ON BOARDMAN'S GENERATING SETS OF THE UNORIENTED BORDISM RING

Katsuyuki SHIBATA

(Received September 24, 1970)

Introduction

For a pointed finite $C W$ pair (X, A), define as usual the k-dimensional unoriented cobordism group $\mathfrak{R}^{k}(X, A)$ of (X, A) by

$$
\mathfrak{N}^{k}(X, A)=\underset{n}{\lim }\left[S^{n-k}(X / A), M O(n)\right],
$$

and denote

$$
\sum_{-\infty<k<\infty} \mathfrak{N}^{k}(X, A) \quad \text { by } \quad \mathfrak{R}^{*}(X, A)
$$

We identify the coeficient ring \mathfrak{R}^{*} with the unoriented bordism ring \mathfrak{R}_{*} by the Atiyah-Poincaré duality [2]

$$
D: \mathfrak{R}_{k} \rightarrow \mathfrak{R}^{-k}
$$

Let P_{n} be the n-dimensional real projective space and η_{n} be the canonical line bundle over P_{n}. Define

$$
\mathfrak{R} *(B O(1))={\underset{\leftarrow}{n}}_{\lim }^{\mathfrak{R}^{*}\left(P_{n}\right) \cong \mathfrak{M}_{*}\left[\left[W_{1}\right]\right], \text {, }, \text {. }}
$$

where $W_{1}=\underset{{ }_{n}}{\lim } W_{1}\left(\eta_{n}\right)$ is the cobordism first Stiefel-Whitney class [4]. On account of the Kunneth formula, the homomorphism

$$
\mu_{m, n}^{*}: \mathfrak{R}^{*}\left(P_{m+n}\right) \rightarrow \mathfrak{R} *\left(P_{m} \times P_{n}\right)
$$

induced by a continuous map $\mu_{m, n}$ satisfying $\mu_{m, n}^{*} \eta_{m+n} \cong \pi_{1}^{*} \eta_{m} \otimes \pi_{2}^{*} \eta_{n}$ gives rise to the comultiplication

$$
\mu^{*}: \mathfrak{R}^{*}(B O(1)) \rightarrow \mathfrak{N}^{*}(B O(1)) \bigotimes_{\mathfrak{R}_{*}}^{\otimes} \mathfrak{R}^{*}(B O(1))
$$

Let

$$
P=W_{1}+z_{2} W_{1}^{3}+z_{4} W_{1}^{5}+z_{5} W_{1}^{6}+z_{6} W_{1}^{7}+z_{7} W_{1}^{8}+\cdots \quad\left(z_{i} \in \mathfrak{R}_{i}\right)
$$

be a primitive element in $\mathfrak{R}^{*}(B O(1))$ with respect to this comultiplication. Such
elements exist ([3]). Fix once and for all a primitive element P of such kind.
Following Novikov [8, appendix II], we define in section 1 a cobordism stable operation Φ_{P} which is a multiplicative projection characterised by the formula

$$
\Phi_{P}\left(W_{1}\right)=P
$$

The restriction of the natural transformation

$$
\mu \mid \text { Image } \Phi_{P}: \text { Image } \Phi_{P} \rightarrow H^{*}\left(X, A ; Z_{2}\right)
$$

is a natural ring isomorphism in the category of finite $C W$ pairs. And this induces a natural \mathfrak{N}_{*}-algebra isomorphism

$$
\mathfrak{R}^{*}(X, A) \cong \mathfrak{N}_{*} \widehat{\otimes} H^{*}\left(X, A ; Z_{2}\right)
$$

Conversely, any such natural isomorphism, commuting with suspensions, is induced by Φ_{P} for some choice of a primitive element P.

In section 2 , we study the relation between the operations S_{ω} and \bar{S}_{ω} defined in [8]. The result is applied in section 3 to prove that the coefficient $z_{2 k}$ of a primitive element P is the bordism class $\left[P_{2 k}\right]$ of the real projective space for each $k \geqq 0$.

And the coefficient $z_{4 k+1}$ is shown to be the class [$P(1,2 k)$] of Dold manifold [5] in section 4.

The coefficients z_{i} of dimensions i other than $2 k$ and $4 k+1$ are expressed as very complicated polynomials in the generators of Dold [5] or of Milnor [7].

The present paper is motivated by the following classification theorem stated in the proof of Theorem 8.1 in [3].

Theorem. P. (Boardman [3])
 there exists one and the only one primitive element

$$
P=W_{1}+z_{2} W_{1}^{3}+z_{4} W_{1}^{5}+z_{5} W_{1}^{6}+z_{6} W_{1}^{7}+z_{7} W_{1}^{8}+\cdots .
$$

in $\mathfrak{R}^{*}(B O(1))$, satisfying

$$
z_{2^{i}-1}=y_{2^{i}-1} \quad(i \geqq 1) .
$$

The coefficients z_{k-1} with k not a power of 2 are a set of polynomial generators for \mathfrak{M}_{*}.

Moreover, if $z_{2^{i}{ }_{1}}=z_{2}^{i^{i}-1}$ for $1 \leqq i \leqq n$ for primitive elements

$$
P=W_{1}+z_{2} W_{1}^{3}+z_{4} W_{1}^{5}+z_{5} W_{1}^{6}+z_{6} W_{1}^{7}+z_{7} W_{1}^{8}+\cdots
$$

and

$$
P^{\prime}=W_{1}+z_{2}^{\prime} W_{1}^{3}+z_{4}^{\prime} W_{1}^{5}+z_{5}^{\prime} W_{1}^{6}+z_{6}^{\prime} W_{1}^{7}+z_{7}^{\prime} W_{1}^{8}+\cdots
$$

then $z_{k-1}=z_{k-1}^{\prime}$ for k not a multiple of 2^{n+1}.
The author wishes to thank Professors M. Nakaoka and F. Uchida for their advices and encouragement.

1. Operation Φ_{P}

Let $\mathcal{A}^{*}(0)=\sum_{-\infty<i<\infty} \mathscr{A}^{i}(0)$ denote the ring of stable operations in the unoriented cobordism theory. There is an isomorphism of \mathfrak{R}_{*}-modules ([6], [8])

$$
\Psi: \mathcal{A}^{*}(0) \rightarrow \mathfrak{N}_{*} \widehat{\otimes} Z_{2}\left[\left[W_{1}, W_{2}, \cdots, W_{k}, \cdots\right]\right]
$$

where $\mathfrak{\Re}_{*}$ is identified with \mathfrak{R}^{*} by the duality and $\hat{\otimes}$ denotes the complete tensor product.

