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1. Introduction

Among many problems concerning pseudo-differential operators, one of the
most interesting problem is "to what extent does the symbol function p(x, ξ)
describe the spectral properties of an operator p(x> D) ?" Motivation of this
paper comes from this problem.

Actually what we do in this note is the following: Assume that P=p(x, D)
is a self-adjoint pseudo-differential operator of class L? 0 of Hϋrmander [4].
Then starting from its principal symbol, we explicitly construct self-adjoint
operators P + , P~~, R> F+ and F~ with the following properties;
( i) F++F~=Id.
(ii) P=P+-P-+R.
(iii) P + , P~ and F+

y F~ are non-negative self-adjoint operators,
(iv) We have the following estimates;

for any w, v<=C%(Rn).

Theorem I gives more precise statement. Proof is found in §5 and §6.

If the principal symbol does not change sign, the problem has been settled.
In fact strong Garding inequality [3], [6] means that we can take P~=0, F~=0
and that R satisfies stronger inequality

However our result seems new if the principal symbol changes sign. Difficulty
arises at the point of characteristics of the operator p(x, D). The operator F+

and F~ are closely related to location of characteristics of p(x, D). This is
discussed in §7.

1) As to general theory of pseudo-differential operators. See [1], [2], [5] and [7],
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Our method is based on localization of Hόrmander in [4]. His terminology

will frequently be used.

2. Localization

We treat a pseudo-differential operator p(x, D) defined by

(2.1) p(x, D)u(x) = (2πy
R»xRn

We assume that the symbol p(x, ξ) is of the form

where po(x, ξ) is homogeneous of degree 0 with respect to ξ for large | ξ | and

Pi(x> ζ) is a function in Sΐ,l(Rn) in the sense of Hϋrmander [4]. We further

assume that the principal part po(x> ξ) vanishes unless x lies in a bounded

domain ΩcΛ Λ . (See [4]). We use Hϋrmander's localization in [4], Let£ o=0,

£i> #2> *••> be the unit lattice points in Rn. Then Rn is covered by open cubes

of side 2 with center at these points. Let Θ(x) be a non-negative CJΓ function

3
which equals 1 in \xj\ ̂ 1 and zero outside \xj\ ̂  — , ί^i^n. We use

(2.2) φk(x) = θ(x-glι)l(t:Θ(x~gk)ψ2 and

The following properties hold:

(2.3) Σ φk(x)2 = 1 and

(2.4) Σ £>>*(*) = S C α ,

where a is an arbitrary multi-index a—(aly a2y •••, αw). Z)Λ is the usual notation,

(2.5) \x—y\^*2χ/n~ if x, ̂ e supp φh .

Let

(2.6)

Then

(2.7)
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(2.8) Iξ13/4|rt| Σ ID*Ψk(ξ)\2^Ca for va .

(2.9) iξ-vί^Clξl2'3 if f.^eβuppψ*.

(2.10) Σ \Ψk(ξ)-ψk(v)\2^ ., , .r.[i~ , , ιvg/3

 f o r κ£

Functions φΛ and ψk are identically one in some neighbourhood of supp φk

and supp ψk respectively. They also have properties (2.4)^(2.10) except (2.7).

Note that δ*gj belongs to supp <ψv if δ/= \gj\. We define operator ψj(D) by

(2.11) ψ,{D)u(x) = (2π)- J J β«"-°

Obviously we have

(2.12) J}<Pj(D)2 = Idy
3

and

(2.13) Client Σ δJ ll
y=o

where ||z/||5 is Sobolev norm of u of order s in ΛΛ.

We set φjk{χ)=φj{δkx) a n d φ y ^ j ξ^φjkWΨkiξ)- Note that for any multi-
indices a> β, we have

(2.14) \D:DfφJk(x, ξ)\ ^

This means that φy^ belongs to class £2/3,1/3 of Hόrmander. It follows from

(2.3) and (2.13) that

(2.15) CIMIΪS Σ BVUΦΛ** D) lίllS^C^IMi;,

and

(2.16) Σ φJk(xy D)*φJk(x, D) = Id.

For any pair (j, k) of integers we set

(2.17) Pjk{x, D) = pa J

where | Λ is a point in supp ψk and #y* is a point in supp <pJk. The following

proposition is due to Hϋrmander.

