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Introduction

Let K be a field of characteristic p and L=K[u], u*’=a< K, a simple purely
inseparable extension of exponent 2 and let 4 be a central separable algebra
over K which contains L as a maximal commutative subalgebra. Let D,, D,,
.-+, D, be the higher derivation of L/K defined by

D)= —+u (0<i<p), Dyu)=0.
7!
Then A. Hattori showed in [2] the existence of the elements d, (0<<i<p) of 4
making the above higher derivation inner in such a way that d,d ,=d ,d, and
in the group of Witt vectors of length 2, we have

uXd,, dp)u=(dy, dp)+(1, 0),
(a8, d3)—(d,, dp) = (Bo B), B:EK.

Thus u, d,, d, are the canonical generators of Schmid-Witt type for A4.

Furthermore to extend this result to arbitrary exponent case, he introduced
in [3] a Galois Hopf algebra ® for a simple purely inseparable extension
L=K][u], ?”"=acK (n>1). He conjectured that if A is a central separable
algebra over K with L as a maximal commutative subalgebra, then making use
of this Hopf algebra, one could find the canonical generators of Schmid-Witt
type for 4.

The purpose of this note is to answer this problem affirmatively. In
Section 1, we clarify the structure of the Hopf algebra introduced in [3]. In
Section 2, we give an answer to the above problem. Finally in Section 3, we
give an another proof following the idea of A.A. Albert in [1].

0. Preliminaries

We quote for the sake of convenience some definitions, notations and funda-
mental facts on Hopf algebras. For the details the reader will be expected to
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refer ML.E. Sweedler [4], [5].

We fix a ground field K. Let H be a Hopf algebra. Then we shall denote
its comultiplication by Ay (or simply A), augmentation by & (or €), antipode by
¢ty (or ¢). Furthermore we use the abbreviation

Ah = 3 heyQhey, (IQA)AR = 3] b, @l Qb and so on. With this
notation kA= 33 &(hw) hiy= 2 E(hep) hep.  Thus E(h)= 33 E(hepy) E(hen)-

An element g of H is called a group-like element, if Ag=g®g. We denote
by G(H) the set of all group-like elements of H.

In the sequel H will denote a Hopf algebra. A subspace I of H is called a
coideal if &J)=0 and AICHRQI+IQH. If Iis furthermore a two-sided ideal
of H, we can form the quotient Hopf algebra H/I.

If A is an algebra, Hom (H, A) has a natural algebra structure defined by

(f-8)(h) = 22 f(hev)g(her), f, g€ Hom (H, A), he H,
1(h) = &(h)1,, heH.

Let A and B be algebras, and o: HQ A — B a K-linear mapping. We say
o measures 4 to B if

oh®@1) =€)l and w(hQRQxy) =3 o(h,Px) (bR ),
heH, x, ysA.

We abbreviate o(AQa) by h-a. If g G(H), then g induces an algebra homo-
morphism. Let us set

A¥ = {acA|h-a = &h)aVheH} .

Then A* is a subalgebra of 4. If in particular A=B and 4 is an H-module with
this action, we say that 4 is an H-module algebra.

Let H be a finite dimensional Hopf algebra and L a field extension of K,
which is an H-module algebra. Then we say that L/K is a Galois extension
with Galois Hopf algebra H, if

(1) LE=K,

(2) [L:K]=[H:K],

"(3) the elements of G(H) induce all automorphisms of L/K. In this case,
L is a faithful H-module and for any K-algebra 4, an element f of Hom (H, A4)
is invertible if and only if for every-g= G(H) f(g) is invertible in 4.

Let H be a Hopf algebra, 4 and B algebras. Suppose that H measures 4
to B. We say that the measuring is B-inner if there is an invertible element f of
Hom (H, B) where f(h)a= 3 (hqy-a)f(he) for all he H, ac A. We say that f
gives the B-inner action,
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1. Hopf algebras H over K

In the sequel Z will denote the ring of rational integers. In this section we
fix a ground field K of characteristic p>0.

For every ring (commutative with identity) of characteristic p, we denote
by W(A) (resp. W,(A)) the ring of Witt vectors (resp. Witt vectors of length #)
with coefficients in A. Let Sy(X,; Y,), Sy(X, X,; Y, Y)), -+, be the poly-
nomials which define the additive structure of Witt vectors. Thus we have
(X Xy o)+ (Yo, Yy, -)=(S,, Sy, -++) in W(Z[pZ[X,, X}, +++, Yo, Yy, -+0]).
Then we can make the algebra K[X,, X, -, X,,_,]=A4,, into a Hopf algebra by

comultiplication: AX;=S5;(X,®1, -+, X;Q1;1QX,, -, 1Q X))
augmentation: E&X;)=0 0<i<n—1).
antipode: X,)=—-X; (0<i<n—1).
In particular,
AX, = X,Q14+1RX,,

AX, = X,@1+10X,+ 5 L _xiexs.
=1gl(p—1)!

