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ON PRIME IDEALS OF A WITT RING
OVER A LOCAL RING
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In this note, we consider commutative local rings with invertible element 2,
and give a relation between an ordered local ring and a prime ideal of Witt ring
over it which is a generalization of the results of Lorenz and Leicht [3] related
to prime ideals of Witt ring over a field. By [5], any non-degenerate and finitely
generated projective quadratic module (V, q) over a local ring R can be written
as a form (F, q)= <«1>J_<^2>J_*#* JjC^X where a{ is in the unit group U(R) of
R and <α, > denotes a rank one free quadratic submodule (Rviy q \ Rv{) such that

q(p^=ίh-t If, for any element a mU{R)y the element having the representative

<#> in the Witt ring W(R) is denoted by a, then any element of W(R) can be
written as a sum of elements of U(R). We use J-, T and ® for the notations
of sum, difference and product in W(R). In §1, we have essentially same
argument for Witt ring over a local ring as one in [3]. In §2, we study about
an ordered local ring R which is an ordered ring such that every unit in R is
either > 0 or <0, and give a generalization of Sylvester's theorem. In §3, we
give an one to one correspondence between such orderings on R and prime ideals
φ of W(R) such that W(R)I^^Z. Throughout this paper, we assume that the
ring R is commutative local ring with invertible element 2, and every i?-module
is unitary.

1. Let R be a local ring with the maximal ideal tn and the unit group
U(R). Since <fl><g)*<6>«<fl*> for a, b(=U(R), we have (a±l)®(aTl)=
α2Tl = l ± ( - l ) = 0 in W{R) for any a in U(R). Therefore, we have the follow-
ing analogous argument on local ring R to [3]. If *β is any prime ideal of W(R),
then any element a in U(R) is either a=\ (mod *β) or a=— 1 (mod *β). We
denote 8<$(a)=\ or — 1, if a = \ (mod*β) or a = — 1 (mod*β), respectively. Then
for any element a^W(R), say α — a 1 ± a 2 ± - " ± a n for ai^U(R)y we have
a=S%(a1)±ε%(a2)±- ±£%(an) (mod φ), therefore there exists an epimorphism
Z->W(R)/^ and so W(R)I^^Z or « Z/(p) for some prime number p in the
integers Z. Accordingly, we have
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(1.1) W(R)Γ$^Z if and only if *β is a minimal prime ideal of W(R) which

is not maximal.

(1. 2) W(R)m$^ίZI(p) for some prime number p if and only if φ is a maximal

ideal of W(R).

(1. 3) W(R) is a Jacobson ring, i.e. every prime ideal is an intersection of

maximal ideals.

There is an epimorphism W(R)->ZI(2) such that if α=α 1±β 2-L JLαΛ is in

W(R) for a,.e?7(i?) then a corresponds to n (mod 2). Then we denote

ker (W(B)-»ZI(2)) by SJI.

(1. 4) A prime ideal φ w 5β=t=2JΪ if and only if\^-\ {mod φ).

(1. 5) Any minimal prime ideal *β of W(R) is contained in 501.

2. We call that local ring R is an ordered local ring if R is an ordered

ring such that every unit is either positive element or negative element (R is

not necessarily total ordered). For ordered local ring R> we call that the set of

positive units in U(R) is the positive units part of R.

(2.1) Proposition. A local ring R is an ordered local ring if and only if

there exists a subset P satisfying the following conditions

( 1 ) P{J-P=U(R)

(2) P Π - P - φ

(3) P.PaP

(4) (P+P)nU(R)dP.

Proof. Let P be a subset of U(R) satisfying the conditions. We set m + =

{Λ Gtn; there exists « G P such that x— a^P}y and Q=P\J tn+. Then we have

the following properties:

1) m+Π —m+=φ. Because, if there exists an element x in m + n — nt+,

then there exists a, b in P such that x— a and —x—b are in P, and so —{a-\-b)=

(x-a)+(-x-b)(=P+P. If a+b is in U(R), it is impossible by 4) and 2).

