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Introduction

For a pointed finite CW pair (X, A), define as usual the k-dimensional un-
oriented cobordism group M4(X, A) of (X, 4) by

Ré(X, A) = lim [S**(X/A), MO()],

and denote 2 NKX, A) by N*X, A4).

R kLo

We identify the coeficient ring N* with the unoriented bordism ring Ny by
the Atiyah-Poincaré duality [2]

D:mkﬁm_k.

Let P, be the n-dimensional real projective space and %, be the canonical
line bundle over P,. Define

RH(BO(1)) = lim NH(P,) = RL[[W]],

where W,= lim W,(n,) is the cobordism first Stiefel-Whitney class [4]. On
account of the Kunneth formula, the homomorphism
Hom,n i TP, 5) = NP, X P,)

induced by a continuous map u,, , satisfying p¥ .7, .=7¥7,Qz¥n, gives
rise to the comultiplication

w* s MKBO(1)) — RHBO(1)) @ NHBO(1)) .
Ry
Let
P= Wl+32W13+24W15+25W16+25W17+27W18+"' (ziemi)

be a primitive element in N*(BO(1)) with respect to this comultiplication. Such
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elements exist ([3]). Fix once and for all a primitive element P of such kind.
Following Novikov [8, appendix II], we define in section 1 a cobordism stable
operation ®p which is a multiplicative projection characterised by the formula

Op(W,)=P.
The restriction of the natural transformation
u|Image ®p: Image ®p - H¥(X, 4; Z,)

is a natural ring isomorphism in the category of finite CW pairs. And this induces
a natural Ny-algebra isomorphism

RHX, A) = Ry @ H¥(X, 4; Z).

Conversely, any such natural isomorphism, commuting with suspensions, is
induced by ®p for some choice of a primitive element P.

In section 2, we study the relation between the operations S, and S, defined
in [8]. The result is applied in section 3 to prove that the coefficient z,, of a
primitive element P is the bordism class [P,,] of the real projective space for
each k=0.

And the coefficient z,;., is shown to be the class [P(1, 2k)] of Dold manifold
[5] in section 4.

The coeflicients z; of dimensions 7 other than 2k and 4k+1 are expressed as
very complicated polynomials in the generators of Dold [5] or of Milnor [7].

The present paper is motivated by the following classification theorem stated
in the proof of Theorem 8.1 in [3].

Theorem. P. (Boardman [3])
For an arbitrary family of decomposable elements {yj_,; yi_,€RNsi_,, 1=1},
there exists one and the only one primitive element

P =W, +2,W>+2,W>+z,W 5+, W, 2, W2+ .
in M¥(BO(1)), satisfying
i, =yi, (=1).

The coefficients z,,_, with k not a power of 2 are a set of polynomial generators
for Ny.

Moreover, if z,i_=2z4_, for 1 <i<n for primitive elements

P= Wl+22W13+24W15+25W16+26W17+2‘7W18+-"
and

P’ = WA sl W W WA W -
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then z,_,==zy_, for k not a multiple of 2"+,

The author wishes to thank Professors M. Nakaoka and F. Uchida for their
advices and encouragement.

1. Operation ©,
Let A*(0)= 323 A/0) denote the ring of stable operations in the un-
)

oriented cobordism theory. There is an isomorphism of Ry-modules ([6], [8])
W 4(0) = R @ ZAIWs, Wiy oo, Wiy 1],

where Ny isidentified with N* by the duality and @ denotes the complete tensor
product.

For a partition w=(z,, 7,, --+, 7,), denote W, the symmetrized monomial of
the W, and the operation S, & 1*(0) is defined by S,=¥"(W,).

For a primitive element
P = W,+2,W>+2,W>+2,W 42, W, 2, W -

in MN*(BO(1)) and for a partition w=(i, i, -**,%,), we denote the product
%%, 0%, a8 20,
Following the line of Novikov [8; appendix II], we define an operation
Dp= A(0) by
@p = 2128,

@

where the summation runs through all the partitions.

Lemma 1.1.