In general,
AX; = X;Q1+1QX;
modulo the ideal generated by X, Q X, (0<s, t<i).
Lemma. Theideal I, of A, generated by X3—X,, X3—X,, -+, X5_1—X,,_,
is a coideal of the above Hopf algebra A,

Proof. Since the coefficients of S; are in the prime field, we have
X2=5,(X3®1, X531, --; 1Q0X3, 19 X%, ---). From this we can easily see
that A(X7—X;)Cc4,Q1,+1,A4,.

From this lemma we obtain the quotient Hopf algebra H,=A4,,/I, which will
play an essential role. Since 4, can be considered as a sub-Hopf algebra of
A,+, by the natural injection: 4,3 X;—X,€4,.,, H, also is a sub-Hopf
algebra of H,;,. We define H, as the trivial Hopf algebra K. We denote by
3, the class of X, in 4,. Though §; depends on #z this will not cause confu-
sions because of the above remark. In the sequel we use the vector notations

8¢ = 880851 e Bfea"—_ll (ez(eoy €15 %y en—l)s 033.<P) .

These form the basis of H, over K.
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Let L=K[u], u*"=a=K be a simple purely inseparable extension of ex-
ponent n. We are going to show that defining a suitable action of H, on L, L|/K
is a Galois extension with Galois Hopf algebra H,. For this purpose, we will
introduce certain notational conventions. In every ring with indentity 1, 0°
equals 1. For every integer a¢=Z, @ denotes its class in Z/p”"Z. Denote by
(Ao, Ay, +5 0ty_y) the element of W, (Z[pZ) corresponding to & by the ring iso-
morphism Z/p"Z =W (Z[pZ). For two integers 0<a, B<p”, define

0 if a+B<p”

(@, £) = {1 if at+B=p" .

Finally, for a=Z[p"Z define u® by u®=u® (0<a<p”). With these notations
we have the following:

Proposition 1. (A. Hattori, [3]) Define the action of H, on L by
8% -u” = afoatii---ag*iu” where e=(ey, €1, **y €4_1),
0<e,<p, 0<a<p”.
Then L|K is a Galois extension with Galois Hopf algebra H .

Proof. That L is an H,-module is clear since a?=a;. To prove that H,
measures L to L, it sufficies to show that

8o+ () = (S8 1, -+, 8,81; 1@8y, -+, 103 JuQu) .

where p is the multiplication LQL—L. The left hand side is equal to
8+ (a®Pu P =a@P(a+B),u"P=(a+B),u**?. The right hand side is equal
to
/L(S.'(ao®1) Tty a.®1~ 1®180; tty 1®B.’)um®uﬂ) =
Si(ato, =0y 3 By ++ey B)u .

Since Z[p*Z =W (Z[pZ), Sos -**5 A5 Boy -++5 B;)=(at+B);. Thus we get the
above equality. We see easily that L#»=K. On the other hand [H,: K]=p".
Thus [H,: K]=[L: K]. It remains to show that the group-like elements of H,,
induce all automorphisms of L/K. But this is clear because L/K is purely
inseparable and 1= G(H,).

Corollary 1. The group-like elements of H,, consist only of the identity element
1of H,.

Corollary 2. For any algebra A, fe Hom (H,, A) is invertible if and only if
fQ1) 1s invertible in A.
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We state two lemmas which we use in the next section.

Lemma 1. Let H be a Hopf algebra, A and B algebras, H measures A to B,
and let | be the two-sided ideal of A generated by f, f,, -+, [« (f:€A). Assume
H-f,=0 for every i. Then H induces naturally a measuring of A[] to B.

A non-commutative polynomial ring in 7 variables over K is a K-algebra cha-
racterized by the following properties.

(1) It is generated as a K-algebra by 7 elements X,, X,, ---, X,

(2) For any K-algebra 4 and z elements a,, a,, -+, a, of A, there exists a
unique K-algebra homomorphism g, such that g(X;)=a, for 1<i<n. Wedenote
this algebra by K<{X,, -+, X,>.