Therefore, a+b^m and a-b=(a+b)-2b^U(R). If a-b£ΞP, then * - £ =

(#— ά)-{-(a—i)eP and so — 2b=(x— b)+( — x—4)GP, it is a contradiction to

(2). If b — a is in P, then similarly we have contradiction — 2a=(x—a)-\-

Analogously, we have easily

2) (P+P)nmcm + .

3) (P+m+)dP.

4) m + +m + cm + .



PRIME IDEALS OF A WITT RING 227

5) P m + cm + .

6) m+ m + cm + .

Therefore Q has the properties (I) QΓ\-Q=φ, (II) Q-QdQ and (III)
Q+QdQ. By the set Q, we can make R an ordered ring which has positive
part Q. The converse is clear.

We denote by k^Rjm the residue field of R and <p: R->k the canonical
homomorphism.

(2. 2) Proposition. Let R be an ordered local ring with positive units part P.
Then it satisfies P-\-PdP if and only if k is a total ordered field such that <p(P) is
the positive part, i.e. k is a formal real field.

Proof. If k=Rlm is a total ordered field such that φ{P) is the positive
part, then φ(P)+φ(P)dφ(P) and 0$<p(P), therefore we have P+PdP. Con-
versely, if P + P c P , then we have φ(P)Γϊ — φ(P)=φ. Therefore, we obtain
easily that k is total ordered field with positive part φ(P).

Let P be any subset of local ring R satisfying the condtions in (2. 1) and
ρ = P U t n + , where m + = { xdm; ladP; x—adP).

(2. 3) For any x, y in R, x-\-ydQ implies xdQ or ydQ.

Proof. Let x+ydQ. If x+ydΐ, then xE U(R) or yd U(R). If x and

y are in U(R), then xdP or ydP. If xdU(R) and y e m , then xdP or

yGm+. If x-\-y is in tn+, there exists adP such that x-\-y—adP. Since

x-\-y—a=[χ— — J + f y — — ) , we have x—~dP or y— — G P , accordingly

(2. 4) Proposition. L*tf P awJ O i^ αί above. Then p= {x<=R; x$Q U
— Q} w α prime ideal of R.

Proof. From (2. 3), we have p+£>c:p. We shall show that for any rdR

and Λ:G)3 we have rxdp. We assume rx&p. Then we may assume rxdQ.

It is considered in the three cases; 1) If rd U(R), then it is impossible that

rxdQU —O. 2) If rGin+, then there exists α e P such that r—a=cdP, and

from (2. 3) ΛJα+Λ:ί:=Λ;reg implies ^ E ^ or xcdQ, it is impossible from the

first case. 3) If r e p , then xrdm+ and so there exists « G P such that xr—adP.

Since r(x-f l)+fl(r- l)=xr-f lG^, we have r(x—a)dQ or α(r-l)G<3. But

α ( r - l ) G Q is impossible. Therefore, it must be r(x— a)dQ. But, it is also

impossible from the first case. Accordingly, rx d p, and p is an ideal of R. Since

(Q U - Q) {Q U - £?)<=£) U - £>, p is a prime ideal.

(2. 5) Theorem. L ^ i? fo an ordered local ring with the positive units part

P, and let Q and p be as (2.4). Then the localization Rp =Q~λR ofR by prime ideal
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p is also an ordered local ring such that Q=Q~1Q is the positive units part and

Rp/pRp is a formal real field. Let 3Ϊ be the real closure of R^jpR^. Then there

exists a ring homomorphism f: i?-»SR such that f induces the epimorphism f: W(R)->

W(ίR)£&Zy andf(P) is contained in the positive part of ϋi, furthermore her f is

generated by {Λ T I Λ E P } .

Proof. It is obvious that Q\J -Q=U{RP), Q(Ί ~0=Φ, OQaO and

Q+QczQ. Therefore, by (2. 2) the canonical homomorphism φr\ R^R^/pRp

induces a total ordering on R^pR^. Therefore, R^/pR^ is a formal real field.

