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THE WHITNEY JOIN AND ITS DUAL
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The notion of the Whitney join is a generalization of the Whitney sum of
vector bundles and has been treated by various authors [1], [8], [18].

In this paper we show that the Whitney join can be used to remove in
Serre's theorem on relative fibrations the usual assumption that the fibration
should be orientable (cf. [15], p. 476). This, applied to arbitrary group ex-
tensions, permits us to extend by one term the homology exact sequence which
has been deduced by many authors [4], [6], [11], [16], [17]. The resulting
exact sequences (see Theorems 3.1 and 3.3) reduce to those of T. Ganea [7] in
the case of a central extension. In section 4 we examine a relationship between
maps with left homotopy inverse and monomorphisms in homotopy theory
(see Theorem 4.1) and, in section 5 we give a generalization of an exact sequence
due to E. Thomas [19]. Duality suggests that there may be an exact sequence
involving a principal cofibration, and we establish it in the final section (sec
Theorem 6.3).

Throughout we will work in the category of spaces with base point (denoted
by*) which have the homotopy type of a CW complex. Given a map /: X-* Y,
we denote by C^and Zϊ^the cofibre Y\JCX (with (x, 1) and/(#) identified) and

the fibre {(x, / 3 ) G Z X Y*\β(0)=*, /3(l)=/(*)} respectively, where CX is the
reduced cone over X. As usual, S and Ω denote the suspension and loop
functors respectively.

The author is grateful to the referee for several suggestions which have
led to improvements in the presentation.

1. Whitney join

The Whitney join of two Hurewicz fibrations is, roughly speaking, defined
to be a weak pushout of the pullback of them. Let /: A^Y and g: B-+Y be
fibrations with fibres F and G and let K denote the pullback of/ and g\ thus,
K= {(a, b)^AχB\ f(a)=g(b)} with projections pλ: K->A andp2: K->B. The
Whitney join
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of/ and g is defined (cf. [8]) by setting
A®B=Uvt unreduced mapping cylinder (cf. [12]) A\JKxI\JB of pλ and

p2 with strong topology 1 2

U®g){a,b,t)=f{a)=g{b).

Then f®g is a fibration with fibre F*G (with strong topology). Since the
passage to the reduced construction does not affect the homotopy type in our cate-
gory, we shall replace A($B by the reduced one in the sequel.

Now consider the commutative diagram

A

and let τ(hf) denote the space obtained from Y\jCA\jCB\jCCX by the
\k g'

identification

(a, l)~/(α), (b,l)~g(b)y (x, s, l)~(h(x), s), (x, 1, t)~(k(x)9 t).

Let us write Chk for the double mapping cylinder A\JXχI\JB in the
following. We shall define

'h,k

by ξ(x, t)=fh(x)=gk(x), ξ(a)=f(a), ζ(b)=g(b),
Note that ξ=fθg for X=K, h=pλ and k=p2.

Lemma 1.1. The cofibre Cξ of ξ is homeomorphic to T[ * ).
\k gJ

Proof. The desired homeomorphism

is obtained by setting

(x, t, 2st+l—2s) for

V(xy s, t) = I ^ ( 2 - 2 ^ + 2 ^ - 1 , t) for 1^2ί^2 .

^(Λ, 0 = («, t), v(b, t)=(b91), v(y)=y.

Next consider the commutative diagram
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X-

u
•A

X.

f
ck

in which X1 and %2 are induced maps between cofibres resulting from fh=gk.
The following is a direct consequence of the definitions.

L e m m a 1.2. ( 3 x 3 lemma) The cofibres C%1 and C%2 of Xλ and X2 are

both homeomorphίc to T[ -*).
\k g/

The above two lemmas give rise to the following result for the situation
in the beginning of this section (cf. Lemma 6 of [14]).

Theorem 1.3. Suppose that the fibrations f: A-+Y and g: B-+Y over a
path-connected Y are m- and n-connected respectively, where m^O, n^O. Then
fθg, %i." CPl-+Cg and X2: CPz-^Cfare (m+n+l)-connected.

