ON SYMMETRIC STRUCTURE OF A FINITE SET

Nobuo NOBUSAWA
(Received December 17, 1973)
(Revised April 5, 1974)

1. Introduction

A symmetric structure of a finite set A is defined to be a mapping S of A into the group of permutations on A (the image of an element a in A by S is denoted by S_{a} or by $S[a]$ and the image of an element b in A by a permutation S_{a} is denoted by $b S_{a}$) such that (i) $a S_{a}=a$, (ii) $S_{a}^{2}=I$ (the identity permutation) and (iii) $S\left[b S_{a}\right]=S_{a} S_{b} S_{a}$ for a and b in A. A set with a symmteric structure is called a symmetric set (with a given symmetric structure). Every group G has a symmetric structure S defined by $b S_{a}=a b^{-1} a$ for a and b in G, and when we regard a group as a symmetric set we always take this symmetric structure. Generally a symmetric set has a more complicate structure than a group and to develop a structure theory of a symmetric set seems to be an open problem. In this note, we first investigate the following two conditions.
(E) $S_{a} \neq S_{b}$ if $a \neq b$.
(H) For any elements a and b, there exists an element c such that $a S_{c}=b$.

Symmetric sets which satisfy (E) (or (H)) are called effective (or homogeneous).
Proposition 1. (H) implies (E).
Proof. Suppose that (H) is satisfied. Fix an element a and consider a correspondence $b \rightarrow b^{\prime}$ defined by $a S_{b}=b^{\prime}$. The correspondence is a surjective mapping of A to A due to (H). Since A is a finite set, it is a bijection. Therefore, if $b \neq c$, then $a S_{b} \neq a S_{c}$. Naturally $S_{b} \neq S_{c}$.

Actually (H) is stronger than (E).
Example 1. Let $A=\{1,2,3,4,5,6\}$. Consider S defined by $S_{1}=(24)(36)$, $S_{2}=(14)(35), S_{3}=(25)(16), S_{4}=(56)(12), S_{5}=(23)(46)$ and $S_{6}=(45)(13) . \quad S$ is a symmetric structure of $A .(E)$ is satisfied but not (H), since 1 is not mapped to 4 by any S_{i}.

Next, we consider the group of displacements of A, which is defined to be a subgroup of the group of permutations on A generated by $S_{a} S_{b}$ for all a and b in A. Denote it by $G(A)$.

Proposition 2. Fix an element e in A and consider a mapping of A to $G(A)$ defined by $a \rightarrow S_{e} S_{a}$. Then the mapping is a homomorphism of a symmetric set A to a symmetric set $G(A)$.

Proof. Let S^{\prime} be the symmetric structure of a group $G(A)$. We have to show that $a S_{b}$ is mapped to $\left(S_{e} S_{a}\right) S^{\prime}\left[S_{e} S_{b}\right]$. Now $a S_{b}$ is mapped to $S_{e} S\left[a S_{b}\right]$ which is equal to $S_{e} S_{b} S_{a} S_{b}=S_{e} S_{b} S_{a} S_{e} S_{e} S_{b}=S_{e} S_{b}\left(S_{e} S_{a}\right)^{-1} S_{b} S_{e}=\left(S_{e} S_{a}\right) S^{\prime}\left[S_{e} S_{b}\right]$ as we claimed.

If A is effective, then the homomorphism in Proposition 2 is an isomorphism of A into $G(A)$, and hence in this case a symmetric set A is regarded as a subset of a group closed under the operation $a b^{-1} a$. Note also that $G(A)$ is generated by $S_{e} S_{a}(a$ in $A)$ as $S_{a} S_{b}=S_{a} S_{e} S_{e} S_{b}$ and $S_{a} S_{e}=\left(S_{e} S_{a}\right)^{-1}$. In 3, it will be proved that an effective symmetric set is isomorphic with $G(A)$ if and only if $G(A)$ is abelian. (cf. Proposition 2.5. p. 137 [2]) One of the basic concepts in studying the structure of a symmetric set is a cycle which will be defined in 2 as a generalization of a cyclic subgroup of a group. The structure of a cycle will be completely determined in 2 . In 4 , we shall show that a homogeneous symmetric set of p^{2} elements where p is an odd prime is isomorphic with an abelian group, but in 5 we shall show that there is a homogeneous symmetric set of 27 elements which is not isomorphic with a group. In 6, we shall give a complete table of symmetric structures of a set of 5 elements. It would be a rather complicate work to find a complete table of symmetric structures of a set of more than 5 elements.

