WOVEN KNOTS ARE SPUN KNOTS

Dennis ROSEMAN

(Received November 10, 1971)
(Revised December 1, 1973)

Given a knotted 1 -sphere, k, in R^{3} it is possible to find a knotted 2 -sphere, K, in R^{4} such that $\Pi_{1}\left(R^{3}-k\right)$ is isomorphic to $\Pi_{1}\left(R^{4}-K\right)$. In [1], Artin constructs one such example called a spun knot; in [3], Yajima also gives an example which we will refer to as a woven knot. The object of this paper is to show that these knots are, in fact, the same; that is, given k, the corresponding spun knot and the woven knot constructed from the mirror image of k are ambiently isotopic.

By a knotted n-sphere in R^{n+2}, we will mean an ambient isotopy class of embeddings of S^{n} into R^{n+2}. Sometimes, in order to avoid proliferation of notations we will use the same letter to denote a map and the image of that map. We will also generalize this construction to other types of spinnings of higher dimensional knots.

We will use $P L$ spheres in our constructions. We will use the following notion of general position: if γ is a $P L n$-sphere in R^{n+2}, we will say γ is in general position if for each vertex, v, and k-simplex σ of γ, with v not a vertex of σ, γ is not contained in the k-plane of R^{n+2} determined by σ.

(a)

(b)

Figure 1

Suppose γ is an n-sphere in R^{n+2}; let $R_{+}^{n+2}=\left\{\left(x_{1}, \cdots, x_{n+2}\right) \in R^{n+2}\right.$ with $\left.x_{1} \geqq 0\right\}$, let $\partial R_{+}^{n+2}=\left\{\left(x_{1}, \cdots, x_{n+2}\right) \in R^{n+2}\right.$ with $\left.x_{1}=0\right\}$. Also, define $h: R_{+}^{n+2} \rightarrow R^{1}$ by $h\left(x_{1}, \cdots, x_{n+2}\right)=x_{n+2}$; we may think of h as a height function. Without loss of generality, we may assume that γ is the union of two n-disks α and β such that $\alpha \cap \beta$ is an ($n-1$)-sphere, and (1) $\gamma\left(S^{n}\right) \subseteq R_{+}^{n+2}$, such that $h \circ \gamma>0$ (i.e., γ lies above the half- $(n+1)$-plane in R_{+}^{n+2} given by $x_{n+2}>0$; (2) $\gamma\left(S^{n}\right) \cap \partial R_{+}^{n+2}=\beta$; (3) if $p: R_{+}^{n+2} \rightarrow R_{+}^{n+1}$ is given by $p\left(x_{1}, \cdots, x_{n+1}, x_{n+2}\right)=\left(x_{1}, \cdots, x_{n+1}\right)$, then we will require that $p \mid \beta$ is an embedding (all that we will ever use is that $p|\partial \beta=p| \partial \alpha$ is an embedding); ($\mu) \gamma$ is in general position. If γ is a circle in R^{3}, α is an arc as in figure 1 (a).

To describe the spun knot, we will write points of $R^{n+k+2} \approx R^{k+1} \times R^{n+1}$ in the form ($z \rho, x_{k+2}, \cdots, x_{n+k+2}$) where ρ is a unit vector in the first $(k+1)$ coordinates and $z \geqq 0$. For each ρ, let H_{ρ} denote the half- $(n+2)$-hyperplane of all points of the form ($z \rho, x_{k+2}, \cdots, x_{n+k+2}$). Then the maps h_{ρ} defined by $h_{\rho}\left(x_{1}, \cdots, x_{n+2}\right)=\left(x_{1} \rho, x_{2} \cdots, x_{n+2}\right)$ are embeddings of R_{+}^{n+2} into R^{n+k+2}, and $\bigcup_{\rho} h_{\rho}\left(R_{+}^{n+2}\right)=R^{n+k+2}$.

