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ON THE GENERALIZED SOLITON SOLUTIONS OF
THE MODIFIED KORTEWEG-DE VRIES EQUATION
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In this paper, we discuss the asymptotic property of the generalized soliton
solutions of the modified Korteweg-de Vries (K-dv) equation

( 1 ) ‘Z)‘+67)2‘Z)x+1)xx, =0, — oo <X, t< o0

where v, and v, denote partial derivatives of v=uv(x, ) with respect to ¢ and x
respectively. This equation gives one of the simplest modifications of the K-dV'
equation

ut—'6uux+uxxx =0 ’ —oo<Lx, t< oo,

Both of the K-dV equation and the modified K-dV equation are known to
have progressive wave solutions;

u(x, t) = —27"¢ sech® (27'c*(x—ct—3)), c>0
for the K-dV equation,
(2) o(x, t) = £c'/* sech (¢*(x—ct—3)), c>0

for the modified K-dV equation.

Each of such solutions is called a solitary wave solution or a soliton on
account of its shape.

On the other hand, Gardner, Greene, Kruskal and Miura [1] have related
the solution u(f)=u(x, t) of the K-dV equation to the scattering theory of the
one dimensional Schrodinger operator with the potential #(#) and found
that discrete eigenvalues are invariants and the reflection coefficient and
normalization coefficients vary exponentially with respect to ¢ (see also Lax [3]).
Here a soliton of the K-dV equation is characterized as the solution with one
discrete eigenvalue and the zero reflection coefficient. Furthermore, the
reflectionless potential with IV discrete eigenvalues can be written in closed form
in terms of exponentials by the method of Kay and Moses [2] for each 2.
These potentials are called N-tuple wave solutions. N-tuple wave solution
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satisfies actually the K-dV equation and behaves like a superposition of NV solitons
for large ¢ (see Tanaka [7]).

Recently, Tanaka [5], [6] has related the solution of the modified K-dV
equation (1) to the scattering theory of the differential operator

(3) L=i[y _{]o-i[%§] D=duas

where u* denote the complex conjugate of % and, on the basis of this relation,
constructed a family of particular solutions which includes solitons (2) as
the simplest case (see also Wadati [8]). We call these solutions the generalized
soliton solutions.

In this paper, we study the generalized soliton solution with purely imaginary
discrete eigenvalues. In this case, the generalized soliton solutions decompose
into N solitons for large ¢.

Our result is similar to that of the N-tuple wave solution of the K-dV
equation. But comparing with the N-tuple wave solution, the expression of the
generalized soliton solution is somewhat complicated.

In section 1, we summarize the general properties of the scattering data of
L,. Insection 2, following [6], we describe the relation between the scattering
data of L, and a solution of the modified K-dV equation, and introducing the
generalized soliton solutions, we state our main theorem. In section 3, we
rewrite the formula of the generalized soliton solution into the form which is
more convenient for our consideration. In section 4, we give the proof of our
main theorem.

1. The scattering data of L,

We summarize the general properties of the scattering data of L, from
[4], [9]. Consider the eigenvalue problem

(4) Ly=ty y='(y1, )

on the real axis (— oo, o0). If u(x) is integrable, then, for {=E&-in, n>>0, there
are unique solutions ¢, of (4) (called Jost solutions) which behave as

$u(x, £) = (0, 1) exp (itw)+o(l)  x—>oco.
$-(%, £) = (1, 0) exp (—ix)+o(l)  x—>—oo.

Then ¢,(x, §) are analytic in &, I,,§ >0. Note that if y is a solution of (4), then
¥ ="(¥,—¥)

is a solution of (4) where { is replaced by ¢*. If {=E¢ is a non zero real number,
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then ¢, and¢? are linearly independent solutions of (4). So there are a(£) and
b(&) such that

(5) b = a(E)ph+b(E)- -

From (5), a(£)=det(¢_, ¢.), so a(§) can be extended to the analytic function

a($), 1,, £>0.
If u(x) satisfies an additional condition

[" a+1eniu@ dv< e
then there is a function f& L(0, o) such that
a(t) = 1~|—S:f(t) exp (iLt) dt  I£>0.

