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Introduction. Throughout this paper, "a link I of μ(l) components" means
disjoint union of μ(l) oriented 1-spheres in R3.

In §1, we study some 3-dimensional numerical invariants of links, that is,
g(Γ) (genus of /), u(l) (see Definition 1) and c(ΐ) (see Definition 3) will be defined
and we will have some relations among them as follows.

Theorem 1. For any link I, g{ΐ)^c(l) and u(l)^c(l).

In §2, the 4-dimensional numerical invariants g*(Γ), gf(l) (see Definition 4),
!**(/), u*(l) (see Definition 5), c*(t) and c*(l) (see Definition 6) will be defined
and the main theorem will be proved.

Theorem 2. For any link /, we obtain
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Λll
«*(Qs

Λll
S c*(l)

II
S «?(/)
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As is usual, two links / and /' are said to be of the same type or isotopicy

denoted by l^l\ if there exists an orientation preserving homeomorphism / of
jR3 onto itself such that/(/)=//.

dX, Int X and cl X represents the boundary, the interior and the closure of
X respectively.

The author wishes to thank to the members of Kobe Topology Seminar
for their kind and helpful suggestions.

1. 3-dimensional numerical invariants

Let /be a link of μ(l) components in R3. It is known in [9], [11] that /
always bounds an orientable connected surface F in R. The minimum genus
of these surfaces is called the genus of the link / and is denoted by g(l). Note
that g(F) denotes the usual genus of a surface F.
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Let L be a diagram of /, i.e. L=p(l)y where p is a regular projection of i?3

to R2 ([2]). L has in general at least one double point if I is not a trivial link
(unknotted and unlinked). A link can be deformed into a trivial link by employ-
ing a finite number of unlinking operation (Γ) defined as follows.

(Γ) Change an underpass into an overpass at a double point.

DEFINITION 1. The minimum number of unlinking operations required to
deform a given link / into a trivial link is called the unlinking number of / (in the
3-dimensional sense) and is denoted by u(l).

DEFINITION 2. Let Fo be a surface which may not be connected and / be an
immersion of JF0 into R3. Put F=f(F0). Suppose that F has a finite number
of simple double lines and these double lines do not intersect each other. Each
double line J is one of the following three types (see [4])

(1) a closed curve whose antecedents are closed curve ]f and J" that lie
in Int Foy

(2) an arc whose antecedents are an arc ]ι that spans dF0 and an arc J"
that lies entirely in Int Fo,

(3) an arc whose antecedents are arcs ]' and J" each of which has an end
point on dF0 and the other one lies in Int Fo

We call/ a singularity of F. The singularities satisfying the condition (1),
(2), (3) will be called {simple) loop, ribbon and clasp singularities respectively. [4]

We call F a non-singular surface if/ is an embedding.
Then, to define the clasp number c{l) of a link / we need to prove the follow-

ing lemma.

L e m m a 1. Any link I spans μ(Γ) singular disks whose singularities are only

clasps and the number of these clasps is finite.

Proof. Let n be the unlinking number of / and p be a regular projection
of / such that there exist n double points ply "9,pn in p(Γ) and / becomes a
trivial link by (Γ)-operation along these points. We may make oriented small
unknotted circles ciy i=ίy •••, 2n, near top i χ linking with / as shown Fig. 1 such
that L(l, Ci)=—L(l, cn+i)=l or —1 according as the orientation of /, where piχ

is a point oί p'\p{) Π / and L(ly c) denotes the linking number of / and c. Then
there exist mutually disjoint bands Biy i=ly ~ y2ny with 2?f Γl/= 9-B, (Ί / an arc
and

( ( )
ί= l

where Oμ is a trivial link of μ=μ(l) components and+means addition in the

homology sense. Let E= U Et be a union of mutually disjoint spanning disks
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Fig. 1

= U By a slight modification of E, B and D= LJ Diy where

D is oriented mutually disjoint disks with dD£=cif we have Bf)D=dBΓ\dD>
B Π E=(dB Π dE) U (ribbon singularities), D (Ί E= (clasp singularities) and
d(B {JD{JE)<=&1. For each ribbon singularity / we draw a simple area,- on E to

connect a point of dE and that of Int J and put E=cl(E— UiVt ), where r is the

number of ribbon types on E and iV, is a regular neighborhood of a£ in E.
Then clearly 3(5 U£> l)E)^l and the singularities of μ singular disks B [JD \}E
are only clasps and of course the clasp number of B U D U E is finite. So the
proof is complete.

