Roseman, D. Osaka J. Math. 11 (1974), 307–312

WOVEN KNOTS ARE SPUN KNOTS

DENNIS ROSEMAN

(Received November 10, 1971) (Revised December 1, 1973)

Given a knotted 1-sphere, k, in R^3 it is possible to find a knotted 2-sphere, K, in R^4 such that $\prod_1(R^3-k)$ is isomorphic to $\prod_1(R^4-K)$. In [1], Artin constructs one such example called a spun knot; in [3], Yajima also gives an example which we will refer to as a woven knot. The object of this paper is to show that these knots are, in fact, the same; that is, given k, the corresponding spun knot and the woven knot constructed from the mirror image of k are ambiently isotopic.

By a knotted *n*-sphere in \mathbb{R}^{n+2} , we will mean an ambient isotopy class of embeddings of S^n into \mathbb{R}^{n+2} . Sometimes, in order to avoid proliferation of notations we will use the same letter to denote a map and the image of that map. We will also generalize this construction to other types of spinnings of higher dimensional knots.

We will use *PL* spheres in our constructions. We will use the following notion of general position: if γ is a *PL n*-sphere in \mathbb{R}^{n+2} , we will say γ is in general position if for each vertex, v, and k-simplex σ of γ , with v not a vertex of σ , γ is not contained in the *k*-plane of \mathbb{R}^{n+2} determined by σ .

Figure 1

D. ROSEMAN

Suppose γ is an *n*-sphere in \mathbb{R}^{n+2} ; let $\mathbb{R}^{n+2}_+ = \{(x_1, \dots, x_{n+2}) \in \mathbb{R}^{n+2} \text{ with } x_1 \ge 0\}$, let $\partial \mathbb{R}^{n+2}_+ = \{(x_1, \dots, x_{n+2}) \in \mathbb{R}^{n+2} \text{ with } x_1 = 0\}$. Also, define $h: \mathbb{R}^{n+2}_+ \to \mathbb{R}^1$ by $h(x_1, \dots, x_{n+2}) = x_{n+2}$; we may think of h as a height function. Without loss of generality, we may assume that γ is the union of two *n*-disks α and β such that $\alpha \cap \beta$ is an (n-1)-sphere, and (1) $\gamma(\mathbb{S}^n) \subseteq \mathbb{R}^{n+2}_+$, such that $h \circ \gamma > 0$ (i.e., γ lies above the half-(n+1)-plane in \mathbb{R}^{n+2}_+ given by $x_{n+2} > 0$; (2) $\gamma(\mathbb{S}^n) \cap \partial \mathbb{R}^{n+2}_+ = \beta$; (3) if $p: \mathbb{R}^{n+2}_+ \to \mathbb{R}^{n+1}_+$ is given by $p(x_1, \dots, x_{n+1}, x_{n+2}) = (x_1, \dots, x_{n+1})$, then we will require that $p \mid \beta$ is an embedding (all that we will ever use is that $p \mid \partial \beta = p \mid \partial \alpha$ is an embedding); $(\mu) \gamma$ is in general position. If γ is a circle in \mathbb{R}^3 , α is an arc as in figure 1 (a).

To describe the spun knot, we will write points of $R^{n+k+2} \approx R^{k+1} \times R^{n+1}$ in the form $(z\rho, x_{k+2}, \dots, x_{n+k+2})$ where ρ is a unit vector in the first (k+1)coordinates and $z \ge 0$. For each ρ , let H_{ρ} denote the half-(n+2)-hyperplane of all points of the form $(z\rho, x_{k+2}, \dots, x_{n+k+2})$. Then the maps h_{ρ} defined by $h_{\rho}(x_1, \dots, x_{n+2}) = (x_1 \rho, x_2 \dots, x_{n+2})$ are embeddings of R^{n+2}_+ into R^{n+k+2} , and $\bigcup h_{\rho}(R^{n+2}_+) = R^{n+k+2}$.

