AN APPROXIMATE POSITIVE PART OF A SELF-ADJOINT PSEUDO-DIFFERENTIAL OPERATOR I

Daisuke FUJIWARA

(Received September 26, 1973)

1. Introduction

Among many problems concerning pseudo-differential operators, one of the most interesting problem is "to what extent does the symbol function $p(x, \xi)$ describe the spectral properties of an operator $p(x, D)$?" Motivation of this paper comes from this problem.

Actually what we do in this note is the following: Assume that $P=p(x, D)$ is a self-adjoint pseudo-differential operator of class $L_{1,0}^{0}$ of Hörmander [4]. Then starting from its principal symbol, we explicitly construct self-adjoint operators P^{+}, P^{-}, R, F^{+}and F^{-}with the following properties;
(i) $F^{+}+F^{-}=I d$.
(ii) $P=P^{+}-P^{-}+R$.
(iii) P^{+}, P^{-}and F^{+}, F^{-}are non-negative self-adjoint operators.
(iv) We have the following estimates;

$$
\begin{aligned}
& \left|\left(P^{+} F^{-} u, F^{ \pm} v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}, \\
& \left|\left(P^{-} F^{+} u, F^{ \pm} v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}, \\
& |(R u, v)| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}, \\
& \quad \text { for any } u, v \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right) .
\end{aligned}
$$

Theorem I gives more precise statement. Proof is found in §5 and §6.
If the principal symbol does not change sign, the problem has been settled. In fact strong Gårding inequality [3], [6] means that we can take $P^{-}=0, F^{-}=0$ and that R satisfies stronger inequality

$$
|(R u, v)| \leqq C \mid\|u\|_{-1 / 2}\|v\|_{-1 / 2} .
$$

However our result seems new if the principal symbol changes sign. Difficulty arises at the point of characteristics of the operator $p(x, D)$. The operator F^{+} and F^{-}are closely related to location of characteristics of $p(x, D)$. This is discussed in §7.

[^0]Our method is based on localization of Hörmander in [4]. His terminology will frequently be used.

2. Localization

We treat a pseudo-differential operator $p(x, D)$ defined by

$$
\begin{equation*}
p(x, D) u(x)=(2 \pi)^{-n} \int_{R^{n} \times R^{n}} \int p(x, \xi) e^{i(x-y) \cdot \xi} u(y) d y d \xi \tag{2.1}
\end{equation*}
$$

We assume that the symbol $p(x, \xi)$ is of the form

$$
p(x, \xi)=p_{0}(x, \xi)+p_{1}(x, \xi)
$$

where $p_{0}(x, \xi)$ is homogeneous of degree 0 with respect to ξ for large $|\xi|$ and $p_{1}(x, \xi)$ is a function in $S_{1,0}^{-1}\left(\boldsymbol{R}^{n}\right)$ in the sense of Hörmander [4]. We further assume that the principal part $p_{0}(x, \xi)$ vanishes unless x lies in a bounded domain $\Omega \subset \boldsymbol{R}^{n}$. (See [4]). We use Hörmander's localization in [4]. Let $g_{0}=0$, g_{1}, g_{2}, \cdots, be the unit lattice points in \boldsymbol{R}^{n}. Then \boldsymbol{R}^{n} is covered by open cubes of side 2 with center at these points. Let $\Theta(x)$ be a non-negative C_{0}^{∞} function which equals 1 in $\left|x_{j}\right| \leqq 1$ and zero outside $\left|x_{j}\right| \leqq \frac{3}{2}, 1 \leqq i \leqq n$. We use

$$
\begin{align*}
& \varphi_{k}(x)=\Theta\left(x-g_{k}\right) /\left(\sum_{k=0}^{\infty} \Theta\left(x-g_{k}\right)^{2}\right)^{1 / 2} \quad \text { and } \tag{2.2}\\
& \dot{\varphi}_{k}(x)=\varphi_{k}\left(\frac{x-g_{k}}{2} k+g_{k}\right)
\end{align*}
$$

The following properties hold:

$$
\begin{align*}
& \sum_{k} \varphi_{k}(x)^{2} \equiv 1 \quad \text { and } \tag{2.3}\\
& \sum_{k} D^{\infty} \varphi_{k}(x) \leqq C_{a} \tag{2.4}
\end{align*}
$$

where α is an arbitrary multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) . \quad D^{\alpha}$ is the usual notation, i.e., $D^{\infty}=\left(-i \frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(-i \frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}$.

$$
\begin{equation*}
|x-y| \leqq 2 \sqrt{n} \quad \text { if } \quad x, y \in \operatorname{supp} \varphi_{k} \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\psi_{k}(\xi)=\varphi_{k}\left(\frac{\xi}{|\xi|^{2 / 3}}\right), \quad \dot{\psi}_{k}(\xi)=\dot{\varphi}_{k}\left(\frac{\xi}{|\xi|^{2 / 3}}\right) \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{k} \psi_{k}(\xi)^{2}=1 \tag{2.7}
\end{equation*}
$$

$$
\begin{align*}
& |\xi|^{3 / 4|\alpha|} \sum_{k}\left|D^{a} \psi_{k}(\xi)\right|^{2} \leqq C_{a} \quad \text { for } \quad{ }^{*} \alpha \tag{2.8}\\
& |\xi-\eta| \leqq C|\xi|^{2 / 3} \quad \text { if } \quad \xi, \eta \in \operatorname{supp} \psi_{k} . \tag{2.9}\\
& \sum_{k}\left|\psi_{k}(\xi)-\psi_{k}(\eta)\right|^{2} \leqq \frac{C|\xi-\eta|^{2}}{\left(1+|\xi|^{2 / 3}\right)(1+|\eta|)^{2 / 3}} \quad \text { for } \quad \forall \xi, \eta \in \boldsymbol{R}^{n} . \tag{2.10}
\end{align*}
$$

Functions $\dot{\varphi}_{k}$ and $\dot{\psi}_{k}$ are identically one in some neighbourhood of supp φ_{k} and supp ψ_{k} respectively. They also have properties (2.4) $\sim(2.10)$ except (2.7). Note that $\delta_{j}^{2} g_{j}$ belongs to supp ψ_{j} if $\delta_{j}=\left|\boldsymbol{g}_{j}\right|$. We define operator $\psi_{j}(D)$ by

$$
\begin{equation*}
\psi_{j}(D) u(x)=(2 \pi)^{-n} \int_{R^{n} \times R^{n}} \int_{i(x-y) \cdot \xi} \psi_{j}(\xi) u(y) d y d \xi . \tag{2.11}
\end{equation*}
$$

Obviously we have

$$
\begin{equation*}
\sum_{j} \varphi_{j}(D)^{2}=I d, \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
C\|u\|_{s}^{2} \leqq \sum_{j=0}^{\infty} \delta_{j}^{6 s}\left\|\varphi_{j}(D) u\right\|_{0}^{2} \leqq C^{-1}\|u\|_{s}^{2} \tag{2.13}
\end{equation*}
$$

where $\|u\|_{s}$ is Sobolev norm of u of order s in \boldsymbol{R}^{n}.
We set $\varphi_{j_{k}}(x)=\varphi_{j}\left(\delta_{k} x\right)$ and $\phi_{j_{k}}(x, \xi)=\varphi_{j_{k}}(x) \psi_{k}(\xi)$. Note that for any multiindices α, β, we have

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} \phi_{j k}(x, \xi)\right| \leqq C_{\alpha \beta} \delta_{k}^{|\alpha|}|\xi|^{-2 / 3|\beta|} \leqq C_{\alpha \beta}|\xi|^{1 / 3|\alpha|-2 / 3|\beta|} . \tag{2.14}
\end{equation*}
$$

