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ON THE GENERALIZED SOLITON SOLUTIONS OF
THE MODIFIED KORTEWEG-DE VRIES EQUATION
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In this paper, we discuss the asymptotic property of the generalized soliton
solutions of the modified Korteweg-de Vries (K-dv) equation

( 1 ) 1>t+fa>2vx+vxxx = 0 , — oo <#, ί < oo

where vt and vx denote partial derivatives of v=v(x, t) with respect to t and x
respectively. This equation gives one of the simplest modifications of the K-dV
equation

ut— 6uux+uxxx = 0 , — oo <ΛJ, t< oo .

Both of the K-dV equation and the modified K-dV equation are known to
have progressive wave solutions;

u(x, t) = -2~lc sech2 (2-1cί/2(x~ct-8)),

for the K-dV equation,

( 2 ) v(x, t) = ±cl/2 sech (^(x-ct-S)),

for the modified K-dV equation.
Each of such solutions is called a solitary wave solution or a soliton on

account of its shape.
On the other hand, Gardner, Greene, Kruskal and Miura [1] have related

the solution u(t)=u(xy t) of the K-dV equation to the scattering theory of the
one dimensional Schrόdinger operator with the potential u(t) and found
that discrete eigenvalues are invariants and the reflection coefficient and
normalization coefficients vary exponentially with respect to t (see also Lax [3]).
Here a soliton of the K-dV equation is characterized as the solution with one
discrete eigenvalue and the zero reflection coefficient. Furthermore, the
reflectionless potential with N discrete eigenvalues can be written in closed form
in terms of exponentials by the method of Kay and Moses [2] for each t.
These potentials are called Λf-tuple wave solutions. JV-tuple wave solution
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satisfies actually the K-dV equation and behaves like a superposition of JV solitons
for large t (see Tanaka [7]).

Recently, Tanaka [5], [6] has related the solution of the modified K-dV
equation (1) to the scattering theory of the differential operator

(3) L« = *[J _?]0-'[ϋ* o]

where u* denote the complex conjugate of u and, on the basis of this relation,

constructed a family of particular solutions which includes solitons (2) as
the simplest case (see also Wadati [8]). We call these solutions the generalized
soliton solutions.

In this paper, we study the generalized soliton solution with purely imaginary
discrete eigenvalues. In this case, the generalized soliton solutions decompose
into N solitons for large t.

Our result is similar to that of the Λf-tuple wave solution of the K-dV
equation. But comparing with the TV-tuple wave solution, the expression of the
generalized soliton solution is somewhat complicated.

In section 1, we summarize the general properties of the scattering data of
Lu. In section 2, following [6], we describe the relation between the scattering

data of Lu and a solution of the modified K-dV equation, and introducing the
generalized soliton solutions, we state our main theorem. In section 3, we

rewrite the formula of the generalized soliton solution into the form which is
more convenient for our consideration. In section 4, we give the proof of our
main theorem.

1. The scattering data of Lu

We summarize the general properties of the scattering data of Lu from

[4], [9]. Consider the eigenvalue problem

(4) Luy=ζy y='(ylf yΛ)

on the real axis (—00,00). If u(x) is integrable, then, for ζ=ξ-{-ιη9 37 >0, there

are unique solutions φ± of (4) (called Jost solutions) which behave as

φ+(x, ζ) = '(0, 1) exp (ιζx)+o(l) x-oo .

φ.(x9 ζ) = '(1, 0) exp (-iζx)+o(l) x^-oo .

Then φ±(x, ζ) are analytic in f , Imζ>0. Note that if y is a solution of (4), then

is a solution of (4) where ζ is replaced by f*. If ξ =ξ is a non zero real number,
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then φ+ andφξ. are linearly independent solutions of (4). So there are a(ξ) and
b(ξ ) such that

( 5 ) φ. = a(ξ)φl+b(ξ)φ+ .

From (5), a(ξ)=άet(φ_y φ+), so a(ξ) can be extended to the analytic function

a(ζ\Imζ>ύ.

If u(x) satisfies an additional condition

Γ (l+|*|
J -00

then there is a f unction /eL^O, oo) such that

a(ζ) = 1 + (7(0 **
Jo

Moreover, if we assume that a(ξ) is not equal to zero for ξ^R, then a(ζ) has
finite number of zeros ξ19 f2, -••, f^, Imξk>0. For f=fy, φ±(x, fy) are linearly
dependent, so there is a non zero constant έ/y such that

By the asymptotic properties of φ±, they are square integrable i.e ζj are discrete
eigenvalues of La. We have

af(ζj) = -2ίdj Γ φ+1(«, ξj)φ+2 (x,ζj) dx .
J -00

Now suppose that f y are simple zeros. Put

(called normalization coefficients of eigenfunctions) and

r(ξ)=b(ξ)la(ξ)

under the assumption, #(£)ΦO for any ζ^R (called the reflection coefficient).