Lemma 2. Let H be a Hopf algebra with basis §,, --+, 8,, A an algebra and
KX, X,, -, X,,> a non-commutative polynomial ring. Then for every family
{a; } 1<i<n, 1<j<m of elements of A, there exists a unique measuring of
K<X,, -, X,,> to A defined by

8, X,=a;; (1<i<n, 1<j<m).

Proof. Define the action of H on X; and K by (3] «,8,)- X ;= >} a,a; ;,
h+1=¢&h) where a,K. To get a measuring, it needs only to define
h'(XilXiz"'Xis)z 2 (hCI).Xil)(h (2)'Xi2)"'(h(s)'Xis)°

2. Schmid-Witt’s normal form

Let L/K be as in Section 1 and A a central separable algebra over K with L
as a maximal commutative subalgebra. Then the action of H, on L defined in

Proposition 1 is A-inner. ([4])

Proposition 2. We can choose f:H,— A giving the inner action in such a
way that f satisfies the following conditions

f(8,)=4d; (0<i<n—1) are mutually commutative, and
f(8°) = dodir+-dgr it (e = (o €1, ) €5y) 0<e,<P) .

In particular f(1)=1, and in the group of Witt vectors
(dg; d’l’y RS} d;:—-l)_(do, du Tt dn—l) == (180’ 181) %y Bn—l)

with 8, K.

Proof. We shall construct f step by step. Assume we have already con-
structed f,: H,— A giving the inner action of H, on L such that
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fi(8) = d,, -+, f(8,_,) = d,_, are mutually commutative,

fi(8608%1-+-85°7) = dfodr--d iy, 0<e;<p

(d{)’; d’f) R d’:-l)_(do; dl’ 0y di—l) = (180’ ﬁl’ H) Bi—l)
with B, K.
Then, since AS,=S ;(8,®1, ---,8,Q1; 1Q3,, -+, 1Q8 ), 8o u=u, §;-u=0, -,
and §;_,-u=0, we get the relations

dju = qu(Ia 0) Ty 0> dO) dl) R d,) ’
or equivalently
u—l(dO) dl’ Tty di—l)u == (dO) du R di—1)+(1, 0, sy 0) .

Thus if we put D; the subalgebra of 4 ge.nerated by u, d,, d,,*++,d;_,. Then D;
is a central separable algebra over K[u?'] by E. Witt [6]. Hence in particular
D, is simple. Now we prove the following:

Lemma. There exists a measuring by H=H, of D; to D; extending the
measuring of L to L, in such a way that

hed,=el)yd, (0<j<i—1).

Proof. Consider the non-commutative polynomial ring C=K<U, X,, X,,
-, X;_;>. Then by Lemma 2, we have a measuring of C to D; defined by

h-U = h-u (original action),

h-X;=¢€h)d; (0<j<i—1).
Denote by I the ideal of C generated by the elements X X,—X, X, (0<s,
t<i—1). We first show that H-(X,X,—X,X,)=0. In fact, for every ele-
ment A€ H, b (X, X,) =2 (b  X)hep X)) = 2 E(hey)d E(hey)d, = E(h)d d,.
Thus h-(X,X,—X,X,)=¢€(k)(d,d,—d,d;)=0. Hence, if we denote the classes
of U, X, in C/I by the same letters, H induces a measuring such that

h-U=h-u, and h-X;=¢€h)d;.
Next we consider the ideal J of C/I generated by
Ut —a,

X,U—US (Xo Xy, X 51,0, 0, -, 0) (0<i<i—1)
gj(XO’ Xl)""Xj) (OSjSi—l),

Whel'eg; are defined by (Xg) X’l" Sty X’t‘—l)_(XO) Xn "'9Xi—1)°"(180’ 181,""3:'—1)
= (& &1 ***» &i_,) in the group W (K[X,, «*-, X;_.])-
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To complete the proof of the lemma it suffices to show that
H-J=0.

We shall verify this relation for every generator.

(1) Take an element 2 of H. Then, since H measures C/I and L to D;
and k- U=h-u, we have h- U?"=h-u?". 'Thus h-(U?"—a)=h-(u?*"—a)=0.

(2) For any heH, h-(X,U)= 3] (b Xi)(hep U)= 2] E(hery) di(ben-u)
=d (X2 E(hw) bep) w)=dyh-u) and k- (US(X,, X,, -+, X;; 1,0, -+, 0))=
2 (h(l)'u)s(h(z))st(dm dl) ) dt; 1’ 0, T 0) = (h'u)St(do; du ) dt; 1» 0) O) HE)
0). On the other hand, A-u=bu with bcK. Thus A-(X,U—-US(X,, -,
Y 1,0, --,0)=0.

