})$, $\overline{c} \in S(Y)$. Obviously ϕ is functorial with respect to equivariant continuous maps. Therefore ϕ induces homomorphisms

 $\phi_* \colon H_*(Y_{\mathbf{r}}) \to H_*(Y), \quad \phi^* \colon H^*(Y) \to H^*(Y_{\mathbf{r}})$

of homology and cohomology, which are functorial with respect to equivariant continuous maps.

As for the homomorphism $p^*: H^*(Y_*) \rightarrow H^*(Y)$ and the cap product, we have

Lemma 1.
$$\phi_*(\alpha \frown a) = p^*(\alpha) \frown \phi_*(a)$$
 for $\alpha \in H^*(Y_{\pi}), a \in H_*(Y_{\pi})$.

Proof. Let u be a singular cochain of Y_{π} , and c a singular chain of Y_{π} . Take a singular chain \tilde{c} of Y such that $p_{\sharp}(\tilde{c}) = c$. Since

$$u \frown c = u \frown p_{\sharp}(\tilde{c}) = p_{\sharp}(p^{\sharp}u \frown c),$$

it follows that

$$\begin{split} \phi(u \frown c) &= p^{\dagger} u \frown \tilde{c} + T_{\sharp}(p^{\dagger} u \frown \tilde{c}) \\ &= p^{\dagger} u \frown \tilde{c} + T^{\dagger} p^{\dagger} u \frown T_{\sharp} \tilde{c} \\ &= p^{\dagger} u \frown \tilde{c} + p^{\dagger} u \frown T_{\sharp} \tilde{c} \\ &= p^{\dagger} u \frown (\tilde{c} + T_{\sharp} \tilde{c}) \\ &= p^{\dagger} u \frown (\tilde{c}). \end{split}$$

This proves the desired lemma.

We have also

Lemma 2. If Y is a closed topological n-manifold, then $\phi_*: H_n(Y_n) \rightarrow H_n(Y)$ sends the (mod 2) fundamental class of Y_n to that of Y.

Proof. Let y be any point of Y. Then ϕ induces a homomorphism ϕ_* : $H_*(Y_{\pi}, Y_{\pi}-p(y)) \rightarrow H_*(Y, Y-\{y, T(y)\})$, and the following commutative diagram holds:

where j_{i*} (i=1, 2, 3, 4) are induced by the inclusions. If $w \in H_n(Y_\pi)$ is the fundamental class, then $j_{i*}(w)$ is the generator of $H_n(Y_\pi, Y_\pi - p(y))$. It is easily seen that $j_{i*} \circ \phi_*$ sends the generator of $H_n(Y_\pi, Y_\pi - p(y))$ to that of $H_n(Y, Y - y)$. Therefore $j_{3*}\phi_*(w)$ is the generator of $H_n(Y, Y - y)$. Consequently $\phi_*(w)$ is the

444

fundamental class of $H_n(Y)$. This completes the proof of Lemma 2. REMARK. ϕ is a kind of transfer map.

3. The element θ'

Let N and M be connected closed topological manifolds, on each of which there is given a fixed point free involution T. Consider the product manifolds $N \times M$ and $N \times M^2 = N \times M \times M$ on which π acts without fixed point by

$$T(y, x) = (T(y), T(x)), \quad T(y, x, x') = (T(y), x', x)$$

 $(y \in N, x, x' \in M)$. Let $N \underset{\pi}{\times} M, N \underset{\pi}{\times} M^2$ denote the orbit spaces; these are connected closed topological manifolds.

Define a continuous map $d'_0: N \times M \rightarrow N \times M^2$ by

$$d'_0(y, x) = (y, x, T(x))$$

 $(y \in N, x \in M)$. Then d'_0 induces a continuous map $d'_0: N \underset{\pi}{\times} M \to N \underset{\pi}{\times} M^2$, and hence a homomorphism $d'_{0*}: H_*(N \underset{\pi}{\times} M) \to H_*(N \underset{\pi}{\times} M^2)$. Let $\tau \in H_{m+n}(N \underset{\pi}{\times} M)$ denote the fundamental class of the manifold $N \underset{\pi}{\times} M$ and define

$$\theta_0' \in H^m(N \times M^2)$$

to be the element which is the Poincaré dual of $d'_{0*}(\tau)$, where $n = \dim N$, $m = \dim M$.

