CONTINUOUS MAPS OF MANIFOLDS WITH INVOLUTION I

Minoru NAKAOKA

(Received July 9, 1973)

Introduction

To study the question of which finite groups can act freely on a sphere, J. Milnor proved in [5] that if M is a mod 2 homology sphere with a free involution T, then for any continuous map $f: M \rightarrow M$ of odd degree there exists a point $x \in M$ such that $f T(x)=T f(x)$. In the present paper we generalize this theorem, and apply it to the problem of group action on spheres.

Let M be a closed manifold with a free involution T. Then a nondegenerate symplectic pairing $\circ: H^{*}\left(M ; Z_{2}\right) \times H^{*}\left(M ; Z_{2}\right) \rightarrow Z_{2}$ can be defined by $\alpha \circ \beta=\left\langle\alpha \cup T^{*} \beta\right.$, $\left.[M]\right\rangle$, where $[M]$ is the $\bmod 2$ fundamental class of M. Therefore there exists a symplectic basis $\left\{\mu_{1}, \cdots, \mu_{r}, \mu_{1}^{\prime}, \cdots, \mu_{r}\right\}$ for the vector space $H^{*}\left(M ; Z_{2}\right)$. Let N be also a closed manifold with a free involution T, and $f: N \rightarrow M$ be a continuous map. Then it is seen that

$$
\hat{\chi}(f)=\sum_{i=1}^{r} f^{*} \mu_{i} \circ f *_{\mu_{i}}^{\prime} \in Z_{2}
$$

is independent of the choice of $\left\{\mu_{1}, \cdots, \mu_{r}, \mu_{1}{ }^{\prime}, \cdots, \mu_{r}{ }^{\prime}\right\}$. Now the Milnor theorem is generalized as follows: If $\hat{\chi}(f) \neq 0$ then there exists a point $y \in N$ such that $T f(y)=f T(y)$.

This theorem is paraphrased that if the equivariant Lefschetz number $\hat{\chi}(f)$ is not zero then there exists an equivariant point $y \in N$, and may be regarded as an analogue of the classical Lefschetz fixed point theorem. We shall prove it after the cohomological proof of the Lefschetz fixed point theorem (see e.g. [9]). As is well known, the Lefschetz theorem asserts that the fixed point index is equal to the Lefschetz number. Correspondingly, we define the equivariant point index $\hat{I}(f) \in Z_{2}$ which has a property that $\hat{I}(f) \neq 0$ implies the existence of equivariant points of f, and we prove that the equivariant point index $\hat{I}(f)$ is equal to the equivariant Lefschetz number $\hat{\chi}(f)$.

Our theorem is applicable well for the problem of group action on manifolds as the Lefschetz fixed point theorem is. The theorem is effective to show the non-existence of free action of dihedral group on a given manifold.

Let $Q(8 n, k, l)$ denote the group with generators X, Y, A and relations

$$
\begin{aligned}
& X^{2}=(X Y)^{2}=Y^{2 n}, \quad A^{k l}=1 \\
& X A X^{-1}=A^{r}, \quad Y A Y^{-1}=A^{-1}
\end{aligned}
$$

where $8 n, k, l$ are pariwise relatively prime positive integers, $r \equiv-1(\bmod k)$ and $r \equiv+1(\bmod l) . \quad$ Milnor asks in [5] if $Q(8 n, k, l)$ can act freely on a 3 -sphere. Recently, R. Lee introduced a group homomorphism $\chi_{1 / 2}$ from the bordism group $\Re_{2 m+1}(G)$ to a certain Grothendieck group $\hat{R}_{G L, e v}(G)$ for any finite group G, and applied it to prove that if n is even and $l>1$ then $Q(8 n, k, l)$ can not act freely on any mod 2 homology sphere whose dimension is $3 \bmod 8$ (see [4]). We shall give another proof of this result as an application of our theorem.

Milnor asks also if the group $P^{\prime \prime}(48 r)$ (see §6) can act freely on a 3 -sphere, and R. Lee answers that $P^{\prime \prime}(48 r)(\mathrm{O}(48, k, l)$ in his notation) can not act freely on any mod 2 homology sphere whose dimension is $3 \bmod 8$. We also prove this fact in the case when r is not a power of 3, but our method gives no information when r is a power of 3 . It seems to me that the proof of Corollary 4.17 in [4] is incorrect and his method also gives no information for $P^{\prime \prime}\left(48 \cdot 3^{k}\right)(k \geqq 1)$.

Throughout this paper, the homology and cohomology with coefficients in Z_{2} are to be understood. For brevity, manifolds and actions on them are assumed to be differentiable.

1. The equivariant Lefschetz class

Let M be a closed m-dimensional manifold with an involution T. We regard the product $M^{2}=M \times M$ as a manifold with involution by defining $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$. Then we have an equivariant imbedding $\Delta: M \rightarrow M^{2}$ given by $\Delta(x)=(x, T x)$. We shall identify M with its image under Δ. Let ν denote the normal bundle of the imbedding Δ. As usual we shall regard the total space of ν as an equivariant tubular neighborhood U of M in M^{2}. Then $\nu: U \rightarrow M$ is a vector bundle with involution.

Let N be a paracompact space with a free involution T. Consider $N \underset{T}{ } M$ and $N \underset{T}{N \times} M^{2}$, the orbit spaces under the diagonal action of T on $N \times M$ and
 the Thom class $t\left(\nu_{N}\right) \in H^{m}(\underset{F}{N}(U, U-M))$ as an element of $H^{m}(N \times$ ($\left.M^{2}, M^{2}-M\right)$) by the excision, and define

$$
\Delta_{N} \in H^{m}\left(\underset{T}{\times} M^{2}\right)
$$

to be the restriction of $t\left(\nu_{N}\right)$.

Obviously we have
(1.1) If $h: N \rightarrow N^{\prime}$ is an equivariant map, then $(\underset{T}{(h)}): H^{m}\left(N^{\prime} \times M^{2}\right) \rightarrow$ $H^{m}\left(\underset{T}{N \times} M^{2}\right)$ sends $\Delta_{N^{\prime}}$ to Δ_{N}.

