NOTES ON THE COBORDISM GROUP $\mathbf{U}^{*}\left(\mathbf{L}^{n}(\mathbf{m})\right)$

Masayoshi KAMATA

(Received August 31, 1971)

1. Let $U^{*}(X)$ be the unitary cobordism group of a finite CW complex X. P.S. Landweber [4] and K. Shibata [6] determined the unitary cobordism group of the lens space $L^{n}(m)=S^{2 n+1} / Z_{m}$. In this paper, we use the structure of the reduced unitary cobordism group of $L^{n}(m)$ to prove the following

Theorem 1. If positive integers p and q are relatively prime, there exists an isomorphism

$$
\psi: \tilde{U}^{e v}\left(L^{n}(p)\right) \oplus \tilde{U}^{e v}\left(L^{n}(q)\right) \rightarrow \tilde{U}^{e v}\left(L^{n}(p q)\right),
$$

where $\widetilde{U}^{e v}(\cdot)=\sum_{i} \widetilde{U}^{2 i}(\cdot)$.
Let $U_{*}(X)$ be the unitary bordism group of a space X. Denote by $B Z_{m}$ the classifying space of the group Z_{m}. Using the duality isomorphism $D: U_{*}\left(L^{n}(m)\right) \cong U^{*}\left(L^{n}(m)\right.$) and the isomorphism $U_{k}\left(L^{n}(m)\right) \cong U_{k}\left(B Z_{m}\right)$ for $k<2 n+1$ [3], we have $U_{k}\left(B Z_{m}\right) \cong \widetilde{U}^{2 n+1-k}\left(L^{n}(m)\right)$ for $k<2 n+1$. Then, Theorem 1 implies the following

Theorem 2. If p and q are relatively prime, there exists an isomorphism

$$
\psi_{*}: \quad U_{o d}\left(B Z_{p}\right) \oplus U_{o d}\left(B Z_{q}\right) \rightarrow U_{o d}\left(B Z_{p q}\right),
$$

where $U_{o d}(\cdot)=\sum_{i} U_{2 i+1}(\cdot)$.
Using the spectral sequence [3], we obtain

$$
U_{2 k}\left(B Z_{m}\right) \cong U_{2 k} .
$$

For a prime $p, U_{*}\left(B Z_{p}\right)$ was determined in [1] and [3].
Denote by $\tilde{K}(X)$ the reduced Grothendieck group of isomorphism classes of complex vector bundles over X. In [2], Conner and Floyd gave the isomorphism

$$
\widetilde{K}(X) \cong \widetilde{U}^{e v}(X) \otimes_{U^{*}} Z
$$

Therefore, Theorem 1 implies the following

Theorem 3. (N. Mahammed [5]) If p and q are relatively prime, there exists an isomorphism

$$
\tilde{K}\left(L^{n}(p)\right) \oplus \tilde{K}\left(L^{n}(q)\right) \cong \tilde{K}\left(L^{n}(p q)\right)
$$

2. In this section we prove Theorem 1. Denote by $C P^{n}$ the n-dimensional complex projective space and by η the canonical complex line bundle over $C P^{n}$. Let $\pi: L^{n}(P) \rightarrow C P^{n}$ be the natural projection and put

$$
x_{p}=\pi^{*} c_{1}(\eta)
$$

where $c_{1}(\eta)$ is the first Chern class of η in the sence of Conner and Floyd [2].
Let $F($,$) is the formal group law such that$

$$
F\left(c_{1}(\xi), c_{1}\left(\xi^{\prime}\right)\right)=c_{1}\left(\xi \otimes \xi^{\prime}\right)
$$

for complex line bundles ξ, ξ^{\prime} over the same CW complex [7]. For a positive integer m, let $[m]_{F}(x) \in U^{*}[[x]]$ be a formal power series defined by the following formulas

$$
\begin{align*}
& {[1]_{F}(x)=x} \tag{1}\\
& {[k]_{F}(x)=F\left(x,[k-1]_{F}(x)\right) .}
\end{align*}
$$

In [6], K. Shibata gave the following

Theorem 2.1.

$$
U^{*}\left(L^{n}(m)\right) \cong \Lambda_{U^{*}}(D[p t, i]) \oplus U^{*}\left[\left[x_{m}\right]\right] /\left(x_{m}^{n+1},[m]_{F}\left(x_{m}\right)\right),
$$

where $[p t, i] \in U_{0}\left(L^{n}(m)\right)$ is the bordism class represented by an inclusion map of a point, $\Lambda_{U^{*}}()$ is the exterior algebra over U^{*} and $\left(x_{m}^{n+1},[m]_{F}\left(x_{m}\right)\right)$ denotes the ideal generated by x_{m}^{n+1} and $[m]_{F}\left(x_{m}\right)$.