(1) @p(x -y) = Dp(x): Pp(y)-

(2) ®p(z)) =2, for z,EN, and
Dp(y) =0 for yeR, (>0).

(3) (p) = Dp.

Proof.

(1). By the definition of ®p and from the Cartan formula for S,, ([6], [8]),
part (1) is easily derived.

(2). It is obvious by definition that ®p(z,)=2, for z3,&N,.

It is known that S (W,)=W #** if w=(k) for some k=0 and that S,(W,)=0
otherwise ([6], [8]). Thus ®p(W,)=P. By the naturality of ®p, (Pp)*(W,)
=®p(P) is also a primitive element with the leading term W,. So it follows
from Theorem P in the introduction together with the fact that 3, =MN,=~={0}
that
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(@Y (W)= Pp(W) = 2395, W,

for some decomposable elements y,;_,&MN,;_,.
On the other hand,

(qDP)z( Wl)_(DP(WI) = q)P(Wx'i‘ fzg zk-1W1k)_q)P(W1)
= SO )Wt D WOk

Comparing both formulas, we see that ®p(z,_,)=0 for k<7. So ®p(2;_,)
=0 since 2, is decomposable. So y,=0 and it follows Theorem P that y,,;,,=0
for allj=0. Repeting this procedure, we can inductively deduce that ®p(z,_,)=0
for all k>3. At the same time we have proved that (®p)(W,)=®p(W,).

Now (®p)’ is also a multiplicative operation. As in the weakly complex case
([8]), a multiplicative operation of the unoriented cobordism theory is easily seen
to be uniquely determined by its value on W, Therefore (®p)’=®p. This
completes the proof of Lemma 1.1.

Notation. For a partition w=(i,, i,, ---, 7,), let ||o||=7,+7,+ -+, beits
degree and |w|=rits length. And we call w non-dyadic if none of the component
i, of  is of the form 2”—1.

Theorem 1.2. On the category of finite pointed CW pairs and continuous
maps, there is a natural direct sum splitting as a graded Z ~vector space

NHX, A)= B 2D (NHX, 4)),

w; non-dyadic

where (1) the restriction
w|Image ®p: ®p(NHX, A)) > H¥X, 4; Z,)
is a natural Z -algebra isomorphism, and (2) the scalar multiplication
SV D(RH(X, A)) > 2P DHRHX, A))

is a graded Z ,-module isomorphism of degree —||w|| if w is non-dyadic.
Therefore we obtain a natural equivalence of graded Ny-algebras

RHX, ) —N* @ HXX, 4; Z,)

which commuffs with suspension. (Suspension S and a bordism element x act on the
N\ ay /N
right by S(yQa)=yRS(a) and x(yRQa)=x-yQa, respectively.)
Moreover, the converse holds ; such an equivalence is induced by O 2 ®p

w; non-dyadic

for some choice of a primitive element P.

For the proof of the above theorem, we need the following operations which
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are just the unoriented analogue of those defined in [8].

Lemma 1.3.
For an indecomposable element y,=N;, define an operation A,,= 3 y# 'S,k
=
((G)e=(s, 2, -+, 7) ; the k copies of 7)
Then

Ay.'(a ° b) = Ay‘.(a) b+a- Ay;(b) +y;e Ay.'(a) ° A.v.‘(b )
and, in particular,
Ay;(yi.a) =a.

The proof of the lemma is straightforward from the definition of A,; and
the fact that S.,,(y,)=1€2Z,.

Proof of Theorem 1.2.

First we prove property (1). By (2) of Lemma 1.1, property (1) holds for
(X, A)=(S°, P). Since ®p commutes with suspensions, (1) also holds for (X, A4)
=(S", P) for n=1. Since @, is a projection, Pp(N*(, )) is also a cohomology
theory. So the general cases are proved by induction on the number of cells in
X—A, using the five lemma.