Assume now that $n \ge m$ and N has the mod 2 homology of the sphere $(n \ge 1)$. Consider the space N^{∞} constructed in §5 of [2]. Then it follows from Theorem 6 of [2] that there exists a unique element $\theta' \in H^m(N^{\infty} \times M^2)$ such that

$$i^*(\theta') = \theta'_0$$

for the homomorphism $i^*: H^m(N^{\infty} \times M^2) \rightarrow H^m(N \times M^2)$ induced by the inclusion.

With the notation in [2], we have

Theorem 2. $\theta' = P(1, \overline{\mu}) + \delta',$ where $\overline{\mu} \in H^{m}(M)$ is the generator, and δ' is a linear combination of elements of the type $P(\alpha, \beta)$ with deg $\alpha > 0$, deg $\beta > 0$. (Compare Theorem 7 in [2].)

Proof. Consider the orbit space $N^{\infty} \times M$ of $N^{\infty} \times M$ on which π acts by $T(y, x) = (T(y), T(x)), (y \in N^{\infty}, x \in M)$. Then the projection $N^{\infty} \times M \to M$ defines a fibration $q: N^{\infty} \times M \to M_{\pi}$ with fibre N^{∞} . Since $\widetilde{H}_{*}(N^{\infty}) = 0$, it follows that $q_{*}: H_{*}(N^{\infty} \times M) \cong H_{*}(M_{\pi})$ and in particular $H_{n+m}(N^{\infty} \times M) = 0$.

For the continuous map $d': N^{\infty} \times M \rightarrow N^{\infty} \times M^2$ defined similarly to d'_0 , the

following commutative diagram holds:

$$\begin{array}{c} H_{n+m}(N \times M) \xrightarrow{d'_{0*}} H_{n+m}(N \times M^2) \\ \downarrow i_{*} & \downarrow i_{*} \\ H_{n+m}(N^{\infty} \times M) \xrightarrow{d'_{*}} H_{n+m}(N^{\infty} \times M^2), \end{array}$$

where i are the inclusions. Hence we have

$$i_*d'_{0*}(\tau) = d'_*i_*(\tau) = 0.$$

For the generator λ of $H_{n+2m}(N \times M^2)$, we have

$$d_{0*}'(\tau) = \theta_0' \frown \lambda.$$

Therefore it follows that

$$0 = i_*(\theta'_0 \frown \lambda) = i_*(i^*(\theta') \frown \lambda) = \theta' \frown i_*(\lambda).$$

Let $\mu \in H_m(M)$ be the generator, and $\{\alpha_1, \alpha_2, \dots, \alpha_l\}$ be a basis of the module $H^*(M)$ such that $\alpha_1 = 1$ and $\alpha_l = \overline{\mu}$. Then, with the notations in [2], we have

$$i_*(\lambda) = P_n(\mu)$$

(see §6 of [2]), and

$$\theta' = \sum_{i,j} g_{ij} P_i(\alpha_j) + \sum_{j < k} h_{jk} P(\alpha_j, \alpha_k)$$

where g_{ij} , $h_{jk} \in \mathbb{Z}_2$ (see Theorem 4 of [2]). Thus it follows from Theorem 4 of [2] that

$$0 = \theta' \frown P_n(\mu) = \sum_{i,j} g_{ij} P_{n-i}(\alpha_j \frown \mu)$$

and hence $g_{ij} = 0$.

It remains now to prove that $h_{1I}=1$. To do this, we consider the following diagram:

where $p: N \times M^2 \to N \underset{\pi}{\times} M^2$ is the projection. It follows from Lemma 1 that the diagram is commutative, and from Lemma 2 that

$$\phi_*(au) =
u imes \mu, \quad \phi_*(\lambda) =
u imes \mu imes \mu$$

where $\nu \in H_n(N)$ is the generator. Therefore we have

446

Note on a Theorem due to Milnor

$$d'_{0*}(\nu \times \mu) = d'_{0*}\phi_*(\tau) = p^*(\theta'_0) \frown \phi_*(\lambda)$$
$$= p^*i^*(\theta') \frown (\nu \times \mu \times \mu).$$

Consider next the commutative diagram

$$\begin{array}{c} H^{m}(N^{\infty} \times M^{2}) \xrightarrow{i^{*}} H^{m}(N \times M^{2}) \\ \downarrow^{\pi} & \downarrow^{\pi} \\ H^{m}(N^{\infty} \times M^{2}) \xrightarrow{i^{*}} H^{m}(N \times M^{2}), \end{array}$$

where p are the projections and i are the inclusions. Since it is obvious that

$$p^*(P(\alpha_j, \alpha_k)) = 1 \times \alpha_j \times \alpha_k + 1 \times \alpha_k \times \alpha_j,$$

we have

$$d'_{0*}(\nu \times \mu) = i^* p^*(\theta') \frown (\nu \times \mu \times \mu)$$

= $i^* p^*(\sum_{j < k} h_{jk} P(\alpha_j, \alpha_k)) \frown (\nu \times \mu \times \mu)$
= $\nu \times (\sum_{j < k} h_{jk} (a_j \times a_k + a_k \times a_j)),$

where $a_i = \alpha_i \frown \mu$.