(3) Forany heH, h-g (X,, X, -+, X ;)=E(h)g; (do, ds,+++, d;_,)=0.
Proof of the lemma is thus completed.

Now we return to the proof of the proposition. Consider 4, AR H,,
AQH,,, as left AQ D}-modules by

boaod = bad,
bO(a®h)0d = 2 ba(h(l)'d)®h(2) ,
where DY is the opposite ring of D; and a, b 4,d=D;, he H, or H,,,.
Then the homomorphism p;: AQH ;— A defined by p;(a®8°)=ad*=af(5°)
(where e=(e,, €, ***, €;_,) , 6°=238%° w857, df=dgds - dii Y, 0<e;<p) is an
A® D?-homomorphism. In fact, for every he H;, and d=dkd---d;i3,
(a®h)0d = Z a(hcn‘d)®h(z) = ad®(2 e(hm)h(z)) = adQ@kh .
On the other hand, since f; gives the inner action of H; on L,
p{(a®8°)ou®) = 21 a[(8°)e u°] f(8°)w) = &f (8)u” = ad’u® = p,(a®8°)u”.
Thus p;((aQ8°)o(du”)) = p,(adR8°)u” = p,(aR8°)du” .

Since AQ D] is semi simple, there exists a projection ¢: AQH;+,—> ARQH,
of AQ D{-modules. If we put p=p,q, and define f: H;.,— A by f(h)=p(1Qh),
then f gives the A-inner action of H;., on D, because f(h)d=p(1Qh)d
=p(2 by dQh)=2] (hep+d) fhey). Since f gives the A-inner action, if we
set f(8;)=4d;,

(*) did;=d;d; (0<j<i—1),
and du=uS,(1, 0, -+, 0; dy, d,, ---, d;), or equivalently
(*%) u'(do, dy, -, d;)u=(d,, d,, -+, d;)+(1, 0, ---, 0)

in the group of Witt vectors.
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From the second relation, we get u™'(d%, d2, -+, d?)u=(d3, d%, ---, d2)+(1, 0,
+++,0). Thus if we put (d3, d%, -+, d3)—(do, d, -+, d;)=(Vo, V1> ***» ¥:), ¥,’s are
contained in V 4(L), the commutor of L in 4, hencein L. Replacing d, by d?",
we obtain elements d,, d,, ---, d; of A which are mutually commutative, satisfy
the relation (**), such that (d3, d3, ---, d3)—(d,, d,, -+, d;)E W ;.,(K).

Define a linear mapping f;.,: H;+,— 4 by

fi+1(880851+++8%) = dbodir---dii  (0<e;<p).

Then we see easily, using the relation (xx), that f,,, gives the A-inner action of
H;.,on L. Sincetheinductionassumption is trivial for =0, this completes the
proof of the proposition.

Corollary. The elements d,, d,, --+, d,_, in Proposition 2 together with u
form the canonical generators of Schmid-Witt type for A.

3. Appendix

As we have remarked in the last part of the proof of Proposition 2, to prove
Proposition 2, it needs only to show the existence of the mutually commutative
elements d,, d,, -+, d,_, of A4, satisfying in the group of Witt vectors the relations

u-—l(doy dls Y dn——l)u - (do) dl’ R dn—1)+(1, 07 0) R 0) )
(d3, d3, -+, ds_1)—(d,, dy, -+, d, ) EW (K) .

Lemma. Let K[d,, d,, -, d;_|]/K be a cyclic extension of degree p* whose
Galois group is generated by o such that

(d3, di, -+, diy) = (doy dyy -+, diy)+(1, 0, 0, -+, 0)

in Wy(K[d,, dy, -+, d;_.]).
Then if we define «v; by

(dy dyy -+, d;_1,0)+(1, 0, 0, -, 0, 0) = (dy, dy, -+, diyy V)
Trace v;=1.

Proof. The assertion is a direct consequence of the relation
2%(1,0,0,--,0)= (0, 0, 0, -+, 1)
i+ 1—factors

Proof of the existence of d,, d,, -+, d,_, with the given properties. We
shall divide into two steps.

(1) L=KTJu] splits 4, but M=K]u”] does not.

Consider the derivation D of L/K defined by D(x) = u. 'Then D is A-inner.
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Thus there exists an elements d, of 4 such that dyu—ud,=u, o1 equivalently
u'dju=d,+1. Raising to p-th power, ™ 'dju=d3+1. Hence d§—d,is in L.
Replacing d, by d3", we get an element d, of 4, such that

{ wdu=d,+1,
d3—d,cK .