Given/: A-^Y and g: B->Y, let Efg denote the mapping track {(α, γ, 6)e
AxYIχB\f(a)=γ(O)y g(b)=j(l)} with obvious projections Px: Efg->A and
P2: Έf g->B, We see easily that the diagram

B — ^ Y

is homotopically equivalent to the pullback

4 " . J'
of two Serre path fibrations p and q. Hence ξ: CPlp2->Y is homotopically
equivalent to p(Bq. Thus we have (cf. Theorem 3.10 of [12])

Corollary 1.4. Let f: A^Y and g: B->Y be m- and n-connected maps,
where m^l,n^l. Then the diagram

[*/-. Π [[Y, V]

[B,V]
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is exact for a connected space V with zr t(F)=0/or i>m-\-n-\-l.

Proof. Suppose given maps a:A-+V and b: B->V such that aP1^^bP2.
Then we can construct an extension c: Cpltp2-*V of a and b. In order to show
the existence of a map j : Y->V satisfying the conditions a~yf and b~yg, it
suffices to verify that c can be extended to the mapping cylinder of ξ: CPltp2->Y.
The obstruction for such an extension lies in Hi+\C$\ πj(V))=0 for i ^ l .

Corollary 1.5. Let p: E-+B be a fibration with fibre F and assume that B
and F are m- and (»—1)-connected, where m^O, n^O. Then the maps

p:E\jCF-+B and σ:SF-+CPy

defined by p(e) = e, p(x, ί) = #, σ(x, t) = (x, i) for e^E, x^F, O^t^ί, are

(m-\-n-{-\yconnected.

Proof. By definition, Ep is the pullback of p: E->B and the Serre path
fibration q: E* lβ->B. So we have the commutative diagram:

Clearly the deformation retraction r: i?*,^"-** can be lifted to the deformation
retraction r: EP-^F, Hence the above diagram is homotopy equivalent to the
following one:

These considerations reveal that p and σ are homotopically equivalent to
Xλ: E {jCEp^Cq and X2: CP2~>CP respectively. Since p and q are n- and
m-connected respectively, it follows from 1.3 that p(Bq, Xλ and X2 are (m-\-n-\-l)
connected. This proves 1.5.

Finally, we consider the commutative diagram

k \ ,

B -£->
1/

B -^-> Y

which leads to the diagram
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AVB —*—+ Chtk > Ce >SX=CMt>l(AVB)

AIBSLA

1 X!r

C(A\JB) >Cξ

where e denotes the natural injection, {/, g} is the map determined by/ and gy

X! and %" are the maps defined in such a way that all the squares are commuta-

tive and w is given by

(h(x), 2t) for

Note that the triangle in the right corner is homotopy-commutative.

L e m m a 1.6. With the above notation, the cofibre Cw of w is of the same

homotopy type as Q, i.e., τ( *\
\k gy

This follows from 1.2, by observing that C(A\/B) is contractible and the

map Ce—>SX is a homotopy equivalence.

2. Certain cofibres

In this section we examine the cofibre of a map which admits a right

inverse. The verification of lemmas is straightforward and is left to the reader.

g f
Lemma 2.1. Let the composite Y >X > Y be the identity map of Y.

Then

(i) the maps

Φ: SX->CfVSY and Ψ: CfVSY-+SX,

given by

' (x,3t) for 0^3t^l

*(*>*)=• (gf(x)>2-3t) f°r 1^3*^2

(f(x)y 3z—2) for 2<3t<3

v(y,t) = {g(y),t), ψ(χ, t) = (x, t), ψ(y) = *,

are mutually inverse homotopy equivalences with the homotopy commutative diagram

CfVSY
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(ii) the maps

F: Cf->SCg and G: SCg->Cf

given by

F(xy s) = (x, s)y F(y) = *

(xy2s) for 0^2*^1
G(x, s) == ,

; ' (gf(x)y2-2s) for

G( t.s)=:ί (s(y)'2st) f°r o ^ 2 ^
I , 2t-2st) for ί^2s^2

are mutually inverse homotopy equivalences.

Lemma 2.2. Let p: AxB->B denote the projection on the second factor

and let Θ: CP->SA VA*B be defined by

Θ(aib;t) =

(ay3t) for 0^3t^:

for l^3t^:

for 2^3t^:

where (ί—s)aφsb denotes the point of A*B represented by (a,by s)^AχBχI.