The triplet S= {r(ξ), fy, c/; l*ζj*ζN} is called the scattering data of Lu. Sup-
pose that u=iv is purely imaginary, then eigenvalues fy are distributed sym-
metrically in Imξ>Q with respect to the imaginary axis, i.e let M be a non
negative integer 2M<7V, and π be a permutation among natural number 1 and

N defined π(j)=j + lj odd <2M;τr(/)= j — l,j even <2M; π(j)=j,j>2M,
then we have

( 6 ) f rfo ) = - ζ *

(see Tanaka [5] [6]).
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2. The generalized soliton solutions

For a smooth real valued function v=v(x)y put

— v2 ivj\ Γ — v2 ivJ\
* D + 3 £ .

tvx — v J \jvx —v\

then the operator [Bv, Liv]=BvLiv—LivBv is the multiplication by the matrix

Γ o -6v2vx-vxxx 1

[βv2vx+vxxx 0 J .

Therefore, for a smooth real valued function v(t)=v(x, i), the operator evolution
equation

( ' ) ^ίΓ^™^ = t^1*0' Lirtt)]

is equivalent to the modified K-dV equation (1). Now suppose that a smooth
real valued function v(t)= v(x, i) is a solution of the modified K-dV equation (1)
which satisfies the conditions for the existence of the scattering data for each t.
Consider the operator Liv<:t:>, then we have the scattering data St= {r(ξ, i), ζj(t),
Cj(t)} depending on t as a parameter. Then we have

(8) ?x«)
Cj(t) = o(0) exp

r(ξ, t) = r(ξ, 0) exp (8iξ3t) .

These remarkable facts have been derived from the relation (7) (see Tanaka [5]

and Wadati [8]). Conversely to the above, Tanaka [6] has shown the following.

Theorem (Tanaka [6]). Let π be a permutation defined above, and ζj (£, Φ
ζj, i φ j ), a (1 </ <Λf) be complex numbers which satisfy the condition (6). Put

Cj(t) = c, exp (8£}ί)

\} = \j(χ, t) = Cj(i)1/2 exp (ίξjx) .

Let ψ , y= ψ , /(#> ί)> z =l> 2, J=l, 2, •••, N be the solution of

rf-1^*. = 0

wow degenerate coefficient matrix, then the function

(io) φ, t) = -2Σ?L1λ3'(*, ί)ψ?χ*. 0
valued function and satisfies the modified K-dV equation (1).
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If N=19 then ζ^i-η, η>0 and c1=c is non zero real number. Therefore
we have solutions

v(x, t) = (sign c) s (x—4 η2t~δ, η)

where

s(χ, 77) = —2 η sech 2ηx

and

These solutions coincide with solutions (2). So we call the solutions v(xy t)
defined by (10) the generalized soliton solutions.

Now let M= 0, then ζj=ιηj (??/>0) and Cj=Cj (0) are real. We can assume
0<^1<?72<. <97^ without loss of generality. We can now state our main
result.

Theorem. Let M=Q, then the generalized soliton solutions decompose into
N solitons as t— > ± oo

*>(*, 0-Σ" i (sign cj)s(x-4*>2jt-δί, i7y)->0

uniformly in xy where

= , ̂ y 7 1 log Π£y+ι (^-

δj = δ(θ, ^O+^T1 log Πi=ί(^-^) (Vj+ViΓ1 -

3. Rearrangement of the formula (10)

In this section we rewrite the generalized soliton solution v(x, t) (10) into
the form which is more convenient for our purpose.

Put Φij=φij(x, t)=\j(x, t) -ψ ,./ (xy t) (i=l, 2, K; < N). Then we have

v(x, t) = -2Σ?mlφaj(x, t).

Eliminating φ^ from (9), we have a system of N linear algebraic equations for

(Π) ΣF-iαy/Φ,/ = 1

where

(12) ail = aj,(x, t) = Σf^

(δy/ being Kronecker's symbol).

Let V=V(x, t) be the determinant of the coefficient matrix (akι(x, t)) of (11)
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and Vj= Vj(x, t) be the determinant obtained by replacing the^-th column of V
by *(1, 1, •••, 1). Then by the Cramer's formula we have

Φ»y(*, t) = Vfa t) V(x, t)-1 .