Next we prove property (2). The multiplication

PV Dp(NK(X, A)).— 22°D(NH(X, A))

is obviously a graded Z,-module epimorphism of degree —||w||.
Suppose 2-a=0 for ac D p(N*(X, A)) and for a non-dyadic w. Order the
components of w=(t,, &,, **+, 1,) as {, <7,< --- <7, and define the operation A, by
AZLP) = Azi oAz‘_ 0+ 0A
1 2

Then a=A, (25 -a)=A,’(0)=0 by Lemma 1.3. 'This proves property

)

SN
ty

().

Totally order the set of all non-dyadic partitions by o'<w if (@) ||o’||<||||
or (b) [lo’l|=||w|| and Z,=j, ***, %y _m+1=Js—m+1> Ly—m "] s_m fOr some m =0, where
o'=(ly, 1, +++,1,) and 0=(j,, J, ***, ;) With 7, <4, <.+ <7, and j,<j,<--- <j,.

We show that

q)PAz;»I’,)(z:xP)CDP(y)) =0

for any homogeneous element y if o’<w. In case ||o’||<||w||, Lemma 1.3
implies that

DpA, (27 Pp(y)) = Pp( Z U y;)

for some elements u;&MNy and y,€ Dp(N*(X, 4)) with dim ;= ||w||—||e’||>0.
Thus, by Lemma 1.1 (1), (2),



224 K. SHIBATA

Dp( Z w;y;) = Z Dp(u;) Pp(y;) = 0.
In case [|o'||=||o|| and Z,=7, ***, £,_ s> s_m>

DpA (27 Pp())
— (DPA(P) )(zjl...zjs_mAz',’—m(DP(y)) =0.

EITHIR —

The last equality follows from the preceding case.
Let >} 20°®@p(N*(X, A)) be the graded vector space spanned by all
o/<w
25 Pp(N*(X, A)) with o' < w.
It follows from the above fact that
22D Dp(N*X, A)) A2 Dp(N*(X, A)) =0

w/<w

for each w, so that there is a direct sum splitting

PO RKX, A)) = D 2PONHX, 4)).

®; non-dyadic ®; non-dyadic
Since it can be proved similarly as above that Image (®poA,P)
=1Image @ for each non-dyadic w, we have proved that there is a natural linear
endomorphism of degree zero
2 2POpAMKX, A) > D 2P Pp(NH(X, 4))CNK(X, 4).
w; non-dyadic ®; non-dyadic

It is clearly an automorphism for (X, 4)=(S° P) and therefore an automor-
phism for every finite CW pair by the effect of suspensions and of the five lemma.
Thus

D 2 P(MHX, A)) = R¥X, A).

®; non-dyadic
Since 20" Dp(y) 2 Pp(y’) = 25 Pp(y-y’), we have obtained a natural
equivalence of graded N-algebras

Op: MH(X, A) = N* @ H¥X, 4; Z,)

which commutes with suspension.
Conversely, each such equivalence © induces a natural monomorphism of
a graded Z,-algebra

A= O H*X, A; Z,): H¥X, A; Z,) > N¥(X, 4) .

Then the composition Aoy is a stable miltiplicative operation in 4*(0) and
Nou(W)=\w,)=P is a primitive element in N*(BO(1)). And the element P
has the leading term W, since

0 : Nu[[W.]] = R @ Zof[w]]
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is an MNy-algebra isomorphism. Therefore

6= @ {1& (ullmge @p)}:
®; non-dyadic A
RHX, A)= @ AP0, A) > B (8 @ HHX, 4; Z)
®; non-dyadic ®; non-dyadic

This completes the proof of Theorem 1.2.

2. Operations S,

Let W, denote the symmetrized monomial of the cobordism normal charac-
teristic classes W,. (W, (E)=W(—E&) for every stable vector bundle £.) The
operation S, is defined in [8] by S, =W} W,), where ¥ is the additive isomor-
phism mentioned in section 1.

Notation 2.1. (Landweber [6])

For a partition w=(z,, *-+, 7,) let r,(7) denote the occurrences of the integer 7
in . And define

= n!

r,,,(l)'r“(Z)'..(n___'wl)| if nzlol.

n {O if n<|o|=r

The modulo 2 reduction of ( " > is denoted by (n ) .
2

w w
Similarly to the weakly complex case [8], we can easily determine the value

S.[P:].