This means that $\phi_{j k}$ belongs to class $S_{2 / 3,1 / 3}^{0}$ of Hörmander. It follows from (2.3) and (2.13) that

$$
\begin{equation*}
C\|u\|_{s}^{2} \leqq \sum_{j k} \delta_{k}^{6 s}\left\|\phi_{j}(x, D) u\right\|_{0}^{2} \leqq C^{-1}\|u\|_{s}^{2} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j_{k}} \phi_{j_{k}}(x, D)^{*} \phi_{j_{k}}(x, D)=I d \tag{2.16}
\end{equation*}
$$

For any pair (j, k) of integers we set

$$
\begin{align*}
& P_{j_{k}}(x, D)=p_{0}\left(x^{j k}, \xi^{k}\right)+\sum_{\nu=1}^{n} p_{o(v)}\left(x^{j k}, \xi^{k}\right)\left(x-x^{j k}\right)_{v} \tag{2.17}\\
& \quad+\sum_{v=1}^{n} p_{0}^{(\nu)}\left(x^{j k}, \xi^{k}\right)\left(D-\xi^{k}\right)_{v}
\end{align*}
$$

where ξ^{k} is a point in $\operatorname{supp} \psi_{k}$ and $x^{j k}$ is a point in $\operatorname{supp} \varphi_{j_{k}}$. The following proposition is due to Hörmander.

Proposition 2.1. For any $\forall u, v \in D\left(\boldsymbol{R}^{n}\right)$, we have

$$
\begin{align*}
& \left|(p(x, D) u, v)-\sum_{j k}\left(p_{j_{k}}(x, D) \phi_{j_{k}}(x, D) u, \phi_{j_{k}}(x, D) v\right)\right| \tag{2.18}\\
& \quad \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3} .
\end{align*}
$$

Proof is found in [4].

3. Spectral decomposition of localized operators

We shall call $P_{j_{k}}(x, D)$ localized operator. $P_{j_{k}}(x, D)$ is an operator of order 1. The spectral decomposition of $P_{j_{k}}(x, D)$ is well known. In fact, after multiplication of $e^{i x \cdot \xi^{k}}$ and suitable change of coordinates, $P_{j_{k}}(x, D)$ is unitarily transformed to an operator of the form

$$
L=\alpha D_{1}+b \cdot x
$$

where α is a real constant and $b \cdot x$ is Euclidean scalar product of two vectors

$$
b=\left(b_{1}, b_{2}, \cdots, b_{n}\right) \quad \text { and } \quad x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Let

$$
L=\int_{-\infty}^{\infty} \lambda d E(\lambda)
$$

be spectral decomposition of L. Then the projection operator $E(\lambda)$ is the multiplication of function $Y(\lambda-b \cdot x)$ if $\alpha=0$. Here $Y(t), t \in \boldsymbol{R}$, stands for Heaviside function, that is,

$$
Y(t)= \begin{cases}1 & t \geqq 0 \\ 0 & t<0 .\end{cases}
$$

If $\alpha \neq 0$, we set

$$
L^{\prime}=e^{-i \frac{b_{1} x_{1}{ }^{2}}{2 \alpha_{1}}} L e^{i \frac{b_{1} x_{1}{ }^{2}}{2 \alpha_{1}}}
$$

L^{\prime} is an operator of the form

$$
L^{\prime}=\alpha D_{1}+b^{\prime} \cdot x^{\prime},
$$

where $b^{\prime}=\left(b_{2}, \cdots, b_{n}\right)$ and $x^{\prime}=\left(x_{2}, \cdots, x_{n}\right)$.
Taking partial Fourier transform with respect to x_{1}, we have reduced to the case that $\alpha=0$.

We shall use the following notations:

$$
\begin{equation*}
P_{j_{k}}(x, D)=\int_{-\infty}^{\infty} \lambda d E_{j_{k}}(\lambda) . \tag{3.1}
\end{equation*}
$$

Here $E_{j_{k}}(\lambda)$ is the spectral measure of $P_{j_{k}}$.
We put $\quad E_{\bar{\jmath}_{k}}^{-}=E_{j_{k}}(0) \quad E_{j_{k}}^{+}=I-E_{\overline{j_{k}}}^{-}$
$P_{j_{k}}^{+}=P_{j_{k}} E_{j_{k}}^{+} \quad P_{j_{k}}^{-}=-P_{j_{k}} E_{j_{k}}^{-}$.

4. Statement of Theorem I

We put
(4.1) $\quad P^{+}=\sum_{j k} \phi_{j_{k}}(x, D) * P_{j_{k}}^{+} \phi_{j_{k}}(x, D)$,
(4.2) $\quad P^{-}=\sum_{j k} \phi_{j_{k}}(x, D) * P_{j_{k}}^{-} \phi_{k k}(x, D)$,
(4.4) $\quad F^{-}=\sum_{j k} \phi_{j_{k}}(x, D)^{*} E_{j_{k}}^{-} \phi_{j k}(x, D)$.

Then we have
Theorem I. Operators P^{+}, P^{-}, F^{+}and F^{-}are self-adjoint and satisfy the following properties:
(4.5) \quad (i) $\quad I=F^{+}+F^{-}$.
(4.6) \quad (ii) $\quad\left(P^{ \pm} u, u\right) \geqq 0$.
(4.7) (iii) $\quad\left|\left(F^{-} P^{+} F^{+} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}$.
(4.8) $\quad\left|\left(F^{-} P^{+} F^{-} u, v\right)\right| \leqq C| | u\left\|_{-1 / 3}\right\| v \|_{-1 / 3}$.
$\left|\left(F^{-} P^{-} F^{+} u, v\right)\right| \leqq C\|u\|_{-1 / 3} \mid v \|_{-1 / 3}$.
(iv) $\left|\left(\left[P, F^{ \pm}\right] u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}$.
$\left|\left(\left[P^{ \pm}, F^{ \pm}\right] u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}$.
(v) If we set $R=P-\left(P^{+}-P^{-}\right)$then
$|(R u, v)| \leqq C| | u \mid\left\|_{-1 / 3}\right\| v \|_{-1 / 3}$.
Corollary 4.2. We have

$$
\begin{align*}
& \left|\left(P F^{+} u, v\right)-\left(F^{+} P^{+} F^{+} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3} \tag{4.14}\\
& \left|\left(P F^{-} u, v\right)+\left(F^{-} P^{-} F^{-} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3} . \tag{4.15}\\
& \left|\left(P^{+} F^{-} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}, \tag{4.16}\\
& \left|\left(P^{-} F^{+} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}, \tag{4.17}\\
& P=P^{+}-P^{-}+R . \tag{4.18}
\end{align*}
$$

We shall prove Theorem I in $\S 6$.

5. Some lemmas about self-adjoint operators

In this section X stands for an abstract Hilbert space.
Lemma 5.1. Let A be a self-adjoint operator in X and A^{+}be its positive part. Then

$$
A^{+} u=\frac{1}{2 \pi i} \int_{\Gamma}\left(\lambda(\lambda-A)^{-1}-1-\frac{A}{\lambda+1}\right) u d \lambda
$$

provided $u \in D\left(A^{2}\right)=$ domain of $A^{2} . \quad \Gamma$ is the complex contour as is shown in fig 1.
fig 1.

Proof. Note that

$$
\lambda(\lambda-\sigma)^{-1}-1-\frac{\sigma}{\lambda+1}=\frac{\sigma(\sigma+1)}{(\lambda-\sigma)(\lambda+1)} .
$$

Integrate this with respect to λ on Γ then we have σ if $\sigma>0$ and 0 if $\sigma<0$. Therefore if we use spectral decomposition of A, then we can prove our Lemma.