Let $\Delta_*: H_*(M) \rightarrow H_*(M \times M)$ denote the homomorphism induced by the diagonal map. Then we have

$$d_{0*}'(\nu imes \mu) =
u imes (1 imes T)_* \Delta_*(\mu).$$

Therefore it holds that

$$(1 \times T)_* \Delta_*(\mu) = \sum_{j < k} h_{jk}(a_j \times a_k + a_k \times a_j).$$

Thus it follows that

$$1 = \langle \overline{\mu}, \mu \rangle = \langle 1 \times \overline{\mu}, \Delta_{*}(\mu) \rangle$$

= $\langle 1 \times T^{*}(\overline{\mu}), \sum_{j < k} h_{jk}(a_{j} \times a_{k} + a_{k} \times a_{j}) \rangle$
= $\sum_{j < k} h_{jk}(\langle 1 \times \overline{\mu}, a_{j} \times a_{k} \rangle + \langle 1 \times \overline{\mu}, a_{k} \times a_{j} \rangle)$
= h_{1l} .

This completes the proof of Theorem 2.

4. Proof of Theorem 1

In what follows we shall prove Theorem 1.

We note first that M may be assumed to be a connected closed topological manifold.

Consider continuous maps $s: N \rightarrow N \times M^2$ and $k: N \rightarrow N^{\infty} \times N^2$ defined by

Μ. ΝΑΚΑΟΚΑ

$$s(y) = (y, f(y), fT(y)),$$

 $k(y) = (y, y, T(y)), (y \in N).$

Then, as in the proof of Lemma 4 in [2], we have by Theorem 2

$$s^*(\theta'_0) = s^*i^*(\theta') = k^*(1 \times f^2)^*(\theta')$$

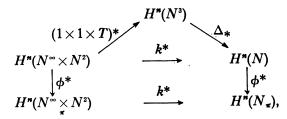
= $k^*(1 \times f^2)^*(P(1, \overline{\mu}) + \delta')$

in $H^{n}(N_{\pi})$. From this and the hypothesis, it follows that

$$s^*(\theta_0') = k^* P(1, \bar{\nu}),$$

where $\bar{\nu} \in H^{n}(N)$ is the generator.

We have a commutative diagram



where $N^3 = N \times N \times N$ and $\Delta: N \rightarrow N^3$ is the diagonal map. It is easily seen that

$$P(1, \bar{\nu}) = \phi^*(1 \times 1 \times \bar{\nu}).$$

Therefore we have

$$egin{aligned} &k^*P(1,\ ar{
u}) = k^*\phi^*(1 imes 1 imes ar{
u}) \ &= \phi^*\Delta^*(1 imes 1 imes T^*(ar{
u})) \ &= \phi^*\Delta^*(1 imes 1 imes ar{
u}) \ &= \phi^*(ar{
u}), \end{aligned}$$

which proves

$$s^*(\theta'_0) \neq 0.$$

Put

$$A'(f) = \{y \in N | fT(y) = Tf(y)\}$$

and

$$B'(f) =$$
Image of $A'(f)$ under the projection $N \rightarrow N_{\pi}$.

Then we have the following commutative diagram which is similar to the diagram in the proof of Lemma 5 in [2]:

448

Note on a Theorem due to Milnor

Therefore $s^*(\theta'_0) \neq 0$ implies $H^n(N_{\pi}, N_{\pi} - B'(f)) \neq 0$, which shows $B'(f) \neq \phi$. Thus $A'(f) \neq \phi$ and the proof completes.

OSAKA UNIVERSITY

References

- J. Milnor: Groups which act on Sⁿ without fixed points, Amer. J. Math. 79 (1957), 623-630.
- [2] M. Nakaoka: Generalizations of Borsuk-Ulam theorem, Osaka J. Math. 7 (1970), 423-441.