Then Θ is a homotopy equivalence with inverse T: SAyA*B->CP gievn by

T(a, t) = (α, *; t)y T((l-t)a®tb) = (ay b; t).

REMARK. Lemma 2.2 can also be proved by observing that, in the week

pushout diagram

B >CP

\x
>A*B

I . I I
A A B C

% is a homotopy equivalence (cf. Lemma 1.2' of [12]) and i is null-homotopic,

hence C, is homotopy-equivalent to SAVA*B.

Corollary 2.3. The Thorn space of the trivial n-dimensional real vector bundle

over X is homotopy-equivalent to Sn V SnX.

3. Homology of group extensions

In this section we try to generalize an exact sequence due to T. Ganea

(Theorem 1.1 of [7]) to an arbitrary extension of groups.

Consider an exact sequence
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of groups which operate trivially on an abelian group A and the additive group of
integers. We shall identify N with its image i(N) in G. Since N is normal in
G, each e l e m e n t ^ G determines an automorphism of N, as n-^gng'1, w<Ξ N. Let

NxG

denote the semi-direct product of N and G with respect to this operation of G
on N.

We see that the mappings

p2:NxG->G and px: NxG->G9

which are given by

P2(n,g) = ng, pι(n,g)=g,

are homomorphisms. We have p2*: H2(NxG)->H2(G) and p^\ H2(NχG)
->//2(G), and p2* induces

Ker A*-*J/ a(G)

which we denote also by p2*.

Theorem 3.1. The sequence

Ker j>,* ̂  RIG) - K H2(O) - N/[N, G] - H,{G) -h* H^Q) - 0

is exact, where [N, G] is the normal subgroup of N generated by the elements

Proof. Take a Hurewicz fibration p: E^B between aspherical spaces which
induces p: π1{E)^G-^π1{B)^O, and let i: F->E denote the fiber inclusion.
Then F is aspherical and i induces i\ π1(F)^N-+G.

Let K denote the pullback of p by p, that is, K={(ey e')\ p{e)=p{e')}, with
projections p19 p2: K->E. We form the Puppe sequence for p1 and p to obtain
the commutative ladder:

PiK -£U E

A p lρ l
E 1 B C

\ x

r ύ:
—>SK —

\sp2s
—>SE —-

±> SE

p \SP

-> SB
A

E
where X is induced by the commutative square in the left corner and r denotes
the map shrinking £ to a point. Since p is 1-connected, it follows from 1.3
that X is 3-connected.

We shall show that K is an aspherical space such that πλ(K) is isomorphic
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to the semi-direct product NxG. Take «G nJJK) and let κk denote ph*(κ)

^π1(E\k=\y 2. Since p^(κ1)=p^(tc2)y there exists a unique v e nx(F) with

ί*(^)=^2/ci"1 Define

φ:

by φ(/c)=(vy/c1)y which is easily seen to be a homomorphism. Let us consider
the diagram of homotopy groups induced from the diagram (2). Then π2(B)=0
implies Ker/>lίis Π Ker^*—{1} and hence φ is monic. Suppose given an
element (n, g)^NχG. Clearly we have p*{i*(n)g)=p*(g), so the homotopy
lifting property assures the existence of an element /cG π^K) such that p!*(κ)=g
and p2*(κ)=i*{ri)g' This proves that φ is epic.

We show next that H2(Cp)^H2(CPl) is isomorphic to N/[Ny G]. Let M be
the mapping cylinder of p1 and consider the Hurewicz homomorphism

h: π2{M, K) - H2(M, K) « H2(CPl).

According to the Hurewicz theorem (see [15, p. 397]), h is epic with kernel
generated by the elements ω τ — τ, ω^π^K), τG7Γ2(M, K). Since the
boundary operator 3: π2(M, K)-^πλ{K) induces an isomorphism π2(M, K)
^ K e r [^(K)-^^(E)] we obtain π2(M, K) ^ πλ{F). These facts lead to the
conclusion that 3(KerA) is the subgroup of πJ^K) generated by 3(ω τ—τ)=
ωd(τ)ω~λd(τyλ. Now let us write ω=(nyg) and 3(τ)=(z/, 1); then a simple
calculation shows that ωd(τ)ω~1d(τyl=(ngvg~1n~1v~1> 1), from which we see
that Ker h coincides with [N, G].