Lemma 5.2. Let A be a self-adjoint operator in X and let B be a bounded linear operator. We assume that operators $A B$ and $A^{2} B$ are densely defined. We further assume that the communtator $[A, B],[A,[A, B]]$ are bounded.

Then we have

$$
\begin{equation*}
\left\|\left[A^{ \pm}, B\right]\right\| \leqq C(\|B\|+\|[A, B]\|+\|[[A, B], A]\|) \tag{5.2}
\end{equation*}
$$

Proof. Let $u \in D\left(A^{2}\right) \cap D\left(A^{2} B\right) \cap D(A B)$,

$$
2 \pi i\left[A^{+}, B\right] u=\int_{\Gamma}\left[\left(\lambda(\lambda-A)^{-1}-1-\frac{A}{\lambda+1}\right), B\right] u d \lambda .
$$

We split Γ into theree parts $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$. (see fig. 1). Corresponding integrals are denoted by A_{1}, A_{2} and A_{3}. Obviously $\left[A^{+}, B\right]=\left[A_{1}, B\right]+\left[A_{2}, B\right]+\left[A_{3}, B\right]$.

Since

$$
\int_{\Gamma_{2}} \frac{1}{\lambda+1} d \lambda=\log (1-i)-\log (1+i)
$$

we have

$$
\begin{equation*}
\left\|\left[A_{2}, B\right]\right\| \leqq 4(\|B\|+\|[A, B]\|) \tag{5.3}
\end{equation*}
$$

Let us treat

$$
\begin{aligned}
2 \pi i\left[A_{2}+A_{3}, B\right] & =\int_{\Gamma_{1}+\Gamma_{2}}\left[\left[\lambda(\lambda-A)^{-1}-1-\frac{A}{\lambda+1}\right], B\right] d \lambda \\
& =-[A, B] \int_{\Gamma_{1}+\Gamma_{3}} \frac{d \lambda}{\lambda+1}+\int_{\Gamma_{1}+\Gamma_{3}} \lambda(\lambda-A)^{-1}[A, B](\lambda-A)^{-1} d \lambda .
\end{aligned}
$$

We know

$$
\left|\int_{\Gamma_{1}+\Gamma_{3}} \frac{d \lambda}{\lambda+1}\right| \leqq \text { const. }
$$

On the other hand we have

$$
\begin{aligned}
& \int_{\Gamma_{1}+\Gamma_{3}} \lambda(\lambda-A)^{-1}[A, B](\lambda-A)^{-1} d \lambda \\
& \quad=\int_{\Gamma_{1}+\Gamma_{3}} \lambda(\lambda-A)^{-2}[A, B] d \lambda+\int_{\Gamma_{1}+\Gamma_{3}} \lambda(\lambda-A)^{-2}[A,[A, B]](\lambda-A)^{-1} d \lambda
\end{aligned}
$$

The last term is majorized by $C\|[A,[A, B]]\|$.
The first is

$$
\begin{array}{r}
\int_{\Gamma_{1}+\Gamma_{3}} \lambda(\lambda-A)^{-2} d \lambda=\int_{\Gamma_{1}+\Gamma_{3}} d \lambda \int_{-\infty}^{\infty} \lambda(\lambda-\sigma)^{-2} d E(\sigma) \\
=\int_{\Gamma_{1}+\Gamma_{3}} d \lambda \int_{-\infty}^{\infty}\left(\frac{1}{\lambda-\sigma}+\frac{\sigma}{(\lambda-\sigma)^{2}}\right) d E(\sigma) . \\
\text { Since } \quad\left|\int_{\Gamma_{1}+\Gamma_{3}} \frac{d \lambda}{\lambda-\sigma}\right| \leqq \text { Const. and }\left|\int \frac{\sigma}{(\lambda-\sigma)^{2}} d \lambda\right| \leqq 2\left|\frac{\sigma}{i+\sigma}\right| \leqq 2,
\end{array}
$$

we have

$$
\left\|\int_{\Gamma_{1}+\Gamma_{3}} \lambda(\lambda-A)^{-2}[A, B] d \lambda\right\| \leqq C\|[A, B]\| .
$$

We have thus proved our lemma.
Lemma 5.3. Let A and B be two self-adjoint operators in X. If the commutator $[A, B]$ is bounded, then for any

$$
x \in D\left(A^{2}\right) \cap D\left(B^{2}\right)
$$

we have
$\left.\left\|\left(A^{+}-B^{+}\right) x\right\| \leqq C\left(\|[A, B]\|\|x\|+\sum_{k=1}^{2}\left\|(A-B)^{k} x\right\|+\|x\|+\|[A, B]\right]\|(A-B) x\|\right)$.
Proof. We have to majorize

$$
(2 \pi i)\left(A^{+} x-B^{+} x\right)=\int_{\Gamma}\left(\lambda(\lambda-A)^{-1}-\lambda(\lambda-B)^{-1}-\frac{A}{\lambda+1}+\frac{B}{\lambda+1}\right) x d \lambda .
$$

We decompose Γ as we did in the proof of Lemma 5.2. The integral over Γ_{2} is majorized by $C(\|x\|+\|(A-B) x\|)$.

Note that

$$
\begin{aligned}
& \lambda(\lambda-A)^{-1}-\lambda(\lambda-B)^{-1} x \\
&=-\lambda(\lambda-B)^{-1}(A-B)(\lambda-A)^{-1} x \\
&=-\lambda(\lambda-B)^{-1}(\lambda-A)^{-1}(A-B) x \\
&-\lambda(\lambda-B)^{-1}(\lambda-A)^{-1}[A, B](\lambda-A)^{-1} x \\
&=-\lambda(\lambda-B)^{-2}\left\{1+(A-B)(\lambda-A)^{-1}\right\}(A-B) x \\
&+\lambda(\lambda-B)^{-1}(\lambda-A)^{-1}[A, B](\lambda-A)^{-1} x \\
&=-\lambda(\lambda-B)^{-2}\left\{1+(\lambda-A)^{-1}(A-B)\right. \\
&\left.+(\lambda-A)^{-1}[A, B](\lambda-A)^{-1}\right\}(A-B) x \\
&+\lambda(\lambda-B)^{-1}(\lambda-A)^{-1}[A, B](\lambda-A)^{-1} x .
\end{aligned}
$$

From this we can majorize the integral over $\Gamma_{1}+\Gamma_{3}$ by

$$
C\left(\|(A-B) x\|+\left\|(A-B)^{2} x\right\|+\|[A, B]\|\|x\|+\|[A, B]\|\|(A-B) x\|\right) .
$$

We have thus proved our lemma.

6. Proof of Theorem

We start with the propositions which simplify discussions later.
Proposition 6.1. Let $u \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ be arbitrary and (j, k) be a pair of indices. Then there is a point \bar{x} satisfying

$$
\begin{equation*}
\left|\bar{x}-x^{j k}\right| \leq \alpha \delta_{k}, \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
\int\left(x_{\nu}-\bar{x}_{\nu}\right)\left|\phi_{j_{k}}(x, D) u(x)\right|^{2} d x=0 \tag{6.2}
\end{equation*}
$$

for $\nu=1,2,3, \cdots, n$. Here α is a positive constant independent of u and (j, k).
Proof is found in [3], page 171.
The point \bar{x} can be chosen in $\operatorname{supp} \varphi_{j_{k}}$.
Proposition 6.2. There exists a bounded sequence $\left\{\phi_{j_{k}}^{\prime}(x, \xi)\right\}_{j_{k}}$ of symbols in $S_{2 / 3,1 / 3}^{0}$ such that we have

$$
\begin{equation*}
\text { (i) }\left\|\left(D_{\nu}-\xi_{v}^{k}\right) \phi_{j_{k}}(x, D) u\right\|^{2} \leq C \delta_{k}^{4}\left\|\phi_{j_{k}}^{\prime}(x, D) u\right\|^{2} \tag{6.3}
\end{equation*}
$$

and
(6.4) (ii) $\operatorname{supp} \phi_{j_{k}}^{\prime} \subset \operatorname{supp} \phi_{j_{k}}$
for $\nu=1,2,3, \cdots, n$.