For a partition $\omega=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$, denote W_{ω} the symmetrized monomial of the W_{k} and the operation $S_{\omega} \in \mathcal{A}^{*}(0)$ is defined by $S_{\omega}=\Psi^{-1}\left(W_{\omega}\right)$.

For a primitive element

$$
P=W_{1}+z_{2} W_{1}^{3}+z_{4} W_{1}^{5}+z_{5} W_{1}^{6}+z_{6} W_{1}^{7}+z_{7} W_{1}^{8}+\cdots
$$

in $\mathfrak{R}^{*}(B O(1))$ and for a partition $\omega=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$, we denote the product $z_{i_{1}} \cdot z_{i_{2}} \cdots z_{i_{r}}$ as $z_{\omega}^{(P)}$.

Following the line of Novikov [8; appendix II], we define an operation $\Phi_{P} \in \mathcal{A}^{0}(0)$ by

$$
\Phi_{P}=\sum_{\omega} z_{\omega}^{(P)} S_{\omega},
$$

where the summation runs through all the partitions.

Lemma 1.1.

(1) $\Phi_{P}(x \cdot y)=\Phi_{P}(x) \cdot \Phi_{P}(y)$.
(2) $\Phi_{P}\left(z_{0}\right)=z_{0}$ for $z_{0} \in \Re_{0}$ and
$\Phi_{P}(y)=0 \quad$ for $\quad y \in \mathfrak{N}_{i} \quad(i>0)$.
(3) $\left(\Phi_{P}\right)^{2}=\Phi_{P}$.

Proof.
(1). By the definition of Φ_{P} and from the Cartan formula for S_{ω} ([6], [8]), part (1) is easily derived.
(2). It is obvious by definition that $\Phi_{P}\left(z_{0}\right)=z_{0}$ for $z_{0} \in \mathfrak{N}_{0}$.

It is known that $S_{\omega}\left(W_{1}\right)=W_{1}{ }^{k+1}$ if $\omega=(k)$ for some $k \geqq 0$ and that $S_{\omega}\left(W_{1}\right)=0$ otherwise ([6], [8]). Thus $\Phi_{P}\left(W_{1}\right)=P$. By the naturality of $\Phi_{P},\left(\Phi_{P}\right)^{2}\left(W_{1}\right)$ $=\Phi_{P}(P)$ is also a primitive element with the leading term W_{1}. So it follows from Theorem P in the introduction together with the fact that $\mathfrak{R}_{1} \cong \mathfrak{R}_{3} \cong\{0\}$ that

$$
\left(\Phi_{P}\right)^{2}\left(W_{1}\right)-\Phi_{P}\left(W_{1}\right)=\sum_{j \geq 1} y_{8 j-1} W_{1}^{8 j}
$$

for some decomposable elements $y_{8 j-1} \in \mathfrak{M}_{8 j-1}$.
On the other hand,

$$
\begin{aligned}
\left(\Phi_{P}\right)^{2}\left(W_{1}\right)-\Phi_{P}\left(W_{1}\right) & =\Phi_{P}\left(W_{1}+\sum_{k \geq 3} z_{k-1} W_{1}^{k}\right)-\Phi_{P}\left(W_{1}\right) \\
& =\sum_{k \geq 3} \Phi_{P}\left(z_{k-1}\right)\left(W_{1}+\sum_{l \geq 3} z_{l-1} W_{1}^{l}\right)^{k}
\end{aligned}
$$

Comparing both formulas, we see that $\Phi_{P}\left(z_{k-1}\right)=0$ for $k \leqq 7$. So $\Phi_{P}\left(z_{8-1}\right)$ $=0$ since z_{7} is decomposable. So $y_{7}=0$ and it follows Theorem P that $y_{16 j+7}=0$ for all $j \geqq 0$. Repeting this procedure, we can inductively deduce that $\Phi_{P}\left(z_{k-1}\right)=0$ for all $k \geqq 3$. At the same time we have proved that $\left(\Phi_{P}\right)^{2}\left(W_{1}\right)=\Phi_{P}\left(W_{1}\right)$.

Now $\left(\Phi_{P}\right)^{2}$ is also a multiplicative operation. As in the weakly complex case ([8]), a multiplicative operation of the unoriented cobordism theory is easily seen to be uniquely determined by its value on W_{1}. Therefore $\left(\Phi_{P}\right)^{2}=\Phi_{P}$. This completes the proof of Lemma 1.1.

Notation. For a partition $\omega=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$, let $\|\omega\|=i_{1}+i_{2}+\cdots+i_{r}$ be its degree and $|\omega|=r$ its length. And we call ω non-dyadic if none of the component i_{k} of ω is of the form $2^{m}-1$.

Theorem 1.2. On the category of finite pointed $C W$ pairs and continuous maps, there is a natural direct sum splitting as a graded Z_{2}-vector space

$$
\mathfrak{R} *(X, A)=\underset{\omega ; \text { non-dyadic }}{\oplus} z_{\omega}^{(P)} \Phi_{P}\left(\mathfrak{R}^{*}(X, A)\right),
$$

where (1) the restriction

$$
\mu \mid \text { Image } \Phi_{P}: \Phi_{P}\left(\mathfrak{R}^{*}(X, A)\right) \rightarrow H^{*}\left(X, A ; Z_{2}\right)
$$

is a natural Z_{2}-algebra isomorphism, and (2) the scalar multiplication

$$
z_{\omega}^{(P)} \cup: \Phi_{P}\left(\mathfrak{R}^{*}(X, A)\right) \rightarrow z_{\omega}^{(P)} \Phi_{P}\left(\Re^{*}(X, A)\right)
$$

is a graded Z_{2}-module isomorphism of degree $-\|\omega\|$ if ω is non-dyadic.
Therefore we obtain a natural equivalence of graded \mathfrak{N}_{*}-algebras

$$
\mathfrak{N}^{*}(X, A) \longrightarrow \mathfrak{N}^{*} \widehat{\otimes} H^{*}\left(X, A ; Z_{2}\right)
$$

which commutes with suspension. (Suspension S and a bordism element x act on the right by $S(y \widehat{\otimes} a)=y \widehat{\otimes} S(a)$ and $x(y \widehat{\otimes} a)=x \cdot y \widehat{\otimes} a$, respectively.