2. Cycles

Fix an element e in A. For an element a in A, we define

$$
a^{k}= \begin{cases}e\left(S_{e} S_{a}\right)^{i} & \text { if } k=2 i \\ a\left(S_{e} S_{a}\right)^{i} & \text { if } k=2 i+1\end{cases}
$$

From now on, we shall denote $S_{e} S_{a}$ by U_{a}. Clearly, $U_{a}^{-1}=S_{a} S_{e}$ and $S\left[b U_{a}\right]$ $=U_{a}^{-1} S_{b} U_{a}$.

$$
\text { Proposition 3. } \quad S\left[a^{k}\right]=S_{e} U_{a}^{k}
$$

Proof. First suppose $k=2 i$. Then $S\left[a^{k}\right]=S\left[e U_{a}^{i}\right]=U_{a}^{-i} S_{e} U_{a}^{i}=\left(S_{a} S_{e}\right)^{i} S_{e} U_{a}^{i}$ $=S_{e} S_{e}\left(S_{a} S_{e}\right)^{i} S_{e} U_{a}^{i}=S_{e} U_{a}^{i} S_{e} S_{e} U_{a}^{i}=S_{e} U_{a}^{2 i}=S_{e} U_{a}^{k} . \quad$ Next, suppose $k=2 i+1$. Then $S\left[a^{k}\right]=S\left[a U_{a}^{i}\right]=U_{a}^{-i} S_{a} U_{a}^{i}=\left(S_{a} S_{e}\right)^{i} S_{a} U_{a}^{i}=S_{e} S_{e}\left(S_{a} S_{e}\right)^{i} S_{a} U_{a}^{i}=S_{e} U_{a}^{i+1+t}$ $=S_{e} U_{a}^{k}$.

Proposition 4. $a^{j} S\left[a^{k}\right]=a^{-j+2 k} . \quad$ Especially $a^{j} S\left[a^{j+1}\right]=a^{j+2}$.
Proof. $a^{j} S\left[a^{k}\right]=a^{j} S_{e} U_{a}^{k}$ by Proposition 3. Suppose $j=2 i$. Then $a^{j} S_{e} U_{a}^{k}=$ $e\left(S_{e} S_{a}\right)^{i} S_{e} U_{a}^{k}=e S_{e}\left(S_{a} S_{e}\right)^{i}\left(S_{e} S_{a}\right)^{k}=e U_{a}^{-i+k}=a^{-2 i+2 k}=a^{-j+2 k} . \quad$ Suppose $j=2 i+1$.

Then $a^{j} S\left[a^{k}\right]=a\left(S_{e} S_{a}\right)^{i} S_{e} U_{a}^{k}=a S_{a}\left(S_{e} S_{a}\right)^{i} S_{e} U_{a}^{k}=a U_{a}^{-i-1} U_{a}^{k}=a U_{a}^{-i-1+k}=$ $a^{2(-i-1+k)+1}=a^{-j+2 k}$.

Now consider a sequence $e, a, a^{2}, a^{3}, \cdots$. The latter part of Proposition 4 implies that in the sequence the succeeding element of an element, say, b in the sequence is an image of the preceding element by S_{b}. We call such a sequence a cycle (generated by a with a base element e). Later we shall consider a set of all distinct elements in a cycle and call it also a cycle. Let ord ${ }_{e} a$ (or simply ord a if the base element e is implicitly pregiven) be the least positive integer n such that $a^{n}=e$, the existence of which is given in the following proposition.

Proposition 5. There exists ord a, and if we denote it by n and ord U_{a} (the order of a permutation U_{a}) by m, then $n=m$ or $2 m$. If (E) holds, then $n=m$.

