Tsushima, Y. Osaka J. Math. 11 (1974), 417-423

ON THE EXISTENCE OF CHARACTERS OF DEFECT ZERO

YUKIO TSUSHIMA

(Received, December 12, 1973)

1. Introduction

Let *G* be a finite group of order *g*. Let *p* be a prime and let $g = p^a g'$ with $(p, g') = 1$. An irreducible (complex) character of *G* is called *p*-defect zero if its degree is divisible by p^a . The following problem is still open (see Feit [6]).

What are some necessary and sufficient conditions for the existence of characters of p-defect zero}

In [15] we, have tried somewhat ring theoritical approaches to the problem (see also Iizuka and Watanabe [11]). Now, since a character of p-defect zero constitutes a p -block for itself, having the identity group as its defect group, we have the following consequences from the theory of defect groups of blocks. Namely if G posseses a character of p -defect zero, then

1. (Brauer [2]) *G contains an element of p-defect zero, i.e. one which is commutative with no non-trivial p-element of G.*

2. (Brauer [2]) *G contains no non-trivial normal p-subgroup.*

3. (Green [8]) *There exist two Sylow p-subgroups S,T of G such that S* ∩ *T* = {1}. (*This implies the second assertion above*)

Furthermore the Theorem of Clifford shows that if *G* possesses a character of p -defect zero, then

4. (Clifford-Schur) *Every proper normal subgroup possesses a character of p-defect zero.*

Of course, the above four conditions are not sufficient in general for the existence of a character of p -defect zero (e.g. $G{=}A$ _{*7*}, the alternating group on seven letters, $p=2$ or $p=3$).

However, in [12] Ito showed that if *G* is solvable and has an element of p -defect zero which is contained in $O_p(G)$, the maximal normal p' -subgroup of G, then G possesses a character of p-defect zero. Also in [13] he showed that under certain circumstances the second condition implies the existence of a character of p -defect zero.

In this paper, we shall generalize the Ito's result in [12] quoted above to arbitary finite groups (see Theorem 1 below) and show in some cases the con verse of the result may hold. In Appendix we shall give *a solvable group* which will enjoy all of the four conditions above, though fail to possess a character of p -defect zero (when $p=2$).

2. Notations and preliminaries

 p denotes a fixed prime number and *G* a finite group of order $g = p^a g'$ with $(p, g') = 1$. We denote by v_p the exponential valuation of the rational number field determined by p with $\nu_p(p)=1$. For a subset T of G , we denote by $|T|$ and by $\langle T \rangle$ the cardinality of T and the subgroup of G generated by T respectively. If *S, T* are subgroups of *G, [S, T]* denotes the commutator subgroup of *S* and *T.* If *R* is a (commutative) ring, *RG* denotes the group ring of *G* over *R* and *Z(RG)* the center of *RG.* By a character of G, we mean unless otherwise specified, an absolutely irreducible complex character of *G.*

For convenience of later references, we put down here the following well known facts due to Clifford (and Schur) (see Curtis-Reiner [5] §51 and 53.)

Let N be a normal subgroup of G and let X be an irreducible character of G.

 $[C-1]$ $\chi_N = e(\varphi_1 + \varphi_2 + \cdots + \varphi_r)$, where the $\{\varphi_i\}$ are mutually G-conjugate *distinct irreducible characters of N and e is a positive integer, r is equal to* $[G: I]$, where I is the inertia group of φ_1 , namely $I{=}\{\sigma{\in}G\,|\,\varphi_1(\sigma^{-1}\tau\sigma){=}\varphi_1(\tau)$ for all $\tau \in N$.

 $[C-2]$ Let ϕ be the homogenous component of X containing φ . Then ϕ is an *irreducible character of I. And furthermore.*

(1) $\phi_N = e\phi_1$ (by definition of ϕ)

(2) *Let* Φ *be a representation of I affording the character φ. Then* Φ *is a tensor product of two projective representations X, Y of I (over the field of complex numbers);* $\Phi = X \otimes Y$ *, where the degree of X is equal to that of* φ_1 *and Y may be viewed as a projective representation of* $\overline{I} = I/N$ whose degree is equal to e.