Put

*/ = '(0, -, 0,1,0, -,0)

* = '(!, !>-> 1)

P/y = PίX*, 0 = Ofa+tfy)""1 exp (
qj = qj(x ,t) == cj1 exp (2ι?y*y)ey

where sry=Λ—4i75ί. Put Λy={l, 2, ••-,;}, Λy={;, j+1, — > ̂ } (we denote Λ^
by Λ.). We use the notations as follows.

For/cΛ, σ^I(J) means that σ is an injective mapping from/ into Λ, for
7, ΛeΛ, k*ζj,σ^B(k,j) means that σ is a bijective mapping from Kk— {j} onto
Λ*+1, and σ^SJ means that σ is a permutation among natural numbers j and
N. For/,/ CΛ, put

(13) e(J, J'\ x, t) = exp (2Σίe/i7Λ-2Σί6//i7Λ)

Now, for /cΛ and σ<Ξ/(/c), let F(/, σ)=V(J, σ; *, ί) be the determinant
of JV-th order whose ί-th column coincides with gf (Λ?, t) if ie/, and P^co (#> 0
ifi^J. Note that

*(αιy» α2y, — , α^y) = ΣίiPy^, t)+qj(x9 t)

and Pij, p2j> ••*, P^vy are linearly dependent for each Λ?, ί. Hence, by the N
linearlity, we have

By the way, we can express V(J, σ) as

V(J, < r ; x , t ) = KJσe(J, σ(Jc); x, t)

(Kjσ being a constant which can be determined easily). So V(x, t) is some
linear combination of functions (13).

Similarly to the above, for eΛ, /cΛ— { j } 9 and σe/((/ U {j}Y)> let
V(j, J, σ)= V(jy J, σ; x, t) be the determinant of TV-th order whose i-th column
coincides with q{(x, t) if i e/, pίσ ω(x, t) if ie(/ U 0'})c and e if i=y, then we
have
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Now, Theorem (for £->oo) reduces to

Theorem7. Put, for /e Λ

vj = vj(xy t) = -2Σί!yΣ«E*y.»F(ί, Ay.!, σ; *, t) V(x, t)-1

and

R = R(x, t) = v(x, O-Σy^yfc 0

then as t— >co

and

R(x, f)-"0

uniformly in x.

4. Proof of Theorem '

It is necessary for our purpose to determine the coefficients of tf(Λy, Λ 7"*"1;
Λ?, /), y=0, 1, 2, -••, N, in Γ(Λ, ί) (we denote them by Kj) and e(Aj-» Ay+1;
Λ?, ί), y = l, 2, •••, ΛΓ, in the numerator of the generalized soliton solution
(expressed by the Cramer's formula)

-2 Σ£ιPX*, 0

(we denote them by My). Then we have

Lemma 1.

Kj = Πi-iCΓ1 Πfly+Λ det (βn •-, ej9 nj+ϊ, --, n^)2

Mj = Π^^ΓΉfly+A det (̂ , •••, βy.!, e, ιty+1, —, nN)2 .

Proof. One can see immediately that

Σ«E,'+1P(Λy, <r; ̂  0 = ̂ XΛy, A>+I;ΛP, t) .

Therefore, we have

By the way, the relations
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det (e19 — , eh

and

Σσ^+1 (singσ) Πf=j+ι(^+^σco)~1 = det(^, •••, βy, ny

hold.
Next, note that

(14) -2 ΣfL, ΣUix/.oFfc Ay., σ; *, f) = My^Ay.

The calculation for My is completely parallel to the above. Q.E.D.

Next we have

Lemma 2. As t— »oo

»y(Λ?, 0 — (sign CyXΛ?— 4ι?yί— 8J, ^7y)->0

uniformly in the infinite sector

(15) — £f <zy — Λ— 4i7yί<«, *>0

w sufficiently small positive constant e.g. 0<£< 2 Min^^-^+i— rf ).

Proof. Recall that V(x, f) is a linear combination of functions (13).

Therefore, it is easy to see that

(16) e(fJ+\ Λy_ ι ; x, t)V(x, t) = Kj.., exp (-2 ^y)

exp (2 ?y*y) (l+^y,2(^, ί))+By§8(Λ, t)

where βyΛ(jc, ί) (Λ=l, 2, 3) are polynomials of exp (±2ηizί),±i^ ±^ + 1 whose
constant terms are equal to zero. If (x, t) is in the sector (15), then we have

(17) exp (±2?A.)<exp (±4^—^)0, (±*> ±J+1)

Therefore, for ί^oo, Bjk(xy t) converge to zero uniformly in the sector (15).