Finally, consider the following commutative diagram

l) - ^ H2(K) ^ * H2(E)

[* |A* \P*
H3(CP) >H2(E) >H2{B)

As shown at the beginning of the proof, X* is epic, hence the image of Hz{Cp)->
H2(E) coincides with I m ^ ^ r ^ ^ ^ K e r ^ * ) . This concludes the proof of 3.1.

REMARK. We can infer from 2.1, (i) that, in 3.1, Ker^* ^-^

Pz* — Pi*
may be replaced by Coker s* >H2(G)y where s: G->NxG is given by

*(*)=(1>*)

Corollary 3.2. The sequence

Cokerp* &— H\G, A)£- H\Q, A) +- Uom(Nj[N, G], A)

+- H\G, A) ^— H\Q, A)^0



T H E WHITNEY JOIN AND ITS DUAL

is exact. If p*: H3(G)-*H3(Q) is epic, then there is an exact sequence

361

H1{N)®H1{N) - Ker £ * i * > H2{G) ->•••-> H^Q) - 0 .

The second assertion follows by noting that one has a 4-connected map
S(F*F)->C% by 1.1, 1.2 and 1.5

Let c: N-^NxG denote the homomorphism defined by t(ή) = (ny 1).
The following theorem is an extension of Theorem 2.1 in [7] to an arbitrary
extension.

Theorem 3.3. There exist homomorphisms

P: Hi(N)®H1(N)®H1(N) - Ker p^

and

σ: Coker^* -> H2(Ny

which make the following sequences exact:

Ht(Q) - Coker p - H2(G)lί*H2(N) - H2(Q) - N/[N, G]

, A)

0 - H\Q, A) - H\G, A) - Hom(NI[N, G], A) -> H\Q, A)

— H\G, A) Π Ker ί* — Ker σ — i^Xρ, Λ),

p | H2(N)=t* and the first component of σ is induced by «*.

Proof. Let πk: FxF^-F denote the projection onto the k th factor
(k=l, 2) and let To: SFVF*F-*CΛl denote the homotopy equivalence given
by T0(x, t)=(*, x; t), T0((ί — t)xφtx')=(x, x'; ί — t) (see 2.2). We shall refer
to the diagram

where £, έ and XQ are induced by the left-corner commutative cube, i2: F->FxF

is the injection into the second factor, and O: F*F^S(FxF) denotes the

quotient map.
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Now the Puppe sequences resulting from the fibrations p and p \ F yield
the following exact sequences

Hj(B) -> Coker £* -* Coker (Si)*

H* (SB)-> Ker (Si)* -> Ker 5* ->

Next we show that Coker£* and Kerf* have the more comprehensive
expression in case/=3 as follows.

First we observe by 1.1 and 1.2 that Cx and CXQ are homeomorphic to the
cofibres of the fibrations p®p: CPltp2~^B and C^^-^* respectively. Here
applying 1.5 to these fibrations we see that the map S(JF*.F)->C X is 4-connected
and the map S(F*F)-+Cχ0 gives a homotopy equivalence. Thus we obtain the
commutative diagram:

Ht{F*F) • HIC<X) > H3(SF) > 0

H,{F*F) > H3{CPl) , H3(CP) , 0

where rows are exact. This implies the isomorphisms

Coker 6* ^ Coker 6* and Ker £* ^ Ker 6* .

Secondly we observe that r* is monic, since p1 has a cross-section. There-
fore we have Coker 6*^r* (Coker έ*). We know that To is a homotopy
equivalence and therefore we reach the conclusion:

r*(Coker4) « Ktv

Taking S{i, i}#{Si2, — Q}* as p, we have the required result.

Corollary 3.4. If p*: H3(G)->H3(Q) is epic, then there is an exact sequence

H2(N)+H1(N)®H1(N) - ^ Ker j>* n H2(NxG) - H2(G)lhH2(N) -

If p*' H3(Q, A)-*H3{G, A) is monic, then there is an exact sequence

0 -* H ^ ρ , ^ ) -* ... — H2(G, i4) Π Ker f* - Cokerp* -*

Ha(ΛΓ, i ) + H o m (H^N^H^N), A).

This follows from 3.3 by observing that i/3(J5)-> Coker f̂  and Ker£*-»
H3(B; A) are trivial.