Moreover, the converse holds; such an equivalence is induced by $\underset{\omega ; \text { non-dyadic }}{\oplus} z_{\omega}^{(P)} \Phi_{P}$ for some choice of a primitive element P.

For the proof of the above theorem, we need the following operations which
are just the unoriented analogue of those defined in [8].

Lemma 1.3.

For an indecomposable element $y_{i} \in \Re_{i}$, define an operation $\Delta_{y_{i}}=\sum_{k \geq 1} y_{i}{ }^{k-1} S_{(i)}{ }^{k}$. $\left((i)^{k}=(i, i, \cdots, i) ;\right.$ the k copies of $\left.i\right)$

Then

$$
\Delta_{y_{i}}(a \cdot b)=\Delta_{y_{i}}(a) \cdot b+a \cdot \Delta_{y_{i}}(b)+y_{i} \cdot \Delta_{y_{i}}(a) \cdot \Delta_{y_{i}}(b)
$$

and, in particular,

$$
\Delta_{y_{i}}\left(y_{i} \cdot a\right)=a .
$$

The proof of the lemma is straightforward from the definition of $\Delta_{y_{i}}$ and the fact that $S_{(i)}\left(y_{i}\right)=1 \in Z_{2}$.

Proof of Theorem 1.2.
First we prove property (1). By (2) of Lemma 1.1, property (1) holds for $(X, A)=\left(S^{0}, P\right)$. Since Φ_{P} commutes with suspensions, (1) also holds for (X, A) $=\left(S^{n}, P\right)$ for $n \geqq 1$. Since Φ_{P} is a projection, $\Phi_{P}\left(\mathfrak{R}^{*}(),\right)$ is also a cohomology theory. So the general cases are proved by induction on the number of cells in $X-A$, using the five lemma.

Next we prove property (2). The multiplication

$$
z_{\omega}^{(P)} \cup: \Phi_{P}\left(\Re^{*}(X, A)\right) \rightarrow z_{\omega}^{(P)} \Phi_{P}\left(\Re^{*}(X, A)\right)
$$

is obviously a graded Z_{2}-module epimorphism of degree $-\|\omega\|$.
Suppose $z_{\omega}^{(P)} \cdot a=0$ for $\mathrm{a} \in \Phi_{P}\left(\mathfrak{R}^{*}(X, A)\right)$ and for a non-dyadic ω. Order the components of $\omega=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ as $i_{1} \leqq i_{2} \leqq \cdots \leqq i_{r}$ and define the operation $\Delta_{z \omega}^{(P)}$ by

$$
\Delta_{z \omega}^{(P)}=\Delta_{z_{i_{1}}} \circ \Delta_{z_{i_{2}}} \circ \cdots \circ \Delta_{z_{i_{r}}} .
$$

Then $a=\Delta_{z \omega}^{(P)}\left(z_{\omega}^{(P)} \cdot a\right)=\Delta_{z \omega}^{(P)}(0)=0$ by Lemma 1.3. This proves property (2).

Totally order the set of all non-dyadic partitions by $\omega^{\prime}<\omega$ if $(a)\left\|\omega^{\prime}\right\|<\|\omega\|$ or $(b)\left\|\omega^{\prime}\right\|=\|\omega\|$ and $i_{r}=j_{s}, \cdots, i_{r-m+1}=j_{s-m+1}, i_{r-m}>j_{s-m}$ for some $m \geqq 0$, where $\omega^{\prime}=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ and $\omega=\left(j_{1}, j_{2}, \cdots, j_{s}\right)$ with $i_{1} \leqq i_{2} \leqq \cdots \leqq i_{r}$ and $j_{1} \leqq j_{2} \leqq \cdots \leqq j_{s}$.

We show that

$$
\Phi_{P} \Delta_{z \omega^{\prime}}^{(P)}\left(z_{\omega}^{(P)} \Phi_{P}(y)\right)=0
$$

for any homogeneous element y if $\omega^{\prime}<\omega$. In case $\left\|\omega^{\prime}\right\|<\|\omega\|$, Lemma 1.3 implies that

$$
\Phi_{P} \Delta_{z \omega^{\prime}}^{(P)}\left(z_{\omega}^{(P)} \Phi_{P}(y)\right)=\Phi_{P}\left(\sum_{i} u_{i} \cdot y_{i}\right)
$$

for some elements $u_{i} \in \mathfrak{R}_{*}$ and $y_{i} \in \Phi_{P}\left(\mathfrak{R}^{*}(X, A)\right)$ with $\operatorname{dim} u_{i} \geqq\|\omega\|-\left\|\omega^{\prime}\right\|>0$. Thus, by Lemma 1.1 (1), (2),

$$
\Phi_{P}\left(\sum_{i} u_{i} y_{i}\right)=\sum_{i} \Phi_{P}\left(u_{i}\right) \Phi_{P}\left(y_{i}\right)=0
$$

In case $\left\|\omega^{\prime}\right\|=\|\omega\|$ and $i_{r}=j_{s}, \cdots, i_{r-m}>j_{s-m}$,

$$
\begin{aligned}
& \Phi_{P} \Delta_{z v_{0}}^{(P)}\left(z_{\omega}^{(P)} \Phi_{P}(y)\right) \\
& \left.=\Phi_{P} \Delta_{z\left(i_{1}, \cdots, i_{r-m-1}\right)}^{(P)}\right)\left(z_{j_{1}} \cdots z_{j_{s-m}} \Delta_{z_{i r-m}} \Phi_{P}(y)\right)=0
\end{aligned}
$$

The last equality follows from the preceding case.
Let $\sum_{\omega^{\prime}<\omega} z_{\omega^{\prime}}^{(P)} \Phi_{P}\left(\Re^{*}(X, A)\right)$ be the graded vector space spanned by all $z_{\omega^{\prime}}^{(P)} \Phi_{P}(\mathfrak{l} *(X, A))$ with $\omega^{\prime}<\omega$.