For a closed manifold W, we denote by [W] the mod 2 fundamental homology class of W. As is easily seen we have
(1.2) If N is a closed m-dimensional manifold, then the Poincare duality takes Δ_{N} to $(\underset{T}{\times} \Delta)_{*}[\underset{T}{N \times M} M$, i.e.

$$
(1 \times \Delta)_{T}[N \underset{T}{\times} M]=\Delta_{N} \cap\left[N \underset{T}{\times} M^{2}\right],
$$

where $(\underset{T}{1 \times \Delta})_{*}: H_{n+m}(\underset{r}{N \times} M] \rightarrow H_{n+m}\left(\underset{T}{N \times} M^{2}\right)$.
Given a continuous map $f: N \rightarrow M$, we define an equivariant map $\hat{f}: N \rightarrow$ $N \times M^{2}$ by $\hat{f}(y)=(y, f(y), f T(y))$. Denote by N_{T} the orbit space of N under the action T. We have the homomorphism $\hat{f}_{T}^{*}: H^{*}\left(N \times M_{T}\right) \rightarrow H^{*}\left(N_{T}\right)$. We call the element

$$
\hat{f}_{T}^{*}\left(\Delta_{N}\right) \in H^{m}\left(N_{T}\right)
$$

the equivariant Lefschetz class of f.
If N is a closed manifold and $\operatorname{dim} M=\operatorname{dim} N$, an integer $\bmod 2$ given by the Kronecker product

$$
\hat{I}(f)=\left\langle\hat{f}_{T}^{*}\left(\Delta_{N}\right),\left[N_{T}\right]\right\rangle
$$

is called the equivariant point index of f.
(1.3) Proposition. Let N be a closed manifold, and let $f: N \rightarrow M$ be a continuous map. If the equivariant Lefschetz class $\hat{f}_{T}^{*}\left(\Delta_{N}\right)$ is not zero, the covering dimension of

$$
A(f)=\{y \in N ; f T(y)=T f(y)\}
$$

is at least $n-m$.
Proof. Denote by $A(f)_{T}$ the image of $A(f)$ under the projection $\pi: N \rightarrow N_{T}$. Then we have the following commutative diagram:

where j are the inclusions. Therefore we have $j^{*} \hat{f}_{T}^{*} t\left(\nu_{N}\right)=\hat{f}_{T}^{*} \Delta_{N} \neq 0$. In particular $H^{m}\left(N_{T}, N_{T}-A(f)_{T}\right) \neq 0$. Since this shows $H_{m}\left(N_{T}, N_{T}-A(f)_{T}\right) \neq 0$, it
follows that the Čech cohomology group $\stackrel{V}{H}^{n-m}\left(A(f)_{T}\right)$ is not zero (see [8]). Therefore $\operatorname{dim} A(f)_{T} \geqq n-m$, and hence we have $\operatorname{dim} A(f) \geqq n-m$.
(1.4) Corollary. Let N be a closed manifold, and let $f: N \rightarrow M$ be a continuous map. If $\hat{I}(f) \neq 0$ there exists $y \in N$ such that $f T(y)=T f(y)$.

2. Preliminaries

Regard the standard n-sphere S^{n} as a space with involution by the antipodal map, where $n=1,2, \cdots, \infty$. The corresponding Δ_{N} will be denoted by $\Delta_{n} \in H^{m}\left(S^{n} \times M^{2}\right)$. Since for any paracompact space N with involution there exists an equivariant map of N to S^{∞}, the element Δ_{∞} is universal among $\left\{\Delta_{N}\right\}$. In the next section we shall consider Δ_{∞} in the case when the involution T on M is free. For this purpose, we shall recall in this section some facts from [6] and [7].

We have the following theorem due to N. Steenrod (see §3 of [6]).
(2.1) $H_{*}\left(S^{\infty} \underset{T}{\times} M^{2}\right)$ is naturally isomorphic with $H_{*}\left(Z_{2} ; H_{*}(M)^{(2)}\right)$, the homology group of the group Z_{2} with coefficients in $H_{*}(M)^{(2)}=H_{*}(M) \otimes H_{*}(M)$ on which Z_{2} acts by permutation of factors. Similarly $H^{*}\left(S_{T}^{\infty} \times M^{2}\right)$ is naturally isomorphic with $H^{*}\left(Z_{2} ; H^{*}(M)^{(2)}\right)$. These isomorphisms preserve the cup product and the cap product.

We shall regard these isomorphisms as the identifications.
Let W be a Z_{2}-free acyclic complex which has one cell e_{i} and its transform $T e_{i}$ in each dimension $i \geqq 0$ and has the boundary ∂ given by $\partial\left(e_{2 i+1}\right)=e_{2 i}-T e_{2 i}$, $\partial\left(e_{2 i+2}\right)=e_{2 i+1}+T e_{2 i+1}$. For $a, b \in H_{*}(M)$, let $P_{i}(a), P(a, b) \in H_{*}\left(Z_{2} ; H_{*}(M)^{(2)}\right)=$ $H_{*}\left(S_{T}^{\infty} \times M^{2}\right)$ denote the homology classes represented by the cycles $e_{i} \otimes a \otimes a$, $e_{0} \otimes a \otimes b \in W \underset{Z_{2}}{\otimes} H_{*}(M)^{(2)}$ respectively. Similarly, for $\alpha, \beta \in H^{*}(M)$, let $P_{i}(\alpha)$, $P(\alpha, \beta) \in H^{*}\left(Z_{2} ; H^{*}(M)^{(2)}\right)=H^{*}\left(S^{\infty} \underset{T}{\times} M^{2}\right)$ denote the cohomology classes represented by the cocylces $u_{i}(\alpha), u(\alpha, \beta) \in \operatorname{Hom}_{z_{2}}\left(W, H^{*}(M)^{(2)}\right)$ respectively, where $\left\langle u_{i}(\alpha), e_{i}\right\rangle=\alpha \otimes \alpha,\left\langle u_{i}(\alpha), e_{j}\right\rangle=0(i \neq j),\left\langle u(\alpha, \beta), e_{0}\right\rangle=\alpha \otimes \beta+\beta \otimes \alpha$, $\left\langle u(\alpha, \beta), e_{j}\right\rangle=0(j \neq 0)$.

As is easily seen we have
(2.2) If $\left\{a_{1}, a_{2}, \cdots, a_{s}\right\}$ is a basis for the vector space $H_{*}(M)$, then $\left\{P_{i}\left(a_{j}\right)\right.$, $\left.P\left(a_{j}, a_{k}\right) ; i \geqq 0, j<k\right\}$ is a basis for the vector space $H_{*}\left(S^{\infty} \underset{T}{\times} M^{2}\right)$. Similarly, if $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right\}$ is a basis for the vector space $H_{*}(M)$, then $\left\{P_{i}\left(\alpha_{j}\right), P\left(\alpha_{j}, \alpha_{k}\right)\right.$; $i \geqq 0, j<k\}$ is a basis for the vector space $H^{*}\left(S^{\infty} \underset{T}{\times} M^{2}\right)$.

