Uehara, H.
Osaka J. Math
9 (1972), 131-141

ALGEBRAIC STEENROD OPERATIONS IN THE SPECTRAL SEQUENCE ASSOCIATED WITH A PAIR OF HOPF ALGEbRAS

Hiroshi UEHARA*

(Received July 10, 1971)

Araki [3], [4] and Vazquez [10] investigated behaviors of Steenrod reduced powers in the spectral sequence associated with a fibre space in the sense of Serre. The main purpose of this paper is to establish an algebraic analogy to their works. For example, works of Adams [1], [2] and others, [6], [11], [12], implicitly contain a useful, direct application of our results.

1. Steenrod operations in the spectral sequence associated with an algebraic system \mathfrak{S}

Definition 1. By a graded differential algebra $\mathfrak{S}=\left\{C, \delta, F, \cup_{i}\right\}$ with a decreasing filtration F and with cup-i-products $\underset{i}{ } \cup$, we mean

1) a graded cochain complex C over the field Z_{2} :

is a morphism of graded vector spaces over Z_{2},
2) for each integer $p, F^{p} C$ is a subcomplex of C such that
i) $F^{p+1} C$ is a subcomplex of $F^{p} C$ (in notation: $F^{p} C \supset F^{p+1} C$)
ii) $\quad F^{p} C=C$ if $p \leq 0$, and iii) $\quad F^{p} C^{n}=0$ if $p>n$,
3) for each integer i there exists a Z_{2}-linear map $\bigcup_{i}: C \otimes C \rightarrow C$ such that if $x \in F^{p} C^{m, s}$ and $y \in F^{q} C^{n, t}$, then $x \bigcup_{i} y \in F^{a} C^{m+n-i, s+t}$ for $\alpha=\operatorname{Max}\{p+q-i$, $p, q\}$, where $x \bigcup_{i} y=\cup_{i}(x \otimes y), x \cup y=x \bigcup_{0} y$ in notations, and s, t stand for gradings. $\quad \underset{i}{U}$ satisfies the following conditions:
i) \bigcup_{i} is trivial if $i<0$, ii) For $x \in F^{q} C^{m}$ and $y \in F^{q} C^{n}, x \bigcup_{i} y=0$ if $i>m$
or n,

[^0]iii) $x \cup(y \cup z)=(x \cup y) \cup z$, iv), $1 \cup x=x \cup 1=x$ for some $1 \in C^{0,0}$, and
v) $\delta\left(x \bigcup_{i} y\right)=x \bigcup_{i-1} y+y \bigcup_{i-1} x+\delta x \bigcup_{i} y+x \bigcup_{i} \delta y$.

Associating © with an exact couple $\langle D, E, i, j, k\rangle$ by defining $D_{1}^{p, q}=H^{p+q}\left(F^{p} C\right), E_{1}^{p, q}=H^{p+q}\left(F^{p} C / F^{p+1} C\right)$, and i, j, k as usual, we have a spectral sequence $\left\{E_{\gamma}, d_{\gamma} \mid \gamma \geq 1\right\}$. Let us define Steenrod operations in the spectral sequence as Araki [4] and Vazquez [10] did. Define a map $\theta_{i}: C \rightarrow C$ by $\theta_{i}(x)=x \bigcup_{i} x+x \cup \delta x$, then we have

Proposition 1. θ_{i} induces Steenrod operations ${ }_{B} S t_{i},{ }_{F} S t_{i}$ in the spectral sequence associated with the algebraic system \mathfrak{S} such that

$$
{ }_{B} S t_{i}: E_{\gamma}^{n, q} \rightarrow E_{2 \gamma-2}^{2 p-i, 2 q} \text { for } \infty \geq \gamma \geq 2,
$$

and

$$
{ }_{F} S t_{i}: E_{\gamma}^{p, q} \rightarrow E_{\gamma}^{p, 2 q+p-i} \text { for } \infty \geq \gamma \geq 1
$$

They are all Z_{2}-homomorphisms.
Proof. It is straightforward by definition that if we denote, as usual, $Z_{\gamma}^{p, q}=\left\{x \in F^{p} C^{p+q} \mid \delta x \in F^{p+\gamma} C^{p+q+1}\right\}, B_{\gamma}^{p, q}=\left\{\left.x \in F^{p} C^{p+q}\right|^{\mathbb{Z}} y \in F^{p-\gamma} C^{p+q-1}, \delta y=x\right\}$, $Z_{\infty}^{p, q}=\left\{x \in F^{p} C^{p+q} \mid \delta x=0\right\}$, and $B_{\infty}^{p, q}=\left\{\left.x \in F^{p} C^{p+q}\right|^{\Omega} y \in C^{p+q-1}, \delta y=x\right\}$, then $\theta_{i}\left(Z_{\gamma}^{p, q}\right) \subset Z_{2 \gamma-1}^{2 p-i q} \cap Z_{\gamma}^{p, 2 q+p-i} \subset Z_{2 \gamma-2}^{2 p-i, 2 q} \cap Z_{\gamma}^{p, 2 q+p-t}, \theta_{i}\left(B_{\gamma-1}^{p, q}\right) \subset B_{2 \gamma-3}^{2 p-i, 2 q} \cap B_{\gamma-1}^{p, 2 q+p-i}$, $\theta_{i}\left(Z_{\infty}^{p, q}\right) \subset Z_{\infty}^{2 p-i, 2 q} \cap Z_{\infty}^{p, 2 q+p-i}$, and $\theta_{i}\left(B_{\infty}^{p, q}\right) \subset B_{\infty}^{2 p-i, 2 q} \cap B_{\infty}^{p, 2 q+p-i}$. Note that the restriction on $\gamma \geq 2$ comes from the following observation. If $x \in B_{\gamma-1}^{p, q}$, then