It follows from the above fact that

$$
\left.\sum_{\omega \ll \omega} z_{\omega^{\prime}}^{(P)} \Phi_{P}(\mathfrak{R} * X, A)\right) \cap z_{\omega}^{(P)} \Phi_{P}(\mathfrak{R} *(X, A))=0
$$

for each ω, so that there is a direct sum splitting

$$
\sum_{\omega ; \text { non-dyadic }} z_{\omega}^{(P)} \Phi_{P}(\mathfrak{\Re} *(X, A))=\underset{\omega ; \text { non-dyadic }}{\oplus} z_{\omega}^{(P)} \Phi_{P}(\mathfrak{\Re} *(X, A)) .
$$

Since it can be proved similarly as above that Image ($\Phi_{P}{ }^{\circ} \Delta_{z \omega}{ }^{(P)}$) $=$ Image Φ_{P} for each non-dyadic ω, we have proved that there is a natural linear endomorphism of degree zero

$$
\sum_{\omega ; \text { non-dyadic }} z_{\omega}^{(P)} \Phi_{P} \Delta_{z \omega}^{(P)}: \mathfrak{R}^{*}(X, A) \rightarrow \underset{\omega ; \text { non-dyadic }}{\oplus} z_{\omega}^{(P)} \Phi_{P}\left(\mathfrak{R}^{*}(X, A)\right) \subset \mathfrak{R}^{*}(X, A)
$$

It is clearly an automorphism for $(X, A)=\left(S^{0}, P\right)$ and therefore an automorphism for every finite $C W$ pair by the effect of suspensions and of the five lemma. Thus

$$
\underset{\omega ; \text { nondyadic }}{\oplus} z_{\omega}^{(P)} \Phi_{P}\left(\mathfrak{R}^{*}(X, A)\right)=\mathfrak{\Re}^{*}(X, A)
$$

Since $z_{\omega}^{(P)} \Phi_{P}(y) \cdot z_{\omega^{\prime}}^{(P)} \Phi_{P}\left(y^{\prime}\right)=z_{\omega \omega^{\prime}}^{(P)} \Phi_{P}\left(y \cdot y^{\prime}\right)$, we have obtained a natural equivalence of graded \mathfrak{R}_{*}-algebras

$$
\Theta_{P}: \mathfrak{R}^{*}(X, A) \cong \mathfrak{R}^{*} \widehat{\otimes} H^{*}\left(X, A ; Z_{2}\right)
$$

which commutes with suspension.
Conversely, each such equivalence Θ induces a natural monomorphism of a graded Z_{2}-algebra

$$
\lambda=\Theta^{-1} \mid H^{*}\left(X, A ; Z_{2}\right): H^{*}\left(X, A ; Z_{2}\right) \rightarrow \mathfrak{N}^{*}(X, A)
$$

Then the composition $\lambda \circ \mu$ is a stable miltiplicative operation in $\mathcal{A}^{*}(0)$ and $\lambda \circ \mu\left(W_{1}\right)=\lambda\left(w_{1}\right)=P$ is a primitive element in $\mathfrak{R}^{*}(B O(1))$. And the element P has the leading term W_{1} since

$$
\Theta: \mathfrak{n}_{*}\left[\left[W_{1}\right]\right] \rightarrow \mathfrak{n}_{*} \hat{\otimes} Z_{2}\left[\left[w_{1}\right]\right]
$$

is an \mathfrak{N}_{*}-algebra isomorphism. Therefore

$$
\begin{aligned}
& \Theta=\underset{\omega ; \text { nondyadic }}{\oplus}\left\{1 \hat{\otimes}\left(\mu \mid \text { Image } \Phi_{P}\right)\right\}: \\
& \mathfrak{\Re} *(X, A)=\underset{\omega ; \text { non-dyadic }}{\oplus} z_{\omega}^{(P) \text { non-dyadic }} \Phi_{P}(\Re *(X, A)) \rightarrow \underset{\omega ; \text { non-dyadic }}{\widehat{\oplus}}\left\{z_{\omega}^{(P)} \widehat{\otimes} H^{*}\left(X, A ; Z_{2}\right)\right\}
\end{aligned}
$$

This completes the proof of Theorem 1.2.

2. Operations $\overline{\mathbf{S}}_{\omega}$

Let \bar{W}_{ω} denote the symmetrized monomial of the cobordism normal characteristic classes $\bar{W}_{k} . \quad\left(\bar{W}_{\omega}(\xi)=W_{\omega}(-\xi)\right.$ for every stable vector bundle ξ.) The operation \bar{S}_{ω} is defined in [8] by $\bar{S}_{\omega}=\Psi^{-1}\left(\bar{W}_{\omega}\right)$, where Ψ is the additive isomorphism mentioned in section 1.

Notation 2.1. (Landweber [6])
For a partition $\omega=\left(i_{1}, \cdots, i_{r}\right)$ let $r_{\omega}(i)$ denote the occurrences of the integer i in ω. And define

$$
\binom{n}{\omega}=\left\{\begin{array}{l}
0 \text { if } n<|\omega|=r \\
\frac{n!}{r_{\omega}(1)!r_{\omega}(2)!\cdots(n-|\omega|)!}
\end{array} \text { if } n \geqq|\omega|\right.
$$

The modulo 2 reduction of $\binom{n}{\omega}$ is denoted by $\binom{n}{\omega}_{2}$.
Similarly to the weakly complex case [8], we can easily determine the value $\bar{S}_{\omega}\left[P_{k}\right]$.

Lemma 2.2.
(1) $\quad \bar{S}_{\omega}\left[P_{k}\right]=\binom{k+1}{\omega}_{2}\left[P_{k-\|\omega\|}\right]$.
(2) $S_{\omega}\left[P_{k}\right]=\binom{2^{p}-k-1}{\omega}_{2}\left[P_{k-\|\omega\|}\right]$ for p such that $2^{p}>k+1$.

Proof. By the geometric interpretation of the action of $\mathcal{A}^{*}(0)$ on \mathfrak{N}_{*} given in [6], [8], $\quad \bar{S}_{\omega}\left[P_{k}\right]=\varepsilon W_{\omega}\left(\tau_{P_{k}}\right)=\varepsilon\binom{k+1}{\omega}_{2} W_{1}^{\|\omega\|}=\binom{k+1}{\omega}_{2}\left[P_{k-\|\omega\|}\right]$. Part (2) is proved similarly. Now we give some relations between S_{ω} and \bar{S}_{ω}.

Lemma 2.3.