Since a diagnoal approximation $d_{\sharp}: W \rightarrow W \otimes W$ is given by

$$
d_{\sharp}\left(e_{i}\right)=\sum_{j=0}^{[i / 2]} e_{2 j} \otimes e_{i-2 j}+e_{2 j+1} \otimes T e_{i-2 j-1},
$$

it follows that

$$
\begin{align*}
& P(\alpha, \beta) \cap P_{i}(a)=0, \\
& P_{j}(\alpha) \cap P_{i}(a)= \begin{cases}P_{i-j}(\alpha \cap a) & \text { if } j \leqq i \\
0 & \text { if } j>i\end{cases} \tag{2.3}
\end{align*}
$$

We see
(2.4) For the homomorphism $\underset{T}{i \times 1})_{*}: H_{*}\left(S^{n} \times M^{2}\right) \rightarrow H_{*}\left(S_{T}^{\infty} \times M^{2}\right)$ induced by the inclusion, we have

$$
(\underset{T}{i \times 1})_{*}\left[S^{n} \underset{\sim}{\times} M^{2}\right]=P_{n}([M]) .
$$

Let X be a Hausdorff space with a free involution T. Consider the induced chain map $T_{\ddagger}: S(X) \rightarrow S(X), \pi_{\ddagger}: S(X) \rightarrow S\left(X_{T}\right)$ of singular complexes, where $\pi: X \rightarrow X_{T}$ is the projection. Then a chain map $\phi: S\left(X_{T}\right) \rightarrow S(X)$ can be defined by

$$
\phi(c)=\tilde{c}+T_{\sharp}(\tilde{c}), \quad \pi_{\sharp}(\tilde{c})=c
$$

($c \in S\left(X_{T}\right), \tilde{c} \in S(X)$), and we have 'transfer homomorphisms'

$$
\phi_{*}: H_{*}\left(X_{T}\right) \rightarrow H_{*}(X), \quad \phi^{*}: H^{*}(X) \rightarrow H^{*}\left(X_{T}\right) .
$$

These are obviously functorial with respect to equivariant maps.
We have the following (2.5) and (2.6) (see §2 of [7]).
(2.5) For any $a \in H_{*}\left(X_{T}\right)$, the diagram

$$
\begin{aligned}
& H^{*}\left(X_{T}\right) \xrightarrow{\cap a} H_{*}\left(X_{T}\right) \\
& \pi^{*} \\
& H^{*}(X) \xrightarrow{\cap \phi_{*}(a)} H_{*}(X)
\end{aligned}
$$

is commutative.
(2.6) If X is a closed manifold, then $\phi_{*}\left[X_{T}\right]=[X]$.

The following is easily seen.
(2.7) For $\phi^{*}: H^{*}\left(S^{\infty} \times M^{2}\right) \rightarrow H^{*}\left(S_{T}^{\infty} \times M^{2}\right)$, we have

$$
\phi^{*}(1 \times \alpha \times \beta)=P(\alpha, \beta) .
$$

3. Expression of Δ_{∞}

Throughout this section, we assume that the involution T on M is free.

We shall consider the element $\Delta_{\infty} \in H^{m}\left(S_{T}^{\infty} \times M^{2}\right)$.
(3.1) Lemma. For $n \geqq 1$ we have

$$
\Delta_{\infty} \cap P_{n}([M])=0
$$

Proof. In the commutative diagram
we have $H_{n+m}\left(S^{\infty} \times \underset{T}{\times}\right) \cong H_{n+m}\left(M_{T}\right)=0(n \geqq 1)$, for the involution T on M is free. Therefore by (2.4), (1.1) and (1.2) we see

$$
\begin{aligned}
& \Delta_{\infty} \cap P_{n}([M])=\Delta_{\infty} \cap(\underset{T}{i \times 1})_{*}\left[S^{n} \underset{T}{\times} M^{2}\right] \\
& =(\underset{T}{i \times 1})_{*}\left((\underset{T}{i \times 1})^{*} \Delta_{\infty} \cap\left[S^{n} \underset{T}{\times} M^{2}\right]\right) \\
& =(i \times 1)_{*}\left(\Delta_{n} \cap\left[S^{n} \times M^{2}\right]\right) \\
& =(\underset{T}{i \times 1})_{*}(\underset{T}{1 \times \Delta})_{*}\left[S^{n} \underset{T}{\times} M\right] \\
& =(1 \underset{T}{\times \Delta})_{*}(\underset{T}{i \times 1})_{*}\left[S^{n} \underset{T}{\times} M\right] \\
& =0 \text {. }
\end{aligned}
$$

(3.2) Proposition. Let $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right\}$ be a basis for the vector space $H^{*}(M)$, and put $a_{i}=\alpha_{i} \cap[M], i=1,2, \cdots, s . \quad$ For $\Delta_{*}: H_{*}(M) \rightarrow H_{*}\left(M^{2}\right)$, let

$$
\Delta_{*}([M])=\sum_{j, k} \varepsilon_{j_{k}} a_{j} \times a_{k} \quad\left(\varepsilon_{j_{k}} \in Z_{2}\right)
$$

Then we have

$$
\varepsilon_{j j}=0, \quad \varepsilon_{j k}=\varepsilon_{k j}
$$

for each j, k, and

$$
\Delta_{\infty}=\sum_{j<k} \varepsilon_{j_{k}} \phi^{*}\left(1 \times \alpha_{j} \times \alpha_{k}\right)
$$

where $\phi^{*}: H^{*}\left(S^{\infty} \times M^{2}\right) \rightarrow H^{*}\left(S^{\infty} \underset{\boldsymbol{T}}{\times} M^{2}\right)$ is the transfer homomorphism.
Proof. In virtue of (2.2) we can put

$$
\Delta_{\infty}=\sum_{i, j} g_{i j} P_{i}\left(\alpha_{j}\right)+\sum_{j<k} h_{j_{k}} P\left(\alpha_{j}, \alpha_{k}\right)
$$

$\left(g_{i j}, h_{j_{k}} \in Z_{2}\right) . \quad$ Then it follows from (3.1) and (2.3) that

$$
0=\Delta_{\infty} \cap P_{n}([M])=\sum_{i=0}^{n} \sum_{j=1}^{s} g_{i j} P_{n-i}\left(a_{j}\right)
$$

for any $n \geqq 1$. Therefore by (2.2) it holds $g_{i j}=0$ for any i, j, and hence by (2.7)

$$
\Delta_{\infty}=\sum_{j<k} h_{j_{k}} \phi^{*}\left(1 \times \alpha_{j} \times \alpha_{k}\right)
$$

By (2.5) and (2.6) the diagram

is commutative. Therefore by (2.6) and (1.2) we have

$$
\begin{aligned}
& (1 \times \Delta)_{*}\left[S^{n} \times M\right] \\
= & (1 \times \Delta)_{*} \phi_{*}\left[S^{n} \times M\right]=\phi_{*}(1 \times \Delta)_{T}\left[S^{n} \times \underset{T}{\times} M\right] \\
= & \phi_{*}\left(\Delta_{n} \cap\left[S^{n} \underset{T}{\times} M^{2}\right]\right)=\pi^{*}\left(\Delta_{n}\right) \cap\left[S^{n} \times M^{2}\right] .
\end{aligned}
$$