We shall next construct an exact sequence which is slightly ' 'larger'' than
the previous ones. For this purpose consider the Puppe sequence for {/>, p}:
EVE-+B



T H E WHITNEY JOIN AND ITS DUAL 363

^ i B->C{PP) -> SEVSE-> 5J5-> ... .

The map w: SK-^C[p p} is 3-connected from 1.6 and 1.3. Therefore we
obtain the following result.

Theorem 3.5. There is an exact sequence

H2(NxG) {Pι*' ~p2*l H2(G)+H2(G) h±t\ H2(Q) -> H^NxG)

{ A * ' ~h*ϊ Hλ{G)+Hλ{G) - ^ ( 0 ) -> 0 .

Corollary 3.6. If p*: H3(G)-+H3(O) is epic, then there is an exact sequence

H^N^H^N) - H2(NxG) -> H2(G)+H2(G) - . . . - > H^Q) - 0 .

If H3(Q) is free abelian, then there is a unnatural homomorphism H3(Q)+
' G) which makes the sequence

> H2(NxG) - H2(G)+H2(G) -> ... - Hλ{Q) - 0

exact.

The first exact sequence can be derived from the preceding Puppe sequence
by combining the fact that S(F*F)->C% is 4-connected owing to 1.5 and that
Cw and Q have the same homotopy type by 1.6.

In order to prove the second one, we consider the following commutative
diagram (cf. Lemma 1.6)

HZ(F*F) =H3(F*F)

H3(E®E) >H3(SK)

\(P®P)* [™*
H3(B) + H3(C{p>p]) * H3(SE)®H3(SE) > ...

0 0

where the row and columns are exact. Since the left column splits, we obtain
an exact sequence

H3(B)φH3(F*F) - H2(K) - H2(E)φH2(E) - Hjβy* -

which concludes the proof.

From now on assume that (1) is a central extension. It follows from the

proof of 3.1 that φ is an isomorphism of π^K) onto the direct product NxG.
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This is realized by a homotopy equivalence φ\ K-^FxE such that φ=(τ, p^

for a map r: K-^F with τ*(κ) = z>. Let ^ : FxE^K denote a homotopy

inverse of ^ and let q: FxE-^E be the projection. Since p1 is a fibration, we

see from qc^qφψ=piφ that there exists a map ψ: FxE-^K such that ψ—ψ

and pxψ^q. Put

μ=p2y]r: FxE-> E .

Then (2) can be replaced by the following commutative ladder:

SFVF*E

T\\Θ

I I I * I I ( 3 )
A6 ί Δ 5 μ Sp ^ '

in which Δ is a 3-connected map induced by pq=pμ and T and Θ are homotopy

equivalences as given in 2.2. Hence we have an exact sequence

H3(SF)®H3(F*E) dJ^Σ* H2(E) - H2(B) -> ... .

Since pμ(l X i)=pq(l X/)=*. there is a map

μ0: FXF-+F

with μ(lxi)~iμoy which induces an H structure compatible with the group

structure of N. Thus we obtain a homotopy-commutative diagram

F*F Ό+ S(FxF) ̂ X SF

l*t 5(1x0 Si

On the other hand, there is an exact sequence

HJ(F*F) J^J^hQ±+ H3(SF) - H,(ΛΓ, 2; Z) = 0 ,

which results from the canonical map SF-+K(N, 2). Thus, in dimension 3,

Now we see from 2.2 that

dAT\SF~Si and dAT\F*E = (Sμ)Q'.
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From these data and the fact that F*E is 2-connected we recover the exact
sequences

{Sμ)*QK H2(G) - H2{Q) ^N-+ H^G) - H,{Q) - 0 ,

0 — H\Q, A) - H\G, A) — Hom(iV, A) - H\Q, A) -* H\G, A)

— Horn (NQH^G), A)®Ext (N, A),

which have been obtained by T. Ganea [7, Theorem 1.1].
We can also see that the morphisms p and σ in 3.3 are equivalent to

10(1*0*: H2(N)®H3(F*F) -> H2(N)®HZ(F*E)

and

lθ(l*0*: H*(N, A)φHom (N^H^G), A) -> H\N, A)®Yίom (N®Ny A)

respectively. Theorem 3.3 allows us to conclude Theorem 2.1 of T. Ganea
[7]: there exist exact sequences

H3(Q) - N®H1(Q) - H2(G)lhH2(N) -> H2(Q) - N -> HX{G) -» Ht(Q) - 0

0 — H\Q, A) -* /r(G, i4) -> Horn (JV, A) -> /72(O, ^) -> Ker f* ->

Horn {N®H1{Q\ A) - # 3 ( ρ , ̂ ) .

