EQUIVALENT SIZES OF LIPSCHITZ MANIFOLDS AND THE SMOOTHING PROBLEM

Glenn P. WELLER*

(Received September 2, 1972)

1. Introduction

A criterion for smoothing a closed topological manifold M was given by Y . Shikata in [3]. His criterion was based on the notion of the size of M, which will be denoted by $|M|_{s}$.

Shikata's Theorem. A closed topological manifold M is smoothable if and only if $|M|_{s}=0$.

In this paper we introduce another "size" of M, denoted $\|M\|$, which is conceptually somewhat simpler and which is definable for all open or closed Lipschitz manifolds. We then can prove the following result.

Theorem. A closed Lipschitz manifold M is smoothable if and only if $\|M\|=$ 0.

This theorem follows directly from Shikata's theorem and the following proposition, which shows that the two "sizes" are equivalent.

Proposition. For each positive integer n there are positive numbers $\alpha(n)$ and $\beta(n)$ such that if M is a closed n-dimensional Lipschitz manifold then

$$
\alpha(n)\|M\| \leq|M|_{s} \leq \beta(n)\|M\|
$$

Remark. Neither of these sizes is trivial, for L. Siebenmann has given examples in [4, pp. 135-137] of Lipschitz manifolds $X^{n}, n \geq 6$, having no piecewise linear manifold structure. In particular, X^{n} is not smoothable, and so $0<\left\|X^{n}\right\|<\infty$.

2. Lipschitz manifolds and their sizes

We recall from [2] that if $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ are metric spaces and $f: X_{1} \rightarrow X_{2}$ is a map then the Lipschitz size of f (relative to d_{1} and d_{2}) is

[^0]\[

l(f)=\left\{$$
\begin{array}{l}
\operatorname{Inf}\left\{k \geq 1 \mid k^{-1} d_{1}(x, y) \leq d_{2}(f x, f y) \leq k d_{1}(x, y) \text { for all } x, y \in X_{1}\right\} \\
\infty, \text { if the above set is empty }
\end{array}
$$\right.
\]

If $l(f)<\infty, f$ is a regular Lipschitz map. It is clearly seen that relative to the obvious distances $l(f)=l\left(f^{-1}\right)$ and $l(g f) \leq l(f) \cdot l(g)$.

We further recall from [6, p. 165] that a topological n-manifold M is a $L i p$ schitz manifold if there is a coordinate cover $C=\left\{\left(U_{i}, h_{i}\right)\right\}_{i \in I}$ such that U_{i} is an open subset of M, h_{i} is a homeomorphism of an open subset of Euclidean n-space onto U_{i}, and $h_{i}^{-1} h_{j}: h_{j}^{-1}\left(U_{i} \cap U_{j}\right) \rightarrow h_{i}^{-1}\left(U_{i} \cap U_{j}\right)$ is a regular Lipschitz homeomorphism for all i, j. We may always assume C is finite when M is compact.

For any metric d on M denote

$$
\begin{aligned}
& l_{d}(C)=\operatorname{Sup}_{i \in I} l\left(h_{i}\right) \text { relative to Euclidean metric and } d \\
& l(C)=\operatorname{Sup}_{i, j \in I} l\left(h_{i}^{-1} h_{j}\right) \text { relative to Euclidean metric. }
\end{aligned}
$$

Then we may define two "sizes" for M :

$$
\begin{aligned}
& |M|=\operatorname{Inf} \log l_{d}(C) \quad \text { and } \\
& \|M\|=\operatorname{Inf} \log l(C)
\end{aligned}
$$

where both infima are taken over all coordinate covers C and all metrics d on M.
Lemma 1. For all closed Lipschitz manifolds M,

$$
|M| \leq\|M\| \leq 2 \cdot|M|
$$

Proof. For the first inequality let $\varepsilon^{*}>0$ be arbitrary and pick C as above so that $\log l(C) \leq\|M\|+\varepsilon^{*}$. Denote $L=l(C)$. Let $\left\{f_{i}\right\}$ be a partition of unity subordinate to $\left\{U_{i}\right\}, V_{i}=\operatorname{Carrier}\left(f_{i}\right)$ and $W=U_{i} V_{i} \times V_{i}$. For $(x, y) \in W$, the functions $\varphi_{i}(x, y)=f_{i}(x) f_{i}(y)\left[\sum_{j} f_{j}(x) f_{j}(y)\right]^{-1}$ define a partition of unity on W so that $\varphi_{i}(x, y)=\varphi_{i}(y, x)$. For $(x, y) \in W$ define $\rho(x, y)=\sum_{i} \varphi_{i}(x, y)\left\|h_{i}^{-1} x-h_{i}^{-1} y\right\|$.