(3) *e divides [I: N] (since the degree of an irreducible projective representation divides the order of the group)*

[C-3] *Since* χ (1)=er φ_1 (1) and e divides [I: N], we have the inequalities

$$
\nu_p(\chi(1)) = \nu_p(e) + \nu_p(r) + \nu_p(\varphi_1(1))
$$

\n
$$
\leq \nu_p([I: N]) + \nu_p([G: I]) + \nu_p(\varphi_1(1))
$$

\n
$$
\leq \nu_p([G: N]) + \nu_p(|N|) = \nu_p(|G|) \text{ (Hence the equalities hold if } \chi
$$

is of p-defect zero).

3. A generalization of Ito's result

Let K be an algebraic number field containing the g -th roots of unity. In *K*, let *p* be a prime divisor of *p* with *p* the ring of p-integers and let $k=0$ /p the residue class field. We denote by α^* the image of an element α of α under the map $\sigma \rightarrow k$. The following Theorem was proved by Ito [12], in case G is solvable.

Theorem 1. *Let N be a normal subgroup of G whose order is prime to p. Suppose there exist v classes of conjugate elements of G of p-defect zero such that they are contained in N. Then G possesses at least v characters of p-defect zero which are linearly independent mod p on those classes.*

Proof. Suppose *G* possesses *t* characters X_1, X_2, \dots, X_t of *p*-defect zero, $t \ge 0$. Let δ_i be the block idempotent of the $p\text{-block}$ of kG (of $p\text{-defect}$ zero) to which X_i belongs and let ψ_i the linear character of the center $Z(kG)$ of the group ring *kG* defined by χ_i , that is $\psi_i(C) = \left(\frac{|C| \chi_i(\sigma)}{\chi_i(1)}\right)$, for a conjugate class C of G, $C \ni \sigma$. As is well known,

$$
\psi_i(\delta_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \qquad \qquad \ldots \qquad \qquad (\ast)
$$

Let C_1, C_2, \dots, C_u be the set of conjugate classes of G of p -defect zero and let the first *v* of them contained in *N*. We denote by *c_i* the sum in *kG* of all elements of C_i . Let $U{=}\oplus \sum k\mathcal{c}_i$ and $T{=}\oplus \sum k\mathcal{\delta}_i$, the subspace of $Z(kG)$ spanned by $\{c_1, c_2, \dots, c_u\}$ and $\{\delta_1, \delta_2, \dots, \delta_t\}$ respectively. Then as is well known, both are ideals of *Z(kG)*, T is contained in U and $\mathit{U=T\oplus J(U)}$, where *J(U)* is the ideal of *Z(kG)* consisting of all nilpotent elements of *U* (Brauer [2], see also Iizuka and Watanabe [11]). Let ρ be the projection of U onto T. Thus $\rho(u)=0$ $(u\in U)$, if and only if $u\in J(U)$, or *u* is nilpotent. Let $V = \bigoplus \sum k_i \subset U$. Then ρ is one to one on *V*, since *V*, being contained in the center of the semisimple algebra *kN* by our assumptions, contains no nilpotent element other than zero. Since the $\{\psi_1, \psi_2, \cdots \psi_t\}$ form a *k*-basis of the dual space of *T* by (*) and the dimension of the space $\rho(V)$ is *v*, we may choose *v* functions from $\{\psi_1, \psi_2, \dots, \psi_t\}$ such that their restrictions on $\rho(V)$ form a kbasis of the dual space of it. Assume they are $\psi_1, \psi_2, \dots, \psi_v$, after a suitable change of indexes if necessary. Since $\psi_i(J(U))=0$ (for every linear character ψ_i of $Z(kG)$), the above $\{\psi_1, \psi_2, \cdots, \psi_v\}$ are actually are *k*-basis of the dual space of *V* when restricted on *V*. Therefore it follows that det $(\psi_i(C_j)) \neq 0$ \leq v), or det $\left(\frac{n_j x_i(\sigma_j)}{\gamma}\right) = \left(\prod_{i=1}^n \frac{n_i}{\gamma}\right) \det \left(\frac{x_i(\sigma_j)}{\gamma}\right) \not\equiv 0 \mod p$, where $x_i =$

420 Y. TSUSHIMA

 $X_i(1), h_j = |C_j|$ and $\sigma_j \in C_j$. Moreover, we know $\prod_{i=1}^n \frac{h_i}{n_i} \in \mathfrak{v}$ since $\nu_p(h_i) = a$ $\nu_p(x_i)$ by our assumptions. Thus we may conclude that $p_{\mathbf{p}}(x_i)$ by our assumptions. Thus we may conclude that det $(x_i, (y_j))$ + \circ mod φ
 $1 \le i \le n$) which implies $\{Y \mid Y \}$... Y } are linearly independent on $\{X \subseteq V, j \equiv v\}$, which implies $\{X_1, X_2, \ldots, X_n\}$ are linearly independent on $\frac{C_1}{4s}$ $, \sim, \sim_{v}$ mod γ . This completes the proof of Theorem 1.