Moreover, if we assume that a(¥) is not equal to zero for £ R, then a({) has
finite number of zeros &,, &,, ***, Eny Imbe>0. For &=&;, ¢ (x, &) are linearly
dependent, so there is a non zero constant d; such that

b-(x, §5) =d;p.(x,85)  (I<j<N).
By the asymptotic properties of ¢, they are square integrable i.e {; are discrete
eigenvalues of L,. We have

(E5) = —2id; (" goaln, Epra (855) d

Now suppose that §; are simple zeros. Put
¢ci=d;ld'(£;)
(called normalization coefficients of eigenfunctions) and

r(£)=b(8)/a(£)

under the assumption, a(£)%0 for any £ R (called the reflection coefficient).
The triplet S= {r(&), {;, ¢;; 1<j <N} is called the scattering data of L,. Sup-
pose that u=iv is purely imaginary, then eigenvalues {; are distributed sym-
metrically in 7,,5>0 with respect to the imaginary axis, z.e let M be a non
negative integer 2/ <N, and = be a permutation among natural number 1 and
N defined =(j)=j+1, j odd <2M;n(j)=j—1, j even <2M; =(j)=j, j >2M,
then we have

( 6) Cacin = —gaf Cai) = C;"‘

(see Tanaka [5] [6]).
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2. The generalized soliton solutions

For a smooth real valued function v=9(x), put

—v* v, —2* 1o,
B, = —4D3+3[_ 2]D+3D[, 2]

0, —v 1w, —9v

then the operator [B,, L;,]=B,L;,—L,,B, is the multiplication by the matrix

0 — 6V, — Ve ]
600,V pn 0 .

Therefore, for a smooth real valued function v(f)=v(x, t), the operator evolution
equation

( 7) “ddt—Liv(t) = [Bv(t)) Liu(t)]

is equivalent to the modified K-dV equation (1). Now suppose that a smooth
real valued function v(¢)=uv(x, ) is a solution of the modified K-dV equation (1)
which satisfies the conditions for the existence of the scattering data for each ¢.
Consider the operator L;,,, then we have the scattering data S,= {r(§, ?), {;(?),
¢;j(t)} depending on t as a parameter. Then we have

(8) £i(t) = £40)
¢;(t) = ¢;(0) exp (8it5t)
r(&, t) = r(&, 0) exp (8:&%) .

These remarkable facts have been derived from the relation (7) (see Tanaka [5]
and Wadati [8]). Conversely to the above, Tanaka [6] has shown the following.

Theorem (Tanaka [6]). Let = be a permutation defined above, and §; (§;=
EiriFg), ¢; (1<j<N) be complex numbers which satisfy the condition (6). Put

¢ci(t) = c; exp (8iL3t)
N = N, £) = c;(t)'/* exp (if;x).

Let \p;j=;i(x, t), i=1, 2, j=1, 2, --+, N be the solution of

Vit 2 MAEE —EF) E =0
ﬁ;xkhf(é‘k—gf)_l\hk‘f—\h = 7\‘3" (1 <j<N)

with non degenerate coefficient matrix, then the function
(10) o(x, t) = —22 UL AT (%, DYi(a, 1)
is a real valued function and satisfies the modified K-dV equation (1).
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If N=1, then {,=¢3, >0 and ¢,=c is non zero real number. Therefore
we have solutions
o(x, t) = (sign ¢) s (x—47°t—3, 1)
where
s(x, 1) = —2 7 sech 29x
and
8 = 8(c,m) = (2n) ' log (I¢|/27).

These solutions coincide with solutions (2). So we call the solutions o(x, t)
defined by (10) the generalized soliton solutions.

Now let M=0, then {;=17, (1;>0) and ¢;=c; (0) are real. We can assume
0<n,<n,< <7y without loss of generality. We can now state our main
result.

Theorem. Let M=0, then the generalized soliton solutions decompose into
N solitons as t— & oo ;

o(x, )=, (sign c;)s(x—4nit—8%, 7,)~0
uniformly in x, where
85 = 8(cjs m)+n5" log T j1 (1:—75) (2:+m5)7"
85 = 8(cj, n5)+n;* log ILizi(ni— ;) (ni+m:) 7"
3. Rearrangement of the formula (10)

In this section we rewrite the generalized soliton solution o(x, ) (10) into
the form which is more convenient for our purpose.
Put ¢, ;=a;i(x, t)=n;(x, t) ¥r;; (%, t) (=1, 2, 1<j< N). Then we have

v(x, t) = ‘—229{=1¢2i(x’ t)'

Eliminating ¢,; from (9), we have a system of N linear algebraic equations for

¢‘2i

(11) 20, =1 (ISj<N)
where
(12) aj; = aj(x, t) = f‘il)\'?(vi_l_ni)_l (mi+m,)" N7,

(85, being Kronecker’s symbol).