We can choose sequences $S=\left\{x=x_{0}, x_{1}, \cdots, x_{t}=y\right\}$ so that for all $i,\left(x_{i-1}, x_{i}\right)$ $\in W$ and define $[S]=\sum_{i} \rho\left(x_{i-1}, x_{i}\right)$ and $d(x, y)=\operatorname{Inf}_{s}[S]$. It is easily verified that d is a pseudo-metric on M giving the original topology on M. By [1, Theorem 5.26, p. 154] there is a Lebesgue number η for the cover $\left\{V_{i}\right\}$ with respect to d.

Assertion. $\quad d$ is a metric, i.e., $d(x, y)=0$ implies $x=y$.
Choose $\varepsilon>0$ with $\varepsilon<\eta$. Then pick $[S]<\varepsilon$. Since $d\left(x_{i}, x_{j}\right) \leq\left[\left\{x_{i}, x_{i+1}, \cdots\right.\right.$, $\left.\left.x_{j}\right\}\right] \leq[S] .<\varepsilon$, diameter $(S)<\eta$ and $S \subset V_{j}$ for some j. Now

$$
\begin{aligned}
L^{-1}\left\|h_{j}^{-1} x_{i-1}-h_{j}^{-1} x_{i}\right\| \leq & \left\|h_{k}^{-1} h_{j} h_{j}^{-1} x_{i-1}-h_{k}^{-1} h_{j} h_{j}^{-1} x_{i}\right\| \quad \text { and } \\
L^{-1}\left\|h_{j}^{-1} x_{i-1}-h_{j}^{-1} x_{i}\right\| & =L^{-1} \sum_{k} \varphi_{k}\left(x_{i-1}, x_{i}\right) \cdot\left\|h_{j}^{-1} x_{i-1}-h_{j}^{-1} x_{i}\right\| \\
& \leq \sum_{k} \varphi_{k}\left(x_{i-1}, x_{i}\right) \cdot\left\|h_{k}^{-1} x_{i-1}-h_{k}^{-1} x_{i}\right\| \\
& =\rho\left(x_{i-1}, x_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L^{-1} \cdot\left\|h_{j}^{-1} x-h_{j}^{-1} y\right\| & \leq L^{-1} \sum_{i}\left\|h_{j}^{-1} x_{i-1}-h_{j}^{-1} x_{i}\right\| \\
& \leq \sum_{i} \rho\left(x_{i-1}, x_{i}\right)=[S]<\varepsilon
\end{aligned}
$$

Thus, $x=y$ since ε is arbitrary.
Now let $\left\{W_{i}\right\}$ be a cover of M so that diameter $\left(W_{i}\right)<\eta$. Then $W_{i} \subset V_{j}$ for some j. Let $k_{i}^{-1}=h_{j}^{-1} \mid W_{i}$ and $C^{*}=\left\{\left(W_{i}, k_{i}\right)\right\}$.

Assertion. k_{i} is regular Lipschitz relative to Euclidean metric and d.
If $h_{j} x, h_{j} y \in W_{i} \subset V_{j}$ and $d\left(h_{j} x, h_{j} y\right)<\eta$, then $d\left(h_{j} x, h_{j} y\right) \leq \rho\left(h_{j} x, h_{j} y\right)=$ $\sum_{k} \varphi_{k}\left(h_{j} x, h_{j} y\right) \cdot\left\|h_{k}^{-1} h_{j} x-h_{k}^{-1} h_{j} y\right\| \leq \sum_{k} \varphi_{k}\left(h_{j} x, h_{j} y\right) \cdot \mathrm{L} \cdot\|x-y\|=L \cdot\|x-y\|$.