(1) If the occurrence $r_{\omega}(i) \leqq 1$ in ω for all i, then $S_{\omega}=\bar{S}_{\omega}$.
(2) $S_{(i)^{k}}=\sum_{\|\omega\|=k} \bar{S}_{i * \omega}$ and dually
$\bar{S}_{(i)^{k}}=\sum_{\|\omega\|=k} S_{i * \omega}$,
where $i * \omega$ is meant a partition $\left(i \cdot j_{1}, i \cdot j_{2}, \cdots, i \cdot j_{r}\right)$ for $\omega=\left(j_{1}, j_{2}, \cdots, j_{r}\right)$.
After Landweber [6] we denote the partition $(i)^{k}$ by $k \Delta_{i}$ and the totality of linear combinations of the S_{ω} by $A^{*}(0) . \quad A^{*}(0)$ is proved a Hopf algebra over Z_{2} ([6], [8]).

Theorem 2.4. (Landweber [6])
The set $\left\{S_{2^{k} \Delta_{1}}, S_{2^{k} \Delta_{2}} ; k \geqq 0\right\}$ provides a minimal set of generators of $A^{*}(0)$.

Corollary 2.5.

The set $\left\{\bar{S}_{2^{k} \Delta_{1}}, \bar{S}_{2^{k} \Delta_{2}} ; k \geqq 0\right\}$ provides a minimal set of generators of $A^{*}(0)$.

Proof of Lemma 2.3.

By the Whitney product formula, it follows that $\sum_{\omega=\omega_{1} \omega_{2}} W_{\omega_{1}} \cdot \bar{W}_{\omega_{2}}=0$ if $\omega \neq(0)$. Therefore $W_{(i)}=\bar{W}_{(i)}$ for all $i \geqq 1$ and we see by induction on the lengths of partitions that $W_{\omega}=\bar{W}_{\omega}$ if $r_{\omega}(i) \leqq 1$ for all i. Part (1) follows from this and from the definition of S_{ω} and \bar{S}_{ω}.

Put

$$
\sum_{0 \leq i \leq s} \bar{W}_{i} x^{i}=\prod_{1 \leq j \leq s}\left(1+u_{j} x\right)
$$

for a sufficiently large s.
Then part (2) of the lemma is proved by induction on k as follows;

$$
\begin{aligned}
& W_{(i)^{k}}=\sum_{0 \leq I \leq k-1} W_{(i)} t \bar{W}_{(i)^{k-l}}=\sum_{0 \leqq!\leq k-1}\left(\sum_{\|\omega\|=l} \bar{W}_{i * \omega}\right) \cdot \bar{W}_{(i)^{k-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i_{1}+\cdots+i_{n}=k}\left(\sum\left(u_{1}^{i}\right)^{\left.\left.i_{1} \cdots\left(u_{n}^{i}\right)^{i} n\right)\left(\sum_{0 \leq \leq \leq k-1}\binom{n}{k-l}_{2}\right), ~\right) ~}\right. \\
& =\sum_{\|\omega\|=k} \bar{W}_{i^{*} \omega}\binom{|\omega|}{0}_{2}=\sum_{\|\omega\|=k} \bar{W}_{i * \omega} .
\end{aligned}
$$

Part (2) follows from this.
Proof of Corollary 2.5.
It follows from Lemma 2.3 and Theorem 2.4 that

$$
\begin{aligned}
& \bar{S}_{\Delta_{1}}=S_{\Delta_{1}}, \\
& \bar{S}_{2^{k} \Delta_{1}}=S_{2^{k} \Delta_{1}}+S_{2^{k-1} \Delta_{2}}+\text { decomposables in } A^{*}(0), \text { and } \\
& \bar{S}_{2^{k} \Delta_{2}}=S_{2^{k} \Delta_{2}}+\text { decomposables in } A^{*}(0)
\end{aligned}
$$

Thus the corollary follows from Theorem 2.4.

3. Even dimensional coefficients

Following suit of Novikov [8, appendix I], we obtain the following. We omit the proof.

Lemma 3.1.

For a partition ω and for a positive integer $k=2^{p}(2 q+1)(p \geqq 0, q \geqq 1)$, the following formula holds if $\|\omega\| \geqq 2^{p}$;

$$
\sum_{\omega=\omega_{1} \omega_{2}} S_{\omega_{1}}\left(z_{k-1-\left\|\omega_{2}\right\|}\right)\binom{k-\left\|\omega_{2}\right\|}{\omega_{2}}_{2}=0
$$

where the z_{i} denote the coefficients of a fixed primitive element P as in the introduction.

Now we prove the following theorem.

Theorem 3.2.

The coefficient $z_{2 k}$ of a primitive element

$$
P=W_{1}+z_{2} W_{1}^{3}+z_{4} W_{1}^{5}+z_{5} W_{1}^{6}+z_{6} W_{1}^{7}+z_{7} W_{1}^{8}+\cdots
$$

in $\mathfrak{R}^{*}(B O(1))$ is equal to the bordism class $\left[P_{2 k}\right]$ for all $k \geqq 1$.
Proof. For $k-1$, the theorem is clear since z_{2} is indecomposable from Theorem P in the introduction.

Assume that the theorem holds up to dimension $2(k-1) \geqq 2$.
In order to show that $S_{\omega}\left(z_{2 k}+\left[P_{2 k}\right]\right)=\bar{W}_{\omega}\left(z_{2 k}+\left[P_{2 k}\right]\right)=0$ for all ω with $\|\omega\|$ $=2 k$, it saffices from Theorem 2.4 to prove

$$
S_{2^{s} \Delta_{i}}\left(z_{2 k}+\left[P_{2 k}\right]\right)=0 \quad(i=1,2)
$$

To prove this, we see from Lemma 3.1 and the induction assumption that it is sufficient to show

$$
\sum_{m+n=2 s} S_{m \Delta i}\left[P_{2 k-n_{i}}\right]\binom{2 k+1-\mathrm{ni}}{n}_{2}=0 \quad(i=1,2)
$$

This is obvious in case $2^{s} i>2 k$ or $s=0$ since

$$
S_{m \Delta_{i}}\left[P_{2 k-n i}\right]=\left\{\sum_{\|凶\|=m}\binom{2 k+1-n i}{\omega}_{2}\right\}\left[P_{2 k-2^{s} i}\right]
$$

by Lemmas 2.2 (1) and 2.3 (2).
For the remaining cases, it suffices to prove the following lemma.

Lemma 3.3.

(1) $\sum_{m+n=s}\left(\sum_{\|\otimes\|_{m}=m}\binom{k-n}{\omega}\right)\binom{k-n}{n} \equiv 0 \quad(\bmod 2) \quad$ for $\quad k \geqq s \geqq 2$.
(2) $\sum_{m+n=s}\left(\sum_{\| \|\| \|=m}\binom{k-2 n}{\omega}\right)\binom{k-2 n}{n} \equiv 0 \quad(\bmod 2) \quad$ for $\quad k \geqq 2 s \geqq 2$.