Proposition 2.1. For any vu, v^D(Rn), we have

(2.18) I (p(χy D)u, v)
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Proof is found in [4].

3. Spectral decomposition of localized operators

We shall call Pjk(x, D) localized operator. Pjk(x, D) is an operator of
order 1. The spectral decomposition of Pjk(x, D) is well known. In fact,
after multiplication of eix'*k and suitable change of coordinates, P jk{xy D) is
unitarily transformed to an operator of the form

L = ^ ,

where a is a real constant and b x is Euclidean scalar product of two vectors

b = (bly b2y •••, bn) a n d x = (x19 x 2 y •••, x n ) .

L e t

L = Γ \dE(X)
J - o o

be spectral decomposition of L. Then the projection operator E(X) is the mul-
tiplication of function Y(λ—b-x) if a=0. Here Y{t)y t^R, stands for
Heaviside function, that is,

y ( ί ) = 0 ,<o.
IfαφO.weset L> = ^ l ^ L e ^

L' is an operator of the form

L/ = aD1+b' x',

where b'={b2, —, bn) and x'=(x2, ••-, xH).

Taking partial Fourier transform with respect to xlf we have reduced to the case
that α = 0 .

We shall use the following notations:

(3.1) Pjh{x,D)=\~ XdEjk{X).
J - o o

Here EJk(\) is the spectral measure of PJk.

We put Ejk = EJk(0) Έ)k = I-Ejk

Pjk — Pjk&jk Pjk = = Pjk& jk

4. Statement of Theorem I

We put
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(4.1) P+ = Σ φJk(x, D)*PΐkφJk(x, D) ,

(4.2) P- = Σ φJΛ(^, D)*PjkφJk(x, D),

(4.3) F+ = Σ ΦΛ*. DfE^Jix, D),

(4.4) F- = Σ ΦJ^*, D)*Ej^Jt(x, D).

Then we have

Theorem I. Operators P+, P~, F+ and F~ are self-adjoint and satisfy the
following properties:

(4.5) (i) / = F++F- .

(4.6) (ii) ( P ^ w ^ O .

(4.7) (iii) I {F-P+F+u, v) I ^C\\u\U,3\\v\\-ίl3

(4.8) \(F-P+F-u, v)\£C||«||_lΛ||»||_l/I.

(4.9) \(F-P-F+U, υ)\^C||«||.lΛ||c||_lΛ.

(4.10)

(4.11) (iv)

(4.12) |([P±, F*]u, v)\ ^ C | | M | | _ l / 3 | | ^ | | - l / 3 .

(v) i/" we set R = P—(P+—P~) then

(4.13) l(Λ«,»)I^C| |β| |_ l Λ | |o | |_ j Λ .

Corollary 4.2. We have

(4.14) I (PF+M, v)-(F+P+F+u, v) \ ^C\\u\\-lh\\v\\-^

(4.15) \(PF'u, V)+{F-P-F-U, »)|^C||«||_^|H|_^.

(4.16) \(P+F-u,v)\^C\\u\U,3\\v\\-u3,

(4.17) \(P-F+u, v)\ ^CWUW^MI-Φ,

(4.18) P = P+-P-+R.

We shall prove Theorem I in §6.

5. Some lemmas about self-adjoint operators

In this section X stands for an abstract Hubert space.

Lemma 5.1. Let A be a self-adjoint operator in X and A+ be its positive part.
Then
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A + u = h
provided u^D(A2)=domain of A2. Γ is the complex contour as is shown in fig 1.

fig 1.

Proof. Note that

Integrate this with respect to λ on Γ then we have σ if σ > 0 and 0 if σ<0.
Therefore if we use spectral decomposition of A> then we can prove our Lemma.

L e m m a 5.2. Let A be a self-adjoint operator in X and let B be a bounded

linear operator. We assume that operators AB and A2B are densely defined.

We further assume that the communtator [A, B]9 [A, [A, B]] are bounded.

Then we have

(5.2) | p ± , B]\\^C(\\B\\+\\[A,

Proof. Let u <Ξ D(A2) n D(A2B) n D(AB),

], A]\\).

