CONTINUOUS MAPS OF MANIFOLDS WITH INVOLUTION I

MINORU NAKAOKA

(Received July 9, 1973)

Introduction

To study the question of which finite groups can act freely on a sphere, J. Milnor proved in [5] that if M is a mod 2 homology sphere with a free involution T, then for any continuous map $f: M \to M$ of odd degree there exists a point $x \in M$ such that fT(x) = Tf(x). In the present paper we generalize this theorem, and apply it to the problem of group action on spheres.

Let M be a closed manifold with a free involution T. Then a non-degenerate symplectic pairing $\circ: H^*(M; Z_2) \times H^*(M; Z_2) \to Z_2$ can be defined by $\alpha \circ \beta = \langle \alpha \cup T^*\beta, [M] \rangle$, where [M] is the mod 2 fundamental class of M. Therefore there exists a symplectic basis $\{\mu_1, \dots, \mu_r, \mu_1', \dots, \mu_r'\}$ for the vector space $H^*(M; Z_2)$. Let N be also a closed manifold with a free involution T, and $f: N \to M$ be a continuous map. Then it is seen that

$$\hat{\chi}(f) = \sum_{i=1}^{r} f^* \mu_i \circ f^* \mu_i' \in Z_2$$

is independent of the choice of $\{\mu_1, \dots, \mu_r, \mu_1', \dots, \mu_r'\}$. Now the Milnor theorem is generalized as follows: If $\hat{\chi}(f) \equiv 0$ then there exists a point $y \in N$ such that Tf(y) = fT(y).

This theorem is paraphrased that if the equivariant Lefschetz number $\hat{\chi}(f)$ is not zero then there exists an equivariant point $y \in N$, and may be regarded as an analogue of the classical Lefschetz fixed point theorem. We shall prove it after the cohomological proof of the Lefschetz fixed point theorem (see e.g. [9]). As is well known, the Lefschetz theorem asserts that the fixed point index is equal to the Lefschetz number. Correspondingly, we define the equivariant point index $\hat{I}(f) \in Z_2$ which has a property that $\hat{I}(f) \equiv 0$ implies the existence of equivariant points of f, and we prove that the equivariant point index $\hat{I}(f)$ is equal to the equivariant Lefschetz number $\hat{\chi}(f)$.

Our theorem is applicable well for the problem of group action on manifolds as the Lefschetz fixed point theorem is. The theorem is effective to show the non-existence of free action of dihedral group on a given manifold.

Let Q(8n, k, l) denote the group with generators X, Y, A and relations

$$X^2 = (XY)^2 = Y^{2n}, \quad A^{kl} = 1,$$

 $XAX^{-1} = A^r, \quad YAY^{-1} = A^{-1}.$

where 8n, k, l are pariwise relatively prime positive integers, $r \equiv -1 \pmod{k}$ and $r \equiv +1 \pmod{l}$. Milnor asks in [5] if Q(8n, k, l) can act freely on a 3-sphere. Recently, R. Lee introduced a group homomorphism $\chi_{1/2}$ from the bordism group $\Re_{2m+1}(G)$ to a certain Grothendieck group $\hat{R}_{GL, ev}(G)$ for any finite group G, and applied it to prove that if n is even and l > 1 then Q(8n, k, l) can not act freely on any mod 2 homology sphere whose dimension is 3 mod 8 (see [4]). We shall give another proof of this result as an application of our theorem.

Milnor asks also if the group P''(48r) (see §6) can act freely on a 3-sphere, and R. Lee answers that P''(48r) (O(48, k, l) in his notation) can not act freely on any mod 2 homology sphere whose dimension is 3 mod 8. We also prove this fact in the case when r is not a power of 3, but our method gives no information when r is a power of 3. It seems to me that the proof of Corollary 4.17 in [4] is incorrect and his method also gives no information for $P''(48\cdot3^k)$ ($k\geq1$).

Throughout this paper, the homology and cohomology with coefficients in Z_2 are to be understood. For brevity, manifolds and actions on them are assumed to be differentiable.

1. The equivariant Lefschetz class

Let M be a closed m-dimensional manifold with an involution T. We regard the product $M^2 = M \times M$ as a manifold with involution by defining $T(x_1, x_2) = (x_2, x_1)$. Then we have an equivariant imbedding $\Delta: M \to M^2$ given by $\Delta(x) = (x, Tx)$. We shall identify M with its image under Δ . Let ν denote the normal bundle of the imbedding Δ . As usual we shall regard the total space of ν as an equivariant tubular neighborhood U of M in M^2 . Then $\nu: U \to M$ is a vector bundle with involution.

Let N be a paracompact space with a free involution T. Consider $N \underset{r}{\times} M$ and $N \underset{r}{\times} M^2$, the orbit spaces under the diagonal action of T on $N \times M$ and $N \times M^2$. Then we have the vector bundle $\nu_N = 1 \underset{r}{\times} \nu : N \underset{r}{\times} U \to N \underset{r}{\times} M$. Regard the Thom class $t(\nu_N) \in H^m(N \underset{r}{\times} (U, U - M))$ as an element of $H^m(N \underset{r}{\times} (M^2, M^2 - M))$ by the excision, and define

$$\Delta_N \in H^m(N \underset{r}{\times} M^2)$$

to be the restriction of $t(\nu_N)$.

Obviously we have

(1.1) If $h: N \rightarrow N'$ is an equivariant map, then $(h \times 1)^*: H^m(N' \times M^2) \rightarrow H^m(N \times M^2)$ sends $\Delta_{N'}$ to Δ_N .

For a closed manifold W, we denote by [W] the mod 2 fundamental homology class of W. As is easily seen we have

(1.2) If N is a closed m-dimensional manifold, then the Poincaré duality takes Δ_N to $(1 \times \Delta)_*[N \times M]$, i.e.

where $(1 \times \Delta)_* : H_{n+m}(N \times M] \to H_{n+m}(N \times M^2)$.