Proof. $a^{2 m}=e U_{a}^{m}=e$, and so $n \leq 2 m$. On the other hand, by Proposition 3, $U_{a}^{n}=S_{e} S\left[a^{n}\right]=S_{e} S_{e}=I$. So m divides n. Therefore $n=m$ or $2 m$. We have $I=U_{a}^{m}=S_{e} S\left[a^{m}\right]$, which implies that $S\left[a^{m}\right]=S_{e}$. Therefore, $a^{m}=e$ or $n=m$ if (E) holds.

From now on, we shall denote $n=\operatorname{ord} a$ and $m=\operatorname{ord} U_{a}$.
Theorem 1. If $i \equiv j \bmod 2 m$, then $a^{i}=a^{j}$. Conversely if $a^{i}=a^{j}$, then $i \equiv j \bmod m$.

Proof. If $i \equiv j \bmod 2 m$, then $a^{i}=a^{j}$ by definition of a^{k}. Suppose that $a^{i}=a^{j}$. Then $U_{a}^{i}=U_{a}^{j}$ by Proposition 3, whence $i \equiv j \bmod m$.

Corollary. $\quad a^{k}=e$ if and only if $k \equiv 0 \bmod n$.
Proof. By Theorem 1, a cycle e, a, \cdots consists of repetitions of e, a, \cdots, $a^{2 m-1}$. So if $n=2 m$, Corollary is clear. Suppose $n=m$. We have to show that if $a^{i}=e$ for $0<i<2 m$ then $i=n$. But, by Theorem 1 , if $a^{i}=e$ then $i \equiv 0 \bmod m$ $(=n)$. Therefore $i=n$.

So far we have seen that a cycle e, a, \cdots consists of repetitions of e, a, \cdots, a^{n-1} or of repetitions of $e, a, \cdots, a^{2 n-1}$. When we have the former case, we call the cycle regular.

Theorem 2. If n is odd or if $n=2 m$, then a cycle e, a, \cdots is regular. If (E) holds, then every cycle is regular.

Proof. The last statement is clear because $a^{i}=a^{j}$ if and only if $S\left[a^{i}\right]=$ $S\left[a^{j}\right]$ when (E) holds, i.e., if and only if $i \equiv j \bmod m(=n)$. Next suppose $n=2 k+1$. To show the regularity of the cycle, it is sufficient to show that $a^{n+1}=a$. Now $a^{n+1}=a^{2 k+2}=a^{2(k+1)}=e U_{a}^{k+1}$. Since $e=a^{n}=a U_{a}^{k}$, we have that $e U_{a}^{k+1}=a U_{a}^{k} U_{a}^{k+1}=a U_{a}^{2 k+1}=a U_{a}^{n}=a$. Here note that in this case $n=m$ because n is odd. If $n=2 m$, then the cycle is clearly regular.

Corollary. $\quad a^{n+2 k}=a^{2 k}$.
Proof. If the cycle is regular, there is nothing to prove. So we may suppose by Theorem 2 that n is even and $n=m$. Then $a^{n+2}=a^{n} S\left[a^{n+1}\right]=e S_{e} U_{a}^{n+1}$ $=e U_{a}=a^{2}$. Now consider a cycle e, a^{2}, a^{4}, \cdots It consists of repetitions of $e, a^{2}, \cdots, a^{n-2}$. This completes the proof of Corollary.

Example 2. Let $A=\{1,2, \cdots, 6\}$. Define $S_{1}=(26)(45), S_{2}=(13)(46), S_{3}=$ (24)(56), $S_{4}=(13)(25), S_{5}=S_{2}$ and $S_{6}=S_{4} . \quad S$ is a symmetric structure of A. We have a cycle $1,2,3,4,1,5,3,6,1,2, \cdots$ The cycle is not regular. A is not effective and $n=m=4$.

The following proposition will be used in 3.
Proposition 6. A symmetric set A is homogeneous if and only if $\operatorname{ord}_{e} a$ is odd for any e and a in A.

