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Introduction

Let N and M be closed manifolds on each of which an involution is given,
and assume that the involution on N is free. In the previous paper [9], the
author defined the equivariant Lefschetz class of a continuous map/: N->M, and
treated the class in the case when the involution on M is also free. The present
paper is concerned with the equivariant Lefschetz class in the case when the
involution on M is trivial. As applications, we show generalizations of the
Borsuk-Ulam theorem and also theorem of group action on manifolds.

Compared with the previous case, the expression of the equivariant Lefschetz
class in the present case is rather complicated, and the Wu classes of mainfolds
and the operations of Breden [1] appear in it. Some properties of the semi-
characteristic of manifolds are also needed in our applications. These are
prepared in §1 and §2 (see also Appendix).

Throughout this paper, the homology and cohomology with coefficients in
Z2 are to be understood. For brevity, manifolds and actions on them are
assumed to be diίferentiable.

1. Semicharacteristic of manifolds with involution

If M is a closed manifold such that the dimension of the vector space
H*(M) is even, an integer mod 2 given by

%(M) = — dim H *(M) mod 2
Δι

is called the Semicharacteristic of M. If N is a closed manifold with a free
involution, it is known that dim H*(N) is even (see [1], [9]). In this section we
shall consider the Semicharacteristic of closed manifolds with involution.

(1.1) Proposition. Let W be a compact (n-\-\)-dimensional manifold with
boundary dW, and assume that W has a free involution T. Then we have
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Proof. Consider the exact sequence

•••-*Hr(W,

Since dimHr(W, dW)=dimHn+1-r(W) by the Lefschetz-Poincarέ duality, it is
easily seen theat

dim Im/?ΞΞ %(WO+Σ dim Hr(dW) mod 2

if n=2l— 1, and

dim Im if = %( PF)+Σ dim /Γ(8PF) mod 2
r=o

if n= 21, where X(W) denotes the Euler characteristic of W.
Since Whas a free involution, a triangulation of P^can be taken in such a way

that the number of r-simplices is even for each r. Therefore X(W/) = 0 mod 2.
Since dWhas a free involution, dim Hl(dW) is even if n=2l. By the Poincare

duality we have dim Hr(dW)=dim Hn~r(QW).
Consequently the desired result follows from that

i) dim Im/f is even if n=2l— 1,

ii) dim Im if =— dim Hl(dW) if n=2l

Proof of i). It follows that a non-degenerate bilinear form

φ: Imjf X Imyf -> Z2

can be defined by

where [PF] ̂ H2l(W, dW) is the fundamental homology class. If M is any closed

2/-dimensional manifold with a free involution Γ, it is known that αU T*α=0

for any a^.Hl(M) (see [1], [9]). Therefore, by considering the double of W,

it is easily seen that a' U Γ*tf':=0 for any a'<=Hl(W, dW). This shows that the
bilinear form φ is symplectic. Thus Im^f has a symplectic, non-degenerate

bilinear form, and hence dim Im/? is even.

Proof of ii). If follows that a bilinear form

ψ<: Hl(QW)l\m if X Im if -> Z2

can be defined by

where a is the class represented by a^Hl(dW), /3<Elm if, and [dW]<=H2l(dW)
is the fundamental homology class. Consider the commutative diagram



CONTINUOUS MAPS OF MANIFOLDS WITH INVOLUTION II 149

H'(W) -ίi-» H'(QW)£-* Hl+1(W, 9W)

, W) . H,(dW) - Ht(W) ,

then it is easily proved that the bilinear form Λ|Γ is non-degenerate. Therefore

it holds that

dim Im if = dim Hl(QW)-dim Im if ,

and the proof of ii) completes.

REMARK. R. Lee [6] proves (1.1) in a more general form when n is odd.

Let 22* denote the unoriented Thorn bordism ring, and let 3Ί*(Z2) denote

the unoriented bordism group of free involutions. As is shown in [2], 3Ί*(Z2)
may be regarded as an 37^-module by defining

[N, T] [M] = [NxM, Txl]

for [M]<=3Ί* and [N, T]<=3Ί*(Z2), and it is a free 22*-module with basis
{[5n, A] n— 0, 1, 2, •••} , where A denotes the antipodal map on the w-sphere S".

