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1. Introduction

Let φ{z) be a holomorphic function in the disk D= {z | | z | < 1} and k (< 1)
a positive constant. Put μ{z)=kφf{z)jφf{z) in D and μ(z)—0 outside D. Then
the Beltrami differential equation Wz=μ(z)w2 is known to have a homeomorphic
solution w=f(z) in | z\ < oo: f(z) is a Teichmϋller mapping in D and is mero-
morphic outside D: further the solution f(z) is unique if normalized by the
condition /(1)=1, limf(z)/z=l. (see [1], p. 91). In this paper we restrict

ourselves to the case in which φ(z) is rational and investigate the solutions of
those Beltrami equations. First we introduce a function Φ(#) which is defined
by means of φ(z) and satisfies the relation gof(z)=Φ(z) for some rational func-
tion £(#). Next we find the conditions for φ(z) under which f(z) maps D onto
itself. These are equivalent to the condition for f(z) to fix the boundary of D
pointwise. From this we shall obtain short proofs of Theorem 6 in [2] and
Theorem 2.3 in [3]. Finally we have an example which fixes the boundary of
D pointwise for some k but not for k' other than k.

2. Φ(z) is a branched covering

Let φ{z) be a non-constant rational function holomorphic in D. Put with

some ky

<p(z)+kφ(z) for z in Z>,
^ W = 1

Then we have

Φ(z) =
( 9>(0)+^(l/5) for jar outsde D.

Lemma. Φ(#) & a branched covering and has the same number of sheets as
φ(z).

Proof. By definition Φ(#) is a branched covering in D and outside D. On
the boundary of D, φ(z)-\-kφ(z) and φ(z)-\-kφ(\jz) have the same values and
the same orientation. Therefore Φ(#) has the same multiplicities as φ{z) on the
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boundary of Z), so that it is an unlimited branched covering. Next we count
the number of sheets. Writing

we have

on the complement of D. Since βit ι = 1, , ny lie outside D, the number of z with
the multiplicities at which Φ(#)=oo is n-\-max (m—ny 0)=max (m, n) which is
equal to the number of sheets of φ{z). q.e.d.

Let/(#) be the normalized solution of /?(%)=μ(%)fg(z) with μ{z)=kφ\z)j
φ'{z) in D and = 0 outside D. Then Φ 0 / " 1 is a branched covering with the
same number of sheets as φ(z). f(z) is meromorphic outside D with a simple
pole at oo so that Φo/"1 is meromorphic outside/(D). It will be shown as
follows that Φo/"1 is holomorphic in f{D). The differentiation of fof~1(w)=w
with respect to W gives

(/X-^))ΓW* Ws°r>))Γ>)* = 0 a.e.

or

So, we have

This shows the holomorphy of φo/" 1 in /(-D). Except for a finite number of
points which are/-images of the critical points of φ(z), φof~ι(w) is holomorphic
on the boundary of/(/)) because it is locally a composition of the quasiconformal
mappings and 1-quasiconformal. By the finite multivalency of Φo/""1 it is mero-
mrophic at the excepted points so that it is a rational function. We formulate
this as

Theorem 1. f(z) and Φ(z) are related with a rational function g(z) such
that gof(z)=Φ(z).

Application. We consider the expansion of f(z) outside D. Under the

normalization /(0)=0, instead of/(1)=1, f(z) has an expansion
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/(*) = z+P(μ(h+l)) = Z+Pμ+PμTμ+PμTμTμ+- ,
where

Ph(ζ)= -M[h(z)(-±--±)dxdy and Th(ζ) = lim — I (( -^-dxdy.
πϋ \z-ζ zl 3->o ^ J ^ (*_£)*

(see [1]). If £(#) is determined explicitly we shall be able to see Pμ, PμTμ,
PμTμTμy ••• succesively. For example consider the case of

φ{z) = zn+an_1z
n~ι-\ \-atz

where α, are real and {z\φ'(z)=0} lies on the segment [—1, 1]. Then we find

5r(zϋ)=(l+A)^>((l+A)~1/Λ«;) and Φ(z)=φ(z)+kφ(llz) outside D. Substituting
these into gof(z)=Φ(z) we have

= φ(z)+kφ(llz), dn=\.

Here we put μ— μ/k=φ/(z)lφ\z). Comparing the coefficients of /-th power
of k>j=O, 1, 2, •••, of both sides we have

Pμ' = (φ(ίlz)-φ(z))lφ'(z)+zln ,

Pμ'Tμ' = --^Γ-(φ"(z)(Pμ'Y+2Pμ'±i(l-tln)aiz^

3. The case in which f(z) keeps every boundary point of D fixed

Let F(z) be a quasiconformal mapping of D onto D which satisfies FΈ(z)=
μ(z)Fz(z). If F(z) fixes the boundary of D pointwisely, then we have a nor-
malized solution oϊ fz(z)=μ(z)fz(z) by setting f(z)=F(z) in D and f(z)=z outside
D. This implies that f(z) maps Z) onto D. Conversely if a normalized solution
f(z) maps Z) onto D then/(#)=# outside D and therefore it fixes the boundary of
D pointwisely. The restriction of f(z) to D is a solution of Fs(z)=μ(z)Fz(z)
which fixes the boundary of D pointwisely. Therefore we can say that F(z)
fixes the boundary of D pointwisely if and only if the normalized solution f(z)
maps D onto D. If f(z) maps D onto Z), then we have g{z) = φ{z)-\-kφ{\ls)
outside D and therefore everywhere. In this case all poles of φ(z) lie on the
boundary of D. More precisely, m^n and |/9, | = 1, i = 1, 2, •••, w. Proof is
as follows