Hence, for large t

behaves like

(Kj., exp (-2ηjZj)+Kj exp (2*1 jZj))-1

in the sector (15). Recall that (see (14))

vj(x, t) = MXΛy.,, A^+1; x, t)V(x, t)'1

and put
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Uj = Uj(x, t) == Afyί-Ky.! exp (—2ηj Zj)+Kj exp (2ηjZj))-1.

Then, for large ty Vj(xy ΐ) behaves like Uj(x, t) in the sector (IS). One can see
that

Uj(x, t) = (sign Cj)s(x-4rj}t-8^y ijj)

by the relations (see Lemma 1)

and

KjIMj = cΓ'ΠfLy+ifa+^y)2 fa-tfy)-2 - Q-E.D.

Next we have

Lemma 3.

i) (e(U'+\ Λ y _ ι ; x, t) V(x, t))-1 and exp (±2?y*y) (e(ti+\ Ay.,; Λ, ί) F(Λ, O"1

^r^ bounded in the sector (15).

ii) (0(Λy+1, Λy; Λ?, ί) F(#, ί))~α is bounded in the sector

(18) (4^+ε)ί<^<(4^+1-^, ί>0 .

(7/7=0, TV, ίA«ι (18) ̂ r^ /Aβ Aα// ίpαcw ^<(4^?— 6)t and (4η?

N+£)t*ζx respec-

tively.)

Proof, i) is a direct consequences of the fact that a soliton is bounded.
ii) Similarly to Lemma 2, one can show that for large t

(β(Λ>+1, Λ,_I; *, ί) V(x, t))-1 j = 0, 1, ..-, N

behaves like ί/Kj in the sector (18). And Kj is not equal to zero. Q.E.D.

For ΛeΛ,/cΛ-{^}, and c e/((/n W)c) put

and

(k, j, σ)_ = σ(y u {*} )c-y n σ(y u {*} )c

then we have

(19) F(A, y, σ *, ί) F(«, t)~> = Ke((k, /, σ)+, (A, /, σ)_ *, ί) Γ(«, ί)'1.

Next we have
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Lemma 4. //

(20) {(ft, /, σ)<_ Π Λ^1} U {(ft, /, σ)J Π Λy.J

is not empty y then V(k, /, σ)V~l converges to zero uniformly in the infinite sector

Proof. By (19) and Lemma 3, there is ^>0 such that

I V(k,J, σ; x, t) V(x, t)~l\^Ke((k, /, σ)ί, (ft,/, σ)ί; x, t)e(ti+\ Ay.,; *, ί)
where (ft, /, cr)±=(ft, /, σ)±— {j} if j e(ft, /, σ)±' If (20) is not empty, then

e((k,J, σ)+, (ft,/, σ)-; Λ;, ί) KAy+1, Λy_j , Λ?, ί) is a finite product of exp (±2ηizi)y

l, and is not constant. Q.E.D.

If (20) is empty, then

(ft, /, σ)+=) Ay.» (ft, /, σ).

Note that

(ft,/, σ)+Π(ft,/, σ)_=

(21) l(f t ,/,<r)+l + l(ft,/,<r)-

Therefore we have

This implies that

(22) ft>;, / - Λy.» and σeB(y, ft) .

Hence, (20) is empty, if and only if (22) holds.
Therefore, by Lemma 4, as f-»oo, y.(χ9 /), fφ j , and R(x, t) converge to

zero uniformly in the sector —εt^x—fyty^εt, t>Q.
Next we have

Lemma 5. As /->oo, F(ft, J, σ\ x, t) V(x, t)~l converges to zero uniformly
in the infinite sector

/or any ft, /, / and σ.

Proof. By Lemma 3, there is K>0 such that

I V(k, J,σ ,x, t) V(x, t)-1 1 ^Ke((k, /, σ)+, (ft, /, σ). Λ, t) e(K^\ Ay. l 5 Λ, ί)

,J, σ)+, (ft,/, σ)_; Λ, ί) ^(Λy+1, Ay.^, Λ, ί) is a finite product of exp (— 2ηizi)y

/<j and exp (2??^), ί >y+l, and is not constant, because of the relation (21).
Similary to (17), it is easy to see that — 2 ,̂-̂ , ί^j and 2 *̂,-, y>l can be esti-
mated by βf.ί,βf. < 0. Q.E.D.
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This complete the proof of Theorem '.
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