Given a continuous map $f: N \to M$, we define an equivariant map $\hat{f}: N \to N \times M^2$ by $\hat{f}(y) = (y, f(y), fT(y))$. Denote by N_T the orbit space of N under the action T. We have the homomorphism $\hat{f}_T^*: H^*(N \times M^2) \to H^*(N_T)$. We call the element

$$\hat{f}_T^*(\Delta_N) \in H^m(N_T)$$

the equivariant Lefschetz class of f.

If N is a closed manifold and dim $M=\dim N$, an integer mod 2 given by the Kronecker product

$$\hat{I}(f) = \langle \hat{f}_T^*(\Delta_N), [N_T] \rangle$$

is called the equivariant point index of f.

(1.3) **Proposition.** Let N be a closed manifold, and let $f: N \to M$ be a continuous map. If the equivariant Lefschetz class $\hat{f}_T^*(\Delta_N)$ is not zero, the covering dimension of

$$A(f) = \{ y \in N; fT(y) = Tf(y) \}$$

is at least n-m.

Proof. Denote by $A(f)_T$ the image of A(f) under the projection $\pi: N \to N_T$. Then we have the following commutative diagram:

$$H^{m}(N\times (M^{2}, M^{2}-M)) \xrightarrow{j^{*}} H^{m}(N\times M^{2})$$

$$\downarrow \hat{f}_{T}^{*} \qquad \downarrow \hat{f}_{T}^{*}$$
 $H^{m}(N_{T}, N_{T}-A(f)_{T}) \xrightarrow{j^{*}} H^{m}(N_{T}),$

where j are the inclusions. Therefore we have $j^*\hat{f}_T^*t(\nu_N) = \hat{f}_T^*\Delta_N \neq 0$. In particular $H^m(N_T, N_T - A(f)_T) \neq 0$. Since this shows $H_m(N_T, N_T - A(f)_T) \neq 0$, it

follows that the Čech cohomology group $\overset{\vee}{H}^{n-m}(A(f)_T)$ is not zero (see [8]). Therefore dim $A(f)_T \ge n-m$, and hence we have dim $A(f) \ge n-m$.

(1.4) Corollary. Let N be a closed manifold, and let $f: N \to M$ be a continuous map. If $\hat{I}(f) \neq 0$ there exists $y \in N$ such that fT(y) = Tf(y).

2. Preliminaries

Regard the standard *n*-sphere S^n as a space with involution by the antipodal map, where $n=1, 2, \dots, \infty$. The corresponding Δ_N will be denoted by $\Delta_n \in H^m(S^n \times M^2)$. Since for any paracompact space N with involution there exists an equivariant map of N to S^∞ , the element Δ_∞ is universal among $\{\Delta_N\}$. In the next section we shall consider Δ_∞ in the case when the involution T on M is free. For this purpose, we shall recall in this section some facts from [6] and [7].

We have the following theorem due to N. Steenrod (see §3 of [6]).

(2.1) $H_*(S^{\infty}_{x}M^2)$ is naturally isomorphic with $H_*(Z_2; H_*(M)^{(2)})$, the homology group of the group Z_2 with coefficients in $H_*(M)^{(2)} = H_*(M) \otimes H_*(M)$ on which Z_2 acts by permutation of factors. Similarly $H^*(S^{\infty}_{x}M^2)$ is naturally isomorphic with $H^*(Z_2; H^*(M)^{(2)})$. These isomorphisms preserve the cup product and the cap product.

We shall regard these isomorphisms as the identifications.

Let W be a Z_2 -free acyclic complex which has one cell e_i and its transform Te_i in each dimension $i \ge 0$ and has the boundary ∂ given by $\partial(e_{2i+1}) = e_{2i} - Te_{2i}$, $\partial(e_{2i+2}) = e_{2i+1} + Te_{2i+1}$. For $a, b \in H_*(M)$, let $P_i(a)$, $P(a, b) \in H_*(Z_2; H_*(M)^{(2)}) = H_*(S^{\infty} \times M^2)$ denote the homology classes represented by the cycles $e_i \otimes a \otimes a$, $e_0 \otimes a \otimes b \in W \otimes H_*(M)^{(2)}$ respectively. Similarly, for α , $\beta \in H^*(M)$, let $P_i(\alpha)$, $P(\alpha, \beta) \in H^*(Z_2; H^*(M)^{(2)}) = H^*(S^{\infty} \times M^2)$ denote the cohomology classes represented by the cocycles $u_i(\alpha)$, $u(\alpha, \beta) \in \operatorname{Hom}_{Z_2}(W, H^*(M)^{(2)})$ respectively, where $\langle u_i(\alpha), e_i \rangle = \alpha \otimes \alpha, \langle u_i(\alpha), e_j \rangle = 0$ $(i \neq j), \langle u(\alpha, \beta), e_0 \rangle = \alpha \otimes \beta + \beta \otimes \alpha, \langle u(\alpha, \beta), e_j \rangle = 0$ $(j \neq 0)$.

As is easily seen we have

(2.2) If $\{a_1, a_2, \dots, a_s\}$ is a basis for the vector space $H_*(M)$, then $\{P_i(a_j), P(a_j, a_k); i \geq 0, j < k\}$ is a basis for the vector space $H_*(S^{\infty} \times M^2)$. Similarly, if $\{\alpha_1, \alpha_2, \dots, \alpha_s\}$ is a basis for the vector space $H_*(M)$, then $\{P_i(\alpha_j), P(\alpha_j, \alpha_k); i \geq 0, j < k\}$ is a basis for the vector space $H^*(S^{\infty} \times M^2)$.

