Kamata, M. Osaka J. Math. 9 (1972), 287-292

NOTES ON THE COBORDISM GROUP $U^*(L^{n}(m))$

MASAYOSHI KAMATA

(Received August 31, 1971)

1. Let $U^*(X)$ be the unitary cobordism group of a finite CW complex X. P.S. Landweber [4] and K. Shibata [6] determined the unitary cobordism group of the lens space $L^n(m) = S^{2n+1}/Z_m$. In this paper, we use the structure of the reduced unitary cobordism group of $L^n(m)$ to prove the following

Theorem 1. If positive integers p and q are relatively prime, there exists an isomorphism

$$\psi: \ \widetilde{U}^{ev}(L^{n}(p)) \oplus \widetilde{U}^{ev}(L^{n}(q)) \to \widetilde{U}^{ev}(L^{n}(pq)),$$

where $\widetilde{U}^{ev}(\cdot) = \sum_{i} \widetilde{U}^{2i}(\cdot)$.

Let $U_*(X)$ be the unitary bordism group of a space X. Denote by BZ_m the classifying space of the group Z_m . Using the duality isomorphism $D: U_*(L^n(m)) \cong U^*(L^n(m))$ and the isomorphism $U_k(L^n(m)) \cong U_k(BZ_m)$ for k < 2n+1 [3], we have $U_k(BZ_m) \cong \tilde{U}^{2n+1-k}(L^n(m))$ for k < 2n+1. Then, Theorem 1 implies the following

Theorem 2. If p and q are relatively prime, there exists an isomorphism

 $\psi_*: \ U_{od}(BZ_p) \oplus U_{od}(BZ_q) \to U_{od}(BZ_{pq}) ,$

where $U_{od}(\cdot) = \sum_{i} U_{2i+1}(\cdot)$.

Using the spectral sequence [3], we obtain

$$U_{2k}(BZ_m) \simeq U_{2k}$$

For a prime p, $U_*(BZ_p)$ was determined in [1] and [3].

Denote by $\tilde{K}(X)$ the reduced Grothendieck group of isomorphism classes of complex vector bundles over X. In [2], Conner and Floyd gave the isomorphism

$$\widetilde{K}(X) \simeq \widetilde{U}^{ev}(X) \otimes_{U^*} Z$$
.

Therefore, Theorem 1 implies the following

Theorem 3. (N. Mahammed [5]) If p and q are relatively prime, there exists an isomorphism

$$\widetilde{K}(L^{n}(p)) \oplus \widetilde{K}(L^{n}(q)) \simeq \widetilde{K}(L^{n}(pq)).$$

2. In this section we prove Theorem 1. Denote by CP^n the *n*-dimensional complex projective space and by η the canonical complex line bundle over CP^n . Let $\pi: L^n(P) \to CP^n$ be the natural projection and put

$$x_{p} = \pi^{*}c_{1}(\eta),$$

where $c_1(\eta)$ is the first Chern class of η in the sence of Conner and Floyd [2].

Let F(,) is the formal group law such that

$$F(c_1(\xi), c_1(\xi')) = c_1(\xi \otimes \xi')$$

for complex line bundles ξ , ξ' over the same CW complex [7]. For a positive integer *m*, let $[m]_F(x) \in U^*[[x]]$ be a formal power series defined by the following formulas

In [6], K. Shibata gave the following

Theorem 2.1.

$$U^{*}(L^{n}(m)) \cong \Lambda_{U^{*}}(D[pt, i]) \oplus U^{*}[[x_{m}]]/(x_{m}^{n+1}, [m]_{F}(x_{m})),$$

where $[pt, i] \in U_0(L^n(m))$ is the bordism class represented by an inclusion map of a point, $\Lambda_{U^*}()$ is the exterior algebra over U^* and $(x_m^{n+1}, [m]_F(x_m))$ denotes the ideal generated by x_m^{n+1} and $[m]_F(x_m)$.

The same result can be obtained also by the method of P.S. Landweber [4] directly.

Considering the following short exact sequence

$$0 \to \widetilde{U}^*(L^n(m)) \to U^*(L^n(m)) \to U^* \to 0,$$

it follows from Theorem 2.1 that

$$\widetilde{U}^{ev}(L^{n}(m)) \simeq \overline{U}^{*}[[x_{m}]]/(x_{m}^{n+1}, [m]_{F}(x_{m})), \qquad \cdots \cdots \cdots \cdots (2)$$

where $\bar{U}^*[[x_m]]$ is the kernel of the homomorphism

$$\varepsilon \colon U^*[[x_m]] \to U^*$$

defined by $\mathcal{E}(\sum_{k=0}^{\infty} a_k x_m^k) = a_0$.