If N! and N2 are closed manifold with free involution,

is obvious. Therefore, in virtue of (1.1) a group-homomorphism

X: 3

can be defined by seding [N, T] to %(Λf ). If N is a closed manifold with free
involution and M is a closed manifold, it follows that

X(Nx M) = X(N)X(M) mod 2 .

Consequently, if we regard Z2 as an 32^-module by defining r [M]= rX(M)

mod 2 (rEiZ), it turns out that % is a homomorphism of ?Z^-modules.

Let X be a paracompact space with a free involution T. Denote by Xτ

the orbit space, and consider the principal Z2-bundle π: X->XT defined by the
projection. The 1-st Stief el-Whitney class

of the bundle π is called the involution class of (X, T). For an equivariant map

•/: X— »y, we have

(1.2) f*c(Y,T) = c(X, T).
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We denote by wk(M)^Hk(M) the k-ih Stiefel-Whitney class of a manifold
M. The following is due to F. Uchida.

(1.3) Theorem. For a closed n-dimensional manifold N with a free involu-

tion T, it holds that

where c=c(N, T), wk=wk(NT).
Λ

Proof. As is shown above, %: 3l*(Z2)->Z2 is a homomorphism of 3?*-
modules. We have also a homomorphism JΊ^(Z2)-^Z2 of 32#-m°clules by

n

sending [N, T] to <Σcn~kwk9 [Nτ]y. This is easily shown if we recall that
fc=0

cn~kwk depends on the class [N, T]<=3Ί*(Z2) ([2]) and if we note c(NxM, Tx 1)
=c(N,T)xl, wk(NτxM)= Σ w{(Nτ)xιoj(M) and <ιom(M), [M]> = X(M)

«•+;=*
mod 2. Thus it suffices to prove the theorem in the special case when N is Sn

and T is the anitpodal map.
In this case, Nτ is the real projective space RPn, and it follows that

mod2.

Λ

Since X(5Λ)— 1, we have the desired result.

Remark. If N is a closed even-dimensional manifold with a free involution

Γ, it is easily seen that

X(NT) = %(ΛΓ)/2 = X(N) mod 2 .

2. The Bredon operation

Let S°° denote the infinite dimensional sphere, and let X be a paracompact
space. We shall regard as a space with involution S°° by the antipodal map T,
and X2=XxXby the map T such that T(xlt X2)=(x2, xj. We consider the
diagonal action on S°°xX2, and denote the orbit space by S°°X X2.

T

A continuous map /: X-+Y defines a continuous map lχ/2: S°°xX2-+
T T

S°°χY2, and the diagonal map d: X-^X2 defines a continuous map Ixd:
T T

SτXX-*S°°xX2. The projection p: S°°xX2-+ S~ defines a bundle pτ:
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S°°χX2->Sτ with fiber^Γ2, and there is the inclusion ί: X2-*S°°xX2 of a
T T

typical fiber.
According to Steenrod [9] (see also [1]), there is the operation

P:Hr(X)-*H2r(S~xX2)
T

satisfying the following properties:

(2.1)

(2.2)

(2.3) P(aβ) = P(ά)P(β) ,

(2.4) (1 X d)*P(ά) = Σ w* x Stfa ,
T i+j=*r

where w=w(S°°, T) is the generator of H\Sτ)
Suppose now that X has an involution Γ, and consider the diagonal action

on S°°χX. Then an equivariant map Δ: X-+X2 is defined by

Δ(*) = (x, Toe) ,

and it defines a continuous map IxΔ: S^xX-^S'xX2. Bredon [11 defines
T T T

an operation

Q:H'(X)-+H2r(S-χX)

by ρ=(lχΔ)*oP.