Since the diagram

is commutative, we have

$$
\begin{aligned}
& (1 \times \Delta)_{*}\left[S^{n} \times M\right] \\
= & \pi^{*}(i \times 1)^{*}\left(\Delta_{\infty}\right) \cap\left[S^{n} \times M^{2}\right] \\
= & (i \times 1)^{*} \pi^{*}\left(\Delta_{\infty}\right) \cap\left[S^{n} \times M^{2}\right] \\
= & (i \times 1)^{*} \pi^{*}\left(\sum_{j<k} h_{j_{k}} \phi^{*}\left(1 \times \alpha_{j} \times \alpha_{k}\right)\right) \cap\left[S^{n} \times M^{2}\right] \\
= & \sum_{j<k} h_{j_{k}}(i \times 1)^{*}\left(1 \times \alpha_{j} \times \alpha_{k}+1 \times \alpha_{k} \times \alpha_{j}\right) \cap\left[S^{n} \times M^{2}\right] \\
= & \sum_{j<k} h_{j_{k}}\left(1 \times \alpha_{j} \times \alpha_{k}+1 \times \alpha_{k} \times \alpha_{j}\right) \cap\left(\left[S^{n}\right] \times[M] \times[M]\right) \\
= & {\left[S^{n}\right] \times \sum_{j<k} h_{j_{k}}\left(a_{j} \times a_{k}+a_{k} \times a_{j}\right) . }
\end{aligned}
$$

On the other hand, by the assumption we have

$$
\begin{aligned}
& (1 \times \Delta)_{*}\left(\left[S^{n}\right] \times[M]\right) \\
= & {\left[S^{n}\right] \times \sum_{j, k} \varepsilon_{j k} a_{j} \times a_{k} . }
\end{aligned}
$$

Thus we see that $\varepsilon_{j j}=0, \varepsilon_{j k}=\varepsilon_{k j}=h_{j k}(j<k)$ and $\Delta_{\infty}=\sum_{j<k} \varepsilon_{j k} \phi^{*}\left(1 \times \alpha_{j} \times \alpha_{k}\right)$. This completes the proof.

Define a bilinear form

$$
\circ: H^{*}(M) \times H^{*}(M) \rightarrow Z_{2}
$$

by

$$
\alpha \circ \beta=\left\langle\alpha \cup T^{*} \beta,[M]\right\rangle .
$$

By Poincare duality this is non-singular. We have also
(3.3) Proposition. The bilinear form \circ is symplectic, i.e. $\alpha \circ \alpha=0$ for any $\alpha \in H^{*}(M)$.

Proof. Note first that \circ is symmetric. In fact,

$$
\begin{aligned}
& \alpha \circ \beta=\left\langle\alpha \cup T^{*} \beta,[M]\right\rangle \\
= & \left\langle T^{*}\left(T^{*} \alpha \cup \beta\right),[M]\right\rangle=\left\langle T^{*} \alpha \cup \beta, T_{*}[M]\right\rangle \\
= & \left\langle T^{*} \alpha \cup \beta,[M]\right\rangle=\left\langle\beta \cup T^{*} \alpha,[M]\right\rangle \\
= & \beta \circ \alpha .
\end{aligned}
$$

Therefore we have

$$
(\alpha+\beta) \circ(\alpha+\beta)=\alpha \circ \alpha+\beta \circ \beta
$$

Thus it suffices to prove that $\alpha \circ \alpha=0$ for each element α of a basis for $H^{*}(M)$. To do this, take the basis $\left\{a_{1}^{*}, \ldots, a_{s}^{*}\right\}$ dual to a basis $\left\{a_{1}, \cdots, a_{s}\right\}$ for $H_{*}(M)$. Then it follows from (3.2) that

$$
\begin{aligned}
a_{i}^{*} \circ a_{i}^{*} & =\left\langle a_{i}^{*} \cup T^{*} a_{i}^{*},[M]\right\rangle \\
& =\left\langle a_{i}^{*} \times a_{i}^{*}, \Delta_{*}[M]\right\rangle \\
& =\left\langle a_{i}^{*} \times a_{i}^{*}, \sum_{j \neq k} \varepsilon_{j k} a_{j} \times a_{k}\right\rangle \\
& =\sum_{j \neq k} \varepsilon_{j k}\left\langle a_{i}^{*}, a_{j}\right\rangle\left\langle a_{i}^{*}, a_{k}\right\rangle \\
& =0 .
\end{aligned}
$$

Remark. (3.3) is known by G. Bredon (see Corollary 1.11 of [2]).
Let V be a finite dimensional vector space over Z_{2}, on which a nonsingular symplectic bilinear form

$$
\circ: V \times V \rightarrow Z_{2}
$$

is given. Such V is called a non-singular symplectic vector space over Z_{2}. It is known that for such V we can take a symplectic basis, i.e. a basis $\left\{v_{1}, \cdots, v_{r}, v_{1}^{\prime}, \cdots, v_{r}^{\prime}\right\}$ such that

$$
v_{i} \circ v_{j}=0, \quad v_{i}^{\prime} \circ v_{j}^{\prime}=0, \quad v_{i} \circ v_{j}^{\prime}=\delta_{i j}
$$

(see [1]).
As is shown above, if M is a closed manifold with a free involution, then $H^{*}(M)$ is a non-singular symplectic vector space over Z_{2} with respect to the bilinear form \circ defined above.
(3.4) Theorem. Let $\left\{\mu_{1}, \cdots, \mu_{r}, \mu_{1}{ }^{\prime}, \cdots, \mu_{r}{ }^{\prime}\right\}$ be a symplectic basis for $H^{*}(M)$, then we have

$$
\Delta_{\infty}=\sum_{i=1}^{r} \phi^{*}\left(1 \times \mu_{i} \times \mu_{i}^{\prime}\right),
$$

where $\phi^{*}: H^{*}\left(S^{\infty} \times M^{2}\right) \rightarrow H^{*}\left(S^{\infty} \underset{T}{\times} M^{2}\right)$ is the transfer homomorphism.
Proof. Put $a_{i}=\mu_{i} \cap[M], a_{i}{ }^{\prime}=\mu_{i}{ }^{\prime} \cap[M](i=1, \cdots, r)$. Then $\left\{a_{1}, \cdots, a_{r}, a_{1}{ }^{\prime}\right.$, $\left.\cdots, a_{r}{ }^{\prime}\right\}$ is a basis for $H_{*}(M)$. We have

$$
\begin{aligned}
& \left\langle T^{*} \mu_{i}^{\prime}, a_{j}\right\rangle=\left\langle T^{*} \mu_{i}^{\prime}, \mu_{j} \cap[M]\right\rangle \\
= & \left\langle\mu_{j} \cup T^{*} \mu_{i}^{\prime},[M]\right\rangle=\mu_{j} \circ \mu_{i}^{\prime}=\delta_{i j},
\end{aligned}
$$