Since a diagnoal approximation $d_{\sharp}: W \to W \otimes W$ is given by

$$d_{\mathbf{z}}(e_i) = \sum_{j=0}^{[i/2]} e_{2j} \otimes e_{i-2j} + e_{2j+1} \otimes Te_{i-2j-1},$$

it follows that

(2.3)
$$P_{i}(\alpha) \cap P_{i}(a) = 0,$$

$$P_{j}(\alpha) \cap P_{i}(a) = \begin{cases} P_{i-j}(\alpha \cap a) & \text{if } j \leq i, \\ 0 & \text{if } j > i. \end{cases}$$

We see

(2.4) For the homomorphism $(i \underset{T}{\times} 1)_* : H_*(S^n \underset{T}{\times} M^2) \to H_*(S^\infty \underset{T}{\times} M^2)$ induced by the inclusion, we have

$$(i \times 1)_*[S^n \times M^2] = P_n([M]).$$

Let X be a Hausdorff space with a free involution T. Consider the induced chain map $T_{\sharp}: S(X) \to S(X)$, $\pi_{\sharp}: S(X) \to S(X_T)$ of singular complexes, where $\pi: X \to X_T$ is the projection. Then a chain map $\phi: S(X_T) \to S(X)$ can be defined by

$$\phi(c) = \tilde{c} + T_{\sharp}(\tilde{c}), \quad \pi_{\sharp}(\tilde{c}) = c$$

 $(c \in S(X_T), \tilde{c} \in S(X))$, and we have 'transfer homomorphisms'

$$\phi_*: H_*(X_T) \rightarrow H_*(X), \quad \phi^*: H^*(X) \rightarrow H^*(X_T).$$

These are obviously functorial with respect to equivariant maps. We have the following (2.5) and (2.6) (see §2 of [7]).

(2.5) For any $a \in H_*(X_T)$, the diagram

$$\begin{array}{ccc}
H^*(X_T) & \xrightarrow{\bigcap a} & H_*(X_T) \\
\downarrow_{\pi^*} & & \downarrow_{\phi_*} \\
H^*(X) & \xrightarrow{\bigcap \phi_*(a)} & H_*(X)
\end{array}$$

is commutative.

(2.6) If X is a closed manifold, then $\phi_*[X_T] = [X]$.

The following is easily seen.

(2.7) For
$$\phi^*: H^*(S^{\infty} \times M^2) \to H^*(S^{\infty} \times M^2)$$
, we have $\phi^*(1 \times \alpha \times \beta) = P(\alpha, \beta)$.

3. Expression of Δ_{∞}

Throughout this section, we assume that the involution T on M is free.

We shall consider the element $\Delta_{\infty} \in H^m(S^{\infty} \times M^2)$.

(3.1) **Lemma.** For $n \ge 1$ we have

$$\Delta_{\infty} \cap P_n([M]) = 0$$
.

Proof. In the commutative diagram

$$\begin{array}{ccc} (1\times\Delta)_{*} \\ H_{n+m}(S^{n}\times M) & \xrightarrow{T} & H_{n+m}(S^{n}\times M^{2}) \\ \downarrow (i\times 1)_{*} & (1\times\Delta)_{*} & \downarrow (i\times 1)_{*} \\ H_{n+m}(S^{\infty}\times M) & \xrightarrow{T} & H_{n+m}(S^{\infty}\times M^{2}), \end{array}$$

we have $H_{n+m}(S^{\infty} \times M) \cong H_{n+m}(M_T) = 0$ $(n \ge 1)$, for the involution T on M is free. Therefore by (2.4), (1.1) and (1.2) we see

$$egin{aligned} \Delta_{\infty} \cap P_{n}([M]) &= \Delta_{\infty} \cap (i \!\!\!\!\! \times 1)_{*}[S^{n} \!\!\!\! \times M^{2}] \ &= (i \!\!\!\!\! \times 1)_{*}((i \!\!\!\! \times 1)^{*} \Delta_{\infty} \cap [S^{n} \!\!\!\! \times M^{2}]) \ &= (i \!\!\!\!\! \times 1)_{*}(\Delta_{n} \cap [S^{n} \!\!\! \times M^{2}]) \ &= (i \!\!\!\!\! \times 1)_{*}(1 \!\!\!\! \times \Delta)_{*}[S^{n} \!\!\! \times M] \ &= (i \!\!\!\! \times 1)_{*}(i \!\!\!\! \times 1)_{*}[S^{n} \!\!\! \times M] \ &= (1 \!\!\!\! \times \Delta)_{*}(i \!\!\! \times 1)_{*}[S^{n} \!\!\! \times M] \ &= 0 \ . \end{aligned}$$

(3.2) **Proposition.** Let $\{\alpha_1, \alpha_2, \dots, \alpha_s\}$ be a basis for the vector space $H^*(M)$, and put $a_i = \alpha_i \cap [M]$, $i = 1, 2, \dots, s$. For $\Delta_*: H_*(M) \to H_*(M^2)$, let

$$\Delta_*([M]) = \sum_{j,k} \varepsilon_{jk} a_j \times a_k \qquad (\varepsilon_{jk} \in Z_2).$$

Then we have

$$\varepsilon_{jj}=0$$
, $\varepsilon_{jk}=\varepsilon_{kj}$

for each j, k, and

$$\Delta_{\infty} = \sum_{i \leq k} \mathcal{E}_{jk} \phi^* (1 \times \alpha_j \times \alpha_k)$$
,

where $\phi^*: H^*(S^{\infty} \times M^2) \to H^*(S^{\infty} \times M^2)$ is the transfer homomorphism.

Proof. In virtue of (2.2) we can put

$$\Delta_{\infty} = \sum_{i,j} g_{ij} P_i(\alpha_j) + \sum_{i \leq k} h_{jk} P(\alpha_j, \alpha_k)$$

 $(g_{ij}, h_{jk} \in \mathbb{Z}_2)$. Then it follows from (3.1) and (2.3) that

$$0 = \Delta_{\infty} \cap P_{n}([M]) = \sum_{i=0}^{n} \sum_{j=1}^{s} g_{ij} P_{n-i}(a_{j})$$

for any $n \ge 1$. Therefore by (2.2) it holds $g_{ij} = 0$ for any i, j, and hence by (2.7)

$$\Delta_{\scriptscriptstyle \infty} = \sum_{j < k} h_{jk} \phi^* (1 \times \alpha_j \times \alpha_k)$$
.