We suppose now that the involution T on X is free. Then the projection
q: S'xX-^X defines a bundle qτ: S°°xX-*XT with fiber 5°°, and hence we
have the isomorphism

&.Hr(XT)e*Hr(S-xX).
T

Thus, if X has a free involution Γ, there is the operation

by regarding q$ as the identification.
Corresponding to (2.1)-(2.3), the following (2.5)-(2.7) hold:

(2.5) Iff is equivariant y then

(2.6) For the projection π: X^*XT, we have

π*Q(ά) = a U T*a .

(2-7) Q(<*β) = Q
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We shall prove

(2.8) Q(π*<*)= Σ/'Vα,

where a^Hr(XT) and c=c(X, T).

Proof. Consider the diagram

(1XΔ)* f l*
H*(S~ x X*) — > H* (S~xX) ¥— H*( Y)

T T

(IX r2)*! ΐ ( lX^)*/ ? *
* I (IXrf )* I Γ '

Γ > H*(SτX Y)
T

where Y= Xτ and d is the diagonal map. Since the diagram is commutative,
it follows from (2.1) and (2.4) that

T

χ

T

Σ
T i+j=r

Let h: X-+S00 be an equivariant map, and consider the diagram

H*(5?) - — - * H*( Y)

- - >H*(S~xX).

Since the maps hoq, p; S^xX-^S00 are equivariant, we have ρ^=q^oh^. It

is obvious that (1 X π)*°p*=p:τ. Therefore it follows that
T

&**<*)
= Σ q$-\lXπ)*(p*wiVq*SqJa)i + j=*r T

= Σ ίf 'Xl X Tr)*^* '̂" U ίf-Xl X π}*q*Sq'a
T

,•+/=••

This completes the proof of (2.8).
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For a closed manifold M, let v(Λί)='Σ^vi(M)^H*(M) denote the total Wu

class of My i.e. the class such that

for any α<Ξ#*(M), where 5^= l+Sql+Sq*+ ••• . For the total Stiefel-Whitney

class w(M)=Σ Wf(M) we have

w(M) = Sqv(M) ,

and it holds that

w,.(M) = 0 for ι>[dimM/2]

(see [5]).
We shall prove

(2.9) // g: M-*M is a continuous map such that g*: H*(M)-*H*(M) is

onto, then

g*V{(M) = V;(M) .

Proof. It follows that

<Sqg*a, [M]> = <g*Sqa,

= <α U v(M), [M]> = <α U v(M),

and any element of H*(M) has the form^α. Therefore we haveg*v(M)=v(M).

(2.10) For a closed manifold N with a free involution T, we have

V(N) = π*v(Nτ) .

Proof. Since the tangent bundle to N is induced from the tangent bundle
to Nτ by the projection TT, we have

W(N) = π*w(Nτ) .

Therefore it follows that

Sqπ*v(Nτ) = π*Sqv(Nτ)

= π*w(Nτ) = w(N)

= Sqv(N) .

Since Sq is invertible, this proves (2.10).
As for the semicharacteristic, we have

(2.11) Theorem. For a closed n-dίmensional manifold N with a free
involution T, it holds that
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where c=c(N, Γ), vi=vi(N).

Proof. It follows from (2.10), (2.8) that

Therefore, by Theorem (1.3) we have

which completes the proof.

3. The equivariant Lefschetz class

Let N be a paracompact space with a free involution, and M be a closed
manifold with an involution. In [9], for a continuous map/: N->M, we defined
the equivariant Lefschetz class f*(ΔN)^H*(Nτ)y and considered the class in the
case when the involution on M is free. In this section we shall consider the
class in the case when the involution on M is trivial. To distinguish ΔN in
the two cases, we shall write ΘN for Δ^ in the present case.

Let M be a closed w-dimensional manifolds. We denote by v the normal
bundle of the diagonal imbedding d: M-+M2. We regard M2 as a manifold
with involution by the map T interchanging factors. Then the total space of v
may be regarded as an equivariant tubular neighborhood U of d(M) in M2.
Therefore it turns out that v is a vector bundle with involution.