As a direct consequence of the above Theorem, we have

Corollary 2. If $O_p(G)$ contains an element of p-defect zero, then G possesses *a character of p-defect zero.*

For a while, we shall show that under certain conditions the converse of Corollary 2 is true. First we note,

Lemma 3. *If G possesses a character of p-defect zero, then so does any normal subgroup of G.*

Proof. Clear from [C-3] of §2. We have

Proposition 4. Suppose G is p-solvable and possesses a character of p-defect *zero. Then O^p '{G) contains an element of p-defect zero (in G) if G satisfies one of the following conditions.*

- (1) *A Sylow p-subgroup of G is abelian*
- (2) *A Sylow p-complement of G is abelian*
- (3) *G is metabelian*

Proof. Clearly we may assume (by virtue of Lemma 3), that *G* contains no proper normal subgroup of index prime to *p.* Furthermore, since *G* pos sesses a character of p -defect zero, G contains no non-trivial normal p -subgroup. Then, since *G* is p -solvable, Lemma 1. 2. 3. of Hall-Higman [9] shows that $G = S_p O_p(G)$ in any one of the above cases, where S_p denotes a Sylow psubgroup of G. Hence our assertion is clear.

In case $p=2$, we have the following,

Proposition 5. *Suppose a Sylow 2-subgroup of G is a generalized quaternion. Then if G possesses a character of p-defect zero, O² (G) contains an element of 2-defect zero.*

Proof. Let *N=O² '(G).* First of all, we note that *G/N* contains a central (hence unique) element of order 2 by Brauer-Suzuki [4] and by Brauer [3]. Hence every subgroup of G/N whose order is divisible by 2 contains a nontrivial normal 2-subgroup. In what follows, we use the same notations and terminologies as in [C-l]-[C-3] of §2, letting *N=O² '(G)* and *X* a character of 2-defect zero. To prove the proposition, it is sufficient to show that *e* is odd. Indeed, since $|N|$ is prime to 2, *i.e.* prime to the characteristic of the field $k=0/\mathfrak{p}$, where of course \mathfrak{p} is a prime divisor of 2 in K, there exists a $\sigma \in N$ such that $\varphi_1(\sigma) + \varphi_2(\sigma) + \cdots + \varphi_r(\sigma) \not\equiv 0 \mod p$. Then it follows $\chi(\sigma) \not\equiv 0 \mod p$, provided *e* is odd, which asserts that *σ* is of 2-defect zero.

Now, let \hat{I} be a representation group of \overline{I} having the kernel M isomorphic to the second cohomology group $\mathrm{H}^2(\bar{I},\,C),$ where C is the field of complex numbers.

$$
1 \to M \to \hat{I} \to \bar{I} \to 1 \text{ (exact)}
$$

We note that $|M|$ is not divisible by 2. In fact, since a Sylow 2-subgroup of \overline{I} is a generalized quaternion or cyclic, the 2-part of $|M|$ vanishes (see Huppert [10] §25) In particular we have $\nu_z(|\bar{I}|)=\nu_z(|\hat{I}|)$. The projective representa tion *Y* of \hat{I} can be lifted to a (linear) representation \hat{Y} of \hat{I} . Then \hat{Y} is a representation of \hat{I} of 2-defect zero, since $\nu_{\text{\tiny{2}}}$ (deg $\hat{Y}){=}\nu_{\text{\tiny{2}}}$ (deg $Y){=}\nu_{\text{\tiny{2}}}(\mid\!\tilde{I}\!\mid\!\tilde{I}\!\mid\!\tilde{I})$ by $[C-3]$. Suppose $|\bar{I}|$ is divisible by 2. Then it contains a non-trivial normal 2-subgroup as is remarked at the beginning. Since M is a central subgroup of \hat{I} of order prime to 2 it follows from the exact sequence written above that \hat{I} contains a non-trivial normal 2-subgroup. This is a contradiction, since \hat{I} possesses a character of 2-defect zero. Therefore $|\bar{I}|$ is odd. Since *e* divides $|\bar{I}|$, *e* is also odd, completing the proof.