and similarly $\left\langle T^{*} \mu_{i}, a_{j}{ }^{\prime}\right\rangle=\delta_{i j},\left\langle T^{*} \mu_{i}, a_{j}\right\rangle=0,\left\langle T^{*} \mu_{i}{ }^{\prime}, a_{j}{ }^{\prime}\right\rangle=0$. Therefore if $\left\{a_{1}^{*}, \cdots, a_{r}^{*}, a_{1}^{\prime *}, \cdots, a_{r}^{\prime *}\right\}$ denote the basis dual to $\left\{a_{1}, \cdots, a_{r}, a_{1}{ }^{\prime}, \cdots, a_{r}\right\}$, we have

$$
a_{i}^{*}=T^{*} \mu_{i}^{\prime}, \quad a_{i}{ }^{*}=T^{*} \mu_{i} .
$$

Consequently it follows that

$$
\begin{aligned}
& \left\langle a_{i}^{*} \times a_{j}{ }^{*}, \Delta_{*}[M]\right\rangle \\
= & \left\langle T^{*} \mu_{\mu_{i}} \times T^{*} \mu_{j}, \Delta_{*}[M]\right\rangle \\
= & \mu_{j} \circ \mu_{i}^{\prime}=\delta_{i j},
\end{aligned}
$$

and similarly

$$
\left\langle a_{i}{ }^{*} \times a_{j}^{*}, \Delta_{*}[M]\right\rangle=\delta_{i j} .
$$

This shows that

$$
\Delta_{*}[M]=\sum_{i=1}^{r} a_{i} \times a_{i}^{\prime}+a_{i}^{\prime} \times a_{i}
$$

Thus, by (3.2) we get the desired result.

4. The number $\hat{\chi}(\psi)$

Let V and W be non-singular symplectic vector spaces over Z_{2}, and $\psi: V \rightarrow W$ be a linear map of vector spaces. Then we define a number

$$
\hat{\chi}(\psi)=\sum_{i=1}^{r} \psi\left(v_{i}\right) \circ \psi\left(v_{i}^{\prime}\right) \in Z_{2}
$$

by making use of a symplectic basis $\left\{v_{1}, \cdots, v_{r}, v_{1}{ }^{\prime}, \cdots, v_{r}\right\}$ for V.

If $\left\{w_{1}, \cdots, w_{t}, w_{1}^{\prime}, \cdots, w_{t}^{\prime}\right\}$ is a symplectic basis for W and if

$$
\begin{aligned}
& \psi\left(v_{j}\right)=\sum_{i} a_{i j} w_{i}+\sum_{i} c_{i j} w_{i}^{\prime}, \\
& \psi\left(v_{j}^{\prime}\right)=\sum_{i} b_{i j} w_{i}+\sum_{i} d_{i j} w_{i}^{\prime},
\end{aligned}
$$

then it can be easily seen that

$$
\hat{\chi}(\psi)=\operatorname{trace}\left({ }^{t} A D+{ }^{t} B C\right)
$$

for the matrices $A=\left(a_{i j}\right), \cdots$, where ${ }^{t} A$ denotes the transposed matrix of A.
(4.1) Lemma $\hat{\chi}(\psi)$ is independent of the choice of symplectic bases for V.

Proof. Let $\left\{u_{1}, \cdots, u_{r}, u_{1}{ }^{\prime}, \cdots, u_{r}\right\}$ be another symplectic basis for V, and put

$$
\begin{aligned}
& \psi\left(u_{j}\right)=\sum_{i} a_{i j}^{\prime} w_{i}+\sum_{i} c_{i j}^{\prime} w w_{i}^{\prime}, \\
& \psi\left(u_{j}{ }^{\prime}\right)=\sum_{i} b_{i j}^{\prime} w_{i}+\sum_{i} d_{i j}^{\prime} w_{i}^{\prime} .
\end{aligned}
$$

We shall show

$$
\operatorname{trace}\left({ }^{t} A^{\prime} D^{\prime}+{ }^{t} B^{\prime} C^{\prime}\right)=\operatorname{trace}\left({ }^{t} A D+{ }^{t} B C\right)
$$

Let

$$
\begin{aligned}
& u_{j}=\sum_{i} p_{i j} v_{i}+\sum_{i} r_{i j} v_{i}^{\prime} \\
& u_{j}^{\prime}=\sum_{i} q_{i j} v_{i}+\sum_{i} s_{i j} v_{i}^{\prime}
\end{aligned}
$$

Then the symplectic conditions imply

$$
\begin{gathered}
{ }^{t} P R+{ }^{t} R P=0, \quad{ }^{t} Q S+{ }^{t} S Q=0 \\
{ }^{t} P S+{ }^{t} R Q=E
\end{gathered}
$$

where E is the identity matrix. This shows that

$$
\left(\begin{array}{ll}
{ }^{t} P & { }^{t} R \\
{ }^{t} Q & { }^{t} S
\end{array}\right)\left(\begin{array}{ll}
S & R \\
Q & P
\end{array}\right)=E .
$$

Therefore we have

$$
\begin{gather*}
S^{t} R+R^{t} S=0, \quad Q^{t} P+P^{t} Q=0, \tag{*}\\
S^{t} P+R^{t} Q=E
\end{gather*}
$$

On the other hand, since

$$
\left(\begin{array}{ll}
A^{\prime}, & B^{\prime} \\
C^{\prime}, & D^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{ll}
P & Q \\
R & S
\end{array}\right)
$$

we have

$$
\begin{aligned}
& \operatorname{trace}\left({ }^{t} A^{\prime} D^{\prime}+{ }^{t} B^{\prime} C^{\prime}\right) \\
= & \operatorname{trace}\left({ }^{t}(A P+B R)(C Q+D S)+{ }^{t}(A Q+B S)(C P+D R)\right) \\
= & \operatorname{trace}\left({ }^{t} P^{t} A C Q+{ }^{t} P^{t} A D S+{ }^{t} R^{t} B C Q+{ }^{t} R^{t} B D S\right. \\
& \left.+{ }^{t} Q^{t} A C P+{ }^{t} Q^{t} A D R+{ }^{t} S^{t} B C P+{ }^{t} S^{t} B D R\right) \\
= & \operatorname{trace}\left(Q^{t} P^{t} A C+S^{t} P^{t} A D+Q^{t} R^{t} B C+S^{t} R^{t} B D\right. \\
& \left.+P^{t} Q^{t} A C+R^{t} Q^{t} A D+P^{t} S^{t} B C+R^{t} S^{t} B D\right) .
\end{aligned}
$$