Let N be a paracompact space with a free involution T. As in §2, we
regard NxM2 as a space with involution by the diagonal action, and consider
the orbit space NxM2. Then we have the real w-dimensional vector bundle

Ixv: NX U->NTXM. We regard the Thorn class t(lXv)^Hm(Nx(U, U-
T T T T

dM)) as an element of Hm(Nx(M2

y M2—dM)) by the excision. Then
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is defined to be the restriction of t(\ X v).
We have

(3.1) If h: N-*N' is an equίvaήant map of paracompact spaces with free

involution, then (hxl)*θN'=θN.
T

(3.2) If N is a closed manifold with a free involution T, then

(1 x d)*[NT XM] = ΘNΓ\ [NxM2] .
T

Let/: N->M be a continuous map. By definition, the equivariant Lef-
schetz class of / is

where/: N->NxM2 is an equivariant map given by f(y)=(y,f(y),fT(y)).
As is shown in [9], we have

(3.3) Let N be a closed n-dimensional manifold with a free involution T.

.//"/* (0jv)=l=0, then the covering dimension of

is at least n—m.
To study J*(ΘN) we shall proceed in parallel with [9].
We denote by #«, the element ΘN for N=S°° and T= antipodal map.

(3.4) Proposition. Let {αx, #2, •••, as} be a basis for the vector space

7/*(M), and put a—a; Π [M]. Let

for d* : H*(M) -> H*(M2). Then we have

[M/2]

0oo = Σ cm-2iP(vί)+ Σ (*/*+?// %*)Φ*(1 X aj X ak) ,
t— 0 j<k

where v—v^M), c=c(S°°xM\ T) and φ*: H*(S~xM2)-*H*(S~xM2) is the
transfer homomorphism.

Proof. It is known that

[m/2]

0- = Σ ^-2'P(^)+ Σ £y*Φ*(l X αy X α*)

with Sjk^Z2 (see [3], [8]). Therefore it suffices to prove

Consider the inclusion i: M2->*S°°χM2 of a typical fibre. It follows that
21

ί*(βoo) €ΞίΓ*(M2) is the restriction of the Thorn class t(v)^Hm(M2, M2-dM) of
the normal bundle z>. Therefore it follows that
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d*[M] = i*(ΘJ Π [MxM].

Since ί*(c)=0, i*P(a)=aXa and i*φ*(lχaxβ)=axβ+βxa, we have

if m is odd,

if m is even,
j<k

where we put ^[fW/2]=Σ £/#/ if #* is even. Consequently it holds that

if m is odd, and

if m is even. Thus £jk—Ύljk-\-rljjΎlkk (j'<^) holds, and the proof completes.
As for the equivariant Lefschetz class /T(^N) we have

(3.5) Theorem. Let N be a paracompact space with a free involution
Γ, and M be a closed manifold. Let {aly α2, •••, cts} be a basis for the vector space
#*(M), and put

d*[M] = Σ ?/* a-i X <*k, a* = <*i Π

phίsm.

Proof. There exists an equivariant map h: 7V->S°°, and we have

Then, for any continuous map f: N->M, it holds that

. [m/2]

ft{θN) = Σ *~-2i ρ(/*»,)+Σ (^+7yy %*)Φ*(/*«y
t=0 y<ife

c=c(N, Γ), ^^^^^(M) αwrf φ*: H*(N)-^>H*(NT) is the transfer homomor-

by (3.1). The diagram

(h xl)*
ff -(S- X M2) — ̂  - * ίf%/Vx M2)

1 1

(IxΔ)* (Axl)*
H m (S- x JV2) ^̂  - -»• //m(5" x TV) ^̂  - »

T T

is commutative, where Δ: N-*NxN is given by Δ(y) = (y, Γy), and
J: N->NχN is the diagonal map. It is obvious that
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for the isomorphism q$: H*(NT)^H*(S°°xN). Therefore it follows that

x !)*(! x Δ)*(l x /2)*0»
T T T

We have

ίί-'(lxΔ)* (lxf)*c(S~xM2, T) = c(N, T)

by (1.2), and

q*τ-\\ X Δ)*(l Xf)*P(ά) = Q(f*ά)

by (2.1) and the definition of Q. It follows that

?f-'(l X Δ)*(l X/2)*Φ*(1 X a X β)
T T

= -̂̂ *(1 X d*)(l x 1 x Γ*)(l x/* x/*)(l X a X β)

= ?$ -'φ*(l X (f*a U T*f*

Therefore, in virtue of Proposition (3.4), we have the desired result.