Proof. We have

$$
\begin{equation*}
\left(D_{\nu}-\xi_{v}^{k}\right) \phi_{j_{k}}(x, D) u=\delta_{k}^{2} \phi_{j_{k}}^{\prime}(x, D) u \tag{6.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{j_{k}}^{\prime}(x, \xi)=\delta_{k}^{-2}\left(-i \frac{\partial}{\partial x_{v}} \varphi_{j_{k}}(x) \psi_{k}(\xi)+\varphi_{j_{k}}(x) \psi_{k}(\xi)\left(\xi_{\nu}-\xi_{v}^{k}\right)\right) \tag{6.6}
\end{equation*}
$$

The sequence $\left\{\phi_{j k}^{\prime}(x, \xi)\right\}_{j, k}$ is bounded in $S_{2 / 3,1 / 3}^{0}$ because of (2.9) and

$$
-i \frac{\partial}{\partial x_{v}} \varphi_{j_{k}}(x)=-i \delta_{k}\left(\frac{\partial}{\partial x_{v}} \varphi_{j}\right)\left(\delta_{k} x\right) .
$$

Proposition 6.3. Let $\left\{\left(\dot{x}^{j k}, \xi^{j k}\right)\right\}_{j k}$ be another sequence of points. Let $\dot{P}_{j k}$, $\dot{P}^{ \pm}$and $\dot{F}^{ \pm}$be operators defined by (2.17), (4.1), (4.2), (4.3) and (4.4) where ($x^{j k}, \xi^{k}$) is replaced by $\left(\dot{x}^{j k}, \xi^{j k}\right)$. If there exists a constant $C>0$ satisfying

$$
\begin{equation*}
\left|x^{j k}-\dot{x}^{j k}\right| \leqslant C \delta_{k}^{-1} \quad \text { and } \quad\left|\xi^{k}-\xi^{j k}\right| \leqslant C \delta_{k}^{2}, \tag{6.7}
\end{equation*}
$$

then we have

$$
\begin{array}{ll}
\text { (6.8) } & \left\|\left(\dot{P}_{j_{k}}-P_{j_{k}}\right) \phi_{j k}(x, D) u\right\|^{2} \leqslant C \delta_{k}^{-4}\left\|\phi_{j k}^{(1)}(x, D) u\right\|^{2} \\
\text { (6.9) } & \left.\|\left(\dot{P}_{j_{k}}-P_{j_{k}}\right)^{2} \phi_{k}\right)(x, D) u\left\|^{2} \leqslant C \delta_{k}^{-8}\right\| \phi_{j k}^{(2)}(x, D) u \|^{2}, \tag{6.9}\\
\text { (6.10) } & \left\|\left[P_{j_{k}}, \dot{P}_{j_{k}}\right]\right\| \leqslant C \delta_{k}^{-4}, \\
\text { (6.11) } & \left\|\left(\dot{P}_{j k}^{ \pm}-P_{j k}^{ \pm}\right) \phi_{j_{k}}(x, D) u\right\| \leqslant C \delta_{k}^{-2}\left\|\phi_{j k}^{(3)}(x, D) u\right\|, \\
\text { (6.12) } & \left|\left(\left(\dot{P}^{ \pm}-P^{ \pm}\right) u, u\right)\right| \leq C\|u\|_{-1 / 3}\|v\|_{-1 / 3} .
\end{array}
$$

Here, $\left\{\phi_{j k}^{()}\right\}_{j k}, l=1,2,3$, are bounded sequences of symbols in $S_{2 / 3,1 / 3}^{0}$ with the property that supp $\phi_{j_{k}}^{(L)} \subset \operatorname{supp} \phi_{j k}$.

Remark 6.4. We require that the point $\left(x^{j k}, \xi^{k}\right)$ lies in supp $\phi_{j k}$ but we don't require that $\left(\dot{x}^{j k}, \xi^{j k}\right)$ lies in $\operatorname{supp} \phi_{j k}$.

Proof. It follows from Taylor's formula that

$$
\begin{align*}
& P_{0}\left(\dot{x}^{j k}, \xi^{j k}\right)=P_{0}\left(x^{j k}, \xi^{k}\right)+\sum_{\nu}\left(\dot{x}^{j k}-x^{j k}\right) P_{0(\nu)}\left(x^{j k}, \xi^{k}\right) \tag{6.13}\\
& \quad+\sum_{\nu}\left(\xi^{j k}-\xi^{k}\right)_{\nu} P_{0}^{(\nu)}\left(x^{j k}, \xi^{k}\right)+R_{1}, \\
& P_{o(\nu)}\left(\dot{x}^{j k}, \xi^{j k}\right)=P_{0(\nu)}\left(x^{j k}, \xi^{k}\right)+R_{2,(\nu)} \text { and } \tag{6.14}\\
& P_{0}^{(\nu)}\left(\dot{x}^{j k}, \xi^{j k}\right)=P_{0}^{(\nu)}\left(x^{j k}, \xi^{k}\right)+R_{3}^{(\nu)} . \tag{6.15}
\end{align*}
$$

By (6.7) the remainder terms are majorized as

$$
\begin{equation*}
\left|R_{1}\right| \leqq C \delta_{k}^{-2},\left|R_{2(\nu)}\right| \leqq C \delta_{k}^{-1},\left|R_{3}^{(\nu)}\right| \leqq C \delta_{k}^{-4} . \tag{6.16}
\end{equation*}
$$

We have

$$
\begin{align*}
& \dot{P}_{j k}(x, D)-P_{j k}(x, D) \tag{6.17}\\
& \quad=R_{1}+\sum_{\nu}\left(x-x^{j k}\right)_{\nu} R_{2(v)}+\sum_{\nu}\left(D-\xi^{j k}\right)_{\nu} R .
\end{align*}
$$

This implies that

$$
\begin{aligned}
& \|\left(\dot{P}_{j k}(x, D)-P_{j k}(x, D) \phi_{j k}(x, D) u \|^{2}\right. \\
& \quad \leqq C\left(\delta_{k}^{-4}\left\|\phi_{j_{k}}(x, D) u\right\|^{2}+\delta_{k}^{-2} \sum_{\nu}\left\|\left(x-x^{j k}\right)_{\nu} \phi_{j k}(x, D) u\right\|^{2}\right. \\
& \left.\quad+\delta_{k}^{-8} \sum_{V}\left\|\left(D-\xi^{j k}\right)_{\nu} \phi_{j k}(x, D) u\right\|^{2}\right) \\
& \quad \leqq C \delta_{k}^{-4}\left\|\phi_{j k}^{(1)}(x, D) u\right\|^{2} .
\end{aligned}
$$

This is (6.8).
Similarly

$$
\begin{align*}
& \left\|\left(\dot{P}_{j k}(x, D)-P_{j k}(x, D)\right)^{2} \phi_{j k}(x, D) u\right\|^{2} \tag{6.18}\\
& \quad \leqq C \delta_{k}^{-8}\left\|\phi_{j k}^{(2)}(x, D) u\right\|^{2} .
\end{align*}
$$

Now

$$
\begin{align*}
{\left[P_{j k}, \dot{P}_{j k}\right] } & =\left[P_{j k}, \dot{P}_{j k}-P_{j k}\right] \tag{6.19}\\
& =-\left[i \sum_{\nu} R_{2(\nu)} P_{0}^{(\nu)}\left(x^{j k}, \xi^{k}\right)-\sum_{\nu} R_{3}^{(\nu)} P_{o(\nu)}\left(x^{j k}, \xi^{k}\right)\right]
\end{align*}
$$

This proves (6.10).
We apply Lemma 5.3 to operators $A=\delta_{k}^{2} P_{j k}$, and $B=\delta_{k}^{2} \dot{P}_{j_{k}}$. Then we have
(6.20) $\quad\left\|\left(A^{+}-B^{+}\right) \phi_{j_{k}}(x, D) u\right\| \leqq C\left\|\phi_{j k}^{(3)}(x, D) u\right\|$.