4. Monomorphisms

A map /: X—>Y is called a monomorphίsm if the induced function
/*: [Vy X]-+[V, Y] is injective for every V (see [5], [9, p. 168]). We shall prove

Theorem 4.1. Let f: X—>Y be an n-connected monomorphism and let
X be a connected space such that 7r i(X)=0 for i^>2n-\-l with n>\. Then f has
a left homotopy inverse.

Proof. By the assumtion, 1.4 implies that the following square is exact:

[X,X]

Pt/ \f*
[E,,,, X] [Y, X]

[X,X]

On the other hand, the definition of Eftf implies f^(P1)
z=f^(P2)' Hence

we have P1c^P2y since/is a monomorphism. Now the exactness of the diagram
proves the existence of a map g: Y-+X satisfying l x = / * ( ^ ) .

According to T. Ganea [5], the Hopf fibrations

h:Sn->RPn and h: S2n+1 -> CPn
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are monomorphisms for odd Λ > 1 , and these do not admit left homotopy inverses,
as shown by the inspection of cohomology.

Finally, we remark that the condition in 4.1 is indispensable for the con-
clusion. Consider a map θ: K(Z, 2)->i£(Z, 2m+2) which represents the
(m+l)-ϊold cup product cm+1 of the basic class ι<^H\Z, 2; Z) and let

K(Z, 2m+1) - U Eθ JU K(Z, 2)

be the principal fibration induced by θ. Since Ωθ~0, we see that i is a
monomorphism by Theorem 15.11' of [9]. But it is known that p is the first
stage for a Postnikov system of CPm> so that there is a (2ττz+2)-connected map
g: CPm^Eθ. Thus H2m+1 (Eθ\ Z)=0, which shows that i does not admit any
left homotopy inverse. Taking m = l , the inclusion i provides an example.

5. Thomas exact sequence

Let^>: E->B be a principal fibration in the restricted sense, as defined in [13],
with fibre inclusion i: F-+E and with action μ\ FxE-^E. Let K denote the
square of p by p with projections^,p2: K-+E, and let q: FxE-^E be the projec-
tion onto the second factor. Then, by Lemma 2.1 of [13], {q, μ}: FxE->Kis
a homotopy equivalence making the diagram

FxE

commutative. Hence, Theorem 1.3 implies that, if p is w-connected, w^l,
then the sequence

[FxE, V]t=[E,V]J—[B,V]
q*

is exact for a connected space V with π{(V)=0 for ί|Ξ>2w+l, that is, μ,*(#)=#*(#)
for # e [E, V] if and only if there is a j e [B, V] such that #=£*(j/).

Henceforth we assume that p is w-connected, n^ί. Then one has the
commutative ladder (3) with Δ being (2«+l)-connected.

Let i2: E-^FxE denote the inclusion. In virtue of Lemma 2.1 (ii), we
can replace Cq by SCiz and the mutually inverse homotopy equivalences

F
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are given by

F(x, y; t) = (x, y; t), F(y) = * for X<ΞF,

ί (x,y,2s) for
G(x,y;s) = l

I (*,y; 2—2s) for

(*,y,2st) for

' (*,y;2t-2st) for

It follows from these expressions that the diagram

S(FxE) >SCit

lG

(Sμ)-(Sq)

* 9
SE < Cp

is commutative.

Let

J(μ): F*E^SE

denote the map obtained from μ by the Hopf construction, i.e. the composite
o

F*E->S(FχE)—^>SE. Then the composite 3ΔΓ in (3) is homotopic to

Si on SF and J(μ) on F*E.