REMARK 1. With the notations in (3.5), consider the matrices X=(ξjk),
Y=(ηjk) over Z2, where fy A =<αyUα j k , [Af]>. Then we have Y=X~l. In
fact, it follows that

= Σ %ί<αy X α*, Λ5 X α

= Σ ̂ <«y, α. Π [M]><αΛ, α, Π

and hence we have ^=

REMARK 2. If there exists a basis {al9 •••, αr, A, •••, /8r} f°
r tne vector space

H*(M) such that <αyUαA, [M]> = 0, <βj\Jβ* [M]> = 0 and <αyU/9A, [M]>
=δyΛ, then the conclusion of Theorem (3.5) is written as follows:

[m/2] r

) = Σ cm-2iQ(f*vί)+ φ*(/*αy U

Such a basis exists when dim M=2/— 1 or when dim M=2/ and α2=0 for any
a€=H'(Aί).
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4. Applications

1) Borsuk-Ulam type theorem

Combining Theorem (3.5) with (3.3), we can obtain generalizations of the
Borsuk-Ulam theorem. As a typical example we have

(4.1) Theorem. Let N be a closed n-dίmensional manifold with a free
involution T, and let f: N— >M be a continuous map to an m-dimensional manifold
M. Assume that cm^ 0 for c=c(N, T) andf* : ff*(N) ->ff*(M) is trivial. Then
the covering dimension of A(f)= {y^N;f(y)=f(Ty)} is at least n—m.

Proof. Without loss of generality, we may assume that M is closed (see
p. 88 in [2]). Since /* : H*(M) -> β*(N) is trivial, we have

by Theorem (3.5). Therefore we get the desired result by (3.3).
If TV is a mod 2 homology sphere, then £WΦO for m<n. Therefore (4.1)

has as a corollary the following result which is known in [8] (see also [2], [7]).

(4.2) Corollary. Let N be a mod 2 homology n-sphere with a free involu-
tion, and let f: N-^M be a continuous map to an n-dimensional manifold M.
Then it holds that

i) Ifn>my dimA(f)>n—m,
ii) If n—m and the degree of f is even, A(f) is not empty.

2) Equivariant map

As a direct consequence of (4.1), we have

(4.3) Theorem. Let N and M be closed manifolds on each of which a
free involution T is given, and let f: N-^M be an equivariant map. Assume that
cm*Qfor c=c(N, T) and m=dim M. Thenf*: ff*(N)^H*(M) is not trivial.

In some case, the converse of (4.3) is also true.

(4.4) Theorem. Let N be a closed m-dimensional manifold with a free
involution T, and M be a mod 2 homology m-sphere with a free involution. Let
f: N->M be an equivariant map. Then if the degree of f is odd, we have
for c=c(N, T).

Proof. By (3.5) we have

f*(θN) = cm+φ*T*f*(a)

= e"+(deg/)/3

where a^Hm(M) and βeHm(Nτ) are the generators. Suppose cm=0. Then
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we have /$(0#)=t=0, and by (3.3) there exists y^N such that f(y)=f(Ty).
Since /is equivariant and the involution on M is free, this is a contradiction.
Therefore we have the desired result.

REMARK. Assuming that N is orientable and M is S" with the antipodal
involution, (4.4) is proved in Theorem 5.1 of Holm-Spanier [4].

3) Group action on manifolds

As is shown in (5.4) and (5.5) of [9], the following theorem holds under
weaker conditions. But it is good enough for applications to group action on
manifolds (see §6 of [9]). We shall derive it from (3.5) by using the results in §2.