By (2.5) and (2.6) the diagram

is commutative. Therefore by (2.6) and (1.2) we have

$$(1 \times \Delta)_*[S^n \times M]$$

$$= (1 \times \Delta)_*\phi_*[S^n \times M] = \phi_*(1 \times \Delta)_*[S^n \times M]$$

$$= \phi_*(\Delta_n \cap [S^n \times M^2]) = \pi^*(\Delta_n) \cap [S^n \times M^2].$$

Since the diagram

$$H^*(S^{\circ} \times M^2) \xrightarrow{(i \times 1)^*} H^*(S^n \times M^2) \xrightarrow{\tau} H^*(S^n \times M^2) \xrightarrow{\tau} H^*(S^n \times M^2) \xrightarrow{(i \times 1)^*} H^*(S^n \times M^2)$$

is commutative, we have

$$(1 \times \Delta)_*[S^n \times M]$$

$$= \pi^*(i \times 1)^*(\Delta_{\infty}) \cap [S^n \times M^2]$$

$$= (i \times 1)^*\pi^*(\Delta_{\infty}) \cap [S^n \times M^2]$$

$$= (i \times 1)^*\pi^*(\sum_{j \leq k} h_{jk} \phi^*(1 \times \alpha_j \times \alpha_k)) \cap [S^n \times M^2]$$

$$= \sum_{j \leq k} h_{jk}(i \times 1)^*(1 \times \alpha_j \times \alpha_k + 1 \times \alpha_k \times \alpha_j) \cap [S^n \times M^2]$$

$$= \sum_{j \leq k} h_{jk}(1 \times \alpha_j \times \alpha_k + 1 \times \alpha_k \times \alpha_j) \cap ([S^n] \times [M] \times [M])$$

$$= [S^n] \times \sum_{j \leq k} h_{jk}(a_j \times a_k + a_k \times a_j).$$

On the other hand, by the assumption we have

$$(1 \times \Delta)_*([S^n] \times [M])$$

= $[S^n] \times \sum_{j,k} \varepsilon_{jk} a_j \times a_k$.

Thus we see that $\varepsilon_{jj}=0$, $\varepsilon_{jk}=\varepsilon_{kj}=h_{jk}$ (j < k) and $\Delta_{\infty}=\sum_{j < k} \varepsilon_{jk} \phi^*(1 \times \alpha_j \times \alpha_k)$. This completes the proof.

Define a bilinear form

$$\circ: H^*(M) \times H^*(M) \rightarrow Z_2$$

by

$$\alpha \circ \beta = \langle \alpha \cup T^*\beta, [M] \rangle$$
.

By Poincaré duality this is non-singular. We have also

(3.3) **Proposition.** The bilinear form \circ is symplectic, i.e. $\alpha \circ \alpha = 0$ for any $\alpha \in H^*(M)$.

Proof. Note first that o is symmetric. In fact,

$$\begin{split} &\alpha \circ \beta = \langle \alpha \cup T^*\beta, \, [M] \rangle \\ &= \langle T^*(T^*\alpha \cup \beta), \, [M] \rangle = \langle T^*\alpha \cup \beta, \, T_*[M] \rangle \\ &= \langle T^*\alpha \cup \beta, \, [M] \rangle = \langle \beta \cup T^*\alpha, \, [M] \rangle \\ &= \beta \circ \alpha \; . \end{split}$$

Therefore we have

$$(\alpha+\beta)\circ(\alpha+\beta)=\alpha\circ\alpha+\beta\circ\beta$$
.

Thus it suffices to prove that $\alpha \circ \alpha = 0$ for each element α of a basis for $H^*(M)$. To do this, take the basis $\{a_1^*, ..., a_s^*\}$ dual to a basis $\{a_1, ..., a_s\}$ for $H_*(M)$. Then it follows from (3.2) that

$$\begin{aligned} a_i^* \circ a_i^* &= \langle a_i^* \cup T^* a_i^*, [M] \rangle \\ &= \langle a_i^* \times a_i^*, \Delta_*[M] \rangle \\ &= \langle a_i^* \times a_i^*, \sum_{j \neq k} \varepsilon_{jk} a_j \times a_k \rangle \\ &= \sum_{j \neq k} \varepsilon_{jk} \langle a_i^*, a_j \rangle \langle a_i^*, a_k \rangle \\ &= 0 \end{aligned}$$

REMARK. (3.3) is known by G. Bredon (see Corollary 1.11 of [2]).

Let V be a finite dimensional vector space over Z_2 , on which a non-singular symplectic bilinear form

$$\circ: V \times V \to Z_2$$

is given. Such V is called a non-singular symplectic vector space over Z_2 . It is known that for such V we can take a symplectic basis, i.e. a basis $\{v_1, \dots, v_r, v_1', \dots, v_r'\}$ such that

$$v_i \circ v_j = 0$$
, $v_i' \circ v_j' = 0$, $v_i \circ v_j' = \delta_{ij}$

(see [1]).

As is shown above, if M is a closed manifold with a free involution, then $H^*(M)$ is a non-singular symplectic vector space over Z_2 with respect to the bilinear form \circ defined above.

(3.4) **Theorem.** Let $\{\mu_1, \dots, \mu_r, \mu_1', \dots, \mu_r'\}$ be a symplectic basis for $H^*(M)$, then we have

$$\Delta_{\scriptscriptstyle \infty} = \sum_{i=1}^{r} \phi^* (1 \times \mu_i \times \mu_i')$$
 ,

where $\phi^*: H^*(S^{\infty} \times M^2) \to H^*(S^{\infty} \times M^2)$ is the transfer homomorphism.