Also we may pick $S=\left\{h_{j} x=x_{0}, x_{1}, \cdots, x_{p}=h_{j} y\right\}$ with $d\left(h_{j} x, h_{j} y\right) \leq[S]<\eta$. Then for all $t, \quad d\left(h_{j} x, x_{t}\right) \leq \sum_{k=1}^{t} \rho\left(x_{k-1}, x_{k}\right) \leq[S]<\eta$ and $x_{t} \in V_{j}$. Hence

$$
\begin{aligned}
{[S] } & =\sum_{l, k} \varphi_{k}\left(x_{l-1}, x_{l}\right) \cdot \| h_{k}^{-1} h_{h h_{j}^{-1} x_{l-1}-h_{k}^{-1} h_{j} h_{j}^{-1} x_{l} \|} \\
& \geq L^{-1} \cdot \sum_{l, k} \varphi_{k}\left(x_{l-1}, x_{l}\right) \cdot\left\|h_{j}^{-1} x_{l-1}-h_{j}^{-1} x_{l}\right\| \\
& =L^{-1} \cdot \sum_{l}\left\|h_{j}^{-1} x_{l-1}-h_{j}^{-1} x_{l}\right\| \\
& \geq L^{-1} \cdot\|x-y\| .
\end{aligned}
$$

Thus, $L^{-1} \cdot\|x-y\| \leq d\left(k_{i} x, k_{i} y\right) \leq L \cdot\|x-y\|$ and $l\left(k_{i}\right) \leq L=l(C)$. Hence, $l_{d}\left(C^{*}\right)$ $\leq l(C)$ and $|M| \leq\|M\|+\varepsilon^{*}$. Since ε^{*} is arbitrary, $|M| \leq\|M\|$.

For the second inequality let $\varepsilon>0$ and choose C and d so that $2 \log l_{d}(C) \leq$ $2 \cdot|M|+\varepsilon$. Then $l\left(h_{i}^{-1} h_{j}\right) \leq l\left(h_{i}\right) \cdot l\left(h_{j}\right) \leq l_{d}(C)^{2}$ and $l(C) \leq l_{d}\left(C^{*}\right)^{2}$. Thus $\|M\|$ $\leq 2 \cdot|M|+\varepsilon$ and $\|M\| \leq 2 \cdot|M|$.

The above proof also shows an equivalent way of defining Lipschitz manifolds. We state this as a corollary.

Corollary. A closed manifold M is Lipschitz manifold if and only if there is a coordinate cover $C=\left\{\left(U_{i}, h_{i}\right)\right\}_{i \in I}$ such that each homeomorphism h_{i} is regular Lipschitz with respect to the usual metric on Euclidean space and some metric d on M.

3. A reformulation of Shikata's criterion

Shikata [3] defined the "size" of a compact topological n-manifold M to be

$$
|M|_{s}=\operatorname{Inf}_{c, d}(8 \gamma)^{m(C)} \log l_{d}(C)
$$

where $\gamma>0$ depends only on n and $m(C)$ is the maximum number of U_{j} that any U_{i} can intersect. It is clear that any C can be replaced by a coordinate cover C^{\prime} refining it, provided we use the restrictions of the appropriate homeomorphisms h_{i} from C in computing $l_{d}\left(C^{\prime}\right)$. In [5] we show that there is a positive integer $\mu(n)$ depending only on n such that any C has a refinement C^{\prime} as above with $m\left(C^{\prime}\right) \leq \mu(n)$. Let $\alpha^{\prime}(n)=(8 \gamma)^{\mu(n)}$ and $\beta^{\prime}(n)=1$ if $8 \gamma \leq 1$, and
vice versa if $8 \gamma \geqq 1$. Then noting the definitions of $|M|$ and $|M|_{S}$, we have proved the following lemma.

Lemma 2. There are positive numbers $\alpha^{\prime}(n)$ and $\beta^{\prime}(n)$ depending only on n such that for all closed manifolds M

$$
\alpha^{\prime}(n)|M| \leq|M|_{s} \leq \beta^{\prime}(n)|M|
$$

Taken together, Lemmas 1 and 2 clearly yield the proposition. Hence, the theorem is established.

The University of Illinois at Chicago Circle

References

[1] J.L. Kelley: General Topology, Van Nostrand, Princeton, 1955.
[2] Y. Shikata: On a distance function on the set of differentiable structures, Osaka J. Math. 3 (1966), 65-79.
[3] ——: On the smoothing problem and the size of a topological manifold, Osaka J. Math. 3 (1966), 293-301.
[4] L.C. Siebenmann: Topological manifolds, Proceedings of the International Congress of Mathematicians, Nice, 1970.
[5] G.P. Weller: The intersection multiplicity of compact n-dimensional metric space, Proc. Amer. Math. Soc. to appear.
[6] J.H.C. Whitehead: Manifolds with transverse fields in euclidean space, Ann. of Math. 73 (1961), 154-212.

[^0]: * This research is partially supported by NSF Grant GP 28487.