In case *G* is solvable, *O^p '(G)* is always larger than {1} unless *G* contains a non-trivial normal p -subgroup. Hence it seems to be natural to ask whether the converse of Corollary 2 is true for a solvable group G . The answer is "no", as is shown in Ito [12].

4. Appendix

The purpose of this section is to give a solvable group which will enjoy all of the four conditions described in the introduction, though possess no char acter of p -defect zero (when $p=2$).

EXAMPLE. Let $F = GF(3)$. Let V be the 2-dimensional column vector space over the field F ; $V = \left\{ \left(\begin{array}{c} a \\ b \end{array} \right) | a, b \in F \right\}$. Let *G* be the semidirect product of *GL(V)—GL(2^f* 3) and *V, i.e.* the 2-dimensional affine group over *F.* Hence *G* consists of all pairs (σ, α) , where $\sigma \in GL(2, 3)$ and $\alpha \in V$, with the multiplication given by

$$
(\sigma,\,\alpha)(\sigma',\,\alpha')=(\sigma\sigma',\,\sigma\alpha'+\alpha)
$$

We have easily $(\tau, \beta)(\sigma, \alpha)(\tau, \beta)^{-1} = (\tau \sigma \tau^{-1}, (1 - \tau \sigma \tau^{-1}) \beta + \tau \alpha)$

We identify $\sigma \in GL(2, 3)$ with $(\sigma, 0)$ and $\alpha \in V$ with $(1, \alpha)$ as usual. Then $\tau \alpha \tau^{-1} = \tau \alpha$. *G* is a solvable group of order 2⁴3³. We write simply *GL* for *GL*(2, 3) and *SL* for *SL*(2, 3). If K is a subgroup of *GL*, we denote by \hat{K} the semidirect product of *K* and *V.*

422 Y. TSUSHIMA

First we note

(1) *Every proper normal subgroup of GL is contained in SL. On the other hand, every non-trivial normal subgroup of G contains V. In particular, it follows every proper normal subgroup of G is contained in SL.*

Proof. The first assertion is well known and elementary. To show the second, let *N* be any normal subgroup of G. Then *[N, V]* is a GL-submodule of the irreducible GL-module V, so that $[N, V]=V$ or $\{0\}$, implying $N\supset V$ or $N=\{1\}$. (cf. Proposition 2.3 [1]).

(2) *Every element of V other than the identity is of 2-defect zero in SL. In particular SL possesses a character of 2-defect zero.*

Proof. Let $\alpha = (1, \alpha) \in V$. If α is of positive defect in \hat{SL} , then there exists an involution $(\tau, \beta) \in \widehat{SL}$ such that $(\tau, \beta)(1, \alpha)(\tau, \beta)^{-1} = (1, \tau\alpha) = (1, \alpha)$. Then τ is an involution of *SL* and $\tau_{\alpha} = \alpha$. However *SL* contains only one involution, namely $\tau = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\tau_{\alpha} = \alpha$ implies $\alpha = 0$.

From the aboves and Lemma 3, we have

(3) *Every proper normal subgroup of G possesses a character of 2-defect zero.*

By a simple caluculation, we find

(4) G contains an element of 2-defect zero, e.g. (τ, β) , where $\tau = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in V$.

(5) Let S be a Sylow 2-subgroup of GL. Then $S=(S, 0)$ is a Sylow 2*subgroup of G. Let* $(\tau, \beta) \in G$ *. where* $\tau \notin S$ *and* $\beta \neq 0$ *. Then* $S \cap S^{(\tau, \beta)} = \{1\}$ *.*