Proof. Let C be a subset of A consisting of all distict elements of e, a, \cdots. C is also called a cycle. C is a symmetric set with a symmetric structure induced from that of A. Generally we call such a subset as a symmetric subset of A. If A is homogeneous, then every symmetric subset B of A is also homogeneous as is seen from the proof of Proposition 1. So if A is homogeneous, then C is so. Then ord a must be odd. Otherwise, $n=2 k$ and $S\left[a^{k}\right]=S_{e}$ since $a^{t} S\left[a^{k}\right]=a^{-t+2 k}=a^{-t}=a^{t} S_{e}$ but then $a^{k}=e$ (a contradiction). Conversely suppose that ord a is odd for any e and a. Put ord $a=2 k+1$. Consider an element $b=a^{k+1}$, and we see that $a S_{b}=a^{-1+2(k+1)}=a^{2 k+1}=e$ by Proposition 4. Thus a is mapped to e. But a and e are taken arbitrarily in A. So (H) is satisfied.

3. Abelian symmetric sets

A is called abelian if $G(A)$ is abelian.
Lemma. Let e, a and d be elements in an abelian symmetric set A. Put $d^{(k)}=d U_{a}^{k}$. Then $d, d^{(1)}, d^{(2)}, \cdots$ is a cycle. If $m\left(=\operatorname{ord} U_{a}\right)=2 j$, then $\operatorname{ord} S_{d} S\left[d^{(1)}\right]=j$.

Proof. $\quad S_{d} S\left[d^{(1)}\right]=S_{d} S\left[d U_{a}\right]=S_{d} S_{a} S_{e} S_{d} S_{e} S_{a} . \quad$ But $S_{a} S_{e} S_{d}=S_{d} S_{e} S_{a}$ since $S_{e} S_{a} S_{e} S_{d}=S_{e} S_{d} S_{e} S_{a}$ for $G(A)$ is abelian. Therefore, $S_{d} S\left[d^{(1)}\right]=S_{d} S_{d} S_{e} S_{a} S_{e} S_{a}$ $=U_{a}^{2}$, and hence ord $S_{d} S\left[d^{(1)}\right]=j$ if ord $U_{a}=2 j$. Now if $k=2 i$, then $d^{(k)}=d U_{a}^{2 i}$ $=d\left(S_{d} S\left[d^{(1)}\right]\right)^{i}$, and if $k=2 i+1$, then $d^{(k)}=d U_{a}^{2 i+1}=d^{(1)} U_{a}^{2 i}=d^{(1)}\left(S_{d} S\left[d^{(1)}\right]\right)^{i}$. This shows that $d, d^{(1)}, d^{(2)}, \cdots$ is a cycle.

Theorem 3. An effective abelian symmetric set is homogeneous.
Proof. Suppose that A is abelian and effective. By Proposition 6, we have to show that ord a is odd. Assume on the contrary that ord $a=2 j$. Due
to $(E), m\left(=\operatorname{ord} U_{a}\right)=n=2 j$. Therefore, $j<m$ or $U_{a}^{j} \neq I$. Then there exists an element d such that $d U_{a}^{j} \neq d$. On the other hand, if we apply the above lemma on d, we have a cycle $d, d^{(1)}, \ldots$ such that ord $S_{d} S\left[d^{(1)}\right]=j$. Due to (E), ord $S_{d} S\left[d^{(1)}\right]=\operatorname{ord}_{d} d^{(1)}$. Thus $d^{(j)}=d$. This is a contradiction.

Theorem 4. Let A be an effective symmetric set. Then A is abelian if and only if $G(A)=\left\{S_{e} S_{a} \mid a\right.$ in $\left.A\right\}$ for an element e in A.