Summarizing the above discussion we have

Theorem 5.1. The following sequences are exact for a connected space V

with πk(V)=0for k^2n+l:

[Fx Ey V] t = [E, V] X - [B, V] <- [SCi2, V] <- [SE, V]

[FxE, V] Z=z [E, V] J— [B, V] - [SFy F]Θ[F*£, V]
q*

The first sequence is an extension of an exact sequence due to E. Thomas

[19].

6. Duality

6.1. It seems difficult to define the dual of the Whitney join in an effective

way. However we can define the homotopy analogue of the dual of the Whitney

join as shown in [12] in the following way.
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Let us given a pushout diagram

Ί .-, !••
B^L

where / and g are cofibrations. Then the dual of the Whitney join

fφg: X->Ehti2

is defined by [(fθg)(x)](t)=x for x<=X, O ^ ί ^ l . Note that, if we denote

by T' the fibre of Ef-+Ei2, πn(Tf) is isomorphic to the homotopy group

πn+2(L\A,B)of2itήzd(L;A,B).

f g
Now, given a system of maps A < X >B, let

lλ\A-^Cfg and I2: B-+Cfg

denote the canonical injections. Then the homotopy-commutative diagram

is homotopically equivalent to the pushout

X *Mf

>

of two injections into mapping cylinders Mf and Mg. Now we consider the

map ς: X-+EIlJ2 defined by ξ(x)—(f(x), x, g(x)), where x denotes the path

given by x(t)=(x, t). Clearly ξ is homotopically equivalent to I 'ΦJ.

Now, applying a theorem of Blakers-Massey to the triad (C/g; Mf, Mg)y we

we can prove the following theorem in the similar manner as in 1.3 and 1.4

(cf. [12, Theorem 4.3]).

Theorem 6.1. Suppose f and g are m- and n-connected respectively, m^>l,

/z^>l, m + w ^ 3 , and let X be l-connected. Then ς: X-+EIχj2 is (m-\-n— 1)-

connected and the diagram

fy \/.*
[V, X] [V, CAg]

g*\ ί
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is exact for a CW complex V with dim V ^m-\-n— 1. Further, if

Xλ: Ef^El2 and X2: Eg-*EIi

denote the maps induced by a canonical homotopy IJ— I2gy then Xλ and X2 are
(m-\-n—l)-connected.

We remark that, as shown in [14], the restrictions on m and n can be removed
under appropriate assumption.

6.2. Following [9, p. 168], we say that /: X-> Y is an epimorphism if
/ * : [F, F]->[X, V] is injective for every V, The following theorem can be
deduced, in a similar way to 4.1, from 6.1.

Theorem 6.2. Suppose f: X->Y is an n-connected epimorphism with X
\-connected, n^il, and let Y be a CW complex with dim Y^2n—l. Then f has a
right homotopy inverse.

The condition of the above theorem cannot be removed with the conclusion
unchanged, because the projection/: SnxSn^S2n (n^2) shrinking SnVSn to
a point is an epimorphism with no right homotopy inverse, as mentioned in
[9, p. 181].

6.3. Consider a principal cofibration

A -*-+ B - ^ C ( 4 )

in the restricted sense [13], where C, the cofibre of /, is an H cogroup. Let

K denote the pushout of B< A >B, i.e. the space formed from ByB
by identifying (i{a)> *) with (*, i(a))> a^A, and let j k : B->K (Λ=l, 2) denote
the canonical inclusions. There is defined a coaction

μ: B-+CVB

such that {z'2, μ}' K^CWB is a homotopy equivalence where i2: B->CVB
denotes the injection. Let r2: CVB-+B be the projection shrinking C to a
point.

Henceforth we shall assume that i is n-connected, n^.2. Then it follows
from 6.1 that the sequence

h*

is exact for a CW complex with dim V ^2n— 1.