We define a homomorphism

COBORDISM GROUP $U^{*}(L^{n}(m))$

$$\psi \colon \widetilde{U}^{ev}(L^{n}(p)) \oplus \widetilde{U}^{ev}(L^{n}(q)) \to \widetilde{U}^{ev}(L^{n}(pq))$$

by $\psi(\overline{P(x_p)}, \overline{Q(x_q)}) = \overline{P([q]_F(x_{pq})) + Q([p]_F(x_{pq}))}$, where $\overline{P(x_p)}, \overline{Q(x_q)}$ and $\overline{P([q]_F(x_{pq})) + Q([p]_F(x_{pq}))}$ are the classes of the formal power series $P(x_p) \in U^*[[x_p]], Q(x_q) \in U^*[[x_q]]$ and $P([q]_F(x_{pq})) + Q([p]_F(x_{pq})) \in U^*[[x_{pq}]]$ respectively.

Using the associativity of the formal group law, we obtain

$$[p]_{F}([q]_{F}(x)) = [q]_{F}([p]_{F}(x))$$

= $[pq]_{F}(x)$(3)

From (2) and (3), it follows that the homomorphism ψ is well defined. We define the multiplication in $\tilde{U}^{ev}(L^n(p)) \oplus \tilde{U}^{ev}(L^n(q))$ by

$$(x, y) \cdot (x', y') = (xx', yy').$$

We prove the following lemma, so that the homomorphism ψ is a ring homomorphism.

Lemma 2.2. If p and q are relatively prime, $[\overline{p}]_F(x_{pq}) \cdot [\overline{q}]_F(x_{pq}) = 0$ in $\widetilde{U}^{ev}(L^n(pq))$.

Proof. We put

$$I_{p,q} = (x_{pq}^{n+1}, [pq]_F(x_{pq})).$$

We show that $[p]_F(x_{pq}) \cdot [q]_F(x_{pq}) \in I_{p,q}$. From (3),

$$p[q]_F(x) + \sum_{i=2}^{\infty} a_i \{ [q]_F(x) \}^i = [pq]_F(x) ,$$

$$q[p]_F(x) + \sum_{i=2}^{\infty} b_i \{ [p]_F(x) \}^i = [pq]_F(x) ,$$

where $x = x_{pq}$.

Since p and q are relatively prime, there exist integers a and b such that ap+bq=1. Then, we have

$$[p]_{F}(x) \cdot [q]_{F}(x)$$

= $a[p]_{F}(x) \{ [pq]_{F}(x) - \sum_{i=2}^{\infty} a_{i} \{ [q]_{F}(x) \}^{i} \}$
+ $b[q]_{F}(x) \{ [pq]_{F}(x) - \sum_{i=2}^{\infty} b_{i} \{ [p]_{F}(x) \}^{i} \}$(4)

We put

$$X = [p]_F(x), \quad Y = [q]_F(x), \quad a'_i = aa_i \text{ and } b' = bb_i.$$

The equation (4) implies

М. Камата

$$XY\{1+(\sum_{i=2}^{\infty}a'_{i}Y^{i-1}+\sum_{i=2}^{\infty}b'_{i}X^{i-1})\}=I\in I_{p,q}.$$

Therefore,

$$XY = I(1 + A + A^2 + \cdots) \in I_{p,q},$$

where $A = -(\sum_{i=2}^{\infty} a'_i Y^{i-1} + \sum_{i=2}^{\infty} b'_i X^{i-1}).$ q.e.d.

Proposition 2.3. If p and q are relatively prime, then ψ is epimorphic.

Proof. Since ψ is the ring homomorphism, we need only to prove the existence of the elements y and z which satisfy $\psi(y, z) = \bar{x}_{pq}$. We put

$$[p]_F(x_{pq}) = \sum_{i=0}^{\infty} c_i x_{pq}^{i+1}, c_0 = p$$

and

$$[q]_F(x_{pq}) = \sum_{i=0}^{\infty} d_i x_{pq}^{i+1}, d_0 = q.$$

We find series $A = \sum_{i=0}^{\infty} a_i x_{pq}^i$ and $B = \sum_{i=0}^{\infty} b_i x_{pq}^i$ which satisfy

$$x_{pq} = A[p]_F(x_{pq}) + B[q]_F(x_{pq}),$$

that is, a_i and b_i satisfy the following

Since p and q are relatively prime, there exist a_0 and b_0 which satisfy $1=pa_0+qb_0$. Suppose that a_j and b_j are determined for j < k. Put

$$a_{k} = -a_{0}\sum_{i=1}^{k} (a_{k-i}c_{i} + b_{k-i}d_{i})$$

and

$$b_{k} = -b_{0} \sum_{i=1}^{k} (a_{k-i}c_{i} + b_{k-i}d_{i}),$$

then a_k and b_k satisfy the above relation. Therefore.