By (*) this is equal to trace $\left({ }^{t} A D+{ }^{t} B C\right)$, and the proof is complete.
The following is obvious.
(4.2) Lemma. Let V be a non-singular symplectic vector space over Z_{2}. Then $\operatorname{dim} V$ is even, and for the identity map id: $V \rightarrow V$ we have

$$
\hat{\chi}(i d)=\frac{1}{2} \operatorname{dim} V \bmod 2 .
$$

5. Main theorem

We assume that N is a closed manifold and the involution on M is free, and consider the element $\Delta_{N} \in H^{m}\left(N \underset{T}{\times} M^{2}\right)$. Since there exists an equivariant map $h: N \rightarrow S^{\infty}$, by (1.1) and (3.4) we have immediately
(5.1) Lemma. For any symplectic basis $\left\{\mu_{1}, \cdots, \mu_{r}, \mu_{1}{ }^{\prime}, \cdots, \mu_{r}{ }^{\prime}\right\}$ for $H^{*}(M)$, it holds

$$
\Delta_{N}=\sum_{i=1}^{r} \phi^{*}\left(1 \times \mu_{i} \times \mu_{i}^{\prime}\right)
$$

where $\phi^{*}: H^{*}\left(N \times M^{2}\right) \rightarrow H^{*}\left(N \underset{T}{\times} M^{2}\right)$ is the transfer homomorphism.
Let $f: N \rightarrow M$ be a continuous map. Then $f^{*}: H^{*}(M) \rightarrow H^{*}(N)$ is a linear map of non-singular symplectic vector spaces over Z_{2}, and hence we have the number $\hat{\chi}\left(f^{*}\right)$ which will be denoted by $\hat{\chi}(f)$. We call $\hat{\chi}(f)$ the equivariant Lefschetz number of f :

$$
\hat{\chi}(f)=\sum_{i=1}^{r}\left\langle f^{*} \mu_{i} \cup T^{*} f^{*} \mu_{i}^{\prime},[N]\right\rangle
$$

Analogously to the Lefschetz fixed point theorem which asserts that the fixed point index coincides with the Lefschetz number, we have
(5.2) Theorem. If $\operatorname{dim} M=\operatorname{dim} N$, then the equivariant point index $\hat{I}(f)$ coincides with the equivariant Lefschetz number $\hat{\chi}(f)$.

Proof. Consider an equivariant map $k: N \rightarrow N \times N^{2}$ given by $k(y)=$ $(y, y, T(y))$. Since the diagram
is commutative, it follows from (5.1) that

$$
\begin{aligned}
& \hat{f}_{T}^{*}\left(\Delta_{N}\right)=k_{T}^{*}\left(1 \times f_{T}^{2}\right)^{*}\left(\Delta_{N}\right) \\
= & \sum_{i=1}^{r} k_{T}^{*}\left(1 \times f_{T}^{2}\right)^{*} \phi^{*}\left(1 \times \mu_{i} \times \mu_{i}^{\prime}\right) \\
= & \sum_{i=1}^{r} k_{T}^{*} \phi^{*}\left(1 \times f^{2}\right)^{*}\left(1 \times \mu_{i} \times \mu_{i}^{\prime}\right) \\
= & \sum_{i=1}^{r} k_{T}^{*} \phi^{*}\left(1 \times f^{*} \mu_{i} \times f^{*} \mu_{i}^{\prime}\right) .
\end{aligned}
$$

Let $d: N \rightarrow N^{3}$ be the diagonal map, then the diagram

is commutative. Consequently we have

$$
\begin{aligned}
\hat{f}_{T}^{*}\left(\Delta_{N}\right) & =\sum_{i=1}^{r} \phi^{*} d^{*}(1 \times 1 \times T)^{*}\left(1 \times f^{*} \mu_{i} \times f^{*} \mu_{i}^{\prime}\right) \\
& =\sum_{i=1}^{r} \phi^{*}\left(f^{*} \mu_{i} \cup T^{*} f^{*} \mu_{i}^{\prime}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \left\langle\hat{f}_{T}^{*}\left(\Delta_{N}\right),\left[N_{T}\right]\right\rangle=\sum_{i=1}^{r}\left\langle f^{*} \mu_{i} \cup T^{*} f^{*} \mu_{i}^{\prime}, \phi_{*}\left[N_{T}\right]\right\rangle \\
= & \sum_{i=1}^{r}\left\langle f^{*} \mu_{i} \cup T^{*} f^{*} \mu_{i}^{\prime},[N]\right\rangle=\sum_{i=1}^{r} f^{*} \mu_{i} \circ f^{*} \mu_{i}^{\prime} .
\end{aligned}
$$

This completes the proof.
Now the following main theorem is a consequence of (1.3) and (5.2).
(5.3) Main theorem. Let M and N be closed manifolds on each of which a free involution T is given. Let $f: N \rightarrow M$ be a continuous map such that $\hat{\chi}(f) \neq 0$. Then there exists a point $y \in N$ such that $f T(y)=T f(y)$.

For a closed manifold M such that the dimension of the vector space $H_{*}(M)$ is even, an integer mod 2 given by

$$
\hat{\chi}(M)=\frac{1}{2} \operatorname{dim} H_{*}(M) \bmod 2
$$

is called the semicharacteristic of M.
By (5.2) we have
(5.4) Corollary. Let T, T^{\prime} be free involutions on a closed manifold M with $\hat{\chi}(M) \equiv 0$. Let $f: M \rightarrow M$ be a continuous map of degree odd such that $f_{*} \circ T_{*}^{\prime}$ $=T_{*} \circ f_{*}: H_{*}(M) \rightarrow H_{*}(M)$. Then there exists a point $x \in M$ such that $f T^{\prime}(x)=$ $T f(x)$. In particular, if $T_{*}=T_{*^{\prime}}: H(M) \rightarrow H_{*}(M)$ then T and T^{\prime} have a coincidence.

We have also the following corollary of (5.3).
(5.5) Corollary. Let M be a closed manifold with a free involution T, and assume $\hat{\chi}(M) \equiv 0$ mod 2 . Then, for a continuous map $f: M \rightarrow M$ such that $f_{*}: H_{*}(M) \rightarrow H_{*}(M)$ is the identity, there exists a point $x \in M$ such that $f T(x)=$ $T f(x)$.

Remark. If we take in (5.5) a mod 2 homology sphere as M, we get Theorem 1 in Milnor [5].

6. Applications

(6.1) Theorem. Let M be a closed manifold such that $\operatorname{dim} H^{*}(M) \equiv$ $2 \bmod 4$, and G be a group acting freely on M. Then
i) G can have at most one element T of order 2 such that $T_{*}: H_{*}(M) \rightarrow$ $H_{*}(M)$ is a given isomosphism.
ii) If $T \in G$ is an element of order 2 such that $T_{*}: H_{*}(M) \rightarrow H_{*}(M)$ is the identity, T lies in the center of G.
iii) If $T \in G$ is an element of order $2, T$ lies in the centralizer of $G_{0}=\{S \in G$; $\left.S_{*}=i d: H_{*}(M) \rightarrow H_{*}(M)\right\}$.

Proof. Let $T, T^{\prime}, S \in G$, and let T, T^{\prime} have order 2. It follows from (5.4) that if $T_{*}=T_{*}^{\prime}$ then $T\left(x_{1}\right)=T^{\prime}\left(x_{1}\right)$ for some $x_{1} \in M$, and that if $T_{*}=T_{*}^{\prime}=i d$ then $S T\left(x_{2}\right)=T S\left(x_{2}\right)$ for some $x_{2} \in M$. It follows from (5.5) that if $S \in G_{0}$ then $S T\left(x_{3}\right)$ $=T S\left(x_{3}\right)$ for some $x_{3} \in M$. Since G acts freely on M, we have the desired results.