Let 9Ϊ be the real closure of R^/pRy Then W(Sϋ)^Z. Let f:R-^ϋi be the

composition of ring homomorphisms R^R$ -* R^/pRp-^^i. The positive units

part of R is sent to the positive part of 9ί. Therefore, / induces the ring epimor-

phism/: W(R)-+W(ΪR)9 and ker/is generated by {afΠ; *<=P}. Because, if a

is any element in ker/ and a=aJ±a2± ' ±any then we have Sp(a1)±8p(a2)

±-±6p(an)=0, in PΓ(3t), also in W{R\ where Spa()=f 1 : aEΞP . Since

£p{ai)ai is m P f°r i = l , 2, ...n, we have a=a1±a2± -±an±(εp(a1)±- -±

εj(aH))=£p(a1)®(εp(aί)aJ'l)± -±εp(aH)®^^ in W(R). Therefore

we have k e r / C ( { Λ T 1 ; X^P}). ker/z) {Λ T I X G P } is clear.

We have the following Sylvester's theorem for ordered local ring.

(2.6) Corollary. Let R be an ordered local ring, and (V, q) a non-

degenerate and finitely generated projective quadratic R-module. If (V, q)?&ζa^>A-

<#2>_L jL<tfr>±<(— i x >±< — 62>JL JL<— bsy for positive units aly a2, ~ ar and

bi, bz>
 m"bs in Ry then the integer r — s is uniquely determined by (V> q).

Proof. From (2. 5), there exists a real closed field 5R and a ring homomor-

phism / : R-^9ΐ such that the positive units part of R is sent to the positive part

JL ..±<-6», then ( Σ ±a{)T( Σ ±ft,)=(.Σ ^ / ) τ ( Σ ±b/) in W(R), and
, = 1 » = 1 , = 1 ί = l

by the ring homomorphism / : W(R)-^W(<3Ϊ)^Z induced by f, it is sent to

3. We shall show the following main theorem.

(3.1) Theorem. For any local ring R with invertible 2, there exists an one

to one correspondence between the set of minimal prime ideals β̂ of W(R) such that

^3φ3Ji and the set of subsets P of U(R) satisfying the conditions (1), (2), (3) and

(4) in (2. 1), i.e. the set of minimal orderings on R such that R makes ordered local

ring.
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This theorem is obtained from the following arguments.

(3. 2) Let <$be a prime ideal of W{R) such that φΦ^Ji, and put
{x<=U{R): x = l (mod φ)}. Then P(φ) satisfies the conditions (1), (2), (3) and
(4) in (2. 1). Therefore R is an ordered local ring with positive part j2θβ)=Φθβ) U
{^Gtn: 3«GP(φ) ;x-a(ΞP(φ)}. // φ(P(φ)) denotes the ideal of W{R)generated
by {xT\: x<=P(?p>)}, then ?β(P(φ)) M α minimal prime ideal of W{R) such that

Therefore, if *β w α minimal prime ideal of W{R), then φ =

Proof. The proof of conditions (1), (2), (3), and (4) is obtained similarly to
the case over field (cf. [4]). The other part is obvious.

(3. 3) Let P be a subset of R satisfying the conditions (V), (2), (3) and (4) in
(2.1). Then we have P(φ(P))=P.

Proof. Since φ(P)= {*T1 x<=P}> P(^(P))ZDP is obvious. If there
exists an element x in P(?β(P)) such that x&P, then x^—P, and so - ^ T l e

Therefore, we have !=#=—-l(mod Sβ(P)), it is contradiction to
i. Accordingly, we have P($(P))=P.

(3. 4) Corollary. For any local ring R with invertible 2, the Witt ring
W(R) is either a local ring with the maximal ideal Wl such that 3JI is nil ideal and
W(R)ςίΰl^ZI(2), or a Jacobson ring such that every maximal ideal has hight 1 and
every minimal prime ideal has a residue ring isomorphic to Z.

(3, 5) Corollary. If R is a local domain with altitude 1 and an ordered local
ring, then R is a total ordered ring, or the residue field is a formal real field.
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