ON SYMMETRIC STRUCTURE OF A FINITE SET

Nobuo NOBUSAWA

(Received December 17, 1973) (Revised April 5, 1974)

1. Introduction

A symmetric structure of a finite set A is defined to be a mapping S of A into the group of permutations on A (the image of an element a in A by S is denoted by S_a or by S[a] and the image of an element b in A by a permutation S_a is denoted by bS_a) such that (i) $aS_a=a$, (ii) $S_a^2=I$ (the identity permutation) and (iii) $S[bS_a]=S_aS_bS_a$ for a and b in A. A set with a symmetric structure is called a symmetric set (with a given symmetric structure). Every group G has a symmetric structure S defined by $bS_a=ab^{-1}a$ for a and b in G, and when we regard a group as a symmetric set we always take this symmetric structure. Generally a symmetric set has a more complicate structure than a group and to develop a structure theory of a symmetric set seems to be an open problem. In this note, we first investigate the following two conditions.

- (E) $S_a \neq S_b$ if $a \neq b$.
- (H) For any elements a and b, there exists an element c such that $aS_c = b$.

Symmetric sets which satisfy (E) (or (H)) are called *effective* (or *homogeneous*).

Proposition 1. (H) implies (E).

Proof. Suppose that (H) is satisfied. Fix an element a and consider a correspondence $b \rightarrow b'$ defined by $aS_b = b'$. The correspondence is a surjective mapping of A to A due to (H). Since A is a finite set, it is a bijection. Therefore, if $b \neq c$, then $aS_b \neq aS_c$. Naturally $S_b \neq S_c$.

Actually (H) is stronger than (E).

EXAMPLE 1. Let $A = \{1, 2, 3, 4, 5, 6\}$. Consider S defined by $S_1 = (24)(36)$, $S_2 = (14)(35)$, $S_3 = (25)(16)$, $S_4 = (56)(12)$, $S_5 = (23)(46)$ and $S_6 = (45)(13)$. S is a symmetric structure of A. (E) is satisfied but not (H), since 1 is not mapped to 4 by any S_i .

Next, we consider the group of displacements of A, which is defined to be a subgroup of the group of permutations on A generated by S_aS_b for all a and b in A. Denote it by G(A).

Proposition 2. Fix an element e in A and consider a mapping of A to G(A) defined by $a \to S_e S_a$. Then the mapping is a homomorphism of a symmetric set A to a symmetric set G(A).

Proof. Let S' be the symmetric structure of a group G(A). We have to show that aS_b is mapped to $(S_eS_a)S'[S_eS_b]$. Now aS_b is mapped to $S_eS[aS_b]$ which is equal to $S_eS_bS_aS_b=S_eS_bS_aS_eS_b=S_eS_b(S_eS_a)^{-1}S_bS_e=(S_eS_a)S'[S_eS_b]$ as we claimed.

If A is effective, then the homomorphism in Proposition 2 is an isomorphism of A into G(A), and hence in this case a symmetric set A is regarded as a subset of a group closed under the operation $ab^{-1}a$. Note also that G(A) is generated by S_eS_a (a in A) as $S_aS_b=S_aS_eS_eS_b$ and $S_aS_e=(S_eS_a)^{-1}$. In 3, it will be proved that an effective symmetric set is isomorphic with G(A) if and only if G(A) is abelian. (cf. Proposition 2.5. p. 137 [2]) One of the basic concepts in studying the structure of a symmetric set is a cycle which will be defined in 2 as a generalization of a cyclic subgroup of a group. The structure of a cycle will be completely determined in 2. In 4, we shall show that a homogeneous symmetric set of p^2 elements where p is an odd prime is isomorphic with an abelian group, but in 5 we shall show that there is a homogeneous symmetric set of 27 elements which is not isomorphic with a group. In 6, we shall give a complete table of symmetric structures of a set of 5 elements. It would be a rather complicate work to find a complete table of symmetric structures of a set of more than 5 elements.

2. Cycles

Fix an element e in A. For an element a in A, we define

$$a^k = \left\{ egin{array}{ll} e(S_e S_a)^i & & ext{if } k=2i \ a(S_e S_a)^i & & ext{if } k=2i+1 \ . \end{array}
ight.$$

From now on, we shall denote S_eS_a by U_a . Clearly, $U_a^{-1} = S_aS_e$ and $S[bU_a] = U_a^{-1}S_bU_a$.

Proposition 3.
$$S[a^k] = S_e U_a^k$$

Proof. First suppose k=2i. Then $S[a^k]=S[eU_a^i]=U_a^{-i}S_eU_a^i=(S_aS_e)^iS_eU_a^i=S_eS_e(S_aS_e)^iS_eU_a^i=S_eU_a^iS_eS_eU_a^i=S_eU_a^i=S_eU_a^i$. Next, suppose k=2i+1. Then $S[a^k]=S[aU_a^i]=U_a^{-i}S_aU_a^i=(S_aS_e)^iS_aU_a^i=S_eS_e(S_aS_e)^iS_aU_a^i=S_eU_a^{i+1+i}=S_eU_a^i$.