We will need the following notations for subsets of the (n+k)-sphere. We will consider S^{n+k} to be the unit sphere $R^{n+k+1} \approx R^{k+1} \times R^n$ and denote points by $(z\rho, x_{k+2}, \dots, x_{n+k+1})$ where ρ is a unit vector in the first k+1 coordinates, $z \ge 0$; we will consider D^n to be the unit disk in R^{n+1} . Let $\lambda \rho$ be the *n*-disk in S^{n+k} which is the image of the map $\lambda \rho(x_1, \dots, x_n) = (\sqrt{1-\sum x_i^2} \rho, x_1, \dots, x_n); \lambda \rho$ is the intersection of S^{n+k} with the set of all points of the form $(z\rho, x_{k+2}, \dots, x_{n+k+1})$. For each point $a \in D^n$, $a = (a_1, \dots, a_n)$, define a map $\mu_a \colon S^k \to S^{n+k}$ by $\mu_a(x_1, \dots, x_{k+1}) = (\eta_a x_1, \eta_a x_2, \dots, \eta_a x_{k+1}, a_1, \dots, a_n)$ where $\eta_a = \sqrt{1-\sum a_i^2}$. Thus μ_a is the intersection of S^{n+k} with the set of points $(x_1, \dots, x_{k+1}, a_1, \dots, a_n)$; also we may see that μ_a is a k-sphere of radius η_a if $a \in \operatorname{Int} D^n$, μ_a is a point if $a \in \partial D^n$. If we are spinning an arc, then S^{n+k} is a 2-sphere, and $\lambda \rho$ is a longitudinal are, μ_a is a meridian circle, or a pole, see figure 1(b).

We will now define an embedding S_{α}^{k} : $S^{n+k} \rightarrow R^{n+k+2}$ by requiring for each ρ , $S_{\alpha}^{k} \circ \lambda_{\rho} = h_{\rho} \circ \alpha$. The isotopy class of S_{α}^{k} will be called the knot obtained by k-spinning α . We remark that if α and α' are two n-disks in R^{n+2} and α_{t} is an isotopy with $\alpha_{0} = \alpha$, $\alpha_{1} = \alpha'$ and for all t, $0 \leq t \leq 1$, $\alpha_{t} \cap R_{+}^{n+2} = \alpha_{t}(\partial D^{n})$, then there is an isotopy, K_{t} , between the sphere obtained k-spinning α and that obtained by k-spinning α' ; the isotopy is defined so that for all t, $h_{\rho}(\alpha_{t}) = K_{t}(\lambda_{\rho})$.

We will want to examine the projection of S_{α}^{k} by projection along the last coordinate, x_{n+k+2} . Let Π be this projection; $\Pi(z\rho, x_{k+2}, \dots, x_{n+k+1}, x_{n+k+2}) =$ $(z\rho, x_{k+2}, \dots, x_{n+k+1})$. Let $p: R_{+}^{n+2} \rightarrow R_{+}^{n+1}$ be as before; let $\alpha^* = p(\alpha)$. For each ρ , we may define embeddings $h_{\rho}': R_{+}^{n+1} \rightarrow R_{+}^{n+k+1}$ by $h_{\rho}'(x_{1}, \dots, x_{n+1}) = (x_{1}\rho, x_{2}, \dots, x_{n+1})$. Since $\Pi \circ h_{\rho} = h_{\rho}' \circ p$, $\Pi(S_{\alpha}^{k}) = \Pi(\bigcup_{\rho} h_{\rho}(\alpha)) \bigcup_{\rho} \Pi h_{\rho}(\alpha) = \bigcup_{\rho} h_{\rho}'(\alpha^{*})$. We may state this as follows: The projection of the k-spinning of α is the same as the k-

308

spinning of the projection of α (for the spinning of the arc of figure 1, see figure 2; figure 2(b) shows $\Pi(S^1_{\alpha})$ with $\bigcup h_{\psi'}(\alpha^*)$ removed where $0 < \psi < \Pi/2$). We may also describe $\Pi(S^k_{\alpha})$ as follows; if $b \in \alpha$ with $b = \alpha(a)$ with $a \in D^n$, let $A_b = \bigcup h_{\rho}(b), A_b$ will be a k-sphere if $a \in \operatorname{Int} D^n$, a point if $a \in \partial D^n$, let $A^*_b = \Pi(A_b) = \bigcup h_{\rho'}(b)$, then $\Pi(S^k_{\alpha}) = \bigcup A^*_b$. If M_r is the set of points of multiplicity r of α under p, that is, $M_r = \{x \in \alpha^* \text{ such that } p^{-1}(x) \cap \alpha \text{ consists of exactly } r \text{ points}\}$, and if $M_{r'}$ is the set of points of multiplicity r of S^k under $\Pi, M_r' = \{x \in \Pi(S^*_{\alpha}) \text{ such that } \Pi^{-1}(x) \cap S^*_{\alpha} \text{ consists of exactly } r \text{ points}\}$, then M_r' is obtained by k-spinning M_r , i.e., $M_r' = \{\bigcup h_{\rho'}(x) \text{ where } x \in M_r\}$. In the case of spinning a 1-sphere, each double point of the projection will correspond to a circle of double points of the spun knot. Furthermore, suppose that $b,b' \in \alpha$ with p(b)=p(b') and h(b) < h(b'), then for all ρ , the x_{n+k+2} -coordinate of $h_{\rho}(b)$ will be less than the x_{n+k+2} -coordinate of $h_{\rho}(b')$ (since these will be equal to h(b) and h(b'), respectively), denote this by $A_b < A_b'$.