2πi[A+, B]u = \ B~\ud\ .

We split Γ into theree parts Γj+Γz+Γa. (see fig. 1). Corresponding integrals
are denoted by A19 A2 and A3. Obviously [A+, B]=[Aly B] + [A2, B] + [A3y B].

Since

we have

(5.3)

Let us treat

λTϊ r f λ = l o g ( 1 "
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2πi[A2+A39 B] = j
ri+r 2

-A)-1-!—άJ\9B\d\

tJ r 1 + r 3 λ + l

We know

dX
^ const.

On the other hand we have

Γ1+Γ3

X(X-A)~2[A, B]dX+ [ X(X-A)-2[A, [A, B]](\-A)-ιd\ .

The last term is majorized by C\\[A, [A, B]]\\.

The first is

f X(X—A)-2dX=[ dx[ X{X—σ)-2dE(σ)
JΓi+Γ3 JΓi+Γ3 J-oo

S co / -I

Since If

we have

< Const, and
J(λ-o-)2

t+σ

X{X-A)-\A, B] ̂ λll^CH^, B]\\ .
3

We have thus proved our lemma.

Lemma 5.3. Let A and B be two self-adjoint operators in X. If the com-
mutator [Ay B] is bounded, then for any

we have

Ώ+\ vll<' Γ*(\\XΔ Rill

—z) )x\\ == ̂ vllL > ^Jll

Proof. W e have t o majorize

(2πi) (A+x-B+x) =

, B]]\ \\(A-B)x\
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We decompose Γ as we did in the proof of Lemma 5.2. The integral over Γ2

is majorized by

Note that

\(X-A)~1-X(X-B)-1x

= -X(X-B)-\A-B)(\~A)-1x

= -X(X-B)-1(X-A)-\A-B)x

-λ(λ-β)"1 (λ-^)"1^, B] (X-Ay'x

= -λ(λ-.B)-2 {1+(A-B) (X-A)'1} (A-B)x

+X(X-B)~1 (\-A)-ι[A, B] (X-A)-ιx

= -X(X-B)~2 {1+(X-A)-\A-B)

+(X~A)-1 [A, B^X-A)'1} (A-B)x

+X(X-B)-\X-A)-1[A, B] (X-Ay'x.

From this we can majorize the integral over Γ α + Γ 3 by

C(| |(i4-B)*| |+| |(Λ-.B) t*| |+|p, B]\\ \\x\\ + \\[A, B]\\ \\(A-B)x\\).

We have thus proved our lemma.

6. Proof of Theorem

We start with the propositions which simplify discussions later.

Proposition 6.1. Let u<=Co(Rn) be arbitrary and (j> k) be a pair of indices.
Then there is a point X satisfying

(6.1) \%-x>'

(6.2) j(*v-*v)IΦ/*(*> D)u(x)\2dx = 0

for ι/=l, 2, 3, •••, n. Here a is a positive constant independent of u and (j, k).

Proof is found in [3], page 171.

The point X can be chosen in supp φJk.

Proposition 6.2. There exists a bounded sequence {φ'jk(x, ξ)} jk of symbols in

^2/3,i/3 such that we have

(6.3) (i) \\(Dv-ξl)φJk(x, D)u\\2<Cδϊ\\φ'}k(x, D)u\

and

(6.4) (ii) supp φ^csupp φjk

for i/=l, 2, 3, •••, n.
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Proof. We have

(6.5) (Dv-ξt)ΦΛx, D)u = δ2

kφ')k(x, D)u ,

where

(6.6) φ$A(*, ξ) = δ7\-i^

T h e sequence {φ'jk(Xy ξ)} j,k is b o u n d e d in £2/3,1/3 because of (2.9) and

OXy, \ OXy, I

Proposition 6.3. Let {(xJk, ξjk)} jk be another sequence of points. Let Pjk>
P± and F± be operators defined by (2.17), (4.1), (4.2), (4.3) tfm/(4.4) where (xjk, ξk)
is replaced by (jcjk

y ξik). If there exists a constant C > 0 satisfying

(6.7) \x)k-x3k\<:CδT1 and \ξk-ξJk\ <Cδ2

k,

then we have

(6.8) \\{P)k-P}k)φ]k{x, D)u\\^C^\\φ^{x, D)u\\*,

(6.9) \\{P]t-Pίkγφίk){x, D)u\\°<C87a\\φ%(x, D)u\\*,

(6.10) | | [P^ ^J||<C8ϊ-\

(6.11) \\(P%-P%)φ3ll(x, D)u\\<C87*U%(x, D)u\\,

(6.12)

Herey {φγk}jky I—1,2, 3, are bounded sequences of symbols in £2/3,1/3 w

property that supp φ ^ c supp φJk.