$$
\theta_{i}(x)=\delta y \bigcup_{i} \delta y=\delta\left(y \bigcup_{i} x+y \bigcup_{i-1} y\right),
$$

where $\delta y=x$ with $y \in F^{p-\gamma+1} C^{p+q-1}$. Since $y \bigcup_{i} x+y \bigcup_{i-1} y \in F^{2 p-i-(2 \gamma-3)} C^{2 p+2 q-i-1}$ if $\gamma \geq 2, \theta_{i}(x) \in B_{2 \gamma-3}^{2 p-6,2 q}$ for $\gamma \geq 2$. Hence, θ_{i} induces ${ }_{B} S t_{i}$ and ${ }_{F} S t_{i}$ as stated in Proposition 1. For $x_{1}, x_{2} \in Z_{\gamma}^{p, q}$

$$
\theta_{i}\left(x_{1}+x_{2}\right)=\theta_{i}\left(x_{1}\right)+\theta_{i}\left(x_{2}\right)+\delta\left(x_{1} \cup x_{i+1}\right)+x_{2} \cup \delta x_{i+1}+\delta x_{i} \cup x_{i+1}
$$

from the bilinearity of ${\underset{i}{i}}$. Since

$$
\delta\left(x_{1} \cup x_{i+1}\right) \in B_{1}^{2 p-t, 2 q} \cap B_{0}^{p, 2 q+p-t} \subset B_{2 \gamma-3}^{2 p-, i q q} \cap B_{\gamma-1}^{p, 2 q+p-t},
$$

and

$$
x_{i+1} \cup \delta x_{1}+\delta x_{i} \cup x_{i+1} \in Z_{2 \gamma-3}^{2 p-i+1,2 q-1} \cap Z_{\gamma-1}^{p+1,2 q+p-i-1}
$$

${ }_{B} S t_{i}$ and ${ }_{F} S t_{i}$ are Z_{2}-homomorphisms.
For completeness sake let us show some properties of Steenrod operations
which are useful for their applications. (For example, for computation of cohomology of the Steenrod algebra.) Let $E_{\gamma, s}^{a, b}$ be the subvector space of $E_{\gamma}^{a, b}$ spanned by ($d_{s}, \cdots, d_{\gamma+1}, d_{\gamma}$)-cocycles and let $\kappa_{s+1}^{\gamma}: E_{\gamma, s}^{a, b} \rightarrow E_{s+1}^{a, b}$ be the natural epimorphism. An element in $E_{2, b}^{a, b}$ will be said to be g-transgressive.

Proposition 2. ${ }_{F} S t_{i}: E_{\gamma}^{p, q} \rightarrow E_{\gamma}^{p, 2 q+p-i}$ is trivial if $i<p$ or $i>p+q$,

$$
{ }_{B} S t_{i}: E_{\gamma}^{p, q} \rightarrow E_{2 \gamma-2}^{2 p-i, 2 q} \text { is trivial if } i>p \text { or } i<0,
$$

and

$$
{ }_{B} S t_{p}=\kappa_{2 \gamma-2}^{\gamma} S{ }_{F} S t_{p} .
$$

Proof. If $p>i$ and $x \in Z_{\gamma}^{p, q}$, then $\theta_{i}(x) \in F^{2 p-i} C^{2 p+2 q-i} \subset F^{p+1} C^{2 p+2 q-i}$ and $\delta\left(\theta_{i}(x)\right)=\delta \bigcup_{i+1} \delta x \in F^{p+\gamma} C^{2 p+2 q-i+1}$. Hence, $\theta_{i}(x) \in Z_{\gamma-1}^{p+1,2 q+p-i-1}$, so that by definition the triviality of ${ }_{F} S t_{i}$ is proved if $p>i$. The rest of the proof is immediate, and hence, is omitted.

Proposition 3. If $\alpha \in E_{\gamma, c}^{p, q}$, then ${ }_{F} S t_{i}(\alpha) \in E_{\gamma, 4}^{p, 2 q+p-i}$, where

$$
d=\operatorname{Max}\{p+2 c-i, c\}
$$

and ${ }_{B} S t_{i}(\alpha) \in E_{\gamma, 2 c}^{2 p-i, 2 q}$.
Proof. Recall that

$$
E_{\gamma, c}^{p, q}=Z_{c+1}^{p, q}+Z_{\gamma-1}^{p+1, q-1} / Z_{\gamma-1}^{p+1, q-1}+B_{\gamma-1}^{p, q} \subset E_{\gamma}^{p, q} .
$$

If x is a representative of α, then $\theta_{i}(x) \in F^{p} C^{2 p+2 q-i} \cap F^{2 p-i} C^{2 p+2 q-i}$ and $\delta\left(\theta_{i}(x)\right) \in F^{2 p+2 c-i+1} C^{2 p+2 q-i+1} \cap F^{p+c+1} C^{2 p+2 q-i+1}$. If $i \geq p$, then $\theta_{i}(x) \in Z_{a+1}^{p, 2 q+p-i}$ where $d=\operatorname{Max}\{p+2 c-i, c\}$, while if $p \geq i$, then $\theta_{i}(x) \in Z_{2 c+1}^{2 p-i, 2 q}$. Hence, the proof is completed.