$$x_{pq} = \sum_{k=0}^{\infty} P_{k,1} x_{pq}^k \, .$$

where

$$P_{k,1} = a_k[p]_F(x_{pq}) + b_k[q]_F(x_{pq}).$$

Suppose that

$$x_{pq} = \sum_{k=0}^{\infty} P_{k,m} x_{pq}^k ,$$

where $P_{k,m}$ is a polynomial of $[p]_F(x_{pq})$ and $[q]_F(x_{pq})$ with the coefficients in U^* , and for $k \ge 1$

$$P_{k,m} = x_{pq}^m Q_{k,m}, \quad Q_{k,m} \in U^*[[x_{pq}]].$$

Then, we have

$$x_{pq} = P_{0,m} + \sum_{k=1}^{\infty} P_{k,m} \{ \sum_{j=0}^{\infty} P_{j,m} x_{pq}^{j} \}^{k}$$
$$= P_{0,m} + \sum_{k=1}^{\infty} P_{k,m} \{ P_{0,m} + \sum_{j=1}^{\infty} P_{j,m} x_{pq}^{j} \}^{k}.$$

Put

$$P_{0,m} + \sum_{k=1}^{\infty} P_{k,m} \{ P_{0,m} + \sum_{j=1}^{\infty} P_{j,m} x_{pq}^{j} \}^{k} = \sum_{k=0}^{\infty} P_{k,m+1} x_{pq}^{k} \}$$

Then, we have

$$P_{0,m+1} = P_{0,m} + \sum_{k=1}^{\infty} P_{k,m} (P_{0,m})^k$$

and since $P_{j,m} = x_{pq}^m Q_{j,m}$ for $j \ge 1$, there exists $Q_{j,m+1} \in U^*[[x_{pq}]]$ such that

$$P_{j,m+1} = x_{pq}^{m+1} Q_{j,m+1}, \quad j \ge 1.$$

By induction, we have

$$x_{pq} = P_{0,n} + \sum_{k=1}^{\infty} P_{k,n} x_{pq}^{k}$$
 ,

and for $k \ge 1$

$$P_{k,n} = x_{pq}^n Q_{k,n}, \quad Q_{k,n} \in U^*[[x_{pq}]].$$

Therefore,

$$x_{pq} - P_{0,n} \in I_{p,q} = (x_{pq}^{n+1}, [pq]_F(x_{pq})).$$

Put

$$P_{0,n} = P([p]_F(x_{pq})) + Q([q]_F(x_{pq})) + [p]_F(x_{pq}) \cdot [q]_F(x_{pq}) \cdot R,$$

where $R \in U^*[[x_{pq}]]$. From Lemma 2.2,

$$x_{pq} - P([p]_F(x_{pq})) - Q([q]_F(x_{pq})) \in I_{p,q}$$

Therefore, we obtain

М. Камата

$$\bar{x}_{pq} = \psi(Q(x_p), P(x_q)), \qquad \text{q.e.d.}$$

Proposition 2.4. The order of the group $\tilde{U}^{2s}(L^n(m))$ is m^t , $t = \sum_{i=-s+1}^{n-s} \tau_i$, where τ_i is the number of partitions of i for $i \ge 0$ and $\tau_i = 0$ for i < 0.

Proof. Consider the spectral sequence $E_r^{p,q}$ associated with $\tilde{U}^{2s}(L^n(m))$. There is a filtration

$$\widetilde{U}^{2s}(L^n(m)) = J^{0,2s} \supset J^{1,2s-1} \supset \cdots \supset J^{2n+1,2s-2n-1} = 0$$

with $J^{p,q}/J^{p+1,q-1} = \tilde{H}^p(L^n(m); U^q)$. Then, for $1 \leq s+i \leq n$,

the order of
$$J^{2s+2i,-2i}/J^{2s+2(i+1),-2(i+1)} = \begin{cases} m^{\tau_i} & \text{if } i \ge 0, \\ 1 & \text{otherwise.} \end{cases}$$

Therefore, the order of $\widetilde{U}^{2s}(L^n(m))$ is m^t , $t = \sum_{i=-s+1}^{n-s} \tau_i$. q.e.d.

From the Proposition 2.4, we have the following

Corollary 2.5. The order of $\tilde{U}^{2s}(L^n(p)) \oplus \tilde{U}^{2s}(L^n(q))$ is equal to that of $\tilde{U}^{2s}(L^n(pq))$.

Proposition 2.3 and Corollary 2.5 prove Theorem 1.

OSAKA CITY UNIVERSITY

References

- P.E. Conner and E.E.Floyd: Cobordism theories, Seattle Conference on Differential and Algebraic Topology, 1963.
- [2] ———: The Relation of Cobordism to K-theories, Springer, Berlin, 1966.
- [3] M. Kamata: The structure of the bordism group $U_*(BZ_p)$, Osaka J. Math. 7 (1970), 409-416.
- [4] P.S. Landweber: Coherence, flatness and cobordism of classifying spaces, Proc. Adv. Study Inst., Aarhus, 1970.
- [5] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C.R. Acad. Sci. Paris Ser. A-B. 271 (1970), 639-642.
- [6] K. Shibata: Oriented and weakly complex bordism algebra of free periodic maps, to appear.
- [7] S.P. Novikov: Methods of algebraic topology from the view point of cobordism theories, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 885–951.