DEFINITION 3. For any link /, there is a singular disk with only clasps
which spans / by Lemma 1. The minimum number of the clasps is called the
clasp number of /, denoted by c(l).

Then we have,

Theorem 1. For any link /, c(l)^u(l), c(l)7>g(l).

Proof. c(l)^>u(l) is obvious from the definitions of these numbers. So we
have to prove c(l)^g(l). Let D be singular disks such that c(D) = c(Γ) and
dD=ly where c(D) is the number of clasps of D. Making use of orientation
preserving cuts ([4], [8]) along all clasps, we get an orientable surface F of genus
c(l) such that 8F=dD=L So c(l)^g(l)y which completes the proof.

REMARK. These inequalities can not be replaced by equalities. For
example for the knot 62, 62 is alternating, so g(62)—2 ([!]) and c(62)=2 by using
Theorem 1 but M ( 6 2 ) = 1 , and for the link GΣ> , c( O )=u{ GD ) = 1 but#( GQ )=0.
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2. 4-dimensional numerical invariants

Let / be a link in i?3[0], where R3[a]={(xyyy zy t)<=RA\t=a}. Since /
bounds an orientable connected surface F in i?3[0], / always bounds an orientable
locally flat connected surface in JR3[O, to)={(xyyy z, t)<=R4\0^t<t0}. The mini-
mum genus of these surfaces is an invariant of the link type ([3], [7]). It is
denoted by g*(l) (in the 4-dimensional sense).

DEFINITION 4. Especially for any link / we may span an orientable locally
flat surface F in R3[0y t0) which has no minimum points with dF=l in R3[0],
The minimum genus of these surfaces is called the ribbon type genus of / and
is denoted by g?(l).

It is clearly that gf(l) is an invariant of the link type of /.
Then from the definition of £*(/), gf(Γ) and g(J)y we have

Lemma 2. For any link /, g*([) ̂  g*(l) ̂  g(l).

A link / will be called split into two components lx and l2 if there is a 3-ball
B3 such that I,dB\ l2dR3-Int B3. Then / is denoted by l=lxol2. Then

Lemma 3. For any link /, there is a number μ such that g*(l)=g?(loθ11) for
some trivial link Oμ of μ components.

Proof. Let F be a locally flat orientable surface in i?3[0, 1) with dF=l in
R3[0] and g(F)=g*(Γ). Let ply -- ypμ. be the minimum points of F. We may
take μ distinct points qly •••, qμ. in R\— 1] and disjoint simple arcs aly •••, a? and
cti connects p{ with q{ and αx (Ί Rz[t] is at most one point for each /, l^i^μ and
t9 0 ^ ί < l . Then we can deform F to a surface Ff by an isotopy along α, .
The minimum points of Ff are q{ and Fr Π i?3[0, 1) has no minimum points. Of
course, JF'ni?3[0]~/oOμ, so£*(/oθ")^£*(/). ([5], [10]).

Conversely, let Fo be a locally flat surface in i?3[0, 1) with JF0Πi?[0]=/oOμ

which has no minimum points and gf(l°Oμ')=g(F0). In R3[— 1, 0] we make

/χ[—1, 0]. As Oμ is splitted from /, Oμ bounds mutually disjoint disks Diy

i=\y •••, μy in i?3[—1, 0] which do not intersect with /x[—1, 0]. So J F = F 0 U

/ χ [ — 1, 0]U(UA ) i s a locally flat orientlabe surface with boundary / and

g^F)=g(F0)=g}\loO11). Therefore g*(l)^g{hθμ)y which completes the proof.