Proposition 4. $a^{j}S[a^{k}]=a^{-j+2k}$. Especially $a^{j}S[a^{j+1}]=a^{j+2}$.

Proof. $a^{j}S[a^{k}] = a^{j}S_{e}U_{a}^{k}$ by Proposition 3. Suppose j = 2i. Then $a^{j}S_{e}U_{a}^{k} = e(S_{e}S_{a})^{i}S_{e}U_{a}^{k} = eS_{e}(S_{a}S_{e})^{i}(S_{e}S_{a})^{k} = eU_{a}^{-i+k} = a^{-2i+2k} = a^{-j+2k}$. Suppose j = 2i+1.

Then $a^{j}S[a^{k}] = a(S_{e}S_{a})^{i}S_{e}U_{a}^{k} = aS_{a}(S_{e}S_{a})^{i}S_{e}U_{a}^{k} = aU_{a}^{-t-1}U_{a}^{k} = aU_{a}^{-t-1+k} = a^{2(-i-1+k)+1} = a^{-j+2k}$.

Now consider a sequence e, a, a^2 , a^3 , \cdots . The latter part of Proposition 4 implies that in the sequence the succeeding element of an element, say, b in the sequence is an image of the preceding element by S_b . We call such a sequence a cycle (generated by a with a base element e). Later we shall consider a set of all distinct elements in a cycle and call it also a cycle. Let $\operatorname{ord}_e a$ (or simply ord a if the base element e is implicitly pregiven) be the least positive integer e such that $e^n = e$, the existence of which is given in the following proposition.

Proposition 5. There exists ord a, and if we denote it by n and ord U_a (the order of a permutation U_a) by m, then n=m or 2m. If (E) holds, then n=m.

Proof. $a^{2m}=eU_a^m=e$, and so $n \le 2m$. On the other hand, by Proposition 3, $U_a^n=S_eS[a^n]=S_eS_e=I$. So m divides n. Therefore n=m or 2m. We have $I=U_a^m=S_eS[a^m]$, which implies that $S[a^m]=S_e$. Therefore, $a^m=e$ or n=m if (E) holds.

From now on, we shall denote n= ord a and m= ord U_a .

Theorem 1. If $i \equiv j \mod 2m$, then $a^i = a^j$. Conversely if $a^i = a^j$, then $i \equiv j \mod m$.

Proof. If $i \equiv j \mod 2m$, then $a^i = a^j$ by definition of a^k . Suppose that $a^i = a^j$. Then $U_a^i = U_a^j$ by Proposition 3, whence $i \equiv j \mod m$.

Corollary. $a^k = e$ if and only if $k \equiv 0 \mod n$.

Proof. By Theorem 1, a cycle e, a, \cdots consists of repetitions of e, a, \cdots , a^{2m-1} . So if n=2m, Corollary is clear. Suppose n=m. We have to show that if $a^i=e$ for 0 < i < 2m then i=n. But, by Theorem 1, if $a^i=e$ then $i\equiv 0 \mod m$ (=n). Therefore i=n.

So far we have seen that a cycle e, a, \cdots consists of repetitions of e, a, \cdots, a^{n-1} or of repetitions of e, a, \cdots, a^{2n-1} . When we have the former case, we call the cycle *regular*.

Theorem 2. If n is odd or if n=2m, then a cycle e, a, ... is regular. If (E) holds, then every cycle is regular.

Proof. The last statement is clear because $a^i=a^j$ if and only if $S[a^i]=S[a^j]$ when (E) holds, i.e., if and only if $i\equiv j \mod m$ (=n). Next suppose n=2k+1. To show the regularity of the cycle, it is sufficient to show that $a^{n+1}=a$. Now $a^{n+1}=a^{2k+2}=a^{2(k+1)}=eU_a^{k+1}$. Since $e=a^n=aU_a^k$, we have that $eU_a^{k+1}=aU_a^kU_a^{k+1}=aU_a^{2k+1}=aU_a^n=a$. Here note that in this case n=m because n is odd. If n=2m, then the cycle is clearly regular.

Corollary. $a^{n+2k} = a^{2k}$.

Proof. If the cycle is regular, there is nothing to prove. So we may suppose by Theorem 2 that n is even and n=m. Then $a^{n+2}=a^nS[a^{n+1}]=eS_eU_a^{n+1}=eU_a=a^2$. Now consider a cycle e, a^2, a^4, \cdots It consists of repetitions of e, a^2, \cdots, a^{n-2} . This completes the proof of Corollary.