(4.5) Theorem. Let N be a closed manifold with a free involution T, and

let g: N^N be a homeomorphism. Assume %(JV)^0 and also assume the following
i) or ii) :

i) g*=id:H*(N)-»H*(N)9

ii) T*=id: H*(N)-+H*(N).
Then there exists y^N such that gT(y)=Tg(y).

Proof. Putf=πog: N->NT. Then, for α, β<=H*(Nτ) we have

<φ*(/*αUΓ*/*/3), [Nτ]y

if £* = id,

<g*π*(a\Jβ),[N]> if Γ* = id

= 0.

Therefore it follows from Theorem (3.5) that

where c=c(N, T) and Vi=Vt(NT). In virtue of (2.10), (2.9) and Theorem (2.11),
it follows that

By the assumption this shows /*(^) * 0. Thus,by (3.3) there exists y^N such
that πgT(y)=πg(y). This means that gT(y)=g(y) or gT(y)=Tg(y). Since g
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is monic, gT(y)=g(y) implies T(y)=y which contradicts to that T is free.

Therefore there exists y^N such that gT(y)=Tg(y).

Appendix

In the proof of Theorem (1.3), the bordism theory was used. In this

appendix, we shall give another proof of (1.3) which makes no use of bordism

theory and which is an application of Theorem (5.2) in [9]. First of all we shall
prove

(5.1) Theorem. Let N be a closed n-dimensional manifold with a free
involution T. Denote by τ(Nτ) the tangent bundle of NTy and p the line bundle

associated to the O(\)-bundle π: N-+NT. Then it holds that

Proof. Regard TV as submanifold of N X N through an imbedding

Δ: N-^NxN given by Δ(y)=(y, Ty), and let v denote the normal bundle of N
in NxN. Regard NxN as a manifold with involution by the map T inter-
changing factors. This makes v a bundle with involution. Consider the bundle

1 X v over NxN, and define ΔN^Hn(NxN2) to be the restriction of the Thorn
T T T

class t(\Xv~)^H"(Nx(N\ N2-N)). Let d: N-*NxNbe the diagonal map.

Then the composition

1 X Δ

is induced from the map sending y^N to (y, y, Ty)^NxN2. Therefore, by
applying Theorem (5.2) in [8] to the identity map of AT, we see

By the well known relation between the Thorn class and the Euler class, we have

Therefore it holds that

T

Thus it suffices to prove that there is an isomorphism

(5.2) p®τ(Nτ)^d$(lXv).
T

To prove this, we consider on the tangent bundle r(N) an unusual free

involution given by sending a tangent vector vy of Λf at y to —dT(vy)> where dT
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is the differential of T. The bunldle τ(N) together with this involution will be

denoted by ^(N)
For the bundles τ(N)> τ(NxN) together with the usual involution, we

have the following exact sequence of bundles with involution:

0 -> τ(N) -> τ(NxN)\N-*v -* 0 .

It is easily seen that an equivariant bundle map of v to *r(N) can be defined by
sending (vy, v'Ty)Gτ(NxN)\N to vy—dT(v'Ty)^τ(N). Therefore there is an
isomorphism v^τ(N) of bundles with involution, and hence we have an
isomorphism

(5.3) lχv^lχτ(N)
T T

of bundles over NxN.
T

Denote by r(N)τ the bundle over Nτ obtained from τ(N) by taking the
orbit spaces. If we consider the involution on R given by T(t)=—t, we have
ρ=RXπ. It follows that a bundle map of τ(N)τ to ρ®τ(Nτ) can be defined by

T

sending vy to (1 Xy)®dπ(vy), and that a bundle map of r(N)τ to d$(\ Xτ(N))
T T

can be defined by sending vy to (π(y), yXvy). Thus we have isomorphisms

(5.4) p®τ(Nτ)
T

of bundles over Nτ.
From (5.3) and (5.4) we obtain (5.2), and the proof is complete.
The following is well known, and is easily derived from the elementary

properties of Stiefel-Whitney classes by using the splitting principle.

(5.5) Let ξ be an n-dimensional bundle over X, and p be a line bundle over
X. Put c=^wl(p). Then we have

4=0

Now (1.3) is a consequence of (5.1) and (5.5).
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