This proves that
(6.21) $\quad\left\|\left(P_{j_{k}}^{+}-\dot{P}_{j_{k}}^{+}\right) \phi_{j k}(x, D) u\right\| \leqq C \delta_{k}^{-2}\left\|\phi_{j k}^{(3)}(x, D) u\right\|$.

Let v be in $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$. Then

$$
\begin{aligned}
\left|\left(\left(P^{+}-\dot{P}^{+}\right) u, v\right)\right| & \leqq \sum_{j k} \mid\left(\left(P_{j_{k}}^{+}-\dot{P}_{j_{k}}^{+}\right) \phi_{j k}(x, D) u, \phi_{j k}(x, D) v\right) \\
& \leqq C \sum_{j k} \delta_{k}^{-2}\left\|\phi_{j k}^{(3)}(x, D) u\right\|\left\|\phi_{j_{k}}(x, D) v\right\|
\end{aligned}
$$

Take arbitrary positive $t>0$. Then

$$
\begin{aligned}
\left|\left(\left(P^{+}-\dot{P}^{+}\right) u, v\right)\right| & \leqq C \sum_{j k} \frac{t^{2}}{2} \delta_{k}^{-2}\left\|\phi_{j_{k}}^{(3)}(x, D) u\right\|^{2}+\frac{t^{-2}}{2} \delta_{k}^{-2}\left\|\phi_{j_{k}}(x, D) v\right\|^{2} \\
& \leqq C\left(\frac{t^{2}}{2}\|u\|_{-1 / 3}^{2}+\frac{t^{-2}}{2}\|v\|_{-1 / 3}^{2}\right) .
\end{aligned}
$$

Taking the minimum of this with respect to t, we have

$$
\left|\left(\left(P^{+}-\dot{P}^{+}\right) u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3} .
$$

Next we need bounds for commutators

$$
\left[P_{j_{k}}^{ \pm}, \phi_{l m}(x, D)\right], \quad\left[E_{j k}^{ \pm}, \phi_{l m}(x, D)\right] \quad \text { etc. }
$$

These are needed only when $\operatorname{supp} \phi_{j k} \cap \operatorname{supp} \phi_{l m} \neq \phi$.
We introduce notation

$$
I(j, k)=\left\{(l, m) \mid \operatorname{supp} \phi_{j k} \cap \operatorname{supp} \phi_{l m} \neq \phi\right\}
$$

It is obvious that there is a constant $C>0$ such that

$$
C^{-1} \leqq \frac{\delta_{m}}{\delta_{k}} \leqq C . \quad \text { if } \quad(l, m) \in I(j, k)
$$

The number of indices (l, m) in $I(j, k)$ is bounded.
Proposition 6.5. We have the following estimates for commutators: If $(l, m) \in I(j, k)$, then
(6.22) $\quad\left\|\left[P_{j k}, \phi_{l m}\right]\right\| \leqq C \delta_{k}^{-2}$,
(6.23) $\left\|\left[\left[P_{j k}, \phi_{l m}\right], P_{j k}\right]\right\| \leqq C \delta_{k}^{-4}$,
(6.24) $\left\|\left[\left[P_{j k}, \phi_{l m}\right], \phi_{l m}\right]\right\| \leqq C \delta_{k}^{-2}$,
(6.25) $\quad\left\|\left[\left[P_{j k}, \phi_{l m}{ }^{*}\right], \phi_{l m}\right]\right\| \leqq C \delta_{k}^{-2}$,
(6.26) $\quad\left\|\left[P_{j k}^{ \pm}, \phi_{l m}\right]\right\| \leqq C \delta_{k}^{-2}$,
(6.27) $\left\|\left[P_{j k},\left[E_{j k}^{ \pm}, \phi_{l m}\right]\right]\right\| \leqq C \delta_{k}^{-2}$.

Proof. $\quad\left[P_{j k}, \phi_{l m}\right]=\left[P_{j k}, \varphi_{l m}(x) \psi_{m}(D)\right]$

$$
\begin{aligned}
= & {\left[P_{j k}, \varphi_{l m}\right] \varphi_{m}(D)+\varphi_{l m}\left[P_{j k}, \psi_{m}(D)\right] } \\
= & \delta_{k} \sum_{\nu} P_{0}^{(\nu)}\left(x^{j k}, \xi^{k}\right) D_{\nu} \varphi_{l m}(x) \psi_{m}(D) \\
& -\varphi_{l m} \delta_{k}^{-2} \sum_{\nu} D_{\nu} \psi_{m}(D) P_{o(\nu)}\left(x^{j k}, \xi^{k}\right)
\end{aligned}
$$

This proves that

$$
\left\|\left[P_{j k}, \phi_{l m}\right]\right\| \leqq C \delta_{k}^{-2}
$$

More precisely, $\left\{\delta_{k}^{2}\left[P_{j k}, \phi_{l m}\right]\right\}_{j_{k}}$ is bounded sequence of operators in $L_{2 / 3,1 / 3}^{0}$ of Hörmander. By just the same argument we can prove (6.23). (6.24) and (6.25) are consequences of the fact that

$$
\left\{\delta_{k}\left[P_{j k}, \phi_{l m}\right]\right\}_{j k}
$$

is a bounded set in $L_{2 / 3,1 / 3}^{0}$.
We set $A=\delta_{k}^{2} P_{j k}, B=\delta_{k}^{-2} \phi_{l m}$ and apply Lemma 5.2.

Then we have

$$
\left\|\left[P_{j k}^{ \pm}, \phi_{l m}\right]\right\| \leqq C \delta_{k}^{-2} .
$$

Since

$$
\begin{equation*}
P_{j k}\left[E_{j_{k}}^{ \pm}, \phi_{l m}\right]=\left[P_{j k}^{ \pm}, \phi_{l m}\right]-E_{j_{k}}^{ \pm}\left[P_{j k}, \phi_{l m}\right] \tag{6.29}
\end{equation*}
$$

(6.27) is a consequence of (6.26).