Proof. Put $a_i = \mu_i \cap [M]$, $a_i' = \mu_i' \cap [M]$ $(i=1, \dots, r)$. Then $\{a_1, \dots, a_r, a_1', \dots, a_r'\}$ is a basis for $H_*(M)$. We have

$$\begin{split} \langle T*\mu_i{'},\,a_j\rangle &= \langle T*\mu_i{'},\,\mu_j\cap[M]\rangle \\ &= \langle \mu_j \cup T*\mu_i{'},[M]\rangle = \mu_j \circ \mu_i{'} = \delta_{ij}\,, \end{split}$$

and similarly $\langle T^*\mu_i, a_j \rangle = \delta_{ij}$, $\langle T^*\mu_i, a_j \rangle = 0$, $\langle T^*\mu_i', a_j \rangle = 0$. Therefore if $\{a_1^*, \dots, a_r^*, a_1'^*, \dots, a_r'^*\}$ denote the basis dual to $\{a_1, \dots, a_r, a_1', \dots, a_r'\}$, we have

$$a_i^* = T^* \mu_i', \quad a_i'^* = T^* \mu_i.$$

Consequently it follows that

$$\langle a_i^* \times a_j'^*, \, \Delta_*[M] \rangle$$

= $\langle T^* \mu_i' \times T^* \mu_j, \, \Delta_*[M] \rangle$
= $\mu_j \circ \mu_i' = \delta_{ij}$,

and similarly

$$\langle a_i'^* \times a_j^*, \, \Delta_*[M] \rangle = \delta_{ij}.$$

This shows that

$$\Delta_*[M] = \sum_{i=1}^r a_i \times a_i' + a_i' \times a_i$$
.

Thus, by (3.2) we get the desired result.

4. The number $\hat{\chi}(\phi)$

Let V and W be non-singular symplectic vector spaces over Z_2 , and $\psi: V \to W$ be a linear map of vector spaces. Then we define a number

$$\hat{\chi}(\psi) = \sum_{i=1}^r \psi(v_i) \circ \psi(v_i') \in Z_2$$

by making use of a symplectic basis $\{v_1, \dots, v_r, v_1', \dots, v_r'\}$ for V.

If $\{w_1, \dots, w_t, w_1', \dots, w_t'\}$ is a symplectic basis for W and if

$$\psi(v_j) = \sum\limits_i a_{ij} w_i + \sum\limits_i c_{ij} w_{i'}$$
 , $\psi(v_{j'}) = \sum\limits_i b_{ij} w_i + \sum\limits_i d_{ij} w_{i'}$,

then it can be easily seen that

$$\hat{\chi}(\psi) = \operatorname{trace} ({}^{t}AD + {}^{t}BC)$$

for the matrices $A=(a_{ij}), \dots$, where ${}^{t}A$ denotes the transposed matrix of A.

(4.1) **Lemma** $\hat{\chi}(\psi)$ is independent of the choice of symplectic bases for V.

Proof. Let $\{u_1, \dots, u_r, u_1', \dots, u_r'\}$ be another symplectic basis for V, and put

$$egin{aligned} \psi(u_j) &= \sum\limits_i a'_{ij} w_i + \sum\limits_i c'_{ij} w_{i}' \ , \ \psi(u_j') &= \sum\limits_i b'_{ij} w_i + \sum\limits_i d'_{ij} w_{i}' \ . \end{aligned}$$

We shall show

trace
$$({}^{t}A'D' + {}^{t}B'C')$$
 = trace $({}^{t}AD + {}^{t}BC)$.

Let

$$\begin{aligned} u_j &= \sum_i p_{ij} v_i + \sum_i r_{ij} v_{i'}, \\ u_{j'} &= \sum_i q_{ij} v_i + \sum_i s_{ij} v_{i'}. \end{aligned}$$

Then the symplectic conditions imply

$${}^{t}PR + {}^{t}RP = 0$$
, ${}^{t}QS + {}^{t}SQ = 0$, ${}^{t}PS + {}^{t}RO = E$,

where E is the identity matrix. This shows that

$$\begin{pmatrix} {}^tP & {}^tR \\ {}^tO & {}^tS \end{pmatrix} \begin{pmatrix} S & R \\ O & P \end{pmatrix} = E .$$

Therefore we have

$$S^{t}R+R^{t}S=0$$
, $Q^{t}P+P^{t}Q=0$, $S^{t}P+R^{t}Q=E$.

On the other hand, since

$$\begin{pmatrix} A', & B' \\ C', & D' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} P & Q \\ R & S \end{pmatrix},$$

we have

trace
$$({}^tA'D' + {}^tB'C')$$

= trace $({}^t(AP + BR)(CQ + DS) + {}^t(AQ + BS)(CP + DR))$
= trace $({}^tP^tACQ + {}^tP^tADS + {}^tR^tBCQ + {}^tR^tBDS + {}^tQ^tACP + {}^tQ^tADR + {}^tS^tBCP + {}^tS^tBDR)$
= trace $(Q{}^tP^tAC + S^tP^tAD + Q^tR^tBC + S^tR^tBD + {}^tP^tQ^tAC + {}^tQ^tAD + {}^tS^tBC + {}^tS^tBD)$.

- By (*) this is equal to trace $({}^tAD + {}^tBC)$, and the proof is complete. The following is obvious.
- (4.2) **Lemma.** Let V be a non-singular symplectic vector space over \mathbb{Z}_2 . Then dim V is even, and for the identity map $id: V \to V$ we have

$$\hat{\chi}(id) = \frac{1}{2} \dim V \mod 2.$$

5. Main theorem

We assume that N is a closed manifold and the involution on M is free, and consider the element $\Delta_N \in H^m(N \times M^2)$. Since there exists an equivariant map $h: N \to S^{\infty}$, by (1.1) and (3.4) we have immediately

(5.1) **Lemma.** For any symplectic basis $\{\mu_1, \dots, \mu_r, \mu_1', \dots, \mu_r'\}$ for $H^*(M)$, it holds

$$\Delta_N = \sum_{i=1}^r \phi^* (1 \times \mu_i \times \mu_i')$$
 ,

where $\phi^*: H^*(N \times M^2) \to H^*(N \times M^2)$ is the transfer homomorphism.