The same result can be obtained also by the method of P.S. Landweber [4] directly.

Considering the following short exact sequence

$$
0 \rightarrow \widetilde{U}^{*}\left(L^{n}(m)\right) \rightarrow U^{*}\left(L^{n}(m)\right) \rightarrow U^{*} \rightarrow 0
$$

it follows from Theorem 2.1 that

$$
\begin{equation*}
\tilde{U}^{e v}\left(L^{n}(m)\right) \cong \bar{U}^{*}\left[\left[x_{m}\right]\right] /\left(x_{m}^{n+1},[m]_{F}\left(x_{m}\right)\right), \tag{2}
\end{equation*}
$$

where $\bar{U} *\left[\left[x_{m}\right]\right]$ is the kernel of the homomorphism

$$
\varepsilon: U^{*}\left[\left[x_{m}\right]\right] \rightarrow U^{*}
$$

defined by $\varepsilon\left(\sum_{k=0}^{\infty} a_{k} x_{m}^{k}\right)=a_{0}$.
We define a homomorphism

$$
\psi: \widetilde{U}^{e v}\left(L^{n}(p)\right) \oplus \tilde{U}^{e v}\left(L^{n}(q)\right) \rightarrow \widetilde{U}^{e v}\left(L^{n}(p q)\right)
$$

by $\left.\psi \overline{\left(P\left(x_{p}\right)\right.}, \overline{Q\left(x_{q}\right)}\right)=\overline{P\left([q]_{F}\left(x_{p q}\right)\right)+Q\left([p]_{F}\left(x_{p q}\right)\right)}$, where $\overline{P\left(x_{p}\right)}, \overline{Q\left(x_{q}\right)}$ and $\overline{P\left([q]_{F}\left(x_{p q}\right)\right)+Q\left([p]_{F}\left(x_{p q}\right)\right)}$ are the classes of the formal power series $P\left(x_{p}\right) \in$ $U^{*}\left[\left[x_{p}\right]\right], Q\left(x_{q}\right) \in U^{*}\left[\left[x_{q}\right]\right]$ and $P\left([q]_{F}\left(x_{p q}\right)\right)+Q\left([p]_{F}\left(x_{p q}\right)\right) \in U^{*}\left[\left[x_{p q}\right]\right]$ respectively.

Using the associativity of the formal group law, we obtain

$$
\begin{align*}
{\left[_{p}\right]_{F}\left([q]_{F}(x)\right) } & =[q]_{F}\left([p]_{F}(x)\right) \\
& =[p q]_{F}(x) \tag{3}
\end{align*}
$$

From (2) and (3), it follows that the homomorphism ψ is well defined.
We define the multiplication in $\widetilde{U}^{e v}\left(L^{n}(p)\right) \oplus \widetilde{U}^{e v}\left(L^{n}(q)\right)$ by

$$
(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}, y y^{\prime}\right) .
$$

We prove the following lemma, so that the homomorphism ψ is a ring homomorphism.

Lemma 2.2. If p and q are relatively prime, $\left[\overline{p]_{F}\left(x_{p q}\right)} \cdot \overline{[q]_{F}\left(x_{p q}\right)}=0\right.$ in $\widetilde{U}^{e v}\left(L^{n}(p q)\right)$.

Proof. We put

$$
I_{p, q}=\left(x_{p q}^{n+1},[p q]_{F}\left(x_{p q}\right)\right)
$$

We show that $[p]_{F}\left(x_{p q}\right) \cdot[q]_{F}\left(x_{p q}\right) \in I_{p, q}$. From (3),

$$
\begin{aligned}
& p[q]_{F}(x)+\sum_{i=2}^{\infty} a_{i}\left\{[q]_{F}(x)\right\}^{i}=[p q]_{F}(x), \\
& q[p]_{F}(x)+\sum_{i=2}^{\infty} b_{i}\left\{[p]_{F}(x)\right\}^{i}=[p q]_{F}(x),
\end{aligned}
$$

where $x=x_{p q}$.
Since p and q are relatively prime, there exist integers a and b such that $a p+b q=1$. Then, we have

$$
\begin{align*}
& {[p]_{F}(x) \cdot[q]_{F}(x) } \\
= & a[p]_{F}(x)\left\{[p q]_{F}(x)-\sum_{i=2}^{\infty} a_{i}\left\{[q]_{F}(x)\right\}^{i}\right\} \\
+ & b[q]_{F}(x)\left\{[p q]_{F}(x)-\sum_{i=2}^{\infty} b_{i}\left\{[p]_{F}(x)\right\}^{i}\right\} . \tag{4}
\end{align*}
$$