Let $D(2 l)$ denote the dihedral group with presentation $\left(X, Y ; X^{2}=(X Y)^{2}\right.$ $=Y^{l}=1$).
(6.2) Theorem. Let M be a closed manifold on which $D(2 l)$ acts freely. Assume that $\hat{\chi}(M) \not \equiv 0$ and l is an odd >1. Then the representation of $D(2 l)$ on $H_{*}(M)$ given by sending $S \in D(2 l)$ to $S_{*}: H_{*}(M) \rightarrow H_{*}(M)$ is faithful.

Proof. Any element of $D(2 l)$ has a form $X^{\ell} Y^{i}(\varepsilon=0,1,0 \leqq i<l)$. We shall
show that $X_{*} \neq \mathrm{id}$ and $\left(X^{\varepsilon} Y^{i}\right)_{*} \neq \mathrm{id}(\varepsilon=0,1,1 \leqq i<l)$.
i) Assume $X_{*}=$ id. Then we have $X Y=Y X$ by ii) of (6.1). Since $X=Y X Y$, this implies $Y^{2}=1$. Since the order of Y is l, this is a contradiction. Thus $X_{*} \neq \mathrm{id}$.
ii) Assume $\left(X^{\varepsilon} Y^{i}\right)_{*}=$ id with $\varepsilon=0,1,1 \leqq i<l$. Then we have $X^{\varepsilon+1} Y^{i}=$ $X^{i} Y^{i} X$, i.e. $X Y^{i}=Y^{i} X$ by iii) of (6.1). This implies $Y^{2 i}=1$ which shows $i=0$. Thus $\left(X^{\ell} Y^{i}\right)_{*} \neq$ id for $\varepsilon=0,1$ and $1 \leqq i<l$.

Consider the group $Q(8 n, k, l)$ stated in Introduction.
(6.3) Theorem. If n is even and $l>1$, the group $Q(8 n, k, l)$ can not act freely on any mod 2 homology sphere whose dimension is $3 \bmod 8$.

Proof. Put $\bar{A}=A^{k}$, then we have

$$
\begin{aligned}
& X^{2}=(X Y)^{2}=Y^{2 n}, \bar{A}^{l}=1 \\
& X \bar{A} X^{-1}=\bar{A}, \quad Y \bar{A} Y^{-1}=\bar{A}^{-1}
\end{aligned}
$$

Therefore the subgroup in $Q(8 n, k, l)$ generated by $\{X, Y, \bar{A}\}$ is isomorphic to $Q(8 n, 1, l)$. Thus it suffices to prove (6.3) in the special case when $k=r=1$.

Put $\bar{Y}=Y^{2}$, then we have in $Q(8 n, 1, l)$

$$
\begin{gathered}
X^{2}=(X \bar{Y})^{2}=\bar{Y}^{n}, \\
Y X Y^{-1}=\bar{Y} X, \quad Y \bar{Y} Y^{-1}=\bar{Y}, \\
A X A^{-1}=X, \quad A \bar{Y} A^{-1}=\bar{Y} .
\end{gathered}
$$

Therefore the subgroup in $Q(8 n, 1, l)$ generated by $\{X, \bar{Y}\}$ is a normal subgroup isomorphic to the binary dihedral group $Q(4 n)$. The quotient group $Q(8 n, 1, l) /$ $Q(4 n)$ is generated by the classes $T=[Y]$ and $S=[A]$ with relations $T^{2}=(T S)^{2}=S^{l}=1$, and so is isomorphic to $D(2 l)$.

Suppose now that we have a free action of $Q(8 n, 1, l)$ on a mod 2 homology sphere L of dimension $8 t+3$. Let $M=L / Q(4 n)$ be the quotient manifold of L under the action of the normal subgroup $Q(4 n)$. Then there is a natural free action of $D(2 l)$ on M.

Since $\vec{H}_{i}(L)=0$ for $i<8 t+3$, it follows that

$$
H_{i}(M) \cong H_{i}(Q(4 n)) \quad(i<8 t+3) .
$$

Since n is even, we have

$$
H_{i}(Q(4 n))= \begin{cases}Z_{2} & i \equiv 0 \bmod 4 \\ Z_{2} \oplus Z_{2} & i \equiv 1 \bmod 4 \\ Z_{2} \oplus Z_{2} & i \equiv 2 \bmod 4 \\ Z_{2} & i \equiv 3 \bmod 4\end{cases}
$$

(see [3], p. 254). Therefore it holds

$$
\hat{\chi}(M)=\sum_{i=0}^{4 t+1} \operatorname{dim} H_{i}(M) \neq 0 \bmod 2 .
$$

Under the isomorphism of $H_{i}(M)$ to $H_{i}(Q(4 n))(i<8 t+3)$, the induced homomor$\operatorname{phism} S_{*}: H_{i}(M) \rightarrow H_{i}(M)$ corresponds to the homomorphism $\sigma_{*}: H_{i}(Q(4 n)) \rightarrow$ $H_{i}(Q(4 n))$ induced by the homomorphism $\sigma: Q(4 n) \rightarrow Q(4 n)$ sending each element U to $A U A^{-1}$. Since $A X A^{-1}=X, A \bar{Y} A^{-1}=\bar{Y}$, we see that S_{*} is the identity for $i<8 t+3$. This is obvious for $i \geqq 8 t+3$. Since T is of order 2, it follows from (6.1) that $S T=T S$. Since l is odd >1, this is a contradiction, and the proof completes.

Let $P^{\prime \prime}(48 r)$ denote the group with generators X, Y, Z, A and relations

$$
\begin{aligned}
& X^{2}=Y^{2}=Z^{2}=(X Y)^{2}, \quad A^{3 r}=1 \\
& Z X Z^{-1}=Y X, \quad Z Y Z^{-1}=Y^{-1}, \quad A X A^{-1}=Y \\
& A Y A^{-1}=X Y, \quad Z A Z^{-1}=A^{-1}
\end{aligned}
$$

where r is an odd positive integer. Milnor proves in [5] that if r is not a power of 3 then $P^{\prime \prime}(48 r)$ can not act freely on any homotopy 3 -sphere. More generally we have
(6.4) Theorem. If r is not a power of 3, the group $P^{\prime \prime}(48 r)$ can not act freely on any mod 2 homology sphere whose dimension is 3 mod 8.

Proof. Let $r=3^{k-1} l$ with $(l, 6)=1, l \geqq 5$. Then it follows that the subgroup in $P^{\prime \prime}(48 r)$ generated by $\left\{X, Y, A^{l}\right\}$ is a normal subgroup isomorphic to $P^{\prime}\left(8 \cdot 3^{k}\right)$ and its quotient group is isomorphic to $D(2 l)$, where $P^{\prime}\left(8 \cdot 3^{k}\right)$ denotes the group with presentation $\left(X, Y, A ; X^{2}=Y^{2}=(X Y)^{2}, A^{3 k}=1, A X A^{-1}=Y, A Y A^{-1}=\right.$ $X Y$).