First we observe that the number of sheets of g(z) is equal to max (m, ή).
This follows readily from Lemma and Theorem 1. g(z) has poles at /?,-, βf1, i—
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1, 2, •••, n, and at 0, oo if m>n. If m>n then the number of z with the multi-
plicities at which £(#)=oo is not less than 2(m—ri)-\-n=m-{-(m—ή), which is a
contradiction. Therefore tn<^n. If there is a βiy \β{ | Φ 1, then the number of
# with the multiplicities at which g(z) = °° is greater than n> a contradiction.
The assertion follows.

The identity g(z)=φ(z)+kφ(llz) implies that <p(z)-\-kφ(l/z) has the branch
points at wiy i=l, 2, •••,/, and only there in Z), where w{ is the /-image of the
branch point zi9 i=l, 2, •••,/, of φ{z) in D with the same order as φ(z) has at ziy

and that φ(wi)+kφ(ίlwi)=φ(zί)+kφ(zi)9 i = l , 2, •••,/. Conversely if £(*)=
<£>(#)+&P(l/£)> this is true when the above conditions on φ(z) are satisfied, then
f(z) maps D onto D. We summurize those as

Theorem 2. The fallowings are all equivalent.
a) F(z) fixes the boundary of D pointwisely,
b) f{z) maps D onto D,

d) φ(z) has poles only on the boundary of D, φ(z)-\-kφ(l/s) has the branch points
at wi9 ί = l , 2, •••, /, and only there in Dy where Wι is thef-image of the branch point
Zi, ί = l , 2, •••,/, of φ{z) in D with the same order as <p(z) has at ziy and φ(wi)-{-

i=h 2, - , /.

4. Short proofs

If <p(z) has no branch point in D, then d) implies that φ(z) has poles only
on the boundary of Zλ This is Theorem 6 in [2]. On the other hand if φ(z)
has the branch points in D and if a) is true for all k, 0<&< 1, then we can show
wi=zi> z=l , 2, ••-,/. In this case d) implies that φ(z) has poles only on the
boundary of D and φ(l/s) has the branch points at ziy i=l,2, •••,/, and only
there in D with the same order as φ(z) has at z{ and that φ(\l%i)=φ(zi), i=
1, 2, •••,/. Conversely if the above conditions on φ{z) are satisfied then d) is
satisfied with ^, = ^ , , ι = l , 2, •••,/, and hence a) is true for all Λ, 0<&< 1. This
is Theorem 2.3 in [3].

Proof of wi=zii x=l, 2, •••, /. By the well known fact that | «;,—-#,• | <2k
for all k, 0<&< 1, d) implies that for all k

Dividing both sides by k and letting &->0, we have φ(ί/isi)=φ(zi). Therefore
φ(z)+kφ(ίls)=φ(zi)-\-kφ(zi)=φ(zi)+kφ(l/isi) is satisfied by z£ and w{. We
set E{= {z I φ(z)=φ(z{)} Π D and E/= {z& E{ \ #=)= #,-}. Then for sufficiently
small k, Wi lies near ziy and f(E/) and zϋ, have a positive distance which tends to
the distance between E/ and z£ as A->0, hence we have Wt=Zi for small k. By
the continuity of f(z) in & we have 2^,=^ for all Λ, 0<&< 1, because all wi9 i=
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1,2, •••,/, are fixed for small k and they do not change with each other without
a jump.

5. Special solution

In general c) in Theorem 2 does not imply that Wi=ziy i=l> 2, •••, /, for
there are φ(z) and k> that is μ(z)=kφ/(z)/φ/(z)y such that f(z) maps D onto D
and z1 to w^zx. This gives an example of μ(z) for which F(z) fixes the
boundary of D pointwisely but not for A'φΛ, 0<&'< 1. The existence of such
μ(z) is known in [2] where μ(z) is not restricted to be the Teichmϋller type.

Let φ(z)=^(z-(5+λ/Ϊ3)l2)l(z-l)\ &=(3+Λ/T3)/8. Then we have
φ\z)=Q at #=0 and φ(0)+kφ(0)=0. On the other hand <p(z)+β^(l/2)=
(z-l/2)2(z-(3+VΪ3)β)/(z-l)z

y hence {φ{z)+kφ{ψ)γ=Q at *=l/2 and
^>(l/2)+^(2)=0. Therefore we hzveg(z)=φ(z)+kφ(llg) with ^^(
and ^ = 0 , ^ = 1 / 2 .
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