We put

$$
X=[p]_{F}(x), \quad Y=[q]_{F}(x), \quad a_{i}^{\prime}=a a_{i} \quad \text { and } \quad b^{\prime}=b b_{i} .
$$

The equation (4) implies

$$
X Y\left\{1+\left(\sum_{i=2}^{\infty} a_{i}^{\prime} Y^{i-1}+\sum_{i=2}^{\infty} b_{i}^{\prime} X^{i-1}\right)\right\}=I \in I_{p, q} .
$$

Therefore,

$$
X Y=I\left(1+A+A^{2}+\cdots\right) \in I_{p, q},
$$

where $A=-\left(\sum_{i=2}^{\infty} a_{i}^{\prime} Y^{i-1}+\sum_{i=2}^{\infty} b_{i}^{\prime} X^{i-1}\right)$.
Proposition 2.3. If p and q are relatively prime, then ψ is epimorphic.
Proof. Since ψ is the ring homomorphism, we need only to prove the existence of the elements y and z which satisfy $\psi(y, z)=\bar{x}_{p q}$. We put

$$
[p]_{F}\left(x_{p q}\right)=\sum_{i=0}^{\infty} c_{i} x_{p q}^{i+1}, c_{0}=p
$$

and

$$
[q]_{F}\left(x_{p q}\right)=\sum_{i=0}^{\infty} d_{i} x_{p q}^{i+1}, d_{0}=q
$$

We find series $A=\sum_{i=0}^{\infty} a_{i} x_{p q}^{i}$ and $B=\sum_{i=0}^{\infty} b_{i} x_{p q}^{i}$ which satisfy

$$
x_{p q}=A[p]_{F}\left(x_{p q}\right)+B[q]_{F}\left(x_{p q}\right)
$$

that is, a_{i} and b_{i} satisfy the following

$$
\begin{aligned}
& p a_{0}+q b_{0}=1,\left(c_{0}=p \text { and } d_{0}=q\right) \\
& a_{1} c_{0}+a_{0} c_{1}+b_{1} d_{0}+b_{0} d_{1}=0, \\
& \ldots \\
& \sum_{i=0}^{k} a_{k-i} c_{i}+\sum_{i=0}^{k} b_{k-i} d_{i} \\
& =a_{k} c_{0}+b_{k} d_{0}+\sum_{i=1}^{\infty}\left(a_{k-i} c_{i}+b_{k-i} d_{i}\right) \\
& =0,
\end{aligned}
$$

Since p and q are relatively prime, there exist a_{0} and b_{0} which satisfy $1=p a_{0}+q b_{c}$. Suppose that a_{j} and b_{j} are determined for $j<k$. Put

$$
a_{k}=-a_{0} \sum_{i=1}^{k}\left(a_{k-i} c_{i}+b_{k-i} d_{i}\right)
$$

and

$$
b_{k}=-b_{0} \sum_{i=1}^{k}\left(a_{k-i} c_{i}+b_{k-i} d_{i}\right),
$$

then a_{k} and b_{k} satisfy the above relation. Therefore.

$$
x_{p q}=\sum_{k=0}^{\infty} P_{k, 1} x_{p q}^{k}
$$

where

$$
P_{k, 1}=a_{k}[p]_{F}\left(x_{p q}\right)+b_{k}[q]_{F}\left(x_{p q}\right)
$$

Suppose that

$$
x_{p q}=\sum_{k=0}^{\infty} P_{k, m} x_{p q}^{k},
$$

where $P_{k, m}$ is a polynomial of $[p]_{F}\left(x_{p q}\right)$ and $[q]_{F}\left(x_{p q}\right)$ with the coefficients in U^{*}, and for $k \geqq 1$

$$
P_{k, m}=x_{p q}^{m} Q_{k, m}, \quad Q_{k, m} \in U^{*}\left[\left[x_{p q .}\right]\right]
$$

Then, we have

$$
\begin{aligned}
x_{p q} & =P_{0, m}+\sum_{k=1}^{\infty} P_{k, m}\left\{\sum_{j=0}^{\infty} P_{j, m} x_{p q}^{j}\right\}^{k} \\
& =P_{0, m}+\sum_{k=1}^{\infty} P_{k, m}\left\{P_{0, m}+\sum_{j=1}^{\infty} P_{j, m} x_{p q}^{j}\right\}^{k}
\end{aligned}
$$

Put

$$
P_{0, m}+\sum_{k=1}^{\infty} P_{k, m}\left\{P_{0, m}+\sum_{j=1}^{\infty} P_{j, m} x_{p q}^{j}\right\}^{k}=\sum_{k=0}^{\infty} P_{k, m+1} x_{p q}^{k} .
$$