Proposition 4. If $\alpha \in E_{2}^{p, q}$ is g-transgressive, then ${ }_{F} S t_{i}(\alpha) \in E_{2}^{p, 2 q+p-i}$ is also g-transgressive. Moreover we have

$$
\begin{equation*}
\kappa_{2 Q B}^{\lambda} S t_{i+1} d_{q+1} \kappa_{Q+1}^{2}(\alpha)=d_{\lambda} \kappa_{\lambda F}^{2} S t_{i}(\alpha), \tag{1}
\end{equation*}
$$

where $\lambda=2 q+(p-i)+1$ and $\kappa_{2 q}^{\lambda}=\kappa_{\lambda}^{2 q}$ if $\lambda>2 q$.
Proof. It is obvious from Proposition 3 that ${ }_{F} S t_{i}(\alpha)$ is g-transgressive. If x is a representative of α, then both sides of (1) is represented by $\delta x \bigcup_{i+1} \delta x$. Hence, the proof is completed.

2. Comparison theorem in homological algebra

To prepare for later sections the algebraic Steenrod operations are introduced by the iterated use of a comparison theorem in relative homological
algebra [5] (For the theorem in a more general and rigorous setting, see [8]), and the explicit formulas of chain homotopies [1], [11] involved in the theorem are presented in this section.

Let $\alpha: A \rightarrow B$ be a morphism of graded augmented algebras A and B over a commutative ring R with unity, and let M and N be left graded modules over algebras A and B respectively. A morphism of graded R-modules $f: M \rightarrow N$ is called a α-homomorphism iff $f(a x)=\alpha(a) f(x)$ for $a \in A$ and $x \in M$.

Proposition 5. Let $\varepsilon: \mathfrak{X} \rightarrow M$ be a R-split exact resolution of M in the category ${ }_{A} \mathfrak{M}$ of left A-modules and let $\eta: \mathfrak{Y} \rightarrow N$ be a R-split exact resolution of N in the category ${ }_{B} \mathfrak{M}$. Then, for any α-homomorphism $f: M \rightarrow N$ there exists a α-chain map extension $F: \mathfrak{X} \rightarrow \mathfrak{Y}$ of f in the sense that

1) for each $n \geq 0, F_{n}: X_{n} \rightarrow Y_{n}$ is a α-homomorphism, and
2) $d_{n} F_{n}=F_{n-1} \partial_{n}$ for $n \geq 1$ and $f \varepsilon=\eta F_{0}$, where

3) If F, F^{\prime} are α-chain map extensions of f, then there exists a α-chain homotopy $h: \mathfrak{X} \rightarrow \mathfrak{V}$ connecting F with F^{\prime}.

Proof. First let us observe that the proposition is the usual comparison theorem in case when $A=B$ and α is the identity map. The following remarks enable us to reduce the proposition to the classical theorem; 1) any B-module Z can be considered as an A-module by definition $a z=\alpha(a) z$ for $a \in A$ and $z \in Z, 2$) any morphism $g: Z \rightarrow Z^{\prime}$ in ${ }_{B} \mathfrak{M}$ can be regarded as a morphism in ${ }_{A} \mathfrak{M}$ by considering Z, Z^{\prime} as A-modules because

$$
g(a z)=g(\alpha(a) z)=\alpha(a) g(z)=a g(z)
$$

3) a R-homomorphism $k: X \rightarrow Y$ is a α-homomorphism iff k is a morphism in ${ }_{A} \mathfrak{M}$ considering Y as an A-module. For $k(a x)=\alpha(a) k(x)=a k(x)$. From 1) and 2), $\eta: \mathfrak{Y} \rightarrow N$ can be considered as a R-split exact complex of N in ${ }_{A} \mathfrak{M}$, and from 3) $f: M \rightarrow N$ is a morphism in ${ }_{A} \mathfrak{M}$. It follows from the usual comparison theorem that there exists a chain map extension F of f in ${ }_{A} \mathfrak{M}$. From 3) F is a α-homomorphism. It is immediate to see the rest of the proof. This proves the proposition.

Let us apply the proposition to the following case. Let A be a cocommutative Hopf algebra over Z_{2} and let $\alpha: A \rightarrow A \otimes A$ be the cocommutative
comultiplication Δ. Since $M=Z_{2}$ and $N=Z_{2} \otimes Z_{2} \cong Z_{2}$ can be considered by augmentations as a left A-module and a left $A \otimes A$-module respectively, the α-map $f: Z_{2} \rightarrow Z_{2} \otimes Z_{2}$ defined by $f(1)=1 \otimes 1$, can be extended to a Δ-chain map $h^{0}: \mathfrak{X} \rightarrow \mathfrak{X} \otimes \mathfrak{X}$ by the direct application of the proposition, where \mathfrak{X} is a Z_{2}-split exact resolution of Z_{2}. If $\rho: \mathfrak{X} \otimes \mathfrak{X} \rightarrow \mathfrak{X} \otimes \mathfrak{X}$ is the twisting chain map, then ρh^{0} is again a Δ-chain map extension of f, because Δ is cocommutative. Hence, there exists a Δ-chain homotopy h^{1} connecting h^{0} with ρh^{0}. Since ρh^{1} is a Δ-chain homotopy and since $h^{1}+\rho h^{1}$ is a Δ-chain map extension of the trivial Δ-homomorphism 0: $Z_{2} \rightarrow \mathcal{G} m d_{1}$, there exists a Δ-chain homotopy h^{2} connecting h^{1} and ρh^{1}. By the iterated use of the same arguments we have a sequence of Δ-chain homotopies $\left\{h^{0}, h^{1}, \cdots, h^{i}, \cdots\right\}$. Hence, we have