Introduce the commutative ladder
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ΩJ5 > E{ -^-> A > B

V

—>E,.
! Ί , , I" (5)

E B ^ C B

in which V is a (2n— l)-connected map induced by the right-hand commutative
square. We set

μ = V*£*: πk(SlB) = πk+1(B) -+ πk(Eh) = πk+1

With the above notation we can state an exact sequence which is dual to
the cohomology exact sequence obtained by E. Thomas as follows:

Theorem 6.3. The sequence

τt2n_lA) - ^ π^iB) J ^ π2n_λ{C VB,B)-^ π2n_2(A)

... - πk(A) ^ πk(B) -?-+ πk(C VB, B) - ^ πk

is exact with the following additional properties:
(i) For a(Eπr(A)f γ(Ξπs(C\/B, B) with r+s^2n, r ^ l , s^\,

τ [7, Hoc] = -[τ(γ), a]

where the bracket in the left-hand side denotes the relative Whίtehead product.
(ii) Let ίx: C^(C VB> B) be the inclusion and let τ0 denote the homomorphism

determined by the composite

P^q*)'1'. τtk{C) - πk(B, A) - πk

Then, for β<Ξπk{C) Π Im ?*,

τ(h*β) = τo(β) modp* (Ker q*) .

(iii) τ(^o9-1

Λ;)=τ(/3)oΛ;/or K^π^S^1), β£Ξπk(CVB, B)} where 9 is the
boundary isomorphism

Proof. The exactness follows immediately from (5). Since p* is the
boundary operator, we have, by (3.5) and (3.4) of [3],

ϊV, a] = [V^Vϊ'Ύ, HOC] = [γ, z

Hence
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, i*a] =p^[Vi1Ύy a]
1 ? , OC] = — [ r γ , a] .

The second property (ii) is a direct consequence of the following commutative
diagram:

πΛ(B, A) -?-+ π

r iv* r
πk{CWB, B) -1+ π

where rλ: C\/B->C denotes the projection pinching i? to a point and the com-
mutativity follows from rxμ~q and r1i1=l.

The last property (iii) is obvious from the definition of T.

REMARK. Note that the exact sequence in 6.3 is not exactly dual to the
one due to E. Thomas [19], and the precise dual will be the one obtained by
replacing Ei2 by CίEr^ where r2: C\/B-^B is the retraction.

6.4. We consider here a situation as an illustration of Theorem 6.3.
First we prove

Lemma 6.4. Let i: A->B be the principal cofibration induced by θ: Sn~1->A,
i.e. B=CΘ where A is l-connected and τz^3. Then

τ(h*cn) = & for the identity class

Proof. We see from the Blakers-Massey theorem that

?*: πn(B, A) -> πn(Sn)

is bijective. Since the characteristic map θ: (C5*1"1, Sn~1)-^(By A) satisfies
p^ψ}=θ and q*(θ)=ιn, and since i is (n— l)-connected, it follows from (ii) of
6.3 that

Theorem 6.5. Let i: A-+B be as in Lemma 6.4 and let a relation

θ°a-[θ, w] = 0, wϊΞπq{A\ α G ^ , . ^ " " 1 )

be given, where l<q<n— 1. Then there exists an element η^πn+q_1(B) such that

μ*V = i^(Sa)+i2^v+[i^ιny i2*i*w]y q*v=Sa ,

where μ: JS—>5WVB denotes the coactίon and ix is the inclusion Sn-+Sn\/B.

REMARK. Taking Sg and mιq (m\ an integer) for A and wy we obtain a result

due to I.M. James [10, Lemma (5.4)].

Proof. By (i), (iii) of 6.3 and Lemma 6.4, we have
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= — [τ(*Ί*'n)> tv] = —[(9,

These imply that ^ S α + ft**,,, i*w] lies in the kernel of T and, by the exactness
of 6.3, there exists η^πn+q_λ{B) such that

Now consider the following commutative diagram

7ΐn+g -ι\£>) * 7ΓW+^_1^O V -O J > 7ΓM+^_1^O V £>)

where k denotes the inclusion, which leads to

by (3.10) of [3]. Hence there exists a unique ή^πn+q_1(B) with

Moreover, it follows from r 2 μ ~ l and rxμ~q that 4)=η and Sa=q*η.

6.5. Take 4̂ and J5 to be the complex projective spaces Pm(C) and
Pm+\C) and let θ: S2m'Λ-+Pm(C) be the Hopf map. Then, by [2],

θ°η if m is even

0 if m is odd

for the generator w<=π2(Pm(C)) which comes from π^S1), where v is the
generator of π2m+2(S2m+1). Thus there is an element p<=π2m+3(Pm+1(C)) such
that

ιΊ*Si7+i2*P+[*Ί**2m-2> ί2*i*w] for m even

h*PJr[h*i2m-2> iz*H
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