Suppose now that we have a free action of $P^{\prime \prime}(48 r)$ on a mod 2 homology sphere L of dimension $8 t+3$. If we put $M=L / P^{\prime}\left(8 \cdot 3^{k}\right)$, there is a natural free action of $D(2 l)$ on M. We have $H_{i}(M) \cong H_{i}\left(P^{\prime}\left(8 \cdot 3^{k}\right)\right)$ for $i<8 t+3$. The subgroup in $P^{\prime}\left(8 \cdot 3^{k}\right)$ generated by $\{X, Y\}$ is isomorphic to the quaternion group $Q(8)$, and its quotient group is isomorphic to $Z_{3^{k}}$. Therefore it is easily seen that

$$
H_{i}\left(P^{\prime}\left(8 \cdot 3^{k}\right)\right)= \begin{cases}Z_{2} & i \equiv 0 \bmod 4 \\ 0 & i \equiv 1 \bmod 4 \\ 0 & i \equiv 2 \bmod 4 \\ Z_{2} & i \equiv 3 \bmod 4\end{cases}
$$

Thus $\hat{\chi}(M) \not \equiv 0$ and the action of $D(2 l)$ on $H_{*}(M)$ is trivial. By (6.1) this is a contradiction, and the proof completes.
(Added Nov. 27, 1973). R.E. Stong [10] proves the following theorem. As an application of Theorem (5.2) we shall prove this theorem.
(6.5) Theorem. If a closed mainfold N admits a free action of $Z_{2} \times Z_{2}$, then $\hat{\chi}(N)=0$.

Proof. Taking generators T and S of $Z_{2} \times Z_{2}$, regard N as a manifold with involution by T, and S a continuous map of N to itself. Then it follows from (5.2) that $\hat{I}(S)=\hat{\chi}(S)$.

Define $\Delta, \Delta^{\prime}: N \rightarrow N \times N$ by $\Delta(y)=(y, T y), \Delta^{\prime}(y)=(y, S y)$. Then the $\operatorname{map} \hat{S}_{T}: N_{T} \rightarrow \underset{T}{N \times} N^{2}$ is the composition of $\Delta_{T}^{\prime}: N_{T} \rightarrow \underset{T}{\times} N$ and $\underset{T}{\times} \Delta: \underset{T}{N} N \rightarrow$ $\underset{\sim}{N} \times N^{2}$. Therefore it holds that

$$
\begin{aligned}
\hat{I}(S) & =\left\langle\hat{S}_{T}^{*}\left(\Delta_{N}\right),\left[N_{T}\right]\right\rangle \\
& =\left\langle\Delta_{T}^{*}(1 \times \Delta)_{T}^{*}\left(\Delta_{N}\right),\left[N_{T}\right]\right\rangle .
\end{aligned}
$$

Let ν_{N} denote the normal bundle of the imbedding $\underset{T}{1 \times \Delta: N} \underset{T}{N} N \rightarrow \underset{T}{N} N^{2}$. Then it is obvious that $(\underset{r}{\times} \Delta)^{*}\left(\Delta_{N}\right)$ is the n-th Stiefel-Whitney class $w_{n}\left(\nu_{N}\right)$, where $n=\operatorname{dim} N=\operatorname{dim} \nu_{N}$. The involution T on N gives rise to a free involution T on the orbit manifold N_{S}. If $\nu_{N}{ }^{\prime}$ denotes the normal bundle of the imbedding $\underset{T}{\times} \Delta: N_{S} \times N_{S} \rightarrow N_{S} \times N_{S}^{2}$, we have $\nu_{N}=(\underset{T}{\times} p)^{*} \nu_{N}{ }^{\prime}$, where $p: N \rightarrow N_{S}$ is the projection. Therefore it follows that

$$
\left.\begin{array}{rl}
& \Delta_{T}^{\prime *}(1 \times \Delta)_{T}^{*}\left(\Delta_{N}\right)=\Delta_{T}^{\prime *} w_{n}\left(\nu_{N}\right) \\
= & \Delta_{T}^{\prime *}(p \times r
\end{array}\right){ }_{T}^{*} w_{n}\left(\nu_{N}^{\prime}\right)=p_{T}^{*} d_{T}^{*} w_{n}\left(\nu_{N}{ }^{\prime}\right), ~ \$
$$

where $d: N_{S} \rightarrow N_{S} \times N_{S}$ is the diagonal map. Hence

$$
\hat{I}(S)=\left\langle d_{T}^{*} w_{n}\left(\nu_{N}{ }^{\prime}\right), p_{T_{*}}\left[N_{T}\right]\right\rangle=0 .
$$

On the other hand, we have

$$
\begin{aligned}
\hat{\chi}(S) & =\sum_{i=1}^{r}\left\langle S^{*} \mu_{i} \cup T^{*} S^{*} \mu_{i}^{\prime},[N]\right\rangle \\
& =\sum_{i=1}^{r}\left\langle S^{*}\left(\mu_{i} \cup T^{*} \mu_{i}^{\prime}\right),[N]\right\rangle \\
& =\sum_{i=1}^{r}\left\langle\mu_{i} \cup T^{*} \mu_{i}^{\prime},[N]\right\rangle \\
& =\hat{\chi}(N)
\end{aligned}
$$

where $\left\{\mu_{1}, \cdots, \mu_{r}, \mu_{i}^{\prime}, \cdots, \mu_{r}{ }^{\prime}\right\}$ is a symplectic basis for $H^{*}(N)$. Thus $\hat{\chi}(N)=0$.
Osaka University

References

[1] E. Artin: Geometric Algebra, Interscience Publishers, 1957.
[2] G.E. Bredon: Cohomological aspects of transformation groups, Proceedings of the Conference on Transformation Groups, 245-280, Springer, 1967.
[3] H. Cartan and S. Eilenberg: Homological Algebra, Princeton, 1956.
[4] R. Lee: Semicharacteristic classes, Topology. 12 (1973), 183-199.
[5] J. Milnor: Groups which act on S^{n} without fixed points, Amer. J. Math. 79 (1957), 623-630.
[6] M. Nakaoka: Generalization of Borsuk-Ulam theorem, Osaka J. Math. 7 (1970), 423-441.
[7] M. Nakaoka: Note on a theorem due to Milnor, Osaka J. Math. 7 (1970), 443449.
[8] E.H. Spanier: Algebraic Topology, McGraw-Hill, 1966.
[9] J.W. Vick: Homology Theory; An Introduction to Algebraic Topology, Academic Press, 1973.
[10] R.E. Stong: Semi-characteristics and free group actions, to appear.