Lemma 4 is essential to prove the main theorem.

Lemma 4. Let Fbe a locally flat orientable surface which has no minimum

and maximum points and F Π Rs[0]=ly F Π i?3[l]=/'. Then there is a locally flat

orientable surface Ff properly embedded in i?3[0, 1] and isotopίc to F in R3[0y 1]

(F 'n# 3 [0]«/ in R3[0]y F'nl?[ϊ\**Γ in R\\] respectively). Furthermore there

exist some disjoint 3-balls B\y i=ίy •••,«, in R3[0] such that
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cl{F'- \JB*X [0, 1]) = cl(F'nR3[0]- LJ£?)x [0, 1 ] .

Proof. It may be assumed that F has n critical points and R%] contains

only one critical point for tiy 0<t,< ••• <tn<\. A critical point p{ may be

changed by a critical band B\ for each i (see [6]). We may deform F by an

isotopy of i?3[0, 1] carrying B\ into # 3 [ y ] s o t h a t maximum and minimum

points do not appear in the resulting surface. We will write the resulting

surface and the band F and B\ again. Since F Π i ? 3 ( y , l j is a locally flat

orientable surface which has no maximum, minimum points and critical bands,

as in

(FnR3[τ O ^ M ^
in i?3Γ—, l l (for at and a{ see Fig. 2) Then using the same argument

[10] we may assume that the critical bands do not intersect with each other.

Put FX=F (Ί R3[l] X Γ—, 11 Because F Π # 3 [θ, y ) has no minimum, maximum

points and critical bands, we see

(F n i?3[o, y ] - 9 ( ufiϊ)) u (jjjtβi u A ))

( t u^ i

Fig.
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Then we project mutually disjoint bands U B* in R3\ — to R3[0] by a natural
i~l L 2 J

projection/) i.e. for any points (x, y, z, t)(=R\ p(x, y, z9 t)=(x, y, z,

Then we can take mutually disjoint 3-balls B\ each of which contains only one

band properly, i.e. Int B\3 Int p{B\) and QB\"Dd(p{B\)). So we may easily

determine the surface Ff to be a required one. This completes the proof.

Let / be a link in R3 (or i?3[0]). / is called a weak ribbon link if / bounds a

singular surface F in R3 of genus 0 with dF=l and mutually disjoint ribbon

singularities. And / is called a weak slice link if / bounds a non-singular locally

flat orientable surface F of genus 0 in R3[0y oo) with dF=l. ([3], [4]).

Then if / is a weak ribbon link / is also a weak slice link (see Lemma 5).

Lemma 5. I is a weak ribbon link if and only if I bounds a non-singular

locally flat orientable surface F in R3[0> 1) of genus 0 with dF=l which has no

minimum points.

Proof. If / is a weak ribbon link, there is a singular surface Fo in i?3[0] of

genus 0 with dF0=l and just ribbon singularities. Now we take small disks

Dif i=ί9 '"yny on Fo along the singularities such that cl(F0— (}Dt) is a non-
t = - l

n n

singular surface and / Π ( U dD{)=φ . As 9( U-D, ) is a trivial link, we may con-

struct mutually disjoint cones p*dDi in R3\ 0, — L where ply -~,pn are different

points in JR3Γ—1. Then (Fo— LJ D{) U ( U/tf&D. ) i s a required surface F.
L Zd _\ ί = = 1 j ~ ^

Conversely, let F be a locally flat orientable surface of genus 0 with dF=l
which has no minimum points and is embedded in i?3[0, 1). We can bring the
maximum points of F to R3[2] by the same technique we used to prove Lemma 3
without making new maximum and minimum points and with dF fixed. Put
the deformed surface F\ Clearly Ff Π R*[l]^On and Ff Π i?3[0, 1] has no
minimum and maximum points. So by Lemma 4, we may construct a proper
surface F" in R3[0, 1] which is isotopic to Ff Π Λ3[0, 1] and there exist mutually
disjoint 3-balls B\, ί = l , •••,/>, in R3[0] such that