Lemma 2.2.
@ Spd = (*H) Py,

@ s.tpa= (274

[P e-nwn] for p such that 22 >k41.
2

Proof. By the geometric interpretation of the action of _7*(0) on Ny given
in [6], [8], Su[Pi]=£tW.(Tp,)=€ ° 2W1 = 2[I:'k_n«.n]- Part (2)

(0]
is proved similarly. Now we give some relations between S, and S,.

Lemma 2.3.

(1) If the occurrence r,(i)<1 in w for all i, then S,=S,.
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(2) Sur= > S,. anddually
o=k
§(.‘)” = 2 Si>

Hel=k
where ixw is meant a partition (i+],, i+, +++,1+J,) for 0=(j1, o ***» J,)-

After Landweber [6] we denote the partition (2)* by RA; and the totality of
linear combinations of the S, by 4*(0). A*(0) is proved a Hopf algebra over

Z, ([6], [8)])-

Theorem 2.4. (Landweber [6])
The set {Sy}a,, Sits,; =0} provides a minimal set of generators of A*(0).

Corollary 2.5.
The set {S;ta1, Spta, ; K=0} provides a minimal set of generators of A*(0).

Proof of Lemma 2.3.
By the Whitney product formula, it follows that >3 W, - W, =0 ifo=(0).

m=u)1w2

Therefore W ,,=W,;, for all ;=1 and we see by induction on the lengths of
partitions that W, =W, if r,({)<1 for all z. Part (1) follows from this and
from the definition of S, and S..
Put
> Wi =11 (1+u,x)
1555

0siss
for a sufficiently large s.
Then part (2) of the lemma is proved by induction on % as follows ;

Wein = > W(,-)'W(nk": 20 (Z Wi*w)'WCi)k_l

0=/ 0S/ISR-1 ||@]=!

{ ZW(Z (@)1 (ul ) m)H{ ()~ (ui_,)}

Jyteet

(9]

=, 2w 3 ("))

osizk-1\k—[

=uw|zlikm*m(lgl>z :u‘-ﬁv"mkW"*"’ '

Part (2) follows from this.

<k-1
=k-1

Proof of Corollary 2.5.

It follows from Lemma 2.3 and Theorem 2.4 that
S A = S IS
Suts, = Sata,+Ss-15,+decomposables in A*(0), and
§2hA2 = S,#s,1decomposables in 4*(0).

Thus the corollary follows from Theorem 2.4.
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3. Even dimensional coefficients

Following suit of Novikov [8, appendix I], we obtain the following. We omit
the proof.

Lemma 3.1.

For a partition » and for a positive integer k=2?(2q+1) (p=0, g=1), the
following formula holds if ||w|| =22
> Sml(zk—l—szll)(k——Hmz”)z =0,

w::.mlwz w2

where the z; denote the coefficients of a fixed primitive element P as in the introduc-
tion.

Now we prove the following theorem.

Theorem 3.2.

The coefficient z,, of a primitive element
4

P= W1+32W13+24W15+25W16+35W17+z1W18+"'
in N*(BO(1)) is equal to the bordism class [P, for all k=1.

Proof. For k—1, the theorem is clear since z, is indecomposable from
Theorem P in the introduction.

Assume that the theorem holds up to dimension 2(k—1)=2.

In order to show that S (2~ [Pu])= W.(2+[P])=0 for all » with ||w||
=2k, it saffices from Theorem 2.4 to prove

SyaZat[Pul) =0 (i=1,2).

To prove this, we see from Lemma 3.1 and the induction assumption that it
is sufficient to show

= S,,,Ai[P?,,_,.i](ZkJr;_“i)Z:o (i=1,2).

myn=2s

This is obvious in case 2°%i>2k or s=0 since

SmsdPaw-mi] = {l|w§m<2k+i—ni>z} [P

by Lemmas 2.2 (1) and 2.3 (2).
For the remaining cases, it suffices to prove the following lemma.