Proposition 6. Let A be a cocommutative Hopf algebra over Z_{2} and let $\Delta: A \rightarrow A \otimes A$ be the comultiplication. If $\varepsilon: \mathfrak{X} \rightarrow Z_{2}$ is a Z_{2}-split exact resolution of the A-module Z_{2}, then there exists a sequence of Δ-homomorphisms $h^{i}: \mathfrak{X} \rightarrow \mathfrak{X} \otimes \mathfrak{X}$ for $i=0,1, \cdots, n, \cdots$ such that 1) h^{0} is a grade preserving Δ-chain map and 2) for $i>0 \quad h^{i}$ is a Δ-chain homotopy connecting h^{i-1} with ρh^{i-1} which raises the homological dimensions by i and preserves the grading, where $\rho: \mathfrak{X} \otimes \mathfrak{X} \rightarrow \mathfrak{X} \otimes \mathfrak{X}$ is the twisting chain map.

Consider a diagram

where χ is the Z_{2}-chain map defined by $\chi(f \otimes g)(x \otimes y)=f(x) g(y)$ for $f, g \in$ $\operatorname{Hom}_{A}\left(\mathfrak{X}, Z_{2}\right)$ and for $x, y \in \mathfrak{X}$.

Definition 2. The cup- i-product ${\underset{i}{i}}^{U}$ in the cochain complex $C=$ $\operatorname{Hom}_{A}\left(\mathfrak{X}, Z_{2}\right)$ is defined by $h^{i \sharp} \cdot \chi$.

Denoting $\operatorname{Hom}_{A}^{s}\left(X_{p}, Z_{2}\right)$ by $C^{p, s}$ for each homological dimension $p \geq 0$ and the grading $s \geq 0$, we have the cochain complex

$$
C^{* s}=\left\{C^{p, s} \text { for } p=0,1, \cdots, n, \cdots\right\}
$$

such that $C=\left\{C^{* s} \mid s=0,1, \cdots\right\}$. Then $f \bigcup_{i} g=\bigcup_{i}(f \otimes g) \in C^{p+q-i, s+t}$ for $f \in C^{p, s}$ and $g \in C^{q, t}$. It is immediate to see by definition the coboundary formula

$$
\delta\left(f \cup_{i} g\right)=f \bigcup_{i-1} g+g \bigcup_{i-1} f+\delta f \bigcup_{i} g+f \bigcup_{i}^{\cup} \delta g
$$

For

$$
\begin{aligned}
& \delta\left(f \bigcup_{i}^{U g}\right)=\partial^{\sharp} h^{i} \chi(f \otimes g)=\chi(f \otimes g) h^{i} \partial \\
& =\chi(f \otimes g)\left(h^{i-1}+\rho h^{i-1}+d h^{i}\right) \\
& =h^{i-1 \ddagger} \chi(f \otimes g)+h^{i-1 \sharp} \rho^{\ddagger} \chi(f \otimes g)+h^{i \ddagger} d^{\ddagger} \chi(f \otimes g) \\
& =h^{i-1 \ddagger} \chi(f \otimes g)+h^{i-1} \chi(g \otimes f)+h^{i \ddagger} \chi(\delta \otimes 1+1 \otimes \delta)(f \otimes g) \\
& =f \bigcup_{i-1} g+\bigcup_{i-1} \cup_{i}+\delta f \bigcup_{i} g+f \bigcup_{i} \delta g .
\end{aligned}
$$

Definition 3. Algebraic Steenrod operation ${ }_{A} S q_{i}: H^{p, s}(A) \rightarrow H^{2 p-i, 2 s}(A)$ is defined by ${ }_{A} S q_{i}(\xi)=\bar{f} \bigcup_{i} f$, where $\xi \in H^{p, s}(A)$ is represented by $f \in C^{p, s}$ with $\delta f=0$, and the bar over $f \bigcup_{i} f$ stands for the cohomology class.

Adams [1] and others (for example, see [11]) computed explicitely a Δ-homomorphism h^{i} in case when \mathfrak{X} is the bar resolution $B(A)$. If

$$
\Delta(a)=\sum a^{\prime} \otimes a^{\prime \prime}
$$

for $a \in A$, then we have

$$
\begin{aligned}
& h_{n}^{0}\left(\left[a_{1}\left|a_{2}\right| \cdots \mid a_{n}\right]\right) \\
& \quad=1 \otimes\left[a_{1}|\cdots| a_{n}\right]+\sum_{1 \leq \rho \leq n}\left[a_{1}^{\prime}|\cdots| a_{\rho}^{\prime}\right] \otimes a_{1}^{\prime \prime} \cdots a_{\rho}^{\prime \prime}\left[a_{\rho+1}|\cdots| a_{n}\right]
\end{aligned}
$$

for odd i,

$$
\begin{aligned}
& h_{n}^{t}\left(\left[a_{1}|\cdots| a_{n}\right]\right) \\
& \quad=\sum_{0 \leq \rho_{0}<\rho_{1}<\cdots \rho_{i} \leq n}\left[a_{1}^{\prime}|\cdots| a_{\rho_{0}}^{\prime}\left|a_{\rho_{0}+1}^{\prime} \cdots a_{\rho_{\rho_{1}}}^{\prime}\right| a_{\rho_{1}+1}^{\prime}|\cdots| a_{\rho_{\rho_{2}}^{\prime}}^{\prime}|\cdots| a_{\rho_{i-1}+1}^{\prime} \cdots a_{\rho_{i}}^{\prime}\left|a_{\rho_{i}+1}\right| \cdots \mid a_{n}\right] \\
& \quad \otimes a_{1}^{\prime \prime} \cdots a_{\rho_{0}}^{\prime \prime}\left[a_{\rho_{0}+1}^{\prime \prime}|\cdots| a_{\rho_{1}}^{\prime \prime}\left|a_{\rho_{1}+1}^{\prime \prime} \cdots a_{\rho_{2}}^{\prime \prime}\right| \cdots\left|a_{\rho_{i-1}+1}^{\prime \prime}\right| \cdots \mid a_{\rho_{i}}^{\prime \prime}\right]
\end{aligned}
$$