, l])™cl(F"M?[0]-\jB*)x[0,
ί l

and the mutually disjoint bands B\ are properly embedded in J5f X — . Let

Z), i = l , •••, n, be mutually disjoint disks in R3[l] with boundary On. Then we

project F=F" U ( U D{) on R3[0] by a natural projection p. Then we may easily

prove that dp(F)^l and the singularities of p(F) are only ribbon singularities by



VARIOUS NUMERICAL INVARIANTS FOR LINKS 319

an easy modification of disks and bands. Now the proof is complete.

REMARK. From this Lemma, / is a weak ribbon link if and only if g*(l)=0
(Clearly / is a weak slice link if and only if £*(/)=0).

DEFINITION 5. The minimum number of unlinking (Γ) operations required
to deform a given link / into a weak slice link, a weak ribbon link are called the
unlinking number of / (in the 4-dimensional sense), denoted by &*(/), uf(l) respec-
tively. We may easily prove the following.

Lemma 6. For any link /, u*(l)^u*(l)^u(l).

By Lemma 1 any link / in R3[0] may span μ(l) singular disks D whose

only singularities are finite clasps. Let aly -,an be all the clasps on
n

D and take mutually disjoint regular neighborhoods U iV(α, : i?3[0]). Then
ί=-l

d(N(aii R3[0])ΓϊD)^ OS . L e t ^ , •••, pn be different points in R\\] and make a
cone Di=pi^(d(N(ai: R3[0])f]D)) for each z and we may construct these cones

not to intersect with each other. Then D=(D— UNfa: Λ3[0])) U( U A ) is a
j—1 j—1

locally flat μ(l) disks with singularities^, -",pn such that 9ίiVί/> : RΊ —, — M

Π D ) « (2) , dD=l and D has no minimum points. So we may define the clasp

number of a link (in the 4-dimensional sense) as follows.
Let F be an orientable surface of genus 0 with μ boundaries. Suppose that

/ i s a locally flat immersion of F in R3[0> oo) such that/(3jF)=/ is a given link /
in i?3[0], f(Int F)aR3(0, oo) and the singularities of f(Int F) are finite points

DEFINITION 6. For all the locally flat immersions satisfying the above
condition, the minimum number of these singularities is called the clasp number
of / and is denoted by c*(l). Especially when we restrict Definition 6 only for the
locally flat immersions which has no minimum points, the minimum number
of these singularities is denoted by £*(/).

Then the next Lemma is trivial from the definition and the explanation
above Definition 6.

Lemma 7. For any link /, c*(t) ̂  c*(l) ̂  c(l)

Modifying the technique we used to prove Lemma 3, we obtain

Lemma 8. For any link I, there is a number μ such that c*(l)=c?(l°Oμ') for
some trivial link Oμ.

Now we will examine the relation between g*(l), c*(l), u*(l) and g?(l), c*(l),
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Lemma 9. For any link, £*(/)^c*(Z), g

Proof. Let F be a locally flat non-singular surface except c*(l) points
p19 •• ,pn,vrhcren=c*(l),withdF==Unάl~dN(pi: #3[0, oo))nF«(S> . Then
/,- may span an orientable surface F{ of genus 0 in dN{pi\ R3[0, oo)), So

F = ( F - LJ #(/>,: #3[0, oo))) u ( U F,.)
ί = l ί = l

is a non-singular locally flat orientable surface of genus n with dF=l. Thus
£*(/)<Jc*(/). We can prove £?(/)^£*(/) by using the technique to prove the first
half of Lemma 9. Now the proof is complete.

Lemma 10. For any link /, c*(l)^u*(I) and c*(l)^u*(l).