Let $f: N \to M$ be a continuous map. Then $f^*: H^*(M) \to H^*(N)$ is a linear map of non-singular symplectic vector spaces over Z_2 , and hence we have the number $\hat{\chi}(f^*)$ which will be denoted by $\hat{\chi}(f)$. We call $\hat{\chi}(f)$ the equivariant Lefschetz number of f:

$$\hat{\chi}(f) = \sum_{i=1}^{r} \langle f^* \mu_i \cup T^* f^* \mu_i', [N] \rangle.$$

Analogously to the Lefschetz fixed point theorem which asserts that the fixed point index coincides with the Lefschetz number, we have

(5.2) **Theorem.** If dim $M=\dim N$, then the equivariant point index $\hat{I}(f)$ coincides with the equivariant Lefschetz number $\hat{\chi}(f)$.

Proof. Consider an equivariant map $k: N \rightarrow N \times N^2$ given by k(y) = (y, y, T(y)). Since the diagram

$$H^{m}(N \times M^{2}) \xrightarrow{\hat{f}_{T}^{*}} H^{m}(N_{T})$$

$$\downarrow (1 \times f^{2})^{*} / k_{T}^{*}$$

$$H^{m}(N \times N^{2})$$

is commutative, it follows from (5.1) that

$$\begin{split} \hat{f}_{T}^{*}(\Delta_{N}) &= k_{T}^{*}(1 \times f^{2})^{*}(\Delta_{N}) \\ &= \sum_{i=1}^{r} k_{T}^{*}(1 \times f^{2})^{*}\phi^{*}(1 \times \mu_{i} \times \mu_{i}') \\ &= \sum_{i=1}^{r} k_{T}^{*}\phi^{*}(1 \times f^{2})^{*}(1 \times \mu_{i} \times \mu_{i}') \\ &= \sum_{i=1}^{r} k_{T}^{*}\phi^{*}(1 \times f^{*}\mu_{i} \times f^{*}\mu_{i}') \; . \end{split}$$

Let $d: N \rightarrow N^3$ be the diagonal map, then the diagram

$$\begin{array}{ccc}
H^*(N^3) \\
(1 \times 1 \times T)^* & & d^* \\
H^*(N^3) & & & H^*(N) \\
\downarrow \phi^* & & & \downarrow \phi^* \\
H^*(N \times N^2) & & & H^*(N_T)
\end{array}$$

is commutative. Consequently we have

$$\hat{f}_{T}^{*}(\Delta_{N}) = \sum_{i=1}^{r} \phi^{*}d^{*}(1 \times 1 \times T)^{*}(1 \times f^{*}\mu_{i} \times f^{*}\mu_{i}')$$

$$= \sum_{i=1}^{r} \phi^{*}(f^{*}\mu_{i} \cup T^{*}f^{*}\mu_{i}'),$$

and hence

$$\begin{split} & \langle \hat{f}_{T}^{*}(\Delta_{N}), \, [N_{T}] \rangle = \sum_{i=1}^{r} \langle f^{*}\mu_{i} \cup T^{*}f^{*}\mu_{i}', \, \phi_{*}[N_{T}] \rangle \\ &= \sum_{i=1}^{r} \langle f^{*}\mu_{i} \cup T^{*}f^{*}\mu_{i}', \, [N] \rangle = \sum_{i=1}^{r} f^{*}\mu_{i} \circ f^{*}\mu_{i}' \,. \end{split}$$

This completes the proof.

Now the following main theorem is a consequence of (1.3) and (5.2).

(5.3) Main theorem. Let M and N be closed manifolds on each of which a free involution T is given. Let $f: N \to M$ be a continuous map such that $\hat{\chi}(f) \equiv 0$. Then there exists a point $y \in N$ such that fT(y) = Tf(y).

For a closed manifold M such that the dimension of the vector space $H_*(M)$ is even, an integer mod 2 given by

$$\hat{\chi}(M) = \frac{1}{2} \dim H_*(M) \mod 2$$

is called the *semicharacteristic* of M.

By (5.2) we have

(5.4) **Corollary.** Let T, T' be free involutions on a closed manifold M with $\hat{\chi}(M) \equiv 0$. Let $f \colon M \to M$ be a continuous map of degree odd such that $f_* \circ T'_* = T_* \circ f_* \colon H_*(M) \to H_*(M)$. Then there exists a point $x \in M$ such that fT'(x) = Tf(x). In particular, if $T_* = T_*' \colon H(M) \to H_*(M)$ then T and T' have a coincidence.

We have also the following corollary of (5.3).

(5.5) Corollary. Let M be a closed manifold with a free involution T, and assume $\hat{\chi}(M) \equiv 0 \mod 2$. Then, for a continuous map $f: M \to M$ such that $f_*: H_*(M) \to H_*(M)$ is the identity, there exists a point $x \in M$ such that fT(x) = Tf(x).

REMARK. If we take in (5.5) a mod 2 homology sphere as M, we get Theorem 1 in Milnor [5].

6. Applications

- (6.1) **Theorem.** Let M be a closed manifold such that dim $H^*(M) \equiv 2 \mod 4$, and G be a group acting freely on M. Then
- i) G can have at most one element T of order 2 such that $T_*: H_*(M) \to H_*(M)$ is a given isomosphism.
- ii) If $T \in G$ is an element of order 2 such that $T_*: H_*(M) \to H_*(M)$ is the identity, T lies in the center of G.
- iii) If $T \in G$ is an element of order 2, T lies in the centralizer of $G_0 = \{S \in G; S_* = id: H_*(M) \rightarrow H_*(M)\}$.
- Proof. Let T, T', $S \in G$, and let T, T' have order 2. It follows from (5.4) that if $T_* = T'_*$ then $T(x_1) = T'(x_1)$ for some $x_1 \in M$, and that if $T_* = T'_* = id$ then $ST(x_2) = TS(x_2)$ for some $x_2 \in M$. It follows from (5.5) that if $S \in G_0$ then $ST(x_3) = TS(x_3)$ for some $x_3 \in M$. Since G acts freely on M, we have the desired results.