Lemma 3.3.

) m;g(ﬂﬂ@(’*‘”»(k;”)zo (mod2) for k=s=2.

(0]
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) m§,<,,m§m<k-2n))<k_2n)50 (mod2) for k22522,

o n
Proof.
(1) Put
a9 = 2 (Z.,)E,) #2020,
s = 2 (ELIN) @z0520.

Then it holds in general that
() () ()

=z .

So we obtain that

(¥) Ak s)= 3} A(k—1,5)+ 3 A(k—2,5") and

0gs//<ss-1

(+) B(k, )= 3 B(k—1,s)+ X1 B(k—3,s").
oés’és ués_‘

0<s

Part (1) clearly holds when k=s=2.

Assume, by induction, that (1) holds for such (%, s) that k,>k=2 and
k=>s=2.

Thus, for (ko s,) with ky>s,=2,

A(ks, o) Es'go}lA(k"_l’ sl)+,f'=201A(k°_2’ s’y =0 (mod 2)
by the induction hypothesis and by the fact that A(k, s)=1 for k=s and s=0, 1.
And for (k,, k), the iterated application of (*) shows that
A(ky, ko) = A(ky—1, ko)+ A(ky—2, k,—1)
= A1, k)+ >3 A(0,s")=0 (mod2).

0=/ <Sky~1

Part (2) of the lemma is proved similarly, using the formula (*%) repeatedly.
This completes the proof of Lemma 3.3 and Theorem 3.2.

RemARk 3.4. Theorem 3.2 has been proved independently by F. Uchida
[9] by a geometric method.

4. The coeflicients of dimensions 411

A. Dold has defined in [5] manifolds P(m,n) which are the identification
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spaces of S™XCP, with (x, 2)=(—x, 2). He proved that, for 22(2¢+1)—1
(p=1, g=1), the bordism class [P(2?—1, 2#q)] provides a polynomial generator
of N4 in the corresponding dimension.

Theorem 4.1.
The coefficient 2., of a primitive element

P =W, 42zW>+2,W>+2,W W, '+ 2, W7+ .-
in R*(BO(1)) is equal to the bordism class [P(1, 2k)] for all k=1.
For the proof of this theorem, we need the following notations.

Notation 4.2.
(1) Let c,(m) denote the coefficient of 27 in the dyadic expansion of the in-
teger m;

m = c(m)+c(m)-2+c,(m)-2°4---, c,(m) =0, 1.

(2) For a partition w, we denote by o(c,) the partition determined by
Tucep (()=Co(ro(i)) for alli=1. Thus o= 11 (w(cp))?.  For brevity,
oss

IT (w(c,))?* * and w(c,)*+w(c,) are denoted as @ and &, respectively ;
25p
o=()'®.

Lemma 4.3.

( n) -1 s n)) . Thus ( ”) =(n_61(n);|-2—60(n)> <Cl(n)'2=+c°(n)> )

2 0s2\w(cp) 2 @

@

Proof. By definition,

(Z)z = <r:(l1)>z<n;:(;()l)>z(n_li%;—)lr"’(l)\) .
Then, by Lucus’ theorem [1], ¢ 2

- ("‘é?s»_{v»(’)) _ H( - (c»(n—,gg,_lrm(i))) \)
A B A A A N X0 R

ep(n)— 23 cp(ral?)) ¢5(n)
=H(1ST,,( o )) =H<w'kcz:) 2
S\EL oewy )
This completes the proof.

Now we calculate all the normal Stiefel-Whitney numbers of P(1, 2k). It is
easily seen that the cobordism Stiefel-Whitney numbers of manifolds agree with
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the cohomological ones ([6], [8]). So, by abuse of a notation, we denote both
Stiefel-Whitney numbers by W,, (and the normal ones by W,).

Lemma 4.4.
0 if |@|=3 and &+3A, or &=(1),
W [P, 2k)] = (Zﬁ—l—k> T

[0}

l
[
P
[]
"

where p is any integer with 22>k 1.