Proof. First suppose that A is abelian. By the proof of Theorem 3, ord $a=2 k+1$ (odd). Then $e=a^{2 k+1}=a U_{a}^{k}$, and so $e U_{a}^{k+1}=a U_{a}^{k} U_{a}^{k+1}=a U_{a}^{2 k+1}$ $=a$. Therefore, $a^{2 k+2}=a$, or $a^{2 t}=a$ with $t=k+1$. Then $S_{b} S_{e} S_{a}=S_{b} S_{e} S\left[a^{2 t}\right]$ $=S_{b} S_{e} S\left[e U_{k}^{t}\right]=S_{b} S_{e}\left(S_{a} S_{e}\right)^{t} S_{e}\left(S_{e} S_{a}\right)^{t}=\left(S_{a} S_{e}\right)^{t} S_{b} S_{e} S_{e}\left(S_{e} S_{a}\right)^{t}=\left(S_{a} S_{e}\right)^{t} S_{b}\left(S_{e} S_{a}\right)^{t}$ $=S_{c}$ with $c=b U_{a}^{t}$. This implies that $S_{e} S_{b} S_{e} S_{a}=S_{e} S_{c}$. Also we have that $\left(S_{e} S_{a}\right)^{-1}=\left(S_{e} S_{a}\right)^{m-1}=S_{e} S_{d}$ with $d=a^{m-1}$. Every element of $G(A)$ is a product of $S_{e} S_{a}(a$ in $A)$. Then the above result shows that every element of $G(A)$ is expressed as $S_{e} S_{a}$ with an element a in A. As to the converse, note that $G(A)$ has an automorphism (as a group) defined by $T \rightarrow S_{e} T S_{e}$ with a fixed element e. If $G(A)=\left\{S_{e} S_{a} \mid a\right.$ in $\left.A\right\}$, then the automorphism maps every element of $G(A)$ to its inverse. In such a case, a group must be abelian. (The converse part of Theorem 4 is pointed out by Prof. H. Nagao.)

4. Homogeneous symmetric sets of \boldsymbol{p}^{2} elements

Let A be a symmetric set and C a symmetric subset of A. Moreover, suppose that C is a cycle $\left\{e, a, \cdots, a^{t-1}\right\}$ where $t=\operatorname{ord} a$. We denote $\left\{S_{e} S\left[a^{i}\right] \mid i=\right.$ $0,1, \cdots, t-1\}$ by $G^{\prime}(C) . \quad G^{\prime}(C)$ is a cyclic subgroup of $G(A)$. Now suppose that A is homogeneous. For an element b in $A, b G^{\prime}(C)$ consists of t elements because $b S_{e} S\left[a^{i}\right]=b S_{e} S\left[a^{j}\right]$ implies $a^{i}=a^{j}$ by the proof of Proposition 1. If d is an element in A, then $b G^{\prime}(C)$ and $d G^{\prime}(C)$ are either identical or disjoint as $G^{\prime}(C)$ is a group. Thus A is a set-theoretical union of disjoint subsets $b G^{\prime}(C)$, $b^{\prime} G^{\prime}(C), \cdots$. This proves the following.

Proposition 7. Let A be a homogeneous symmetric set of k elements and C a symmetric subset of t elements which is a cycle. Then t divides k.

Now let A be a homogeneous symmetric set of p^{2} elements where p is an odd prime. If A is a cycle, it is naturally abelian and is isomorphic with a cyclic group. So, assume that A is not a cycle. By Proposition 7, every non-trivial cycle consists of p elements. From now on, we are going to use some geometric terms. Call an element in A a point. A cycle is said to be passing through a point if it contains the point. Then we can show that there is one and only one cycle passing through given two points as p is a prime. Two cycles are said to be parallel if they have no point in common. Next we shall show that, if a point a is not contained in a cycle C, then there is one and only one cycle passing through
a and parallel to C. To see it, we first note that the number of cycles passing through a point is $\left(p^{2}-1\right) /(p-1)=p+1$. Now there are p cycles passing through a and points in C. Thus we have the above fact. Then, if C_{1} is parallel to C_{2} and C_{2} to C_{3} (C_{i} are all different cycles), C_{1} is then parallel to C_{3}. By counting the number again, we conclude that there are exactly p cycles which are parallel each other. Now fix a point e in A. Let D_{0} be a cycle $\left\{e, a, \cdots, a^{p-1}\right\}$. Let C_{i} be cycles passing through a^{i} and parallel to $C_{0}(i=0,1, \cdots, p-1)$. Let C_{0} be $\left\{e, b, \cdots, b^{p-1}\right\}$, and D_{j} cycles passing through b^{j} and parallel to $D_{0}(j=0$, $1, \cdots, p-1)$. We shall show that $C_{i} S_{d}=C_{k}$ for $i \neq k$ if and only if d is in C_{j} where $k \equiv 2 j-i \bmod p$. First, we have that $C_{i} S\left[a^{j}\right]=C_{k}$ since $C_{i} S\left[a^{j}\right]$ contains a^{k} and is parallel to C_{i}. (If $C_{i} S\left[a^{j}\right]$ and C_{i} intersect at a point c, then $c=c^{\prime} S\left[a^{j}\right]$ with a point c^{\prime} in C_{i} which implies that a^{j} is in C_{i}.) Now consider a set $F=\left\{u\right.$ in $\left.A \mid C_{i} S_{u}=C_{k}\right\}$. It is not hard to show that F is a symmetric subset of A and is parallel to C_{i}. Since F contains $a^{j}, F=C_{j}$. Similarly $D_{i} S_{d}=D_{k}$ for $i \neq k$ if and only if d is in D_{j} where $k \equiv 2 j-i \bmod p$. Now every point in A is determined as an intersection point of C_{i} and D_{j} for some i and j. Denote the point by $u(i, j)$. Then we have by the above result that $u\left(i, i^{\prime}\right) S\left[u\left(j, j^{\prime}\right)\right]$ $=u\left(k, k^{\prime}\right)$ where $k \equiv 2 j-i$ and $k^{\prime} \equiv 2 j^{\prime}-i^{\prime} \bmod p$. Thus A is isomorphic with a group which is a direct product of two cyclic groups of order p.