EXAMPLE 2. Let $A = \{1, 2, \dots, 6\}$. Define $S_1 = (26)(45)$, $S_2 = (13)(46)$, $S_3 = (24)(56)$, $S_4 = (13)(25)$, $S_5 = S_2$ and $S_6 = S_4$. S is a symmetric structure of A. We have a cycle 1, 2, 3, 4, 1, 5, 3, 6, 1, 2, \dots The cycle is not regular. A is not effective and n = m = 4.

The following proposition will be used in 3.

Proposition 6. A symmetric set A is homogeneous if and only if $\operatorname{ord}_e a$ is odd for any e and a in A.

Proof. Let C be a subset of A consisting of all distict elements of e, a, \cdots . C is also called a cycle. C is a symmetric set with a symmetric structure induced from that of A. Generally we call such a subset as a symmetric subset of A. If A is homogeneous, then every symmetric subset B of A is also homogeneous as is seen from the proof of Proposition 1. So if A is homogeneous, then C is so. Then ord a must be odd. Otherwise, n=2k and $S[a^k]=S_e$ since $a^tS[a^k]=a^{-t+2k}=a^{-t}=a^tS_e$ but then $a^k=e$ (a contradiction). Conversely suppose that ord a is odd for any e and a. Put ord a=2k+1. Consider an element $b=a^{k+1}$, and we see that $aS_b=a^{-1+2(k+1)}=a^{2k+1}=e$ by Proposition 4. Thus a is mapped to e. But a and e are taken arbitrarily in A. So (H) is satisfied.

3. Abelian symmetric sets

A is called abelian if G(A) is abelian.

Lemma. Let e, a and d be elements in an abelian symmetric set A. Put $d^{(k)}=dU_a^k$. Then d, $d^{(1)}$, $d^{(2)}$, ... is a cycle. If $m(= \text{ord } U_a)=2j$, then ord $S_dS[d^{(1)}]=j$.

Proof. $S_dS[d^{(1)}] = S_dS[dU_a] = S_dS_aS_eS_dS_eS_a$. But $S_aS_eS_d = S_dS_eS_a$ since $S_eS_aS_eS_d = S_eS_dS_eS_a$ for G(A) is abelian. Therefore, $S_dS[d^{(1)}] = S_dS_dS_eS_aS_eS_a = U_a^2$, and hence ord $S_dS[d^{(1)}] = j$ if ord $U_a = 2j$. Now if k = 2i, then $d^{(k)} = dU_a^{2i} = d(S_dS[d^{(1)}])^i$, and if k = 2i + 1, then $d^{(k)} = dU_a^{2i + 1} = d^{(1)}U_a^{2i} = d^{(1)}(S_dS[d^{(1)}])^i$. This shows that d, $d^{(1)}$, $d^{(2)}$, \cdots is a cycle.

Theorem 3. An effective abelian symmetric set is homogeneous.

Proof. Suppose that A is abelian and effective. By Proposition 6, we have to show that ord a is odd. Assume on the contrary that ord a=2j. Due

to (E), $m(= \text{ord } U_a) = n = 2j$. Therefore, j < m or $U_a^j \neq I$. Then there exists an element d such that $dU_a^j \neq d$. On the other hand, if we apply the above lemma on d, we have a cycle d, $d^{(1)}$, \cdots such that ord $S_d S[d^{(1)}] = j$. Due to (E), ord $S_d S[d^{(1)}] = \text{ord}_d d^{(1)}$. Thus $d^{(j)} = d$. This is a contradiction.

Theorem 4. Let A be an effective symmetric set. Then A is abelian if and only if $G(A) = \{S_e S_a | a \text{ in } A\}$ for an element e in A.

Proof. First suppose that A is abelian. By the proof of Theorem 3, ord a=2k+1 (odd). Then $e=a^{2k+1}=aU_a^k$, and so $eU_a^{k+1}=aU_a^kU_a^{k+1}=aU_a^{2k+1}=a$. Therefore, $a^{2k+2}=a$, or $a^{2t}=a$ with t=k+1. Then $S_bS_eS_a=S_bS_eS[a^{2t}]=S_bS_eS[eU_a^k]=S_bS_e(S_aS_e)^tS_e(S_eS_a)^t=(S_aS_e)^tS_b(S_eS_a)^tS_b(S_eS_a)^t=(S_aS_e)^tS_b(S_eS_a)^tS$

4. Homogeneous symmetric sets of p^2 elements

Let A be a symmetric set and C a symmetric subset of A. Moreover, suppose that C is a cycle $\{e, a, \dots, a^{t-1}\}$ where t = ord a. We denote $\{S_eS[a^i] | i = 0, 1, \dots, t-1\}$ by G'(C). G'(C) is a cyclic subgroup of G(A). Now suppose that A is homogeneous. For an element b in A, bG'(C) consists of t elements because $bS_eS[a^i] = bS_eS[a^j]$ implies $a^i = a^j$ by the proof of Proposition 1. If d is an element in A, then bG'(C) and dG'(C) are either identical or disjoint as G'(C) is a group. Thus A is a set-theoretical union of disjoint subsets bG'(C), b'G'(C), \cdots . This proves the following.