Now we are ready for proving our Theorem I.
Proof of (iii). Let (j, k) and $\left(j^{\prime}, k^{\prime}\right)$ be two pairs of indices. Then we put

$$
\begin{array}{ll}
I\left(j k, j^{\prime} k^{\prime}\right)=\{(l, m) \quad & \mid \operatorname{supp} \phi_{l m} \cap \operatorname{supp} \phi_{j k} \neq \phi \\
& \left.\operatorname{supp} \phi_{l m} \cap \operatorname{supp} \phi_{j^{\prime} k^{\prime}} \neq \phi\right\}
\end{array}
$$

By definition of P^{+}, F^{+}and F^{-}, we have

$$
\begin{equation*}
\left(F^{-} P^{-} F^{+} u, v\right)=\sum_{j k} \sum_{j^{\prime} k^{\prime}}\left(P^{-} \phi_{j_{k}}^{*} E_{j_{k} \phi_{j k}}^{+} u, \phi_{j^{\prime} k^{\prime}}^{*} E_{\left.j^{\prime} k^{\prime} \phi_{j^{\prime} k^{\prime}} v\right) .}\right. \tag{6.30}
\end{equation*}
$$

If supp $\phi_{l m} \cap \operatorname{supp} \phi_{j k}=\phi$ and $\operatorname{supp} \varphi_{k} \cap \operatorname{supp} \psi_{m} \neq 0$, then

$$
\begin{equation*}
\left\|\phi_{l m}(x, D) \phi_{j_{k}}(x, D)^{*} w\right\| \leqq C \delta_{k}^{-N}\|w\| \tag{6.31}
\end{equation*}
$$

for any $N>0$. If $\operatorname{supp} \psi_{k} \cap \operatorname{supp} \psi_{m}=\phi$, then $\phi_{l m}(x, D) \phi_{j k}(x, D)^{*} u=0$.
Thus we have

$$
\begin{align*}
& \sum_{(l, m) \neq I(j, k)}\left\|\phi_{i m}^{*} P_{\imath_{m}} \phi_{l m} \phi_{j_{k}}^{*} E_{j_{k}}^{+} \phi_{j k} u\right\| \tag{6.32}\\
& \leqq C|\Omega| \delta_{k}^{n} \delta_{k}^{-N}| | E_{j_{k} \phi_{j k}} u \| \\
& \leqq C|\Omega| \delta_{k}^{n-N}| | \phi_{j k} u \| \text {, }
\end{align*}
$$

where $|\Omega|$ is the volume of the domain Ω.
Similarly

$$
\begin{equation*}
\sum_{(l, m) \notin I\left(j^{\prime}, k^{\prime}\right)}\left\|\phi_{l m}^{*} P_{l_{m}}^{-} \phi_{l m} \phi_{j^{\prime} k^{\prime}}^{*} E_{j^{\prime} k^{\prime}}^{*} \phi_{j^{\prime} k^{\prime} v}\right\|^{2} \leqq C|\Omega| \delta_{k}^{n-N}\left\|\phi_{j^{\prime} k^{\prime}} v\right\|^{2} . \tag{6.33}
\end{equation*}
$$

(6.32) and (6.33) imply that

$$
\begin{align*}
& \left(F^{-} P^{-} F^{+} u, v\right)-\sum_{j k} \sum_{j^{\prime}} \sum_{(l, m) I\left(j, k,,^{\prime} k^{\prime}\right)^{\prime}}\left(\phi_{l m}^{*} P^{-} \phi_{l m} \phi_{j k}^{*} E_{j k}^{+} \phi_{j k} u \phi_{j^{\prime} k^{\prime}} E_{j k}^{\prime} \phi_{j k^{\prime}} v\right) \tag{6.34}\\
& \quad \leqq C|\Omega|\left(\sum_{k,,^{\prime} k^{\prime}} \delta_{k}^{n-N}\| \| \phi_{j k} u\| \| \phi_{j^{\prime} k^{\prime} v} \|\right) \\
& \quad \leqq C|\Omega|\|u\|_{-1 / 3}\|v\|_{-1 / 3} .
\end{align*}
$$

We have

$$
\begin{align*}
& \sum_{(1 m) \in I\left(j_{k}, j^{\prime} k^{\prime}\right)} \phi_{l m}^{*} P_{l_{m}}^{-} \phi_{l m} \phi_{k k}^{*} E_{j_{k}}^{+} \phi_{j k} u \tag{6.35}\\
& =\sum_{(l m) \in I\left(j k, j^{\prime} k^{\prime}\right)} \phi_{l m}^{*} P_{j_{k}} \phi_{l m} \phi_{j_{k}}^{*} E_{j_{k}}^{+} \phi_{j k} u \\
& +\sum_{(l m) \in I\left(j_{k}, j^{\prime} k^{\prime}\right)} \phi_{l_{m}}^{*}\left(P_{\bar{l}_{m}}^{-}-P_{\bar{j}_{k}}\right) \phi_{l m} \phi_{j_{k}}^{*} E_{j_{k}}^{+} \phi_{j_{k}} u .
\end{align*}
$$

We apply Proposition 6.3 and have

$$
\begin{equation*}
\left\|\sum_{l^{m}} \phi_{l m}^{*}\left(P_{\bar{l}_{m}}^{-}-P_{j_{k}}^{-}\right) \phi_{l m} \phi_{j_{k}}^{*} E_{j k}^{+} \phi_{j k} u\right\| \leqq C \delta_{k}^{-2}\left\|\phi_{j k} u\right\| \tag{6.36}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \sum_{\left.(l, m) \in I, j_{k}, j^{\prime}\right)^{\prime}} \phi_{l m}^{*} P_{j_{k}}^{-} \phi_{l m} \phi_{j k}^{*} E_{k}^{+} \phi_{j k} u \tag{6.37}\\
& ==\sum_{l^{m}}^{j}\left\{\phi_{l m}^{*}\left[P_{j_{k}}^{-} \phi_{l m}\right] \phi_{j_{k}}^{*} E_{j_{k}}^{+} \phi_{j k} u+\phi_{l m}^{*} \phi_{l m}\left[P_{j_{k}}^{-}, \phi_{\left.j_{k}\right]}^{*}\right] E_{j_{k}}^{+} \phi_{j k} u\right\} .
\end{align*}
$$

By proposition 6.5, we have

$$
\begin{equation*}
\left\|\phi_{l m}^{*}\left[P_{j_{k}}^{-}, \phi_{l m}^{*}\right] \phi_{j_{k}}^{*} E_{j_{k}}^{+} \phi_{j k}\right\| u \leqq C \delta_{k}^{-2}\left\|\phi_{j k} u\right\| \tag{6.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\phi_{l m}^{*} \phi_{l m}\left[P_{j_{k}}^{-}, \phi_{j_{k}}^{*}\right] E_{j_{k} \phi_{j k}}^{+} u\right\| \leqq C \delta_{k}^{-2}\left\|\phi_{j_{k}} u\right\| . \tag{6.39}
\end{equation*}
$$

(6.37), (6.38) and (6.39) imply that

$$
\begin{equation*}
\left\|\sum_{\left(l^{m}\right) \in I\left(j, k^{\prime} j^{\prime}\right)} \phi_{l m}^{*} P_{\bar{j}_{k}}^{-} \phi_{l m} \phi_{j k}^{*} E_{j k}^{+} \phi_{j k} u\right\| \leqq C \delta_{k}^{-2}\left\|\phi_{j k} u\right\| . \tag{6.40}
\end{equation*}
$$

As a consequence of (6.34) and (6.40), we have

$$
\begin{align*}
\left|\left(F^{-} P^{-} F^{+} u, v\right)\right| & \leqq \sum_{(j k)\left(j^{\prime} k^{\prime}\right)} C \delta_{k}^{-2}\left\|\phi_{j^{k}} u\right\|\left\|\phi_{j^{\prime} k^{\prime} v}\right\| \tag{6.41}\\
& \leqq C\| \|_{-1 / 3}\|v\|_{-1 / 3},
\end{align*}
$$

where the summation ranges over those $(j k)$ and $\left(j^{\prime}, k^{\prime}\right)$ that $I\left(j k, j^{\prime} k^{\prime}\right) \neq \phi$. This proved (iii). Proof of remaining part of Theorem I is the same.