5. A homogeneous set of 27 elements

Let $A=\left\{1,2, \cdots, 9,1^{\prime}, 2^{\prime}, \cdots, 9^{\prime}, 1^{\prime \prime}, 2^{\prime \prime}, \cdots, 9^{\prime \prime}\right\}$. Define S as follows. $i S_{k}=2 k-i, i^{\prime} S_{k}=(i+k)^{\prime \prime}, i^{\prime \prime} S_{k}=(i-k)^{\prime} ; i S_{k^{\prime}}=(i+k)^{\prime \prime}, i^{\prime} S_{k^{\prime}}=(2 k-i)^{\prime}, i^{\prime \prime} S_{k^{\prime}}=$ $i-k ; i S_{k^{\prime \prime}}=(k-i)^{\prime}, i^{\prime} S_{k^{\prime \prime}}=k-i, i^{\prime \prime} S_{k^{\prime \prime}}=(2 k-i)^{\prime \prime}$, Here all integers are considered mod 9. By routine computations we can verify that S is a symmetric structure of A satisfying (H). For example, we have to check that $S_{k^{\prime \prime}} S_{t} S_{k^{\prime \prime}}$ $=S\left[t S_{k^{\prime \prime}}\right]=S\left[(k-t)^{\prime}\right]$. But the both left and right sides of the above will map i to $(k-t+i)^{\prime \prime}, i^{\prime}$ to $(2 k-2 t-i)^{\prime}$, and $i^{\prime \prime}$ to $-k+t+i$, and hence we have the identity. A is not isomorphic with a group, because there is one and only one cycle of order 9 passing through a point, say, 1 ; namely, $\{1,2, \cdots, 9\}$. On the other hand, in a group of order 27, taking the group identity e, we can see that either there is no cycle (in this case cyclic subgroup) of order 9 passing through e or else there are more than one cycle of order 9 passing through e. (See p. 52 [1].)

6. A table of symmetric structures of a set of $\mathbf{5}$ elements

The following is a complete table of symmetric structures of a set of 5 elements $1,2, \cdots, 5$. There are 14 types including a trivial case.

Type	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
1	$(25)(34)$	$(13)(45)$	$(24)(15)$	$(35)(12)$	$(14)(23)$
2	(24)	(13)	(24)	(13)	I
3	(24)	(13)	(24)	(13)	(13)
4	(24)	(13)	(24)	(13)	$(13)(24)$
5	(23)	(13)	(12)	I	I
6	$(23)(45)$	(13)	(12)	I	I
7	$(23)(45)$	$(13)(45)$	$(12)(45)$	I	I
8	(23)	I	I	I	I
9	$(23)(45)$	I	I	I	I
10	(23)	I	I	(23)	I
11	(23)	(45)	(45)	I	I
12	(23)	I	I	(23)	(23)
13	$(23)(45)$	(45)	(45)	I	I
14	I	I	I	I	I

University of Hawail

References

[1] M. Hall JR: Theory of Groups, Macmillan, New York, 1959.
[2] O. Loos: Symmetric Spaces; Vol. 1, Benjamin, New York, 1969.