REMARK 6.4. We require that the point (xJk, ξk) lies in supp φjk but we
don't require that (xJk, ξJk) lies in supp φjk.

Proof. It follows from Taylor's formula that

(6.13) P«ψ\ %») = P0(χJ>°, ξ")+ Σ (VO-x^P^ixi*, ξ")

(6.14) Λcv>(*>*, ξJk) = P^{x)k, e*)+Λ,.cw and

(6.15) P$»(i», F*) = Py{xik, ξk)+RP •

By (6.7) the remainder terms are majorized as

(6.16) IR
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We have

(6.17) PJk(x, D)-PJk(xy D)

= *!+ Σ («-^)Av)+ Σ (D-ξ>'k),R .

This implies that

\\(PJk(x, D)-Pjk{x, D)φ.k(x, D)u\\*

Z>)w||2+δΓ2Σ \\(x-x%φjt(x, D)u\\*

ξ}\φjk(x, D)u\\2)

This is (6.8).
Similarly

(6.18) \\(PJk(x, D)-P.k(x, D)γφ.k{x, D)M |

ίkCK»\\φ%{x, D)u\\\

Now

(6.19) [PJkt PJk] = [Pjk, Pjk-Pjk]

This proves (6.10).
We apply Lemma 5.3 to operators A=S\P}k, and B=S\PJk. Then we have

(6.20) \\(A+-B+)φjk(x, D)«|

This proves that

(6.21) \\(Pt»-Pΐ>)ΦA*> D)umC8j*\\φ%\x, D)u\\.

Let v be in C%(R"). Then

\((P+-P+)u, v)\ ^ Σ

Take arbitrary positive £>0. Then

Taking the minimum of this with respect to t, we have
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Next we need bounds for commutators

[P%, φ,Jx, D)], [E%, φ,Jx, D)] etc.

These are needed only when supp φjk Π supp φimφφ.
We introduce notation

I{j> k) = {(h m) I supp φjk Π supp φ, m φφ} .

It is obvious that there is a constant C > 0 such that

C - ' ^ i s - ^ C . if (I, m)<=I(j, k).

The number of indices (/, m) in I(j, k) is bounded.

Proposition 6.5. We have the following estimates for commutators: If
(I, m)(=I(j, k), then

(6.22)

(6.23) \\[[Pjk, φlm],

(6.24) \\[[PJk, φlm],

(6.25) \\[[Pjk,φlm*l

(6.26) \\[P%,

(6.27) \\[Pίk,

Proof. [Pjh, φlm\ = [Pjk, φlm(x)ψm(D)]

= [Pjk, φlm]φJP)+φlm[Pjk,

This proves that

More precisely, {S2

k[PJk, Φιm]}jk is bounded sequence of operators in Ll/3l/3 of
Hϋrmander. By just the same argument we can prove (6.23). (6.24) and (6.25)
are consequences of the fact that

is a bounded set in £2/3,1/3.
We set A=S2

kPJk, B=8j2φlm and apply Lemma 5.2.
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Then we have

\\[P%, Φim]\\^C8i;\

Since

(6.29) Pjk[E%, φίm] = [P%, φlm]-Eft[PJk, φlm] ,

(6.27) is a consequence of (6.26).
Now we are ready for proving our Theorem I.

Proof of (iii). Let (/, k) and (j', k') be two pairs of indices. Then we put

Hfi* }'ki) = W m) ISUPP Φim Π supp φ;k*φ

supp φlm Π supp φyVΦ Φ}

By definition of P + , F+ and F~y we have

(6.30) {F-P-F+U, ^) = Σ Σ (P-φ%ElkφJku, φ%Ejfkfφ/krv).