7. The role of characteristics

So far the choice of sequence $\left\{\left(x^{j k}, \xi^{k}\right)\right\}$ is not specified. In the following we shall make use of special choice of it in order to simplify operators $P_{j_{k}}^{ \pm}$and $E_{j_{k}}^{ \pm}$.

The set

$$
\begin{equation*}
\Sigma^{0}(P)=\left\{(x, \xi) \in \boldsymbol{R}^{2 n} \mid \xi \neq 0, P_{0}(x, \xi)=0\right\} \tag{7.1}
\end{equation*}
$$

is called the characteristics of the operator P. We also use the following notations;

$$
\begin{align*}
& \Sigma^{+}(P)=\left\{(x, \xi) \in \boldsymbol{R}^{2 n} \mid \xi \neq 0, P_{0}(x, \xi)>0\right\} \tag{7.2}\\
& \Sigma^{-}(P)=\left\{(x, \xi) \in \boldsymbol{R}^{2 n} \mid \xi \neq 0, P_{0}(x, \xi)<0\right\} \tag{7.3}
\end{align*}
$$

Proposition 7.1. Assume that $\left(x^{j k}, \xi^{k}\right) \in \Sigma^{+}(P) \cup \Sigma^{0}(P)$ and that $P(x, \xi) \geqq 0$ for any $x \in \operatorname{supp} \phi_{j k}$ and ξ with $\left|\xi-\xi^{k}\right|<\alpha \delta_{k}^{2}$, where α is the constant appeared in Proposition 6.1. Then we can replace $E_{j k}^{+}$by the identity operator without altering results in Theorem I.

Proof of Proposition 7.1.
We put $L_{k}=\left\{j \mid\left(x^{j k}, \xi^{k}\right)\right.$ satisfies the assumption of Proposition 7.1\}

$$
\begin{equation*}
Q_{k}=\sum_{j \in \Sigma_{k}} \phi_{k}^{*}(x, D) P_{j_{k}}^{-} \phi_{j k}(x, D) \tag{7.4}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{k}=\sum_{j \in L_{k}} \phi_{j k}^{*}(x, D) E_{j_{k}}^{-} \phi_{j k}(x, D) . \tag{7.5}
\end{equation*}
$$

We claim that there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|Q_{k} u\right\| \leqq C \delta_{k}^{-2}\left\|\dot{\psi}_{k}(D) u\right\| \tag{7.6}
\end{equation*}
$$

We admit this for a moment. Replacing $E_{j}^{+}\left(j \in L_{k}, k=0,1,2, \cdots\right)$ in (4.1)~ (4.4) with the identity, we obtain operators $Q^{ \pm}$and $G^{ \pm}$.

Differences between old and new operators are

$$
\begin{align*}
Q^{ \pm}-P^{ \pm} & =\sum_{k} Q_{k} \tag{7.7}\\
G^{ \pm}-F^{ \pm} & =\sum_{k} G_{k} \tag{7.8}
\end{align*}
$$

These relations imply that

$$
\begin{align*}
\left(G^{-} Q^{+} G^{+} u, v\right)= & \sum_{k}\left(G^{-} Q_{k} G^{+} u, v\right)-\sum_{k}\left(G_{k} P^{+} F^{+} u, v\right) \tag{7.9}\\
& +\sum_{k}\left(F^{-} P^{+} G_{k} u, v\right)-\sum_{k, l}\left(G_{k} P^{+} G_{l} u, v\right) \\
& +\left(F^{-} P^{+} F^{+} u, v\right) .
\end{align*}
$$

We know by Theorem I that

$$
\begin{equation*}
\left|\left(F^{-} P^{+} F^{+} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3} . \tag{7.10}
\end{equation*}
$$

On the other hand we can use (7.6) and prove the following inequalities in the same way as the proof of (6.34):

$$
\begin{align*}
& \sum_{k}\left|\left(G_{k} P^{+} F^{+} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}, \\
& \sum_{k}\left|\left(F^{-} P^{+} G_{k} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}, \\
& \sum_{k, l}\left|\left(G_{k} P^{+} G_{l} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3}, \tag{7.11}\\
& \sum_{k}\left|\left(G^{-} Q_{k} G^{+} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3} .
\end{align*}
$$

These prove

$$
\begin{equation*}
\left|\left(G^{-} Q^{+} G^{+} u, v\right)\right| \leqq C\|u\|_{-1 / 3}\|v\|_{-1 / 3} \tag{7.12}
\end{equation*}
$$

which corresponds to (4.7). Other inequalities can be proved in the same manner.

Now we must prove our claim (7.6). We choose \bar{x} as in Proposition 6.1. Let

$$
\begin{align*}
Q_{j^{k}}(x, D)= & p_{0}\left(\bar{x}, \xi^{k}\right)+\sum_{\nu=1}^{n} p_{0(\nu)}\left(\bar{x}, \xi^{k}\right)(x-\bar{x})_{\nu} \tag{7.13}\\
& +\sum_{\nu=1}^{n} p_{0}^{(\nu)}\left(\bar{x}, \xi^{k}\right)\left(D-\xi^{k}\right)_{\nu} .
\end{align*}
$$

Then

$$
\begin{align*}
& \left(Q_{j k}(x, D) \phi_{j k}(x, D) u, \phi_{j_{k}}(x, D) u\right) \tag{7.14}\\
& \quad=\left(\left(p_{0}\left(\bar{x}, \xi^{k}\right)+\sum_{\nu} p_{0}^{(\nu)}\left(\bar{x}, \xi^{k}\right)\left(D-\xi^{k}\right)_{\nu}\right) \phi_{j_{k}}(x, D) u, \phi_{j_{k}}(x, D) u\right) \\
& \quad=p_{0}\left(x, \xi^{k}\right)\left((1-\dot{\psi}(D)) \phi_{j_{k}}(x, D) u, \phi_{j_{k}}(x, D) u\right) \\
& \quad+\left(\left(p_{0}\left(\bar{x}, \xi^{k}\right)+\sum_{\nu} p_{0}^{(\nu)}\left(x, \xi^{k}\right)\left(D-\xi^{k}\right)_{\nu}\right) \dot{\psi}_{k}(D) \phi_{j_{k}}(x, D) u, \phi_{j_{k}}(x, D) u\right) \\
& \quad+\sum_{\nu} p_{0}^{(\nu)}\left(\bar{x}, \xi^{k}\right)\left(\left(D-\xi^{k}\right)_{\nu}\left(1-\dot{\psi}_{k}(D)\right) \phi_{j_{k}}(x, D) u, \phi_{j_{k}}(x, D) u\right)
\end{align*}
$$

because of (6.2).
Since α is large, we may assume that $p_{0}(x, \xi) \geqq 0$ if $\xi \in \operatorname{Supp} \dot{\psi}_{k 0}$. Taylor's expansion of $p_{0}(x, \xi)$ at $\xi=\xi^{k}$ imply that there exists a constant $C>0$ such that

$$
\begin{aligned}
& \left(\left(p_{0}\left(x, \xi^{k}\right)+\sum_{v} p_{0}^{(\nu)}\left(x, \xi^{k}\right)\left(D-\xi^{k}\right)_{v}\right) \dot{\psi}_{k}(D) \phi_{j_{k}}(x, D) u, \phi_{j k}(x, D) u\right) \\
& \quad \geqq-C \delta_{k}^{-2}\left\|\phi_{j_{k}}(x, D) u\right\|^{2} .
\end{aligned}
$$