for even i,

$$
\begin{gathered}
h_{n}^{i}\left(\left[a_{1}|\cdots| a_{n}\right]\right)=\sum_{0 \leq \rho_{0}<\rho_{1}<\cdots \rho_{i} \leq n}\left[a_{\rho_{0}}^{\prime}|\cdots| a_{\rho_{0}+1}^{\prime} \cdots a_{\rho_{1}}^{\prime}|\cdots| a_{\rho_{i-1}+1}^{\prime}|\cdots| a_{\rho_{i}}^{\prime}\right] \\
\otimes a_{1}^{\prime \prime} \cdots a_{\rho_{0}}^{\prime \prime}\left[a_{\rho_{0}+1}^{\prime \prime}|\cdots| a_{\rho_{1}}^{\prime \prime}|\cdots| a_{\rho_{i-1}+1}^{\prime \prime} \cdots a_{\rho_{i}}^{\prime \prime}\left|a_{\rho_{i}+1}\right| \cdots \mid a_{n}\right] .
\end{gathered}
$$

Let us sketch the method of computation for completeness sake. Let S be the contracting homotopy for $B(A)$, then $t=S \otimes 1+\varepsilon \otimes S$ is a contracting homotopy for $B(A) \otimes B(A)$. Define $h_{0}^{0}=\Delta$, then $h_{1}^{0} S_{0}=t_{0} h_{0}^{0}$ determine h_{1}^{0} by $h_{1}^{0}(a x)=\Delta(a) h_{1}^{0}(x)$. Inductively h^{0} is obtained easily. Define $h_{0}^{1}=t_{0}\left(h_{0}^{0}+\rho h_{0}^{0}\right)$, then h_{1}^{1} is calculated by $h_{1}^{1} S_{0}=t_{1}\left(h_{1}^{0}+\rho h_{1}^{0}\right) S_{0}+t_{1} h_{0}^{1}$ and $h_{1}^{1}(a x)=\Delta(a) h_{1}^{1}(x)$. Repeat this process, we get the above formula.

3. $\mathfrak{S}(\Gamma, \Lambda)$ associated with a pair of Hopf algebras (Γ, Λ)

Let (Γ, Λ) be a pair of connected locally finite cocommutative Hopf algebras over Z_{2} such that the subhopf algebra Λ is central in Γ. Then we have a sequence of Hopf algebras

$$
\Lambda \xrightarrow{i} \Gamma \xrightarrow{\pi} \Omega=\Gamma / I(\Lambda) \cdot \Gamma
$$

where the inclusion i and the projection π are morphisms of Hopf algebras (see [1]). In this setting we are going to associate with a pair of Hopf algebras (Γ, Λ) a graded differential algebra $\mathbb{S}(\Gamma, \Lambda)=\left\{C, \delta, F, \cup_{i}\right\}$ with a decreasing filtration F and with cup- i-products \bigcup_{i} so that behaviors of algebraic Steenrod operations can be discussed in the spectral sequence $\left\{E_{\gamma}, d_{\gamma}\right\}$ associated with $\mathfrak{S}(\Gamma, \Lambda)$.

Recall the filtration in the bar construction $B(\Gamma)$ which Adams introduced in [1]. For each integer p define a subcomplex $F_{p} B(\Gamma)$ of $B(\Gamma)$ such that $F_{p} B(\Gamma)_{n}$ is the Γ-submodule of $B(\Gamma)_{n}=\Gamma \otimes I(\Gamma)^{n}$ generated by elements of the form $\gamma\left[\gamma_{1}|\cdots| \gamma_{n}\right]$ with the property that $\gamma_{s} \in I(\Lambda)$ for at least $(n-p)$ values of s. Then it is immediate to see that F is the canonical increasing filtration in $B(\Gamma)$. Define the product filtration $\stackrel{\times}{F}$ in $B(\Gamma) \otimes B(\Gamma)$ by

$$
\stackrel{\times}{F}_{p}(B(\Gamma) \otimes B(\Gamma))=\bigcup_{p \geq s \geq 0} F_{p-s} B(\Gamma) \otimes F_{s} B(\Gamma) .
$$

Then $(B(\Gamma) \otimes B(\Gamma), \stackrel{\times}{F})$ is a resolution of $\Gamma \otimes \Gamma$-module Z_{2} with the increasing filtration $\stackrel{\times}{F}$. Let $\Delta: \Gamma \rightarrow \Gamma \otimes \Gamma$ be the cocommutative diagonal and let ρ be the twisting chain map of $B(\Gamma) \otimes B(\Gamma)$. Then we have