We will need the following notations for subsets of the $(n+k)$-sphere. We will consider S^{n+k} to be the unit sphere $R^{n+k+1} \approx R^{k+1} \times R^{n}$ and denote points by $\left(z \rho, x_{k+2}, \cdots, x_{n+k+1}\right)$ where ρ is a unit vector in the first $k+1$ coordinates, $z \geqq 0$; we will consider D^{n} to be the unit disk in R^{n+1}. Let $\lambda \rho$ be the n-disk in S^{n+k} which is the image of the map $\lambda \rho\left(x_{1}, \cdots, x_{n}\right)=\left(\sqrt{1-\sum x_{i}^{2}} \rho, x_{1}, \cdots, x_{n}\right) ; \lambda \rho$ is the intersection of S^{n+k} with the set of all points of the form ($z \rho, x_{k+2}, \cdots, x_{n+k+1}$). For each point $a \in D^{n}, a=\left(a_{1}, \cdots, a_{n}\right)$, define a map $\mu_{a}: S^{k} \rightarrow S^{n+k}$ by $\mu_{a}\left(x_{1}, \cdots\right.$, $\left.x_{k+1}\right)=\left(\eta_{a} x_{1}, \eta_{a} x_{2}, \cdots, \eta_{a} x_{k+1}, a_{1}, \cdots, a_{n}\right)$ where $\eta_{a}=\sqrt{1-\sum a_{i}^{2}}$. Thus μ_{a} is the intersection of S^{n+k} with the set of points ($x_{1}, \cdots, x_{k+1}, a_{1}, \cdots, a_{n}$); also we may see that μ_{a} is a k-sphere of radius η_{a} if $a \in \operatorname{Int} D^{n}, \mu_{a}$ is a point if $a \in \partial D^{n}$. If we are spinning an arc, then S^{n+k} is a 2 -sphere, and $\lambda \rho$ is a longitudinal are, μ_{a} is a meridian circle, or a pole, see figure $1(\mathrm{~b})$.

We will now define an embedding $S_{\alpha}^{k}: S^{n+k} \rightarrow R^{n+k+2}$ by requiring for each $\rho, S_{a}^{k} \circ \lambda_{\rho}=h_{\rho} \circ \alpha$. The isotopy class of S_{∞}^{k} will be called the knot obtained by k-spinning α. We remark that if α and α^{\prime} are two n-disks in R^{n+2} and α_{t} is an isotopy with $\alpha_{0}=\alpha, \alpha_{1}=\alpha^{\prime}$ and for all $t, 0 \leqq t \leqq 1, \alpha_{t} \cap R_{+}^{n+2}=\alpha_{t}\left(\partial D^{n}\right)$, then there is an isotopy, K_{t}, between the sphere obtained k-spinning α and that obtained by k-spinning α^{\prime}; the isotopy is defined so that for all $t, h_{\rho}\left(\alpha_{t}\right)=K_{t}\left(\lambda_{\rho}\right)$.