We next describe another embedding of S^{n+k} into R^{n+k+2} , the woven knot. As before, we begin with α . Recall that h(b) > 0 for all $b \in \alpha$; let M be a number such that M > h(b) for all $b \in \alpha$. By our general position, we may find an ε such that if v is a vertex of α , σ a k-simplex of α with $v \notin \sigma$, then ε is less than the distance between v and the k-plane of R^{n+2} determined by σ . Now suppose that α is given by $\alpha(a) = (x_1(a), \dots, x_{n+2}(a))$, let $x_1'(a) = x_1(a)(1 + (\varepsilon x_{n+2}(a))/M)$, and for $t, 0 \le t \le 1, (x_1)_t(a) = x_1(a)(1 + (t\varepsilon x_{n+2}(a))/M)$. Next define $\alpha'(a) = (x_1'(a), x_2(a), \dots, x_{n+2}(a)), \alpha_t(a) = ((x_1)_t(a), x_2(a), \dots, x_{n+2}(a))$, then $\alpha_t(a)$ is an isotopy in R^{n+2}_{+} from α to α' fixed on $\partial \alpha$. If $a \in D^n$, $a = (a_1, \dots, a_n)$, let H_a be the (k+1)-hyperplane of $R^{n+k+1} = R^{k+1} \times R^n$ of the form $(x_1, \dots, x_{k+1}, a_1, \dots, a_n)$, then $\mu_a = S^{n+k} \cap H_a$. Let $k_a: H_a \to R^{n+k+2}$ be the map which takes H_a to a hyperplane of R^{n+k+2} by a map which takes μ_a to a circle of radius $x_1'(a)$ defined as follows: let $\nu_a = x_1'(a)/\eta_a$ if $\eta_a \neq 0$, $\nu_a = 0$ if $\eta_a = 0$ (i.e., if $a \in \partial D^n$), then define $k_a(x_1, \dots, x_{k+1}, a_1, \dots, a_n) = (\nu_a x_1, \dots, \nu_a x_{k+1}, x_2(a), x_3(a), \dots, x_{n+1}(a), x_1(a))$. Note that the last coordinate is given by $x_1(a)$.

Now we define an embedding W_{α}^{k} : $S^{n+k} \rightarrow R^{n+k+2}$ by requiring that $W_{\alpha}^{k} \circ \mu_{a} = k_{\alpha} \circ \mu_{a}$, or $W^{k}(\mu_{a}) = k_{a}(\mu_{a})$. The isotopy class of W_{α}^{k} will be called the *k*-woven knot corresponding to γ .

We will now discuss the special case of 1-weaving a 1-sphere, illustrating with the particular example of the trefoil knot of figure 1(a). In this case, α' can be described as a slight distortion of α which, above the doublepoints of α^* , bends α on the overpasses away from ∂R^3_+ more than on the underpasses. Thus $(\alpha')^*$ looks like figure 3(a). If $\alpha(a)=(x_1(a), x_2(a), x_3(a))$, with $a \in D^1$, $\alpha^*(a)=(x_1(a), x_2(a))$. Let P^3 be the hyperplane in R^4 with last coordinate zero. Let R_{α} be the set of points of the form $(0, y, x_1(a), x_2(a))$ with $|y| \leq x_1'(a)$, see figure 3(b). Then R_{α} is a ribbon in P^3 and if $\Pi', \Pi': R^4 \rightarrow P^3$, is defined by $\Pi'(x_1, x_2, x_3, x_4)=(0, x_2, x_3, x_4)$ then $\Pi'(W^1_{\alpha})=R_{\alpha}$. In fact, we may see that W^1_{α} is the symmetric ribbon knot of R_{α} , see Yajima [4]. Furthermore, it is clear from the discussion in Yajima [4], page 137, that W^1_{α} is the same as the 2-sphere similar to the knot γ , defined in Yajima [3]. From the discussion which is to follow, we will see that W^1_{α} will be a spun knot; thus the knots defined in Yajima [3] are all spun knots.