Proof.
(1) Put

$$
\begin{aligned}
& A(k, s)=\sum_{m+n=s}\left(\sum_{\|\omega\|=m}\binom{k-n}{\omega}\right)\binom{k-n}{n} \quad(k \geqq 0, s \geqq 0), \quad \text { and } \\
& B(k, s)=\sum_{m+n=s}\left(\sum_{\|\omega\|=m}\binom{k-2 n}{\omega}\right)\binom{k-2 n}{n} \quad(k \geqq 0, s \geqq 0) .
\end{aligned}
$$

Then it holds in general that

$$
\begin{aligned}
& \binom{k-n}{n}=\binom{k-n-1}{n}+\binom{k-n-1}{n-1} \text { and } \\
& \sum_{\|\omega\|=m}\binom{k-n}{\omega}=\sum_{0 \leq\|\omega\| \leq m}\binom{k-n-1}{\omega} .
\end{aligned}
$$

So we obtain that *
(*) $A(k, s)=\sum_{0 \leq \leq^{\prime} \leq s} A\left(k-1, s^{\prime}\right)+\sum_{0 \leq s^{\prime \prime} \leq \leq_{s}-1} A\left(k-2, s^{\prime \prime}\right)$ and
(**) $\quad B(k, s)=\sum_{0 \leqq s^{\prime} \leqq s} B\left(k-1, s^{\prime}\right)+\sum_{0 \leqq s^{\prime \prime} \leq s-1} B\left(k-3, s^{\prime \prime}\right)$.
Part (1) clearly holds when $k=s=2$.
Assume, by induction, that (1) holds for such (k, s) that $k_{0}>k \geqq 2$ and $k \geqq s \geqq 2$.

Thus, for (k_{0}, s_{0}) with $k_{0}>s_{0} \geqq 2$,

$$
A\left(k_{0}, s_{0}\right) \equiv \sum_{s^{\prime}=0,1} A\left(k_{0}-1, s^{\prime}\right)+_{s^{\prime}} \sum_{=0,1} A\left(k_{0}-2, s^{\prime \prime}\right) \equiv 0 \quad(\bmod 2)
$$

by the induction hypothesis and by the fact that $A(k, s) \equiv 1$ for $k \geqq s$ and $s=0,1$.
And for (k_{0}, k_{0}), the iterated application of (*) shows that

$$
\begin{aligned}
A\left(k_{0}, k_{0}\right) & \equiv A\left(k_{0}-1, k_{0}\right)+A\left(k_{0}-2, k_{0}-1\right) \\
& \equiv A\left(1, k_{0}\right)+\sum_{0 \leqq s^{\prime \prime} \leq m_{0}-1} A\left(0, s^{\prime \prime}\right) \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

Part (2) of the lemma is proved similarly, using the formula (**) repeatedly. This completes the proof of Lemma 3.3 and Theorem 3.2.

Remark 3.4. Theorem 3.2 has been proved independently by F. Uchida [9] by a geometric method.

4. The coefficients of dimensions $4 k+1$

A. Dold has defined in [5] manifolds $P(m, n)$ which are the identification
spaces of $S^{m} \times C P_{n}$ with $(x, z)=(-x, z)$. He proved that, for $2^{p}(2 q+1)-1$ ($p \geqq 1, q \geqq 1$), the bordism class [$P\left(2^{p}-1,2^{p} q\right)$] provides a polynomial generator of \mathfrak{N}_{*} in the corresponding dimension.

Theorem 4.1.

The coefficient $z_{4 k+1}$ of a primitive element

$$
P=W_{1}+z_{2} W_{1}^{3}+z_{4} W_{1}^{5}+z_{5} W_{1}^{6}+z_{6} W_{1}^{7}+z_{7} W_{1}^{8}+\cdots
$$

in $\mathfrak{n}^{*}(B O(1))$ is equal to the bordism class $[P(1,2 k)]$ for all $k \geqq 1$.
For the proof of this theorem, we need the following notations.

Notation 4.2.

(1) Let $c_{p}(m)$ denote the coefficient of 2^{p} in the dyadic expansion of the integer m;

$$
m=c_{0}(m)+c_{1}(m) \cdot 2+c_{2}(m) \cdot 2^{2}+\cdots, c_{i}(m)=0,1 .
$$

(2) For a partition ω, we denote by $\omega\left(c_{p}\right)$ the partition determined by $r_{\omega\left(c_{p}\right)}(i)=c_{p}\left(r_{\omega}(i)\right)$ for all $i \geqq 1$. Thus $\omega=\prod_{0 \leqq p}\left(\omega\left(c_{p}\right)\right)^{2 p}$. For brevity, $\prod_{2 \leqq p}\left(\omega\left(c_{p}\right)\right)^{2 p-2}$ and $\omega\left(c_{1}\right)^{2} \cdot \omega\left(c_{0}\right)$ are denoted as $\bar{\omega}$ and $\overline{\bar{\omega}}$, respectively; $\omega=(\bar{\omega})^{4} \overline{\bar{\omega}}$.

Lemma 4.3.

$$
\binom{n}{\omega}_{2}=\prod_{0 \leq p}\binom{c_{p}(n)}{\omega\left(c_{p}\right)}_{2} . \quad \text { Thus }\binom{n}{\omega}_{2}=\binom{n-c_{1}(n) \cdot 2-c_{0}(n)}{4}_{2}\binom{c_{1}(n) \cdot 2+c_{0}(n)}{\bar{\omega}}_{2} .
$$

Proof. By definition,

$$
\binom{n}{\omega}_{2}=\binom{n}{r_{\omega}(1)}_{2}\binom{n-r_{\omega}(1)}{r_{\omega}(2)}_{2} \cdots\binom{n-\sum_{1 \leq i \leq k-1} r_{\omega}(i)}{r_{\omega}(k)}_{2} \cdots
$$