We will want to examine the projection of S_{o}^{k} by projection along the last coordinate, x_{n+k+2}. Let Π be this projection; $\Pi\left(z \rho, x_{k+2}, \cdots, x_{n+k+1}, x_{n+k+2}\right)=$ $\left(z \rho, x_{k+2}, \cdots, x_{n+k+1}\right)$. Let $p: R_{+}^{n+2} \rightarrow R_{+}^{n+1}$ be as before; let $\alpha^{*}=p(\alpha)$. For each ρ, we may define embeddings $h_{\rho}{ }^{\prime}: R_{+}^{n+1} \rightarrow R^{n+k+1}$ by $h_{\rho}{ }^{\prime}\left(x_{1}, \cdots, x_{n+1}\right)=\left(x_{1} \rho, x_{2}, \cdots\right.$, $\left.x_{n+1}\right)$. Since $\Pi \circ h_{\rho}=h_{\rho}{ }^{\prime} \circ p, \Pi\left(S_{\alpha}^{k}\right)=\Pi\left(\bigcup_{\rho} h_{\rho}(\alpha)\right) \bigcup_{\rho} \Pi h_{\rho}(\alpha)=\bigcup_{\rho} h_{\rho}{ }^{\prime}\left(\alpha^{*}\right)$. We may state this as follows: The projection of the k-spinning of α is the same as the k -
spinning of the projection of α (for the spinning of the arc of figure 1 , see figure 2; figure 2(b) shows $\Pi\left(S_{a}^{1}\right)$ with $\underset{\psi}{\cup} h_{\psi^{\prime}}\left(\alpha^{*}\right)$ removed where $\left.0<\psi<\Pi / 2\right)$. We may also describe $\Pi\left(S_{\infty}^{k}\right)$ as follows; if $b \in \alpha$ with $b=\alpha(a)$ with $a \in D^{n}$, let $A_{b}=\bigcup_{\rho} h_{\rho}(b), A_{b}$ will be a k-sphere if $a \in \operatorname{Int} D^{n}$, a point if $a \in \partial D^{n}$, let $A_{b}^{*}=\Pi\left(A_{b}\right)=\bigcup_{\rho} h_{\rho}{ }^{\prime}(b)$, then $\Pi\left(S_{a}^{k}\right)=\bigcup_{b \in \alpha} A_{b}^{*} . \quad$ If M_{r} is the set of points of multiplicity r of α under p, that is, $M_{r}=\left\{x \in \alpha^{*}\right.$ such that $p^{-1}(x) \cap \alpha$ consists of exactly r points $\}$, and if M_{r}^{\prime} is the set of points of multiplicity r of S^{k} under $\Pi, M_{r}^{\prime}=\left\{x \in \Pi\left(S_{\infty}^{k}\right)\right.$ such that $\Pi^{-1}(x) \cap S_{\infty}^{k}$ consists of exactly r points $\}$, then $M_{r}{ }^{\prime}$ is obtained by k-spinning M_{r}, i.e., $M_{r}{ }^{\prime}=\left\{\bigcup_{\rho} h_{\rho}{ }^{\prime}(x)\right.$ where $\left.x \in M_{r}\right\}$. In the case of spinning a 1 -sphere, each double point of the projection will correspond to a circle of double points of the spun knot. Furthermore, suppose that $b, b^{\prime} \in \alpha$ with $p(b)=p\left(b^{\prime}\right)$ and $h(b)<h\left(b^{\prime}\right)$, then for all ρ, the x_{n+k+2}-coordinate of $h_{\rho}(b)$ will be less than the x_{n+k+2}-coordinate of $h_{\rho}\left(b^{\prime}\right)$ (since these will be equal to $h(b)$ and $h\left(b^{\prime}\right)$, respectively), denote this by $A_{b}<A_{b}{ }^{\prime}$.

(a)

(b)

Figure 2
We next describe another embedding of S^{n+k} into R^{n+k+2}, the woven knot. As before, we begin with α. Recall that $h(b)>0$ for all $b \in \alpha$; let M be a number such that $M>h(b)$ for all $b \in \alpha$. By our general position, we may find an ε such that if v is a vertex of α, σ a k-simplex of α with $v \notin \sigma$, then ε is less than the distance between v and the k-plane of R^{n+2} determined by σ. Now suppose that α is given by $\alpha(a)=\left(x_{1}(a), \cdots, x_{n+2}(a)\right)$, let $x_{1}{ }^{\prime}(a)=x_{1}(a)\left(1+\left(\varepsilon x_{n+2}(a)\right) / M\right.$, and for $t, 0 \leq t \leq 1,\left(x_{1}\right)_{t}(a)=x_{1}(a)\left(1+\left(t \varepsilon x_{n+2}(a)\right) / M\right)$. Next define $\alpha^{\prime}(a)=\left(x_{1}{ }^{\prime}(a)\right.$, $\left.x_{2}(a), \cdots, x_{n+2}(a)\right), \alpha_{t}(a)=\left(\left(x_{1}\right)_{t}(a), x_{2}(a), \cdots, x_{n+2}(a)\right)$, then $\alpha_{t}(a)$ is an isotopy in R_{+}^{n+2} from α to α^{\prime} fixed on $\partial \alpha$. If $a \in D^{n}, a=\left(a_{1}, \cdots, a_{n}\right)$, let H_{a} be the ($k+1$)hyperplane of $R^{n+k+1}=R^{k+1} \times R^{n}$ of the form $\left(x_{1}, \cdots, x_{k+1}, a_{1}, \cdots, a_{n}\right)$, then $\mu_{a}=S^{n+k} \cap H_{a}$. Let $k_{a}: H_{a} \rightarrow R^{n+k+2}$ be the map which takes H_{a} to a hyperplane of R^{n+k+2} by a map which takes μ_{a} to a circle of radius $x_{1}{ }^{\prime}(a)$ defined as follows:
let $\nu_{a}=x_{1}^{\prime}(a) / \eta_{a}$ if $\eta_{a} \neq 0, \nu_{a}=0$ if $\eta_{a}=0$ (i.e., if $a \in \partial D^{n}$), then define $k_{a}\left(x_{1}, \cdots\right.$, $\left.x_{k+1}, a_{1}, \cdots, a_{n}\right)=\left(\nu_{a} x_{1}, \cdots, \nu_{a} x_{k+1}, x_{2}(a), x_{3}(a), \cdots, x_{n+1}(a), x_{1}(a)\right)$. Note that the last coordinate is given by $x_{1}(a)$.