Let D(2l) denote the dihedral group with presentation $(X, Y; X^2 = (XY)^2 = Y^l = 1)$.

(6.2) **Theorem.** Let M be a closed manifold on which D(2l) acts freely. Assume that $\hat{\chi}(M) \equiv 0$ and l is an odd>1. Then the representation of D(2l) on $H_*(M)$ given by sending $S \in D(2l)$ to $S_*: H_*(M) \to H_*(M)$ is faithful.

Proof. Any element of D(2l) has a form $X^{\epsilon}Y^{i}(\epsilon=0, 1, 0 \le i < l)$. We shall

show that $X_* \neq id$ and $(X^{\epsilon}Y^{i})_* \neq id$ $(\epsilon = 0, 1, 1 \leq i < l)$.

- i) Assume $X_*=id$. Then we have XY=YX by ii) of (6.1). Since X=YXY, this implies $Y^2=1$. Since the order of Y is l, this is a contradiction. Thus $X_*=id$.
- ii) Assume $(X^{\varepsilon}Y^{i})_{*}=\mathrm{id}$ with $\varepsilon=0, 1, 1 \leq i < l$. Then we have $X^{\varepsilon+1}Y^{i}=X^{\varepsilon}Y^{i}X$, i.e. $XY^{i}=Y^{i}X$ by iii) of (6.1). This implies $Y^{2i}=1$ which shows i=0. Thus $(X^{\varepsilon}Y^{i})_{*}+\mathrm{id}$ for $\varepsilon=0, 1$ and $1 \leq i < l$.

Consider the group Q(8n, k, l) stated in Introduction.

(6.3) **Theorem.** If n is even and l>1, the group Q(8n, k, l) can not act freely on any mod 2 homology sphere whose dimension is 3 mod 8.

Proof. Put $\bar{A} = A^k$, then we have

$$X^2 = (XY)^2 = Y^{2n}, \, \bar{A}^l = 1,$$

 $X\bar{A}X^{-1} = \bar{A}, \quad Y\bar{A}Y^{-1} = \bar{A}^{-1}.$

Therefore the subgroup in Q(8n, k, l) generated by $\{X, Y, \overline{A}\}$ is isomorphic to Q(8n, 1, l). Thus it suffices to prove (6.3) in the special case when k=r=1.

Put $\overline{Y} = Y^2$, then we have in Q(8n, 1, l)

$$X^2 = (X \, \overline{Y})^2 = \, \overline{Y}^n \, , \ YXY^{-1} = \, \overline{Y}X \, , \qquad Y \, \overline{Y}Y^{-1} = \, \overline{Y} \, , \ AXA^{-1} = X \, , \qquad A \, \overline{Y}A^{-1} = \, \overline{Y} \, .$$

Therefore the subgroup in Q(8n, 1, l) generated by $\{X, \overline{Y}\}$ is a normal subgroup isomorphic to the binary dihedral group Q(4n). The quotient group Q(8n, 1, l)/Q(4n) is generated by the classes T=[Y] and S=[A] with relations $T^2=(TS)^2=S^1=1$, and so is isomorphic to D(2l).

Suppose now that we have a free action of Q(8n, 1, l) on a mod 2 homology sphere L of dimension 8t+3. Let M=L/Q(4n) be the quotient manifold of L under the action of the normal subgroup Q(4n). Then there is a natural free action of D(2l) on M.

Since $H_i(L)=0$ for i<8t+3, it follows that

$$H_i(M) \simeq H_i(Q(4n)) \qquad (i < 8t + 3).$$

Since n is even, we have

$$H_i(Q(4n)) = egin{cases} Z_2 & i \equiv 0 mod 4, \ Z_2 \oplus Z_2 & i \equiv 1 mod 4, \ Z_2 \oplus Z_2 & i \equiv 2 mod 4, \ Z_2 & i \equiv 3 mod 4 \end{cases}$$

(see [3], p. 254). Therefore it holds

$$\hat{\chi}(M) = \sum_{i=0}^{4t+1} \dim H_i(M) \equiv 0 \mod 2.$$

Under the isomorphism of $H_i(M)$ to $H_i(Q(4n))$ (i < 8t + 3), the induced homomorphism $S_*: H_i(M) \to H_i(M)$ corresponds to the homomorphism $\sigma_*: H_i(Q(4n)) \to H_i(Q(4n))$ induced by the homomorphism $\sigma: Q(4n) \to Q(4n)$ sending each element U to AUA^{-1} . Since $AXA^{-1} = X$, $A\bar{Y}A^{-1} = \bar{Y}$, we see that S_* is the identity for i < 8t + 3. This is obvious for $i \ge 8t + 3$. Since T is of order 2, it follows from (6.1) that ST = TS. Since I is odd I, this is a contradiction, and the proof completes.

Let P''(48r) denote the group with generators X, Y, Z, A and relations

$$X^2 = Y^2 = Z^2 = (XY)^2$$
, $A^{3r} = 1$, $ZXZ^{-1} = YX$, $ZYZ^{-1} = Y^{-1}$, $AXA^{-1} = Y$, $AYA^{-1} = XY$, $ZAZ^{-1} = A^{-1}$,

where r is an odd positive integer. Milnor proves in [5] that if r is not a power of 3 then P''(48r) can not act freely on any homotopy 3-sphere. More generally we have

(6.4) **Theorem.** If r is not a power of 3, the group P''(48r) can not act freely on any mod 2 homology sphere whose dimension is 3 mod 8.