Theorem 1. There exists a sequence of Δ-homomorphisms

$$
h^{i}: B(\Gamma) \rightarrow B(\Gamma) \otimes B(\Gamma)
$$

for $i=0,1, \cdots, n, \cdots$ such that 1$) \quad h^{0}$ is a Δ-chain map which preserves grading and filtration, 2) h^{i} is a Δ-chain homotopy connecting h^{i-1} and ρh^{i-1} which preserves grading, raises homological dimension by i, and satisfies the filtration condition

$$
h^{i}\left(F_{p} B(\Gamma)\right) \subset \stackrel{㐅}{F}_{a}(B(\Gamma) \otimes B(\Gamma))
$$

for $\alpha=\operatorname{Min}\{2 p, p+i\}$.
Proof. In virtue of Proposition 6 it remains only to prove that h_{n}^{i} shown in §2 satisfies the filtration condition. By denoting

$$
\Delta(\gamma)=\sum \gamma^{\prime} \otimes \gamma^{\prime \prime}
$$

the three formulas $h_{n}^{i}\left(\left[\gamma_{1}|\cdots| \gamma_{n}\right]\right)$ show that for each j with $n \geq j \geq 1$ exactly one of the three elements $\gamma_{j}, \gamma_{j}^{\prime}$, and $\gamma_{j}^{\prime \prime}$ appears solely between bars. For example,
if i is odd, each of the elements $\gamma_{1}^{\prime}, \cdots, \gamma_{\rho_{0}}^{\prime}, \gamma_{\rho_{0}+1}^{\prime \prime}, \cdots, \gamma_{\rho_{1}}^{\prime \prime}, \gamma_{\rho_{1}+1}^{\prime} \cdots, \gamma_{\rho_{2}}^{\prime}, \cdots$, $\gamma_{\rho_{i-1}+1}^{\prime \prime}, \cdots, \gamma_{\rho_{i}}^{\prime \prime}, \gamma_{\rho_{i}+1}, \cdots, \gamma_{n}$ appears solely in | . It follows that if $\left[\gamma_{1}|\cdots| \gamma_{n}\right] \in F_{p} B(\Gamma)_{n}$, each term of the sum on the right hand sides of the formulas contains at least $(n-p)$ elements in $I(\Lambda)$. By definition of the product filtration $\stackrel{\times}{F}$ we obtain

$$
h^{i}\left(F_{p} B(\Gamma)\right) \subset \stackrel{\times}{F}_{p+i}(B(\Gamma) \otimes B(\Gamma))
$$

If $p \geq i$, then the proof is complete, because $\operatorname{Min}\{p+i, 2 p\}=p+i$. If $i \geq p$, it is seen that among i products

$$
\gamma_{\rho_{0}+1}^{\prime} \cdots \gamma_{\rho_{1}}^{\prime}, \gamma_{\rho_{1}+1}^{\prime \prime} \cdots \gamma_{\rho_{2}}^{\prime \prime}, \cdots, \gamma_{\rho_{i-1}+1}^{\prime} \cdots \gamma_{\rho_{i}}^{\prime}
$$

(or $\gamma_{\rho_{i-1}+1}^{\prime \prime} \cdots \gamma_{\rho_{i}}^{\prime \prime}$ if i is even) there exist at least ($i-p$) products contained in $I(\Lambda)$. Otherwise, at least $(p+1)$ products are not contained in $I(\Lambda)$. Then γ_{s} are not in $I(\Lambda)$ for at least $(p+1)$ values of s. This is a contradiction. It follows that each term of the sum for $h_{n}^{t}\left(\left[\gamma_{1}|\cdots| \gamma_{n}\right]\right)$ has at least

$$
(n-p)+(i-p)=n+i-2 p
$$

elements in $I(\Lambda)$. Therefore,

$$
h^{i}\left(F_{p} B(\Gamma)\right) \subset \stackrel{\times}{F}_{2 p}(B(\Gamma) \otimes B(\Gamma))
$$

if $i \geq p$, where $\operatorname{Min}\{p+i, 2 p\}=2 p$. This completes the proof.
Now let us dualize what we have obtained in this section. Let (C, δ) be the cochain complex $\operatorname{Hom}_{\Gamma}\left(B(\Gamma), Z_{2}\right)$ over Z_{2}. For each integer p define a subcomplex $F^{p}(C)$ by the image of

$$
\operatorname{Hom}_{\Gamma}\left(B(\Gamma) / F_{p-1} B(\Gamma), Z_{2}\right)
$$

under the dual of the projection

$$
p: B(\Gamma) \rightarrow B(\Gamma) / F_{p-1} B(\Gamma)
$$

Then it is seen that (C, δ, F) is a cochain complex with a decreasing filtration. Let us call it Adams filtered complex associated with (Γ, Λ).

Theorem 2. Let (C, δ, F) be Adams filtered complex associated with a pair of Hopf algebras over Z_{2}. Then there exist a Z_{2}-linear map $\cup_{i}: C \otimes C \rightarrow C$ such that $\mathfrak{S}(\Gamma, \Lambda)=\{C, \delta, F,{\underset{i}{u}}\}$ is a graded differential algebra with a decreasing filtration F and with cup-i-products in the sense of Definition 1.