For convenience we will describe Yajima's construction [3] and illustrate it with the trefoil knot. Given a knot γ and the corresponding knotted arc, α , we construct a self-intersecting tube around the projection, α^* , of α , narrowing the tube along the arc at the underpasses and closing off the tube at the end points of α^* (see figure 3). This describes the projection of a knotted 2-sphere; to

Figure 3

Figure 4

determine the height relations at the double points we use the following rule: choose a direction for α indicated by arrows, if the crossing at a point of α^* is as in figure 4a, then the double point set consists of two circles c_1 and c_2 and we will define our embedded sphere so that the smaller tube passes *under* the large one at c_1 and the smaller tube passes over the large tube at c_2 ; the projection of these tubes will look like figure 4b. (This over-under alternation at each crossing point accounts for our choice of the term "weaving" to describe this knot and its generalizations.)

Figure 5

We now wish to examine the projection $\Pi(W_{a'}^{l})$. For each $b \in \alpha'$, with $b = \alpha'(a)$, we define $B_b = W^{k}(\mu_a)$; then B_b is a k-sphere of radius $x_1'(a)$ if $a \in \operatorname{Int} D^n$, a point if $a \in \partial D^n$. If $A_b' = \bigcup_p h_p(b)$, $(A_b')^* = \Pi(A_b')$, $B_b^* = \Pi(B_b)$ then we see that for all b, $(A_b')^* = B_b^*$, since each set consists of a k-sphere of radius $x_1'(a)$ in the hyperplane $(x_1, \dots, x_{k+1}, x_2(a), \dots, x_{n+1}(a))$ with center $(0, \dots, 0, x_2(a), \dots, x_{n+1}(a))$. Thus $\Pi(S_{a'}^{k}) = \Pi(W_{a'}^{k})$; however, this does not imply that $S_{a'}^{k}$ is ambiently isotopic to $W_{a'}^{k}$, we need to check the height relations in the x_{n+k+2} coordinate. We note that for any B_b , the x_{n+k+2} coordinate of points of B_b are the same, namely $x_1(a)$. Now suppose that $B_b^* = B_{b'}^*$ and thus $(A_b')^* = (A_b')^* = B_b^*$, then $(\alpha')^*(b) = (\alpha')(b')$, and thus $x_1'(a) = x_1'(a')$, where $\alpha(a') = b'$. Now suppose that h(b) < h(b'), then as we have seen, $A_b' < A_{b'}$; however, $B_b > B_{b'}$ since the x_{n+k+2} coordiate of points in B_b and $B_{b'}$ is given by $x_1(a)$ and $x_1(a')$, respectively, and from the definition of x_1' we see that if $x_1'(a) = x_1'(a')$ with h(b) < h(b'), then $x_1(a) > x_1(a')$. We may summarize this by saying that although $\Pi(S_{a'}^{k'}) = \Pi(W_{a'}^{k'})$, the height relations of S_a^{k} are the opposite of

D. ROSEMAN

those of $W^{k}_{\alpha'}$.

Let $-\alpha'$ be the mirror image of α' obtained by reflection in the last coordinate of R_{+}^{n+2} ; $(-\alpha')(a) = (x_1'(a), x_2(a), \dots, -x_{n+2}(a) + M)$ (we need to add the M to the last coordinate in order that $-\alpha'$ satisfy condition (1) in the definition of α). For mirror images of circles in R^3 , see Crowell-Fox, Chapter 1, Section 4 [2]. Now the height relations of $S_{-\alpha'}^k$ are the reverse of those of $S_{\alpha'}^k$, and $\Pi(S_{\alpha'}^k) = \Pi(S_{-\alpha'}^k)$. Thus $S_{-\alpha'}^k$ is ambiently isotopic to $W_{\alpha'}^k$; in fact, by an ambient isotopy which translates B_b in the x_{n+k+2} coordinate until it coincides with $-A_b' = \bigcup h_p(-\alpha'(a))$.

THE UNIVERSITY OF IOWA

References

- E. Artin: Zur Isotopie zweidimensionaler Flächen in R₄, Hamburg Abh. 4 (1925), 174–177.
- [2] R.H. Crowell and R.H. Fox: Introduction to Knot Theory, Ginn and Co. 1963.
- [3] T. Yajima: On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ. 13 (1962), 63-71.
- [4] T. Yajima: On simply knotted spheres in R⁴, Osaka J. Math. 1 (1964), 133-152.

312