Proof.
According to Dold [5].

H*(P(1, 2K); Z,) = H*P,X CPy; Z,)

as a ring. Let ¢ and d denote the 1- and 2-dimensional generators of
H*(P(1, 2k) ; Z,). The total Whitney class is given in [5] by

wyP(1, 2k) = (I"I—C)(l—’r-c—l-d)z”“ )
and thus
W*P(l, 2k) = (1_|_c)(1_|_t)4(21’_k—1)(1_|_t1)(1+t2) ,

where p is any integer with 2?>k+1 and #*=t,-t,—=d and ¢,-t,=c.
By formula (26) in [5],

#4153 =0 and B H50 =cdi .
The lemma follows from these facts and the preceding lemma.

Proof of Theorem 4.1.

Theorem P in the introduction asserts that z,.,=[P(1, 2)]. Assume, by
induction, that 2,,7,,=[P(1, 2k")] for '<k—1.

By Lemma 3.1 and Theorem 3.2, together with Lemma 2.2 (2), 4.3 and 4.4,

S o(Zi41) :mlglmzswl(zd(k—m>+1)<k;m>2( 2 )2

,

11@,]1=4m=-0
i <2"—1—4||61_II—|I51|I>(4|l@1|l+|lc§l|l+1
n:iilzwz 1 (@,)'®, 2 (@.)'®, 2
ol = n+

for w such that ||w||=4k+1. (The terms with ||w,||=2 vanish by Lemma 4.3.)
“

Therefore, by the induction hypothesis and by Lemma 4.3, together with the
fact that | &, |+ |@,| = || +4I (/=0), it can be shown that

Su(zlk+l) = 20+20 =0 if |5| =5.
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In case @=(2¢, 24, 4, 4(k—|l@||—i—j)+1),
20 1 —(B—|l@.|| — Nl —
m(34k+1)— 2 {( 1 (k oA 0)2(k Al i)z

D=0, @, 62
(2"—1 (||w||+l+J— H@H)) (||6||+i+j— IIEzH) }
2 62 2
by the induction hypothesis and by Lemma 4.3.
Suppose <2"’— 1—(k— HcT;2||—~z')) (k~ ||@,l| —i) =1 for some separation
2 2

@, @,
®,@, of @.

Since ¢ (22" —1—(k— ||@,|| — 1)) Fc5(k— ||@,|| —7) for each p, there is at most
one =1 such that c,(r;(¢))%0. Let r be the number of such odd integers
2i+1=1 that satisfy 75 (21+1)>O Then, by Lemma 4.3, the numbers of such

separations @,@,=® and @, ®,' = that satisfy

(2p’_1—(lj—||@ll—l)> (k—llwzll—i> —1 and
(2"'—1—(|Iclvll+1+k—|lwz Il) (||w||+1+k—||wz ll)

@y

respectively, are both 2”.

The situation is the same if we suppose

(2”-1—(Hw||+j+k—llaz|l)) (Ha||+j+k—|iazl|> 1
@, ? [O 2

for some separation @, *@,=®.

Therefore S, (24+:)=0+0=0 or =14+1=0 if &=(2], 2, 44,
Hs— @l —j—k)+1).

We can prove analogously in other cases when @=(1) or |&| =3 and @+3A,
that Sw(zdkﬂ):o‘

When |»|=2, from dimensional reasons, o=(2f, 4(s— ||@||)—2j+1) for
some j=1. In this case

So(Zuer1) = _E ( ’—1—Ek—‘”wzll))2<k_cl|62”>2

7»2;2:)2 @1 @
b 1—2llall— 2lla . TP .
+z(2 ! (2”(‘;—11 2l (2ol a_)ZZHa)zH-{—])Z

S G L T}

S
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as required.
When o=3A, or &=A,,, (n=1), analogous arguments show that S ,(2+.)

N

Comparing these facts with Lemma 4.4, we deduce that S,(2,:)
=Wo(2s1)=W.(P(1, 2k)) for all @ with ||w||=4k+1. This completes the
proof of Theorem 4.1.
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