Let V=V (x, ) be the determinant of the coefficient matrix (o, (%, £)) of (11)
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and V;=V(x, t) be the determinant obtained by replacing the j-th column of ¥
by (1, 1, =+, 1). Then by the Cramer’s formula we have

¢2f(x’ t) = Vf(x, t) V(x, t)-1 .
Put

n; = (475" 25)7" -, (an+75)7Y) -
J

e; = t(O’ R 0’ 1’ O) A O)
e=41,1, 1)

P;j = p;5(x, t) = c;j(m;+n;)"" exp (—27;2;)n;
a; = q(x ,t) = ;' exp (2n;2,)e;

where z;=x—473t. Put A ,={1, 2, -+, j}, AV={j, j+1, ---, N} (wedenote Ay
by A.). We use the notations as follows.

For JCA, o€ I(]) means that o is an injective mapping from J into A, for
J» kRE A, k< j,0 € B(k, j) means that o is a bijective mapping from A¥— {j} onto
A**', and o€ .S7 means that ¢ is a permutation among natural numbers j and
N. For J, ]’ CA, put

(13) e(]) j/; X, t) = €xp (ZZielnizi_ZEieJ/nizi)-

Now, for JCA and o€ I(J°), let V(], 6)=V(], o; , t) be the determinant
of N-th order whose i-th column coincides with g;(x, t) if i€ J, and P;. (%, t)
if ie J. Note that

L'((Xli’ Uajy **% aNj) = Eﬁlpji(% t)+Qi(x’ t)

and p,j, p,j, ***, Pn; are linearly dependent for each «x, . Hence, by the N
linearlity, we have

Vix, t) = 23 23 V(J, o5 %, 1)

By the way, we can express V( ], o) as
V(s o3 %, 8) = Ky.e(], o(J%); #, t)

(K, being a constant which can be determined easily). So V(x, ¢) is some
linear combination of functions (13).

Similarly to the above, for jeA, JCA—{j}, and o I((J U {j})°), let
V(j, J, 6)=V(j, ], o; , ) be the determinant of N-th order whose i-th column
coincides with g;(x, t) if i € ], D;scis(, 2) if i€(J U {j})° and e if i=j, then we
have

Vi(x: t) = 2] Ecr V(]: J’ o, X, t)°
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Now, Theorem (for —o0) reduces to
Theorem’. Put, for je A
;= v[(%, t) = =220 DV ni oV (i, Ajoyy o5 %, t) V(x, )7
and
R = R(x, t) = v(x, t)—>3.0,(x, )
then as t— o
(%, t)—(sign ¢;)s(x—4n3t—387, 7,)—>0
and
R(x, t)—0

untformly in x.

4. Proof of Theorem ’

It is necessary for our purpose to determine the coefficients of e(A;, A’

x%, ), j=0, 1, 2, -+, N, in V(x, ¢) (we denote them by K;) and e(A;_,, A7**;
%, t), j=1, 2, -+, N, in the numerator of the generalized soliton solution
(expressed by the Cramer’s formula)

—2 Z?"'le(x’ t)
(we denote them by M;). Then we have

Lemma 1.
K; = Hi-lc:l Hiv-jﬂci det (en 0y €5y Mjggy 0%y nN)2
and
M; = Htj:ic;:-l ﬁf+lci det (en 0ty @iy €, Mjyyy =y "'N)2 .
Proof. One can see immediately that
Db V(A a; %, t) = Kje(Aj, NN, t) .
Therefore, we have
K;= H{:lci_l Hﬁjﬂci Dleesitt Hﬁj+1(’7;+’7cdn)_l
det(en 0y €5y Mocivnyy *°°y no'(N)n) .

By the way, the relations
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det(ely 0ty €5 oty "0y na(N)) = (Signa) det (eu vy €5y Mjyy oty nN)
and
2oesi*t (singo) TI ja(mi+100) " = det(ey, -+, €, Ry, my)

hold.
Next, note that

(14) =220 2eeni, oV, Njoy o5 %, 1) = Mje(A -y, N5 %, 1)
The calculation for M; is completely parallel to the above. Q.E.D.
Next we have
Lemma 2. Ast—>oco
v,(%, £)—(sign ¢;)s(x—4nit—38}, 7;)—0
uniformly in the infinite sector
(15) —&t<z; = x—4nit <&, >0
where & is sufficiently small positive constant e.g. 0< E< 2 Min,<;<n -1(7311—75)-

Proof. Recall that V(x, t) is a linear combination of functions (13).
Therefore, it is easy to see that

(16) e(Aj+1: Ai—x; X, t)V(x, t) - Kj—l €xXp (_2 771"2]') (1+Bj,1(x’ t))
_'_Ki €Xp (2 77]'3.7') (1+Bj,2(x’ t))+Bi,3(x) t)

where Bj(x, t) (k=1, 2, 3) are polynomials of exp (£27;2;),+7 >+ j-1 whose
constant terms are equal to zero. If (x, £) is in the sector (15), then we have

17) exp (£2nz,)<exp (k4n,(n;—n3)t),  (Fi>£j+1).