Then, by Lucus' theorem [1],

$$
\begin{aligned}
& \prod_{1 \leq k}\binom{n-\sum_{1 \leqq i \leq k-1} r_{\omega}(i)}{r_{\omega}(k)}_{2}=\prod_{1 \leqq k}\left(\prod_{0 \leqq p}\binom{c_{p}\left(n-\sum_{1 \leqq i \leq k-1} r_{\omega}(i)\right)}{c_{p}\left(r_{\omega}(k)\right)}_{2}\right) \\
& =\prod_{0 \leqq p}\left(\prod_{1 \leq k}\binom{c_{p}(\mathrm{n})-\sum_{1 \leqq i \leq k-1} c_{p}\left(r_{\omega}(i)\right)}{c_{p}\left(r_{\omega}(k)\right)}_{2}\right)=\prod_{0 \leqq p}\binom{c_{p}(n)}{\omega\left(c_{p}\right)}_{2} .
\end{aligned}
$$

This completes the proof.
Now we calculate all the normal Stiefel-Whitney numbers of $P(1,2 \mathrm{k})$. It is easily seen that the cobordism Stiefel-Whitney numbers of manifolds agree with
the cohomological ones ([6], [8]). So, by abuse of a notation, we denote both Stiefel-Whitney numbers by W_{ω} (and the normal ones by \bar{W}_{ω}).

Lemma 4.4.

$$
\bar{W}_{\omega}[P(1,2 k)]=\left\{\begin{array}{l}
0 \text { if }|\overline{\bar{\omega}}| \geqq 3 \text { and } \overline{\bar{\omega}} \neq 3 \Delta_{1} \text { or } \overline{\bar{\omega}}=(1), \\
\binom{2^{p}-1-k}{\bar{\omega}}_{2} \text { if } \overline{\bar{\omega}}=3 \Delta_{1} \text { or } \\
2 \geqq|\overline{\bar{\omega}}| \geqq 1 \text { and } \overline{\bar{\omega}} \neq(1),
\end{array}\right.
$$

where p is any integer with $2^{p}>k+1$.
Proof.
According to Dold [5].

$$
H^{*}\left(P(1,2 k) ; Z_{2}\right) \cong H^{*}\left(P_{1} \times C P_{2 k} ; Z_{2}\right)
$$

as a ring. Let c and d denote the 1- and 2-dimensional generators of $H^{*}\left(P(1,2 k) ; Z_{2}\right)$. The total Whitney class is given in [5] by

$$
w_{*} P(1,2 k)=(1+c)(1+c+d)^{2 k+1}
$$

and thus

$$
\bar{w}_{*} P(1,2 k)=(1+c)(1+t)^{4\left(2^{2}-k-1\right)}\left(1+t_{1}\right)\left(1+t_{2}\right),
$$

where p is any integer with $2^{p}>k+1$ and $t^{2}=t_{1} \cdot t_{2}=d$ and $t_{1}+t_{2}=c$.
By formula (26) in [5],

$$
t_{1}^{2 i}+t_{2}^{2 i}=0 \quad \text { and } \quad t_{1}^{2 i+1}+t_{2}^{2 i+1}=c d^{i}
$$

The lemma follows from these facts and the preceding lemma.

Proof of Theorem 4.1.

Theorem P in the introduction asserts that $z_{4+1}=[P(1,2)]$. Assume, by induction, that $z_{4 k^{\prime}+1}=\left[P\left(1,2 k^{\prime}\right)\right]$ for $k^{\prime} \leqq k-1$.

By Lemma 3.1 and Theorem 3.2, together with Lemma 2.2 (2), 4.3 and 4.4,

$$
\begin{aligned}
S_{\omega}\left(z_{4 k+1}\right)= & \sum_{\substack{\omega_{\omega} \omega_{1} \omega_{2} \\
\| \omega_{2} \omega_{1}=4 m=0}} S_{\omega_{1}}\left(z_{4(k-m)+1}\right)\binom{k-m}{\bar{\omega}}_{2}\binom{2}{\overline{\bar{\omega}}_{2}}_{2} \\
& +\sum_{\substack{\omega=\omega_{1} \omega_{2} \\
\left\|\omega_{2}\right\|=2 n+1}}\binom{2^{p}-1-4\left\|\bar{\omega}_{1}\right\|-\left\|\overline{\bar{\omega}}_{1}\right\|}{\left.\left(\bar{\omega}_{1}\right)^{4}\right)_{\bar{\omega}}^{1}}_{2}\binom{4\left\|\bar{\omega}_{1}\right\|+\left\|\bar{\omega}_{1}\right\|+1}{\left(\bar{\omega}_{2}\right)^{4} \overline{\bar{\omega}}_{2}}_{2}
\end{aligned}
$$

for ω such that $\|\omega\|=4 k+1$. (The terms with $\left\|\omega_{2}\right\| \underset{\text { (4) }}{\equiv 2}$ vanish by Lemma 4.3.)
Therefore, by the induction hypothesis and by Lemma 4.3, together with the fact that $\left|\overline{\bar{\omega}}_{1}\right|+\left|\overline{\bar{\omega}}_{2}\right|=|\overline{\bar{\omega}}|+4 l(l \geqq 0)$, it can be shown that

$$
S_{\omega}\left(z_{4 k+1}\right)=\sum 0+\sum 0=0 \quad \text { if } \quad|\overline{\bar{\omega}}| \geqq 5 .
$$

In case $\overline{\bar{\omega}}=(2 i, 2 i, 4 j, 4(k-\|\widetilde{\omega}\|-i-j)+1)$,

$$
\begin{aligned}
S_{\omega}\left(z_{4 k+1}\right)= & \sum_{\bar{\omega}_{=} \bar{\omega}_{1} \bar{\omega}_{2}}\left\{\begin{array}{c}
2^{p^{\prime}}-1-\left(k-\left\|\bar{\omega}_{2}\right\|-i\right) \\
\bar{\omega}_{1}
\end{array}\right)_{2}\binom{k-\left\|\bar{\omega}_{2}\right\|-i}{\bar{\omega}_{2}}_{2} \\
& \left.+\binom{2^{p^{\prime}}-1-\left(\|\bar{\omega}\|+i+j-\left\|\bar{\omega}_{2}\right\|\right)}{\bar{\omega}_{1}}_{2}\binom{\|\bar{\omega}\|+i+j-\left\|\bar{\omega}_{2}\right\|}{\bar{\omega}_{2}}_{2}\right\}
\end{aligned}
$$

by the induction hypothesis and by Lemma 4.3.
Suppose $\binom{2^{p^{\prime}}-1-\left(k-\left\|\bar{\omega}_{2}\right\|-i\right)}{\bar{\omega}_{1}}_{2}\binom{k-\left\|\bar{\omega}_{2}\right\|-i}{\omega_{2}}_{2}=1$ for some separation $\bar{\omega}_{1} \bar{\omega}_{2}$ of $\bar{\omega}$.