We know that

$$
\left(D-\xi^{k}\right)_{\nu}\left(1-\dot{\psi}_{k}(D)\right) \phi_{j_{k}}(x, D) u=\left(D-\xi^{k}\right)_{\nu}\left(1-\dot{\psi}_{k}(D)\right) \varphi_{j_{k}}(x) \psi_{k}(D) \dot{\psi}_{k}(D) u
$$

and that the sequence of double symbols $\left\{\left(\xi-\xi^{k}\right)\left(1-\dot{\psi}_{k}(\xi)\right) \varphi_{j k}(x) \psi_{k}(\eta)\right\}_{j, k}$ is bounded in $S^{-\infty}$. Therefore we have estimate for any $N>0$,

$$
\left\|\left(D-\xi^{k}\right)\left(1-\dot{\psi}_{k}(D)\right) \phi_{j k}(x, D) u\right\|^{2} \leqq C \delta_{k}^{-N}\left\|\psi_{k}(D) u\right\|^{2} .
$$

This implies that

$$
\left(Q_{j k}(x, D) \phi_{j_{k}}(x, D) u, \phi_{j_{k}}(x, D) u\right)+C \delta_{k}^{-2}\left\|\phi_{j k}(x, D) u\right\|^{2}+C \delta_{k}^{-N}\left\|\psi_{k}(D) u\right\|^{2} \geqq 0
$$

This and Proposition 6.3 prove that

$$
\left(P_{j_{k}}(x, D) \phi_{j k}(x, D) u, \phi_{j_{k}}(x, D) u\right)+C\left(\delta_{k}^{-2}\left\|\phi_{j_{k}}^{\prime}(x, D) u\right\|^{2}+\delta_{k}^{-N}\left\|\psi_{k}(D) u\right\|^{2}\right) \geqq 0,
$$

where $\left\{\phi_{j_{k}}^{\prime}(x, \xi)\right\}$ is a bounded sequence in $S_{2 / 3,1 / 3}^{0}$ as of Proposition 6.3. Taking sum of these with respect to $j \in L_{k}$, we have

$$
\sum_{j \in L_{k}}\left(P_{j_{k}}(x, D) \phi_{j_{k}}(x, D) u, \phi_{j_{k}}(x, D) u\right)+C \delta_{k}^{-2}\left\|\psi_{k}(D) u\right\|^{2} \geqq 0
$$

Our claim is an immediate consequence of this inequality.
Remark. Result similar to Proposition 7.1 holds for $E_{j_{k}}^{-}$.
Next we discuss the case that $P_{0}(x, \xi)$ changes sign in the neighbourhood of supp $\phi_{j_{k}}$. In this case we compare $P_{j k}(x, D)$ with the operator $\dot{P}_{j_{k}}(x, D)$ which is determined at a characteristic point.

Proposition 7.2. Assume that $P_{0}(x, \xi)$ changes sign at some point $(\dot{x}, \dot{\xi})$ with

$$
\begin{equation*}
\left|X^{j k}-\dot{x}\right|<\alpha \delta_{k}^{-1}, \quad\left|\xi^{k}-\dot{\xi}\right|<\alpha \delta_{k}^{2} . \tag{7.6}
\end{equation*}
$$

Then we can replace $P_{j_{k}}(x, D)$ by

$$
\begin{align*}
\bar{P}_{j_{k}}(x, D)= & \sum_{\nu} P_{o(\nu)}(\dot{x}, \dot{\xi})(x-\dot{x})_{\nu} \tag{7.7}\\
& +\sum_{\nu} P_{0}^{\nu)}(\dot{x}, \dot{\xi})(D-\dot{\xi})_{\nu}
\end{align*}
$$

without altering results in Theorem I.
Proof. This proposition is contained in Proposition 6.3.
Finally we discuss the case where the operator $E_{j_{k}}^{ \pm}$can be arbitrarily chosen.
Proposition 7.3. Assume that we have

$$
P_{0}(\dot{x}, \dot{\xi})=0 \quad \operatorname{grad}_{x, \xi} P_{0}(\dot{x}, \dot{\xi})=0
$$

at some point $(\dot{x}, \dot{\xi})$ with $\left|\dot{x}-x^{j k}\right|<\alpha \delta_{k}^{-1},\left|\dot{\xi}-\xi^{k}\right|<\alpha \delta_{k}^{2}$. Then we can replace $P_{j_{k}}(x, D)$ by zero operator 0 without altering Theorem I .

Proof. This is because of Proposition 6.3.
Remark 7.4. In this case, the operator $E_{j_{k}}^{ \pm}$does not matter. We can put $E_{j k}^{+}=I d$ or 0 at our disposal. From Proposition 7.1, 7.2 and 7.3, we can see F^{+} and F^{-}depend only on location of sets $\Sigma^{+}(P), \Sigma^{-}(P)$ and $\Sigma^{0}(P)$. An interesting consequence comes out when one compare two pseudo-differential operators whose characteristics are the same. Let Q be another self-adjoint pseudo-differential operator of class $L_{1,0}^{0}$. We assume Q has homogeneous
principal symbol $q_{0}(x, \xi)$ and $Q-q_{0}(x, D) \in L_{1,0}^{-1}$. Just as we did for the operator $P(x, D)$ we can consider operators $Q^{+}, Q^{-}, F_{Q}^{+}, F_{Q}^{-}$and sets $\Sigma^{0}(Q), \Sigma^{+}(Q)$, $\Sigma^{-}(Q)$.

Theorem II. If $\Sigma^{+}(Q) \cup \Sigma^{0}(Q) \supset \Sigma^{+}(P) \cup \Sigma^{0}(P)$ and $\Sigma^{-}(Q) \cup \Sigma^{0}(Q) \supset$ $\Sigma^{-}(P) \cup \Sigma^{0}(P)$, then we can take $F^{+}=F_{Q}^{+}$and $F^{-}=F_{Q}^{-}$.

Proof. If Proposition 7.1 applies to $\left(x^{j k}, \xi^{k}\right)$ and operator P, then the same applies to the operator Q. If Proposition 7.2 applies to $\left(x^{j k}, \xi^{k}\right)$ and P, then we have $(\dot{x}, \xi) \in \sum^{0}(P) \subset \sum^{0}(Q)$. If Proposition 7.2 does not apply to ($x^{j k}, \xi^{k}$) and Q, then (\dot{x}, ξ) satisfies $q_{0}(\dot{x}, \xi)=0, \operatorname{grad}_{x, \xi} q_{0}(\dot{x}, \xi)=0$. Proposition 7.3 can be applied to this case and we come to the conclusion that we may take $Q_{j k}=0$ and the operator $E_{j k}^{ \pm}$does not matter so far as Q is concerned.

Acknowledgement:

The original manuscript of the author fallaciously asserted that operators $\phi_{j k}^{\prime}(x, D), \phi_{j k}^{(2)}(x, D), l=1,2,3$, in Propositions 6.2 and 6.3 could be replaced by $\phi_{j k}(x, D)$ itself. This error was pointed out by the editors. The author expresses his hearty thanks to the editors.

University of Tokyo

References

[1] A.P. Calderòn and A. Zygmund: Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921.
[2] L. Hörmander: Pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 501-517.
[3] L. Hörmander: Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. 83 (1966), 129-209.
[4] L. Hörmander: Pseudo-differential operators and hypoelliptic equations, Proc. Symp in Pure Math. vol. 10, A.M.S., 1967, 139-183.
[5] J.J. Kohn and L. Nirenberg: An algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 269-305.
[6] P.D. Lax and L. Nirenberg: On stability for difference schemes; A sharp form of Gårdings inequality, Comm. Pure Appl. Math. 19 (1966), 473-492.
[7] R.T. Seeley: Refinement of the functional Calculus of Calderon and Zygmund, Nederl. Akad. Wetensch. 68 (1965), 521-531.

[^0]: 1) As to general theory of pseudo-differential operators. See [1], [2], [5] and [7].