Proof. Let Q be a Sylow 2-subgroup of *SL*. Then $S \cap S^T = Q$ if $\tau \notin S$, since $GL \triangleright Q$ and S is a self-normalizing subgroup of GL. Let $(\sigma, 0) \in S$, where σ ± 1 . Then we have $(\tau, \beta)(\sigma, 0)(\tau, \beta^{-1}) = (\tau \sigma \tau^{-1}, (1 - \tau \sigma \tau^{-1})\beta) \in S = (S, 0)$ if and only if $\tau \sigma \tau^{-1} \in S$ and $(1 - \tau \sigma \tau^{-1})\beta = 0$. If $\tau \sigma \tau^{-1} \in S$, then $\tau \sigma \tau^{-1} \in S \cap S^{\tau} = 0$ $Q\subset SL$. Hence $(1-\tau\sigma^{\tau-1})\beta\neq 0$ as is remarked in (2). Thus we have shown that G satisfies all of the four conditions described in the introduction. Hence it remains only to show that G possesses no character of 2-defect zero.

Suppose the contrary and let *X* be any character of 2-defect zero. Then the degree of χ must be 16, since $(2^43)^2 > |G| = 2^43^3$. Then by Corollary (2E) of Fong [7], *X* is induced by a linear character of a Sylow 2-complement of G. Let $\sigma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $H = \langle \sigma \rangle = \langle \sigma \rangle \cdot V$. Then *H* is a Sylow- 2-complement of *G*

and by a simple calcuulation, we have $[H, H] = [\langle \sigma \rangle, V] = \langle \begin{pmatrix} a \\ c \end{pmatrix} | a \in F \rangle$ and so $H/[H, H] = \langle \sigma \rangle \times V/[\langle \sigma \rangle, V]$. Hence any linear character of *H* is of the form $\psi = \varphi \times (1, \eta)$, where φ and η are linear characters of $\langle \sigma \rangle$ and *V* respectively with $(1, \eta) \binom{a}{b} = \eta(b)$ for $\binom{a}{b} \in V$. Let $\tau = \binom{-1, 0}{0, 1}$ and $x = (\tau, 0) \notin H$. Let $y=(1, {a \choose i}) \in x^{-1}Hx \cap H$. Then $xyx^{-1}=(1, { -a \choose i})$, so that $\psi(y)=\eta(b)=\psi(xyx^{-1})$ for any y ∈x⁻¹Hx∩H. Hence ψ ^G is not irreducible for any linear character ψ

of *H* by the criterion given by Shoda [13] originally (see Curtis-Reiner [5] pp. 329) Thus *G* posssses no character of 2-defect zero.

OSAKA CITY UNIVERSITY

References

- [1] H. Bass: *K-theory and stable algebra*: Publ. I.H.E.S. No. 22 (1964).
- [2] R. Brauer: *Zur Darstellungstheorie der Gruppen endlicher Ordunung* I, Math. Z. 63 (1956), 406-444.
- [3] : *Some applications of the theory of blocks of characters of finite groups* II, J. Algebra 1 (1964), 307-334.
- [4] **-** and M. Suzuki: *On finite groups of even order whose 2-Sylow group is a quaternion group,* Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759.
- [5] C.W. Curtis and I. Reiner: Representations of Finite Groups and Associative Algebras, Wiley-Interscience, New York 1962.
- [6] W. Feit: Representations of Finite Groups, Yale Univ. mimeographed, 1969.
- [7] P. Fong: *Solvable groups and modular representation theory,* Trans. Amer. Math. Soc. **103** (1962), 484-494.
- [8] J.A. Green: *Blocks of modular representations,* Math. Z. 79 (1962), 100-115.
- [9] P. Hall and G. Higman: *On the p-length of p-soluble groups and reduction theorems for Burnside's problem,* Proc. London Math. Soc. (3) 6 (1956), 1-42.
- [10] B. Huppert: Endliche Gruppen I, Springer Verlag, Berlin-New York, 1967.
- [11] K. Iizuka and A. Watanabe: *On the number of blocks of irreducible characters of a finite group with a given defect group,* Kumamoto J. Sci. (Math.) 9 (1973), 55-61.
- [12] N. Ito: *On the characters of soluble groups,* Nagoya Math. J. 3 (1951), 31-48.
- [13] *--------*: *Note on the characters of solvable groups*, Nagoya J. Math. 39 (1970), 23-28.
- [14] K. Shoda: *Uber die monomialen Darstellungen einer endliche Gruppen,* Proc. Phy.-Math. Soc. (3) 15 (1933), 249-257.
- [15] Y. Tsushima: *On the block of defect zero,* Nagoya Math. J. 44 (1971), 57-61.