Therefore, for — oo, B;,(x, t) converge to zero uniformly in the sector (15).
Hence, for large ¢

(e(A7*, Ajoy; %, O)V (%, 2))*
behaves like
(K-, exp (—27;3;)+K; exp (21;2;))”
in the sector (15). Recall that (see (14))
vi(x, t) = Mje(Aj_,, NP5 x, )V (x, 2)™"

and put
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u; = u,-(x, t) = Mj‘(Kj_l exp (—277j 2’j)+Kj €xXp (2‘)7_,'2','))—1.

Then, for large ¢, v;(x, t) behaves like u;(x, ) in the sector (15). One can see
that

uj(x, £) = (sign ¢;)s(x—4njt—57, )
by the relations (see Lemma 1)
Kji[M; = c;(2n;) " TI ox (s475)" (s+75)"°

and
K;IM; = ¢ TI- ji(:475)° (m—m5) 7% . Q.E.D.

Next we have
Lemma 3.

i) (e(A7*, Ajoy; %, 8) Vix, )" and exp (£27;2;) (e(A7H, Aj_y; %, 8) V(x, £)7?
are bounded in the sector (15).

i) (e(A7*, Aj; x, t) V(x, t))™" is bounded in the sector

(18) (4n§+e)t<x<(4n§>ﬂ—e)t, t>0.

(If j=0, N, then (18) are the half spaces x<(47i—E&)t and (4n+E)t< x respec-
tively.)

Proof. 1) is a direct consequences of the fact that a soliton is bounded.
i) Similarly to Lemma 2, one can show that for large ¢

(e(A7*, Ajoy; x, t) V(x, 2)) =0,1, -, N
behaves like 1/K; in the sector (18). And K is not equal to zero. Q.E.D.
For ke A, JcA—{k}, and o= I((J N {k})°) put
(k, J, o) =J—JNa(J U {R})’
and
(k, J, 0)- = o(JU R —J Na(J U {k})
then we have
(19)  V(k ], o; %, 1) V(x, )" = Ke((k, ], @)+, (ks ], )5 %, 2) V(x, 1)

Next we have
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Lemma 4. If
(20) {(k J, 0)2N AT} U (R, ], 0)i N A1)

is not empty, then V(k, J, o)V = converges to zero uniformly in the infinite sector
—Et<x—A4nit<Et.

Proof. By (19) and Lemma 3, there is K >0 such that
|V(k, ], o5 %, t) Vi, t)7'|<Ke((k, ], o)i, (k [, 0)i; %, t)e(A7", Aj_,; %, t)
where (%, ], o)i=(k, ], o).—{j} if j €(k, ], c).* If (20) is not empty, then
e((k, J, o)1, (k, ], 0)l; %, 8) e(A7*, Aj_,, x, t) is a finite product of exp (=%27;2;),
+i> =+ j+1, and is not constant. Q.E.D.

If (20) is empty, then
(ky J, 0):D )y (R, ], 0)- DA
Note that
(ks J; o) N (k, ], 0)-=
(21) |k, J5 @)s |+ [ (R, ], 0)-| <N—1.
Therefore we have
(b J, o) = Njey (R, ], 0) = N7
This implies that
(22) k>j, J=A;_,,and c=B(j, k) .
Hence, (20) is empty, if and only if (22) holds.
Therefore, by Lemma 4, as t—co, v,(x, t), i j, and R(x, £) converge to

zero uniformly in the sector —&t<<x—473t<é&t, t>0.
Next we have

Lemma 5. Ast—oo, V(k, ], o; %, 2) V(x, t)™' converges to zero uniformly
in the infinite sector
(“nj+e)t<a<(4n).,—E), t>0
for any k, j, J and o.
Proof. By Lemma 3, there is K >0 such that
|V (k, ], o;%,t) V(x, )| <Ke((k, ], o)+, (R, ], o)_; x, ) (AT, Aj_,; x, t)

e((k, ], o)+, (k, ], 0)_; x, t) (A7, Aj_,; x,¢) is a finite product of exp (—27;2;),
¢ <jand exp (27;2;),  >j+1, and is not constant, because of the relation (21).
Similary to (17), it is easy to see that —27,2;, 1<j and 27,2;, j>1 can be esti-
mated by B;t,B;<0. Q.E.D.
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This complete the proof of Theorem ’.
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