Proof. Let $r=3^{k-1}l$ with (l, 6)=1, $l \ge 5$. Then it follows that the subgroup in P''(48r) generated by $\{X, Y, A'\}$ is a normal subgroup isomorphic to $P'(8 \cdot 3^k)$ and its quotient group is isomorphic to D(2l), where $P'(8 \cdot 3^k)$ denotes the group with presentation $(X, Y, A; X^2 = Y^2 = (XY)^2, A^{3^k} = 1, AXA^{-1} = Y, AYA^{-1} = XY)$.

Suppose now that we have a free action of P''(48r) on a mod 2 homology sphere L of dimension 8t+3. If we put $M=L/P'(8\cdot 3^k)$, there is a natural free action of D(2l) on M. We have $H_i(M)\cong H_i(P'(8\cdot 3^k))$ for i<8t+3. The subgroup in $P'(8\cdot 3^k)$ generated by $\{X, Y\}$ is isomorphic to the quaternion group Q(8), and its quotient group is isomorphic to Z_{3^k} . Therefore it is easily seen that

$$H_i(P'(8\cdot 3^k)) = egin{cases} Z_z & i \equiv 0 \mod 4 \,, \ 0 & i \equiv 1 \mod 4 \,, \ 0 & i \equiv 2 \mod 4 \,, \ Z_z & i \equiv 3 \mod 4 \,. \end{cases}$$

Thus $\hat{\chi}(M) \equiv 0$ and the action of D(2l) on $H_*(M)$ is trivial. By (6.1) this is a contradiction, and the proof completes.

M. Nakaoka

(Added Nov. 27, 1973). R.E. Stong [10] proves the following theorem. As an application of Theorem (5.2) we shall prove this theorem.

(6.5) **Theorem.** If a closed mainfold N admits a free action of $\mathbb{Z}_2 \times \mathbb{Z}_2$, then $\hat{\chi}(N)=0$.

Proof. Taking generators T and S of $Z_2 \times Z_2$, regard N as a manifold with involution by T, and S a continuous map of N to itself. Then it follows from (5.2) that $\hat{I}(S) = \hat{\chi}(S)$.

Define Δ , $\Delta': N \to N \times N$ by $\Delta(y) = (y, Ty)$, $\Delta'(y) = (y, Sy)$. Then the map $\hat{S}_T: N_T \to N \underset{r}{\times} N^2$ is the composition of $\Delta_T': N_T \to N \underset{r}{\times} N$ and $1 \underset{r}{\times} \Delta: N \underset{r}{\times} N \to N \underset{r}{\times} N^2$. Therefore it holds that

$$egin{aligned} \hat{I}(S) &= \langle \hat{S}_{T}^{*}(\Delta_{N}) \,,\, [N_{T}]
angle \ &= \langle \Delta_{T}^{\prime *}(1 \underset{\pi}{ imes} \Delta)^{*}(\Delta_{N}),\, [N_{T}]
angle \,. \end{aligned}$$

Let ν_N denote the normal bundle of the imbedding $1\underset{r}{\times} \Delta: N\underset{r}{\times} N \to N\underset{r}{\times} N^2$. Then it is obvious that $(1\underset{r}{\times} \Delta)^*(\Delta_N)$ is the *n*-th Stiefel-Whitney class $w_n(\nu_N)$, where n=dim N=dim ν_N . The involution T on N gives rise to a free involution T on the orbit manifold N_S . If ν_N denotes the normal bundle of the imbedding $1\underset{r}{\times} \Delta: N_S\underset{r}{\times} N_S \to N_S\underset{r}{\times} N_S^2$, we have $\nu_N = (p\underset{r}{\times} p)^*\nu_N$, where $p: N \to N_S$ is the projection. Therefore it follows that

$$\Delta_{T}^{\prime*}(1 \underset{T}{\times} \Delta)^{*}(\Delta_{N}) = \Delta_{T}^{\prime*}w_{n}(\nu_{N})$$

$$= \Delta_{T}^{\prime*}(p \underset{T}{\times} p)^{*}w_{n}(\nu_{N}^{\prime}) = p_{T}^{*}d_{T}^{*}w_{n}(\nu_{N}^{\prime}),$$

where $d: N_S \rightarrow N_S \times N_S$ is the diagonal map. Hence

$$\hat{I}(S) = \langle d_T^* w_n(v_N'), p_{T*}[N_T]
angle = 0$$
 .

On the other hand, we have

$$\begin{split} \hat{\chi}(S) &= \sum_{i=1}^r \langle S^* \mu_i \cup T^* S^* \mu_i', [N] \rangle \\ &= \sum_{i=1}^r \langle S^* (\mu_i \cup T^* \mu_i'), [N] \rangle \\ &= \sum_{i=1}^r \langle \mu_i \cup T^* \mu_i', [N] \rangle \\ &= \hat{\chi}(N) \,, \end{split}$$

where $\{\mu_1, \dots, \mu_r, \mu_i', \dots, \mu_r'\}$ is a symplectic basis for $H^*(N)$. Thus $\hat{\chi}(N)=0$.

OSAKA UNIVERSITY

References

- [1] E. Artin: Geometric Algebra, Interscience Publishers, 1957.
- [2] G.E. Bredon: Cohomological aspects of transformation groups, Proceedings of the Conference on Transformation Groups, 245–280, Springer, 1967.
- [3] H. Cartan and S. Eilenberg: Homological Algebra, Princeton, 1956.
- [4] R. Lee: Semicharacteristic classes, Topology. 12 (1973), 183-199.
- [5] J. Milnor: Groups which act on Sⁿ without fixed points, Amer. J. Math. 79 (1957), 623-630.
- [6] M. Nakaoka: Generalization of Borsuk-Ulam theorem, Osaka J. Math. 7 (1970), 423-441.
- [7] M. Nakaoka: Note on a theorem due to Milnor, Osaka J. Math. 7 (1970), 443–449.
- [8] E.H. Spanier: Algebraic Topology, McGraw-Hill, 1966.
- [9] J.W. Vick: Homology Theory; An Introduction to Algebraic Topology, Academic Press, 1973.
- [10] R.E. Stong: Semi-characteristics and free group actions, to appear.