Takeuchi, Y. Osaka J. Math. 10 (1973), 209-210

CORRECTION TO A NOTE ON GALOIS COVERING

YASUJI TAKEUCHI

This Journal, vol. 6 (1969), 321-327.

(Received June 1, 1972)

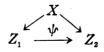
Prof. L.N. Gupta has pointed out the author that there is a gap in the proof of Theorem 2.2 [3]. In this theorem we need to put certain assumptions. To give it, we shall extend to the case of preschemes certain notions defined by Chase, Harrison and Rosenberg in [1].

Let $\sigma, \tau: X \to Z$ be two morphisms of preschemes where X is affine. Then σ and τ are called to be strongly distinct if, for any sum $X \simeq X_1 u X_2$ such that X_i are affine schemes $(i=1, 2), \sigma \varphi$ and $\tau \varphi$ are distinct where φ is the canonical morphism: $X_1 \to X$.

Let X be a Galois covering of a prescheme Y with a Galois group \mathfrak{G} , $\Phi: X \to Y$ the structure morphism and Z an intermediate prescheme between X and Y with the structure morphism $\Phi_1: X \to Z$, $\Phi_2: Z \to X$. We shall say that Z is \mathfrak{G} -strong if there is an affiine open covering $\{V_{\gamma}\}_{\gamma \in I}$ of Y such that for any pair $\sigma, \tau \in \mathfrak{G}$, $\Phi_1 \sigma$ and $\Phi_1 \tau$ are equal or their restrictions to $\Phi^{-1}(V_{\gamma})$ are strongly distinct for all $\gamma \in I$.

One can show that S-strongness is independent on an affine open covering.

Let $\varphi: X \to Y$ be a surjective morphism of preschemes which is finite and locally free. Let Z_1 , Z_2 be two intermediate preschemes between X and Y such that the structure morphisms $\psi_i: Z_i \to Y$ are affine for i=1, 2. Z_1 and Z_2 are said to be isomorphic as intermediate preschemes if there is a Y-isomorphism $\psi: Z_1 \to Z_2$ such that the diagram



is commutative where the unadorned morphisms are structural. We shall call an intermediate covering between X and Y an isomrphism class of intermediate preschemes between X and Y.

A correct form of Theorem 2.2 in [3] can be obtained by strengthening

hypotheses in the following manner.

Theorem 2.2. Let Y be a prescheme and X a Galois covering of Y with a Galois group \mathfrak{G} . Let Z be an intermediate covering between X and Y. If Z is a quasi-unramified covering of Y which is \mathfrak{G} -strong, then there exists a unique subgroup \mathfrak{G} of \mathfrak{G} such that Z is the quotient prescheme X/\mathfrak{G} of X by \mathfrak{H} .

Proof. It follows form modifying the proof of Theorem 2.2. in [3], noting the following facts;

1) Since a union of two disjoint affine open sets in a prescheme is also affine, we can choose an affine open covering $\{V_{\gamma}\}_{\gamma \in I}$ of Y satisfying that, for any pair $(\alpha, \beta) \in I \times I$, there is a sequence $V_{\alpha} = V_{\gamma_0}, V_{\gamma_1}, \dots, V_{\gamma_{\lambda}} = V_{\beta}$ with $V_{\gamma_i} \cap V_{\gamma_{i+1}} \neq \phi$ for $\gamma_i \in I$.

2) Let $\varphi: Z \to Y$ be the structure morphism. For an affine open set V in Y, the ring of $\varphi^{-1}(V)$ is \mathfrak{G} -strong in sense of Chase, Harrison and Rosenberg [1].

KOBE UNIVERSITY

References

- [1] S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15-33
- [2] A. Grothendieck: Eléménts de Géométrie Algébrique I, II. Inst. Hautes Etudes Sci. Publ. Math. 4, 8 (1960, 1961)
- [3] Y. Takeuchi: A note on Galois covering, Osaka J. Math. 6 (1969), 321-327.

210