Proof. Let $h^{i}: B(\Gamma) \rightarrow B(\Gamma) \otimes B(\Gamma)$ be the Δ-homomorphism in Theorem 1 and define $\bigcup_{i}: C \otimes C \rightarrow C$ by $h^{i \#} \chi$ as was considered in Definition 2. Since \bigcup_{i}
is the cup- i-product in $C=\operatorname{Hom}_{\Gamma}\left(B(\Gamma), Z_{2}\right)$, it is easy to see that \bigcup_{i} satisfies all the necessary conditions except the filtration condition. Consequently, it is sufficient to show that if $f \in F^{p} C^{m, s}$ and $g \in F^{q} C^{n, t}$, then $f \bigcup_{i} g \in F^{a} C^{m+n-i, s+t}$ for $\alpha=\operatorname{Max}\{p+q-i, p, q\}$. Consider first the case when

$$
\alpha=\operatorname{Max}\{p+q-i, p, q\}=p+q-i
$$

then

$$
\operatorname{Min}\{(\alpha-1)+i, 2(\alpha-1)\}=(\alpha-1)+i=p+q-1
$$

except the case when $p=q=i$. By Theorem 1

If

$$
\begin{gathered}
h^{i}\left(F_{\omega-1} B(\Gamma)\right) \subset \stackrel{\times}{F}_{p+q_{-1}}(B(\Gamma) \otimes B(\Gamma)) \\
h^{i}(x)=\sum x^{\prime} \otimes x^{\prime \prime}
\end{gathered}
$$

for $x \in F_{a-1} B(\Gamma)_{m+n-i, s+t}$, then $x^{\prime} \in F_{\xi} B(\Gamma)_{\rho, \theta}$ and $x^{\prime \prime} \in F_{\eta} B(\Gamma)_{\sigma, \nu}$ with the property that $\xi+\eta=p+q-1, \rho+\sigma=m+n$, and $\theta+\nu=s+t$. Then

$$
\left(f \bigcup_{i} g\right)(x)=\sum f\left(x^{\prime}\right) \cdot g\left(x^{\prime \prime}\right)=0
$$

because $\xi<p$ or $\eta<q$. Therefore, $f \bigcup_{i} g \in F^{p+q-i} C^{m+n-i, s+t}$. If $\alpha=p$, then $p \geq q$ and $i \geq q$. In this case also,

$$
\left(f \bigcup_{i} g\right)\left(F_{p-1} B(\Gamma)\right)=0
$$

can be shown because

$$
h^{i}\left(F_{p-1} B(\Gamma)\right) \subset \stackrel{\times}{F}_{p-1+i}(B(\Gamma) \otimes B(\Gamma)) \cap \stackrel{\times}{F}_{2 p-2}(B(\Gamma) \otimes B(\Gamma)) .
$$

Hence, the proof is completed.
From Theorem 2 and Proposition 1 we obtain
Theorem 3. Let (Γ, Λ) be a pair of connected locally finite cocommutative Hopf algebras over Z_{2} such that Λ is central in Γ, and let $\left\{E_{\gamma}, d_{\gamma}\right\}$ be Adams spectral sequence associated with the system $\mathfrak{S}(\Gamma, \Lambda)$. Then there exist algebraic Steenrod operations ${ }_{B} S t_{i}: E_{\gamma}^{p, q} \rightarrow E_{2 \gamma-2}^{2 p-i, 2 q}$ for $\infty \geq \gamma \geq 2$ and ${ }_{F} S t_{i}: E_{\gamma}^{p, 2 q+p-i}$ for $\infty \geq \gamma \geq 1$.

4. Some properties of algebraic Steenrod operations

Theorem 4. ${ }_{B} S t_{i}$ and ${ }_{F} S t_{i}$ defined in Adams spectral sequence satisfy Propositions 2, 3, and 4.

Theorem 5. Let (Γ, Λ) and $\left(\Gamma^{\prime}, \Lambda^{\prime}\right)$ be pairs of Hopf algebras over Z_{2} both of which satisfy the conditions stated before, and let E_{γ} and E_{γ}^{\prime} be Adams spectral sequences associated with $\mathfrak{S}(\Gamma, \Lambda)$ and $\mathfrak{S}\left(\Gamma^{\prime}, \Lambda^{\prime}\right)$ respectively. If $f(\Gamma, \Lambda) \rightarrow\left(\Gamma^{\prime}, \Lambda^{\prime}\right)$ be a morphism of pairs of Hopf algebras, thenf induces a sequence of homomorphisms $\phi_{\gamma}: E_{\gamma}^{\prime} \rightarrow E_{\gamma}$ for $\gamma \geq 1$ such that

$$
\phi_{\gamma} S t_{i}={ }_{F} S t_{i} \phi_{\gamma} \quad \text { and } \quad \phi_{2 \gamma-2} S t_{i}={ }_{B} S t_{s} \phi_{\gamma}
$$

for $\gamma \geq 2$.
Proof. It is obvious that f induces a chain map $B(f): B(\Gamma) \rightarrow B\left(\Gamma^{\prime}\right)$ preserving filtrations and gradings. If h^{i} and $h^{\prime i}$ are Δ-homomorphisms in Theorem 1, then we have $h^{\prime i} B(f)=(B(f) \otimes B(f)) h^{i}$. Consequently, $B(f)$ induces a morphism $\mathfrak{S}(f): \mathscr{S}\left(\Gamma^{\prime}, \Lambda^{\prime}\right) \rightarrow \mathfrak{S}(\Gamma, \Lambda)$. By a morphism $\mathfrak{S}(f)$ of the system \mathfrak{S} we mean that $\mathfrak{S}(f)$ is a chain map compatible with gradings, filtrations, and cup-i-products. Therefore, it is straightforward to verify the theorem.