Then, we have

$$
P_{0, m+1}=P_{0, m}+\sum_{k=1}^{\infty} P_{k, m}\left(P_{0, m}\right)^{k}
$$

and since $P_{j, m}=x_{p q}^{m} Q_{j, m}$ for $j \geqq 1$, there exists $Q_{j, m+1} \in U^{*}\left[\left[x_{p q}\right]\right]$ such that

$$
P_{j, m+1}=x_{p q}^{m+1} Q_{j, m+1}, \quad j \geqq 1
$$

By induction, we have

$$
x_{p q}=P_{0, n}+\sum_{k=1}^{\infty} P_{k, n} x_{p q}^{k},
$$

and for $k \geqq 1$

$$
P_{k, n}=x_{p q}^{n} Q_{k, n}, \quad Q_{k, n} \in U^{*}\left[\left[x_{p q}\right]\right]
$$

Therefore,

$$
x_{p q}-P_{0, n} \in I_{p, q}=\left(x_{p q}^{n+1},[p q]_{F}\left(x_{p q}\right)\right) .
$$

Put

$$
P_{0, n}=P\left([p]_{F}\left(x_{p q}\right)\right)+Q\left([q]_{F}\left(x_{p q}\right)\right)+[p]_{F}\left(x_{p q}\right) \cdot[q]_{F}\left(x_{p q}\right) \cdot R
$$

where $R \in U^{*}\left[\left[x_{p q}\right]\right]$.
From Lemma 2.2,

$$
x_{p q}-P\left([p]_{F}\left(x_{p q}\right)\right)-Q\left([q]_{F}\left(x_{p q}\right)\right) \in I_{p, q} .
$$

Therefore, we obtain

$$
\bar{x}_{p q}=\psi\left(\overline{Q\left(x_{p}\right)}, \overline{P\left(x_{q}\right)}\right), \quad \text { q.e.d. }
$$

Proposition 2.4. The order of the group $\widetilde{U}^{2 s}\left(L^{n}(m)\right)$ is $m^{t}, t=\sum_{i=s+1}^{n-s} \tau_{i}$, where τ_{i} is the number of partitions of i for $i \geqq 0$ and $\tau_{i}=0$ for $i<0$.

Proof. Consider the spectral sequence $E_{r}^{p, q}$ associated with $\widetilde{U}^{2 s}\left(L^{n}(m)\right)$. There is a filtration

$$
\widetilde{U}^{2 s}\left(L^{n}(m)\right)=J^{0,2 s} \supset J^{1,2 s-1} \supset \cdots \supset J^{2 n+1,2 s-2 n-1}=0
$$

with $J^{p, q} / J^{p+1, q-1}=\widetilde{H}^{p}\left(L^{n}(m) ; U^{q}\right)$. Then, for $1 \leqq s+i \leqq n$, the order of $J^{2 s+2 i,-2 i} / J^{2 s+2(i+1),-2(i+1)}= \begin{cases}m^{\tau} i & \text { if } i \geqq 0, \\ 1 & \text { otherwise } .\end{cases}$ Therefore, the order of $\widetilde{U}^{2 s}\left(L^{n}(m)\right)$ is $m^{t}, t=\sum_{i=-s+1}^{n-s} \tau_{i}$. q.e.d.

From the Proposition 2.4, we have the following
Corollary 2.5. The order of $\widetilde{U}^{2 s}\left(L^{n}(p)\right) \oplus \widetilde{U}^{2 s}\left(L^{n}(q)\right)$ is equal to that of $\widetilde{U}^{2 s}\left(L^{n}(p q)\right)$.

Proposition 2.3 and Corollary 2.5 prove Theorem 1.
Osaka City University

References

[1] P.E. Conner and E.E.Floyd: Cobordism theories, Seattle Conference on Differential and Algebraic Topology, 1963.
[2] -: The Relation of Cobordism to K-theories, Springer, Berlin, 1966.
[3] M. Kamata: The structure of the bordism group $U_{*}\left(B Z_{p}\right)$, Osaka J. Math. 7 (1970), 409-416.
[4] P.S. Landweber: Coherence, flatness and cobordism of classifying spaces, Proc. Adv. Study Inst., Aarhus, 1970.
[5] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C.R. Acad. Sci. Paris Ser. A-B. 271 (1970), 639-642.
[6] K. Shibata: Oriented and weakly complex bordism algebra of free periodic maps, to appear.
[7] S.P. Novikov: Methods of algebraic topology from the view point of cobordism theories, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 885-951.