If supp φ / w ί Π supp φjk=Φ and supp ^ Π supp α/rwφ 0, then

(6.31) \\φlm(xy D)φJk(xy D^w I I ^ C δ ^ l N I

for any N>0. If supp ψk Π supp ψm=φ, then φim(x, D)φJk(x, D)*u=0.

Thus we have

(6.32)
c

where | Ω | is the volume of the domain Ω.
Similarly

(6.33)

c/

(6.32) and (6.33) imply that

(6.34) (F-P~F+u, ή -

£C\n\(5^δ

We have
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(6.35) Σ ,, ΦfmPTmφlmφ%Ehφί.ku

Σ
iy

We apply Proposition 6.3 and have

(6.36) || Σ φ& i(Pr«-
l m

On the other hand,

(6.37)

= Σ iΦ
//W

By proposition 6.5, we have

(6.38) \\φUPjt, φUΦ%

and

(6.39) I\φΐmφlm[Pj*> ΦUE%Φj*u\\^CδΓ2|Iφίku\\ •

(6.37), (6.38) and (6.39) imply that

(6.40) || Σ φίmPnφlmφ%E^φ.ku\\^CK2\

As a consequence of (6.34) and (6.40), we have

(6.41) \(F-P-F+U, v)\

where the summation ranges over those (jk) and (/, k') that I(jk,j'kf)^φ. This
proved (iii). Proof of remaining part of Theorem I is the same.

7. The role of characteristics

So far the choice of sequence {(xjΊs, ξk)} is not specified. In the following
we shall make use of special choice of it in order to simplify operators P fk and
E%.

The set

(7.1) Σ ° (P) = {(*, f ) e r \ξ ΦO, po(x, ξ) = 0}

is called the characteristics of the operator P. We also use the following
notations;
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(7.2) Σ + (P) = {(*, ξ)^R2n\ξφ0y Po(*, ξ)>0} ,

(7.3) Σ " (P) = {(*,

Proposition 7.1. ( ) ( ) ( )
P(#, £)^0/or any #esupp φyAf and g zoΛA | | — 1 * | <aδ*, where a is the constant
appeared in Proposition 6.1. Then we can replace E*k by the identity operator with-
out altering results in Theorem I.

Proof of Proposition 7.1.
We put Lk= {j\(xjk, ξk) satisfies the assumption of Proposition 7.1}

(7.4) Qk = Σ ΦU*> A

and

(7.5) Gk = Σ Φ%(x, D)EjkφJk(x, D).

We claim that there exists a constant C > 0 such that

(7.6) |iρ

We admit this for a moment. Replacing E](j^Lk, k=0, 1, 2, •••) in (4.1)~
(4.4) with the identity, we obtain operators Q± and G±.
Differences between old and new operators are

(7.7) Q±-P±

(7.8) G±-F± = Σ G t .

These relations imply that

(7.9) (G'Q+G+u, v) = Σ (G-QkG+u, v)- Σ {GtP+F+u, v)

+ Σ(F-P<-Gku, v)-Σ{GkP+GιU, v)

+(F-P+F+u, v).

We know by Theorem I that

(7.10) \{F-P+F+u, v)\ ^C | | « | |_ l Λ |M|_ l / I .

On the other hand we can use (7.6) and prove the following inequalities in the
same way as the proof of (6.34):
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Σ \(F-P+Gku, v)\ ^C\\U\UI/3\\V\\-Φ,

Σ \{GkP+G,u, v)\ ^

Σ \(G-Q

These prove

(7.12) I (G-Q+G+u, v)\ ^C\\U\\.Φ\\V\\-Φ

which corresponds to (4.7). Other inequalities can be proved in the same
manner.