Proof. Let / be a link in R3[0]. Now we perform z/*(/)-times (or u*(l)-
times) (Γ) operation to / in R\0, 1) so that V in R3[ί] is a weak slice (or weak
ribbon) link. Then there exist proper annuli Fa in JR3[0, 1] with &F0=/ U( —/')
and Fo has no minimum and maximum points and singularities are finite points
p» —,pnmlnt Fo, where n=u*(l) (or u*(l))9 such that 9iV(/>, : #3[0,oo)) n F0^ffi) .
As // is a weak slice (or a weak ribbon) link, we may span a locally flat orientable
surface Fλ in i?3[l, oo) with dF1=l/ (if f is a weak ribbon link, ί\ has no
minimum points by Lemma 5). Then there is a singular surface FO\JF1 of
genus 0 whose boundary is /. Thus c*(l)^>u*(l) (or c*(l)t^u*(l)). This com-
pletes the proof of Lemma 10.

And by Lemma 11, c*(l)=u*(l) follows.

Lemma 11. For any link /, uf(l)^cf(Γ).

Proof. Let / be a link in i?3[0] and F be a surface in .R3[0, 1) which has
no minimum points with dF=l and cf(l) be the number of clasps. F has m
singular points/)!, "-,pm and n maximum pointspm+1, "*,pm+n, where m=c?(l).
We may connect these points to distinct points qly •••, qm+n in R3[2] by disjoint
arcs aly •••,«»+» such that α, ΠiΓ=3α /nί 1==/) ί and « t ίlΛ3[ί] is at most one
point for each z, 0<t^2. By an isotopy we may bring pi to #,- along α t with
ΘF fixed to make a new surface F' which is isotopic to F and F'f)R3[l]^
QDo...oC©oOn, where the number of C© ism. By Lemma 4, JF' is deformed to F"
which is a proper surface in i?3[0, 1] and is isotopic to F 'n# 3 [0, l J ^ n Λ ' t O ] ^

jP'ΓI^Olin/ί^O] and Fπ{\R\\\^Ff[\R\\\mR3\Y^s and c/(F7/-LJβ?x[0,1])

=£r/(JFi//n/2'[0]-_UJB;)x[0> 1] for some mutually disjoint 3-balls B\ in Λ3[0].

Let D\y i=l, •••, w, be mutually disjoint 3-balls in Λ3[l] such that Ώ\ contains
only one GS in its interior and D\f\D)=φy where D* is a spanning disk of O7

which is a component of Ow, for each t,j9 ltίi^m, m+ltίj ^nt+n. Then we
P

may take a simple arc /3? in p(Df)— \JB* to connect two points of / as shown in
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Fig. 3

Fig. 3 (a) such that GQ becomes a trivial link by the (Γ) operation along
p~\βi) Π R3[l] in Ό\ for each i, where p is a natural projection of i?3[0, 1] to R3[0].
Then we determine /3, 0, /3tl as shown in Fig. 3 (b) which may be taken in the

neighborhood of /?, and F"'=(F"-(\Jβio X [0, 1])) U ( Uβiχ X [0, 1]) U (JJ + "^) U

(U-D*), where D{ and D m + I are disjoint disks in Int D\. Then as Fπt has no

minimum points, 9F///ΠΛ3[0]=// is a weak ribbon link by Lemma 5 and / is
obtained from V by £?(/)-times (Γ) operation. So u*(l)tίc*(l) which completes
the proof.

Let σ(l) be the signature of a link (for the definition of (/), see [7]), then it

is known —(\σ(t)\—μ(l)+l)^g*(l) by Theorem 9.1 [7].

Now we complete our researches.

Theorem 2. For any link /, we obtain — ( | σ{ΐ) \ —μ(l)+1)^^*(/) and

Λll Λll Λll
c*(l

Λll

REMARK. If / is a non-trivial weak ribbon link of 1 component, then

Question. In the above diagram of 4-dimensional numerical invariants of
links, which inequality can be replaced by an equality?
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