Since $c_{p}\left(2^{p^{\prime}}-1-\left(k-\left\|\bar{\omega}_{2}\right\|-i\right)\right) \neq c_{p}\left(k-\left\|\bar{\omega}_{2}\right\|-i\right)$ for each p, there is at most one $i \geqq 1$ such that $c_{p}\left(r_{\bar{\omega}}(i)\right) \neq 0$. Let r be the number of such odd integers $2 i+1 \geqq 1$ that satisfy $r_{\bar{\omega}}(2 i+1)>0$. Then, by Lemma 4.3, the numbers of such separations $\bar{\omega}_{1} \bar{\omega}_{2}=\bar{\omega}$ and $\bar{\omega}_{1}{ }^{\prime} \bar{\omega}_{2}{ }^{\prime}=\bar{\omega}$ that satisfy

$$
\begin{aligned}
& \left.\binom{2^{p^{\prime}}-1-\left(k-\left\|\bar{\omega}_{2}\right\|-i\right)}{\bar{\omega}_{1}}_{2} \begin{array}{c}
k-\left\|\bar{\omega}_{2}\right\|-i \\
\bar{\omega}_{2}
\end{array}\right)_{2}=1 \text { and } \\
& \left(\begin{array}{c}
2^{p^{\prime}}-1-\left(\left\|\widetilde{\omega}^{\prime}\right\|+j+k-\left\|\bar{\omega}_{2}{ }^{\prime}\right\|\right. \\
\left.\bar{\omega}_{1}{ }^{\prime}\right)_{2}\binom{\|\bar{\omega}\|+j+k-\left\|\bar{\omega}_{2}{ }^{\prime}\right\|}{\bar{\omega}_{2}{ }^{\prime}}_{2}=1
\end{array} .\right.
\end{aligned}
$$

respectively, are both 2^{r}.
The situation is the same if we suppose

$$
\binom{2^{p^{\prime}}-1-\left(\|\bar{\omega}\|+j+k-\left\|\bar{\omega}_{2}\right\|\right)}{\bar{\omega}_{1}}_{2}\binom{\|\bar{\omega}\|+j+k-\left\|\bar{\omega}_{2}\right\|}{\bar{\omega}_{2}}_{2}=1
$$

for some separation $\bar{\omega}_{1} \cdot \bar{\omega}_{2}=\bar{\omega}$.
Therefore $\quad S_{\omega}\left(z_{4 k+1}\right)=0+0=0 \quad$ or $\quad=1+1=0 \quad$ if $\quad \overline{\bar{\omega}}=(2 j, 2 j, 4 k$, $4(s-\|\bar{\omega}\|-j-k)+1)$.

We can prove analogously in other cases when $\overline{\bar{\omega}}=(1)$ or $|\overline{\bar{\omega}}| \geqq 3$ and $\overline{\bar{\omega}} \neq 3 \Delta_{1}$ that $S_{\omega}\left(z_{4 k+1}\right)=0$.

When $|\overline{\bar{\omega}}|=2$, from dimensional reasons, $\overline{\bar{\omega}}=(2 j, 4(s-\|\bar{\omega}\|)-2 j+1)$ for some $j \geqq 1$. In this case

$$
\begin{aligned}
S_{\omega}\left(z_{4 k+1}\right)= & \sum_{\substack{\bar{\omega}=\bar{\omega}_{1} \bar{\omega}_{2} \\
\bar{\omega}_{2} \neq(0)}}\binom{2^{p}-1-\left(k-\left\|\bar{\omega}_{2}\right\|\right)}{\bar{\omega}_{1}}_{2}\binom{k-\left\|\bar{\omega}_{2}\right\|}{\bar{\omega}_{2}}_{2} \\
& +\sum_{\bar{\omega}=\bar{\omega}_{\bar{\omega}_{1}} \bar{\omega}_{2}}\binom{2^{p}-1-\left(2\|\bar{\omega}\|-2\left\|\bar{\omega}_{2}\right\|+j\right)}{\bar{\omega}_{1}}_{2}\binom{2\|\bar{\omega}\|-2\left\|\bar{\omega}_{2}\right\|+j}{\bar{\omega}_{2}}_{2} \\
& =\sum_{\bar{\omega}=\overline{\bar{\omega}} \times(0)}\binom{2^{p}-1-\left(k-\left\|\bar{\omega}_{2}\right\|\right)}{\bar{\omega}_{1}}_{2}\binom{k-\left\|\bar{\omega}_{2}\right\|}{\bar{\omega}_{2}}_{2} \\
= & \binom{2^{p}-1-k}{\bar{\omega}}_{2}
\end{aligned}
$$

as required.
When $\overline{\bar{\omega}}=3 \Delta_{1}$ or $\overline{\bar{\omega}}=\Delta_{4 n+1}(n \geqq 1)$, analogous arguments show that $S_{\omega}\left(z_{4 k+1}\right)$ $=\binom{2^{p}-1-k}{\bar{\omega}}$.

Comparing these facts with Lemma 4.4, we deduce that $S_{\omega}\left(z_{4 k+1}\right)$ $=\bar{W}_{\omega}\left(z_{4 k+1}\right)=\bar{W}_{\omega}(P(1,2 k))$ for all ω with $\|\omega\|=4 k+1$. This completes the proof of Theorem 4.1.

Osaka University

References

[1] J. Adem: The relations on Steenrod powers of cohomology classes, Algebraic Geometry and Topology, Princeton University Press, 1957, 191-238.
[2] M.F. Atiyah: Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200208.
[3] J.M. Boardman: Stable Homotopy Theory, Ch. IV, (mimeographed) Warwick Univ., 1967.
[4] P.E. Conner-E.E. Floyd: The Relation of Cobordism to K-theories, SpringerVerlag, 1966.
[5] A. Dold: Erzeugende der Thomschen Algebra \Re, Math. Z. 65 (1956), 25-35.
[6] P.S. Landweber: Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc. 129 (1967), 94-110.
[7] J. Milnor: On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.
[8] S.P. Novikov: The method of algebraic topology from the view point of cobordism (Russian), Izv. Akad. Nauk SSSR 31 (1967), 855-951.
[9] F. Uchida: Bordism algebra of involutions, Proc. Japan Acad. 46 (1970), 615-619.