Now we define an embedding $W_{a}^{k}: S^{n+k} \rightarrow R^{n+k+2}$ by requiring that $W_{a}^{k} \circ \mu_{a}=$ $k_{a} \circ \mu_{a}$, or $W^{k}\left(\mu_{a}\right)=k_{a}\left(\mu_{a}\right)$. The isotopy class of W_{a}^{k} will be called the k-woven knot corresponding to γ.

We will now discuss the special case of 1 -weaving a 1 -sphere, illustrating with the particular example of the trefoil knot of figure $1(a)$. In this case, α^{\prime} can be described as a slight distortion of α which, above the doublepoints of α^{*}, bends α on the overpasses away from ∂R_{+}^{3} more than on the underpasses. Thus $\left(\alpha^{\prime}\right)^{*}$ looks like figure $3(a)$. If $\alpha(a)=\left(x_{1}(a), x_{2}(a), x_{3}(a)\right)$, with $a \in D^{1}, \alpha^{*}(a)=$ $\left(x_{1}(a), x_{2}(a)\right)$. Let P^{3} be the hyperplane in R^{4} with last coordinate zero. Let R_{w} be the set of points of the form $\left(0, y, x_{1}(a), x_{2}(a)\right)$ with $|y| \leq x_{1}^{\prime}(a)$, see figure 3 (b). Then R_{a} is a ribbon in P^{3} and if $\Pi^{\prime}, \Pi^{\prime}: R^{4} \rightarrow P^{3}$, is defined by $\Pi^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{2}, x_{3}, x_{4}\right)$ then $\Pi^{\prime}\left(W_{a}^{1}\right)=R_{\alpha}$. In fact, we may see that W_{ω}^{1} is the symmetric ribbon knot of R_{α}, see Yajima [4]. Furthermore, it is clear from the discussion in Yajima [4], page 137, that W_{ω}^{1} is the same as the 2-sphere similar to the knot γ, defined in Yajima [3]. From the discussion which is to follow, we will see that W_{∞}^{1} will be a spun knot; thus the knots defined in Yajima [3] are all spun knots.

For convenience we will describe Yajima's construction [3] and illustrate it with the trefoil knot. Given a knot γ and the corresponding knotted arc, α, we construct a self-intersecting tube around the projection, α^{*}, of α, narrowing the tube along the arc at the underpasses and closing off the tube at the end points of α^{*} (see figure 3). This describes the projection of a knotted 2-sphere; to

Figure 3

determine the height relations at the double points we use the following rule: choose a direction for α indicated by arrows, if the crossing at a point of α^{*} is as in figure 4 a , then the double point set consists of two circles c_{1} and c_{2} and we will define our embedded sphere so that the smaller tube passes under the large one at c_{1} and the smaller tube passes over the large tube at c_{2}; the projection of these tubes will look like figure 4b. (This over-under alternation at each crossing point accounts for our choice of the term "weaving" to describe this knot and its generalizations.)