Proposition 7. Let A be a homogeneous symmetric set of k elements and C a symmetric subset of t elements which is a cycle. Then t divides k.

Now let A be a homogeneous symmetric set of p^2 elements where p is an odd prime. If A is a cycle, it is naturally abelian and is isomorphic with a cyclic group. So, assume that A is not a cycle. By Proposition 7, every non-trivial cycle consists of p elements. From now on, we are going to use some geometric terms. Call an element in A a point. A cycle is said to be passing through a point if it contains the point. Then we can show that there is one and only one cycle passing through given two points as p is a prime. Two cycles are said to be parallel if they have no point in common. Next we shall show that, if a point a is not contained in a cycle C, then there is one and only one cycle passing through

574 N. Nobusawa

a and parallel to C. To see it, we first note that the number of cycles passing through a point is $(p^2-1)/(p-1) = p+1$. Now there are p cycles passing through a and points in C. Thus we have the above fact. Then, if C_1 is parallel to C_2 and C_2 to C_3 (C_i are all different cycles), C_1 is then parallel to C_3 . By counting the number again, we conclude that there are exactly p cycles which are parallel each other. Now fix a point e in A. Let D_0 be a cycle $\{e, a, \dots, a^{p-1}\}$. Let C_i be cycles passing through a^i and parallel to C_0 ($i=0, 1, \dots, p-1$). Let C_0 be $\{e, b, \dots, b^{p-1}\}$, and D_i cycles passing through b^j and parallel to D_0 (j=0, 1) $1, \dots, p-1$). We shall show that $C_i S_d = C_k$ for $i \neq k$ if and only if d is in C_i where $k \equiv 2j - i \mod p$. First, we have that $C_i S[a^j] = C_k$ since $C_i S[a^j]$ contains a^k and is parallel to C_i . (If $C_iS[a^j]$ and C_i intersect at a point c, then $c=c'S[a^j]$ with a point c' in C_i which implies that a^j is in C_i .) Now consider a set $F = \{u \text{ in } A \mid C_i S_u = C_k\}$. It is not hard to show that F is a symmetric subset of A and is parallel to C_i . Since F contains a^j , $F=C_i$. Similarly $D_iS_d=D_k$ for $i \neq k$ if and only if d is in D, where $k \equiv 2j - i \mod p$. Now every point in A is determined as an intersection point of C_i and D_j for some i and j. Denote the point by u(i, j). Then we have by the above result that u(i, i') S[u(j, j')]=u(k, k') where $k \equiv 2j-i$ and $k' \equiv 2j'-i' \mod p$. Thus A is isomorphic with a group which is a direct product of two cyclic groups of order p.

5. A homogeneous set of 27 elements

Let $A=\{1,2,\cdots,9,1',2',\cdots,9',1'',2'',\cdots,9''\}$. Define S as follows. $iS_k=2k-i,\ i'S_k=(i+k)'',\ i''S_k=(i-k)';\ iS_{k'}=(i+k)'',\ i'S_{k'}=(2k-i)',\ i''S_{k'}=i-k;\ iS_{k''}=(k-i)',\ i'S_{k''}=k-i,\ i''S_{k''}=(2k-i)'',\ Here all integers are considered mod <math>S$. By routine computations we can verify that S is a symmetric structure of S satisfying S satisfyi

6. A table of symmetric structures of a set of 5 elements

The following is a complete table of symmetric structures of a set of 5 elements 1, 2, \cdots , 5. There are 14 types including a trivial case.

Туре	S_1	S_2	S_3	S_4	S_5
1	(25) (34)	(13) (45)	(24) (15)	(35) (12)	(14) (23)
2	(24)	(13)	(24)	(13)	I
3	(24)	(13)	(24)	(13)	(13)
4	(24)	(13)	(24)	(13)	(13) (24)
5	(23)	(13)	(12)	I	I
6	(23) (45)	(13)	(12)	I	I
7	(23) (45)	(13) (45)	(12) (45)	I	I
8	(23)	I	I	I	I
9	(23) (45)	I	I	I	I
10	(23)	I	I	(23)	I
11	(23)	(45)	(45)	I	I
12	(23)	I	I	(23)	(23)
13	(23) (45)	(45)	(45)	I	I
14	I	I	I	I	I

University of Hawaii

References

- [1] M. Hall JR: Theory of Groups, Macmillan, New York, 1959.
- [2] O. Loos: Symmetric Spaces; Vol. 1, Benjamin, New York, 1969.