From the first relation, we have d, &V 4(M). On the other hand, V 4(M) is
similar to AQM as M-algebra, and [V 4(M) : M]=p*. Since, by hypothesis,
AQ®M is not a total matrix algebra, V ,(M) is a division algebra. Thus K[d,]
is a field, and in fact a cyclic extension of degree p of K.

Suppose we have already obtained mutually commutative elements d,, d,,
ey d,;_, of A, such that K[d,, d,, ---,d,_,] is a cyclic extension of degree p* and
in the group of Witt vectors the relations

u—l(do» du ) d{—l)u = (dov dn e de—1)+(1y 0,0, -, 0):
(dga di)’ B dl:—l)—(dm dla ) di—l)E W;(K)

hold. From the first relation, if we put N=K|[d,, d,, ---d;_,], v=u?'is contained
in V4(N). On the other hand, [N[v]: N]=p""* and [V 4(N): N]=p**"%.
Thus N[v] is a maximal commutative subalgebra of the N-algebra V 4(N).
Because of the linear disjointness, N[v] is in fact a field. Let us now consider
the derivation S of N[v]/N defined by S(v)=wv. Then, since S is V 4(INV)-inner,
there exists an element x of V' 4(IV), such that v 'xv=x+1. Since u”*Nu=N, we
have u™'V 4(N)u=V 4(N), and o=u""xu—xV 4(N). Furthermore v 'wv=o0.
Thus weN. We get inductively ¥=u""su—o=u""01"—o0—u " '0ou=+=0v""%v
—o—U ou——u"?Veu?'~1,  If we take into account that the inner auto-
morphism by # induces a generator of the Galois group of N/K, we have Trace
mx@=1. On the other hand, by the above lemma, Trace y/k7;=1. Thus
Trace (v;—w)=0. Hence there exists an element @ of N, such that v,—o
=u"'Bu—B. Thus if we put d,=x+3, we have u”'du—d,=v,. Thence d,
satisfies in the group of Witt vectors the relation

u_l(do’ dl’ "ty d.)u = (dO) dn "ty dg)+(1) 07 ttty 0) .
By the similar procedure as above, we may assume that
(dg: d{', B dzt,)_(dm dl’ ) d:)e W€+1(K) *

There remains to show that N[d,] is a field. From the above relation, d?—d,
=AeN. Thus, to prove that N[d,] is a field, it suffices to show that the poly-
nomial X?—X—X\ is irreducible over N, or equivalently, that A& N?—N.
Suppose on the contrary that A=p?—pu with y&N. Then d}—d,=p?—pu.
Now 0= (df—dyJu—u""(n?— )1 = (d,-+7.) —(di7.)— (@ ps)f—u™ i —
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(vi—u 'pu+p)?—(v;—u 'uu+p). Since we have v,—u"'pu+uEN, it is con-
tained in the prime field. Thus Trace y,=Trace (4 'uu—pu)=0. Contradic-
tion! This completes the induction step, hence the proof is completed.

(2) K[u*"] (>0) splits 4, but K[u*"*'] does not.

Take an algebra similar to 4 which contains K[#*'] as a maximal commuta-
tive subalgebra. Then from the first part, there exist B,, 5, :**, 8;_, K such
that B3 (a|By By -+, B;-1]. On the other hand, (a|B,, B ** Bi-1i]
~(a|0’ 0’ 0) R O: ﬂo: Bn "t 18.'—1]- Thus A':;(a,()) Oy Ty 09 180’ Bl) °ty Bi—l]'

Ny ———
n—i—factors
From this we can easily construct d,, d,, -+, d,,_,.

OsakA UNIVERSITY

References

[1] A.A. Albert: Structure of Algebras, Amer. Math. Soc. Colloq. Publ. XXIV, 1939.

[2] A. Hattori: An application of inner-extension of higher derivations to p-algebras,
Osaka J. Math. 7 (1970), 307-312.

[81 ——————: On higher derivations and related topics, Seminar on Derivations and
Cohomology of algebras (in Japanese), Research Institute for Mathematical Sciences,
Kyoto University, 1970.

[4] M.E. Sweedler: Cohomology of algebras over Hopf algebras, Trans. Amer. Math.
Soc. 133 (1968), 209-239.

[S] ————: Hopf Algebras, Benjamin, 1969.

[6] E.Witt: Zyklische Korper und Algebren der Characteristik p von Grad p*, Crelles
J. 176 (1937), 31-44.