Theorem 6. Let $\Lambda \stackrel{i}{\rightarrow} \Gamma \xrightarrow[\rightarrow]{\boldsymbol{\pi}} \Omega$ be a sequence of Hopf algebras as stated before, and let $\left\{E_{\gamma}\right\}$ be Adams spectral sequence associated with (Γ, Λ). Then the natural maps $B(\pi): B(\Gamma) \rightarrow B(\Omega)$ and $B(i): B(\Lambda) \rightarrow B(\Gamma)$ induce isomorphisms $B(\pi)^{*}: H^{p}(\Omega) \rightarrow E_{2}^{p, 0}$ and $B(i)^{*}: E_{2}^{0, q} \rightarrow H^{q}(\Lambda)$ respectively. If $E_{2}^{p, 0}$ and $E_{2}^{0, q}$ are identified with $H^{p}(\Omega)$ and $H^{q}(\Lambda)$ respectively, then ${ }_{B} S t_{i}: E_{2}^{p, 0} \rightarrow E_{2}^{2 p-i, 0}$ coincides with ${ }_{\Omega} S q_{i}: H^{p}(\Omega) \rightarrow H^{2 p-i}(\Omega), \quad$ and ${ }_{F} S t_{i}: \quad E_{2}^{0, q} \rightarrow E_{2,2 q-i}^{0,2 q}$ coincides with ${ }_{\Lambda} S q_{i}: \quad H^{q}(\Lambda) \rightarrow H^{2 q-i}(\Lambda)$. Moreover, ${ }_{B} S t_{i}: E_{\infty}^{p, q} \rightarrow E_{\infty}^{2 p-i, 2 q}$ for $i \leq p$ and ${ }_{F} S t_{i}: E_{\infty}^{p, q} \rightarrow E_{\infty}^{p, 2 q+p-i}$ for $i \geq p$ are induced by ${ }_{\Gamma} S q_{i}: H^{p+q}(\Gamma) \rightarrow H^{2 p+2 q-i}(\Gamma)$.

Proof. Adams has shown in [1] that $B(\pi)^{*}$ and $B(i)^{*}$ are isomorphisms. Hence, a morphism of pairs of Hopf algebras $\pi:(\Gamma, \Lambda) \rightarrow\left(\Omega, Z_{2}\right)$ induces the isomorphism $\phi_{2}: E_{2}^{\prime p, 0} \rightarrow E_{2}^{p, 0}$ for each p, because

$$
E_{2}^{\prime p, 0}=E_{\infty}^{\prime p, 0}=H^{p}(\Omega)
$$

Since ${ }_{B} S t_{i}: E_{2}^{\prime p, 0} \rightarrow E_{2}^{\prime 2 p-i, 0}$ is exactly ${ }_{\Omega} S q_{i}: H^{p}(\Omega) \rightarrow H^{2 p-i}(\Omega)$, we obtain ${ }_{B} S t_{i} \phi_{2}=\phi_{2} S q_{i}$. Similarly, $\phi_{2} S t_{i}={ }_{\Lambda} S q_{i} \phi_{2}$. From the facts that $H^{p+q}(\Gamma)$ is filtered by $F^{p} H^{p+q}(\Gamma)=Z_{\infty}^{p, q} / B_{\infty}^{p, q}$ with the property that $E_{\infty}^{p, q}=F^{p} H^{p+q}(\Omega) /$ $F^{p+1} H^{p+q}(\Omega)$ and that ${ }_{\Gamma} S q_{i}$ maps $F^{p} H^{p+q}(\Gamma)$ into $F^{2 p-i} H^{2 p+2 q-i}(\Gamma) \subset H^{2 p+2 q-i}(\Gamma)$, it is immediate to see that ${ }_{B} S t_{i}: E_{\infty}^{p, q} \rightarrow E_{\infty}^{2 p-i, 2 q}$ is induced by ${ }_{\Gamma} S q_{i}$. The rest of the proof is obvious. Hence, the proof is complete.

In a subsequent paper the author wishes to discuss higher cohomology operations involved in the Cartan formula and Massey-Uehara products.

Oklahoma State University

Bibliography

[1] J.F. Adams: On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
[2] -: Stable Homotopy Theory, Lecture Notes in Math. 3, Springer, 1969.
[3] S. Araki: Steenrod reduced powers in the spectral sequences associated with a fibering, Mem. Fac. Sci. Kyushu Univ. Ser. A. 11 (1957), 15-64.
[4] -: Steenrod reduced powers in the spectral sequences associated with a fibering II, Mem. Fac. Sci. Kyushu Univ. Ser. A. 11 (1957), 81-97.
[5] S. Eilenberg and J.C. Moore: Foundation of Relative Homological Algebra, Mem. Amer. Math. Soc. 55, 1965.
[6] A. Liulevicius: The Factorization of Cyclic Reduced Powers by Secondary Cohomology Operations, Mem. Amer. Math. Soc. 42, 1962.
[7] J.W. Milnor and J.C. Moore: On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
[8] H. Uehara, F.S. Brenneman, L.D. Olson: A comparison theorem in fibred categories, Abstract \#71T-A27, Notices Amer. Math. Soc. 18 (1971), 396.
[9] H. Uehara: On Cohomology of Hopf Algebras, Lecture notes, Universität des Saarlandes, 1970.
[10] R. Vazquez: Note on Steenrod squares in the spectral sequence of a fibre space, Bol. Soc. Mat. Mexicana 2 (1957), 1-8.
[11] A. Zachariou: On Cup-i-products in the Cobar Construction F(A*), Univ. of Manchester, 1966.
[12] : A subalgebra of $\operatorname{Ext}_{A}^{* *}\left(Z_{2}, Z_{2}\right)$, Bull. Amer. Math. Soc. 73 (1967), 647-648.

[^0]: * This work is supported in part by the National Science Foundation research grant GP9585, and in part by the Deutsche Forschungsgemeinschaft while the author was a visiting professor at Universität des Saarlandes during the winter semester, 1970.