Now we must prove our claim (7.6). We choose x as in Proposition 6.1.
Let

(7.13) QJk(x, D) = po{x, ξ*) jb

Then

(7-14) (QJk(x, D)φ.k(x, D)u, φJk(x, D)u)

. ζk){D-ξ%)φjk{x, D)u, φίk(x, D)u)

x, D)u, φjk{x, D)u)

K ' ( ί , ξlί)(D-ξ%)ψl!(D)φίk(x, D)u, φjk{x, D)u)

ϊψ* ξk)((D-ξ%(ί-ψk(D))φjΊι(x, D)u, φjk{x, D)u)

because of (6.2).
Since a is large, we may assume thatpo(x, ξ)^0 if | e S u p p -ψ Ao. Taylor's

expansion of po(x, ξ) 2Xξ=ξk imply that there exists a constant C > 0 such that

, ξ")+ Σ ί Γ ( ί , ξ")(D-ξ%)ψk(D)φJ-k(x, D)u, φJk{x, D)u)

^-C87*\\φίk(x, D)u\\\

We know that

(D-ξ%(l-ψk(D))φjk(x, D)u = φ-ξ%{\-

and that the sequence of double symbols

{(£—?*)(!—Ψk(ξ))<Pjk(x)Ψk(v)}jtk
 ί s bounded in 5"°°. Therefore we have

estimate for any iV>0,

This implies that
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(£?/*(*, D)φJk(x, D)u, φJk(xy D)u)+CδJ2\\φJk(xy D)u\\2+Cδ7N\\ψk(D)u\\2^0.

This and Proposition 6.3 prove that

{Pjk{xy D)φJk(xy D)uy φJk(xy D)u)+C(δj*\\φ'jk(x, D)u\\2+δj«\\ψk(D)u\\2)^0 y

where {φjk(x, ζ)} is a bounded sequence in $2/3,1/3 a s of Proposition 6.3. Tak-

ing sum of these with respect to j^Lky we have

Σ {PJI&X, D)φJk(xy D)uy φJk(xy D)u)+Cδj2\\ψk(D)u\\2^0 .

Our claim is an immediate consequence of this inequality.

REMARK. Result similar to Proposition 7.1 holds for Ejk.

Next we discuss the case that P0(x, ξ) changes sign in the neighbourhood

of supp φjk. In this case we compare PJk(xy D) with the operator Pjk(x> D)

which is determined at a characteristic point.

Proposition 7.2. Assume that P0(xy ξ) changes sign at some point (xy ξ) with

(7.6) \X^-i\<aSτ\ \ξk-ξ\<aδ*.

Then we can replace Pjk(x, D) by

(7.7) Pjb{x, D) = Σ P«*>{*, ?)(*-*)*

without altering results in Theorem I.

Proof. This proposition is contained in Proposition 6.3.

Finally we discuss the case where the operator E% can be arbitrarily chosen.

Proposition 7.3. Assume that we have

Po{*> f) = 0 grad^P 0 (i, ξ) = 0

at some point (xy ξ) with \x—xJk\ < α δ r \ \ξ—ξk\ <aδ2

k. Then we can replace

Pjk(xy D) by zero operator 0 without altering Theorem I.

Proof. This is because of Proposition 6.3.

REMARK 7.4. In this case, the operator E% does not matter. We can put

Ejk=Id or 0 at our disposal. From Proposition 7.1, 7.2 and 7.3, we can see F+

and F- depend only on location of sets Σ + (P)> Σ " (p) a n d Σ 0 ^ ) - An

interesting consequence comes out when one compare two pseudo-differential

operators whose characteristics are the same. Let Q be another self-adjoint

pseudo-differential operator of class L? 0. We assume Q Jias homogeneous
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principal symbol qo(x, ξ) and Q—qo(x, D)eLr,o . Just as we did for the operator

P(x, D) we can consider operators Q+, Q", F% FQ and sets Σ°(£?)> Σ +

Theorem II. If Σ + (£) UΣ°(03Σ+(P)UΣ°(P) and
^ ) , then we can take F+=F+ and F'=FQ.

Proof. If Proposition 7.1 applies to (xjΊs, ξk) and operator P, then the same

applies to the operator Q. If Proposition 7.2 applies to (xJk, ξk) and P, then we

have (x, ξ)^Σl°(P)ci^ι

0(Q). If Proposition 7.2 does not apply to (*'*, ?*) and

£), then (i, f) satisfies gΌ(i, ξ)=0, gradΛ ^ 0 ( i , ?)=0. Proposition 7.3 can be

applied to this case and we come to the conclusion that we may take Qjk=$ a n d

the operator Efk does not matter so far as Q is concerned.
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