Figure 5

We now wish to examine the projection $\Pi\left(W_{a^{\prime}}^{1}\right)$. For each $b \in \alpha^{\prime}$, with $b=\alpha^{\prime}(a)$, we define $B_{b}=W^{k}\left(\mu_{a}\right)$; then B_{b} is a k-sphere of radius $x_{1}{ }^{\prime}(a)$ if $a \in \operatorname{Int} D^{n}$, a point if $a \in \partial D^{n}$. If $A_{b}^{\prime}=\bigcup_{\rho} h_{\rho}(b),\left(A_{b}{ }^{\prime}\right)^{*}=\Pi\left(A_{b}{ }^{\prime}\right), B_{b}^{*}=\Pi\left(B_{b}\right)$ then we see that for all $b,\left(A_{b}^{\prime}\right)^{*}=B_{b}^{*}$, since each set consists of a k-sphere of radius $x_{1}{ }^{\prime}(a)$ in the hyperplane $\left(x_{1}, \cdots, x_{k+1}, x_{2}(a), \cdots, x_{n+1}(a)\right)$ with center $\left(0, \cdots, 0, x_{2}(a), \cdots, x_{n+1}(a)\right)$. Thus $\Pi\left(S_{a^{\prime}}^{k^{\prime}}\right)=\Pi\left(W_{a^{\prime}}^{k}\right)$; however, this does not imply that $S_{a^{\prime}}^{k}$ is ambiently isotopic to $W_{a^{\prime}}^{k}$, we need to check the height relations in the x_{n+k+2} coordinate. We note that for any B_{b}, the x_{n+k+2} coordinate of points of B_{b} are the same, namely $x_{1}(a)$. Now suppose that $B_{b}^{*}=B_{b^{\prime}}^{*}$ and thus $\left(A_{b}{ }^{\prime}\right)^{*}=\left(A_{b^{\prime}}^{\prime}\right)^{*}=B_{b}^{*}$, then $\left(\alpha^{\prime}\right)^{*}(b)=\left(\alpha^{\prime}\right)\left(b^{\prime}\right)$, and thus $x_{1}^{\prime}(a)=x_{1}{ }^{\prime}\left(a^{\prime}\right)$, where $\alpha\left(a^{\prime}\right)=b^{\prime}$. Now suppose that $h(b)<h\left(b^{\prime}\right)$, then as we have seen, $A_{b}{ }^{\prime}<A_{b^{\prime}}^{\prime}$; however, $B_{b}>B_{b^{\prime}}$ since the x_{n+k+2} coordiate of points in B_{b} and $B_{b^{\prime}}$ is given by $x_{1}(a)$ and $x_{1}\left(a^{\prime}\right)$, respectively, and from the definition of $x_{1}{ }^{\prime}$ we see that if $x_{1}{ }^{\prime}(a)=$ $x_{1}{ }^{\prime}\left(a^{\prime}\right)$ with $h(b)<h\left(b^{\prime}\right)$, then $x_{1}(a)>x_{1}\left(a^{\prime}\right)$. We may summarize this by saying that although $\Pi\left(S_{\omega^{\prime}}^{k}\right)=\Pi\left(W_{a^{\prime}}^{k}\right)$, the height relations of S_{a}^{k} are the opposite of
those of $W_{a^{\prime}}^{k}$.
Let $-\alpha^{\prime}$ be the mirror image of α^{\prime} obtained by reflection in the last coordinate of $R_{+}^{n+2} ;\left(-\alpha^{\prime}\right)(a)=\left(x_{1}{ }^{\prime}(a), x_{2}(a), \cdots,-x_{n+2}(a)+M\right)$ (we need to add the M to the last coordinate in order that $-\alpha^{\prime}$ satisfy condition (1) in the definition of α). For mirror images of circles in R^{3}, see Crowell-Fox, Chapter 1, Section 4 [2]. Now the height relations of $S_{-a^{\prime}}^{k}$ are the reverse of those of $S_{a^{\prime}}^{k}$, and $\Pi\left(S_{a^{\prime}}^{k}\right)=\Pi\left(S_{-\alpha^{\prime}}^{k}\right)$. Thus $S_{-a^{\prime}}^{k}$ is ambiently isotopic to $W_{a^{\prime}}^{k}$; in fact, by an ambient isotopy which translates B_{b} in the x_{n+k+2} coordinate until it coincides with $-A_{b}^{\prime}=\bigcup_{\rho} h_{\rho}\left(-\alpha^{\prime}(a)\right)$.

The University of Iowa

References

[1] E. Artin: Zur Isotopie zweidimensionaler Flächen in R_{4}, Hamburg Abh. 4 (1925), 174-177.
[2] R.H. Crowell and R.H. Fox: Introduction to Knot Theory, Ginn and Co. 1963.
[3] T. Yajima: On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ. 13 (1962), 63-71.
[4] T. Yajima: On simply knotted spheres in R^{4}, Osaka J. Math. 1 (1964), 133-152.

